MA 261 QUIZ 12 April 16, 2019

If you do not know how to do any one of these problems, circle "(E) I don't know" as your answer choice. You will receive **one point** for doing that. Each problem is worth five points. You get two points for writing your full name and three points for writing your PUID and section number.

Problem 12.1. Let S be the surface parametrized by $\mathbf{r}(u, v) = \langle v \cos u, v \sin u, 2v^2 \rangle$ with $0 \le u \le 2$ and $0 \le v \le 2$. Then S is part of a

- (A) circular paraboloid
- (B) cone
- (C) cylinder
- (D) ellipsoid
- (E) I don't know how to do this problem

Solution. Write $x = v \cos u$, $y = v \sin u$, and $z = 2v^2$. Then, note that $x^2 + y^2 = z$. This is a paraboloid with circular cross sections, so it is a circular paraboloid.

Answer: (A).

Problem 12.2. Let S be the part of the sphere $x^2 + y^2 + z^2 = 1$ above the plane z = 1/2. Evaluate the surface integral

$$\iint_{S} 12z^2 \, dS.$$

Hint: Use the parametrization $\mathbf{r}(u,v) = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle$ and apply u-substitution.

- (A) 2π
- (B) π
- (C) 7π
- (D) 8π
- (E) I don't know how to do this problem

Solution. First, we need to find a parametrization of the surface. Since the surface is part of a sphere, there is a natural parametrization and it is.

$$\mathbf{r}(\theta, \phi) = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle.$$

Its partial derivatives are

$$\mathbf{r}_{\theta}(\theta, \phi) = \langle -\sin\phi\sin\theta, \sin\phi\cos\theta, 0 \rangle, \mathbf{r}_{\phi}(\theta, \phi) = \langle \cos\phi\cos\theta, \cos\phi\sin\theta, -\sin\phi \rangle.$$

Next, we need to find $\mathbf{r}_{\theta} \times \mathbf{r}_{\phi}$. This computation can get a little hairy, but nevertheless with perseverance, we get

$$\mathbf{r}_{\theta} \times \mathbf{r}_{\phi} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin\phi\sin\theta & \sin\phi\cos\theta & 0 \\ \cos\phi\cos\theta & \cos\phi\sin\theta & -\sin\phi \end{vmatrix}$$
$$= \langle -\sin^{2}\phi\cos\theta, -\sin^{2}\phi\sin\theta, -\sin\phi\cos\phi\sin^{2}\theta - \sin\phi\cos\phi\cos^{2}\theta \rangle$$
$$= \langle -\sin^{2}\phi\cos\theta, -\sin^{2}\phi\sin\theta, -\sin\phi\cos\phi \rangle$$

So the norm is

$$|\mathbf{r}_{\theta} \times \mathbf{r}_{\phi}| = \sqrt{\sin^{4} \phi \cos^{2} \theta + \sin^{4} \phi \sin^{2} \theta + \sin^{2} \phi \cos^{2} \phi}$$

$$= \sqrt{\sin^{4} \phi (\cos^{2} \theta + \sin^{2} \theta) + \sin^{2} \phi \cos^{2} \phi}$$

$$= \sqrt{\sin^{4} \phi + \sin^{2} \phi \cos^{2} \phi}$$

$$= \sqrt{\sin^{2} \phi (\sin^{2} \phi + \cos^{2} \phi)}$$

$$= \sqrt{\sin^{2} \phi}$$

$$= \sin \phi.$$

Therefore, the surface integral is

$$\iint_{S} 12z^{2} dS = \int_{0}^{2\pi} \int_{0}^{\pi/3} 12 \cos^{2} \phi \sin \phi \, d\phi d\theta$$
 making the *u*-substitution, $u = \cos \phi$

$$= \int_{0}^{2\pi} \int_{1}^{1/2} -12u^{2} \, du d\theta$$

$$= 2\pi \int_{1/2}^{1} 12u^{2} \, du$$

$$= 8\pi \left[u^{3}\right]_{1/2}^{1}$$

$$= 8\pi (1 - 1/8)$$

$$= 7\pi.$$

Answer: (C).