MA 261 Quiz 3
 January 29, 2019

If you do not know how to do any one of these problems, circle "(E) I don't know" as your answer choice. You will receive two points for doing that. Each problem is worth five points. You get two points for writing your full name and three points for writing your section number.
Problem 3.1. Consider the curve $\mathbf{r}(t)=\langle t, 3 \sin t, 3 \cos t\rangle$. Find $\mathbf{r}^{\prime}(t)$
(A) $\mathbf{r}^{\prime}(t)=\langle 1,3 \cos t,-3 \sin t\rangle$
(B) $\mathbf{r}^{\prime}(t)=\langle t, 3 \sin t, 3 \sin t\rangle$
(C) $\mathbf{r}^{\prime}(t)=\langle 1,3,-3\rangle$
(D) $\mathbf{r}^{\prime}(t)=\langle 1,3,3\rangle$
(E) I don't know how to do this

Solution. This first problem is easy if you remember how to take derivatives of trigonometric functions,

$$
\mathbf{r}^{\prime}(t)=\langle 1,3 \cos t,-3 \sin t\rangle
$$

Answer: (A).
Problem 3.2. Find the arclength of $\mathbf{r}(t)=\langle t, 3 \sin t, 3 \cos t\rangle$ for $0 \leq t \leq 1$?
(A) $\sqrt{10}$
(B) 3
(C) $\sqrt{3} / 2$
(D) 3π
(E) I don't know how to do this

Solution. By the arclength formula,

$$
\begin{aligned}
l(0,1) & =\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{1} \sqrt{1+9 \sin ^{2} t+9 \cos ^{2} t} d t \\
& =\int_{0}^{1} \sqrt{1+9} d t \\
& =\int_{0}^{1} \sqrt{10} d t
\end{aligned}
$$

Answer: (A).
Problem 3.3. Find the curvature of $\mathbf{r}(t)=\langle t, 3 \sin t, 3 \cos t\rangle$?
(A) $3 / \sqrt{10}$
(B) $1 / 3$
(C) 1
(D) $3 / 10$
(E) I don't know how to do this

Solution. Recall that the curvature κ of a curve \mathbf{r} is the same as the magnitude of the second derivative of the arclength parametrized form of \mathbf{r}, so all we need to do is find the arclength parametrization of \mathbf{r} in the statement of the problem and find its second derivative.

From the last problem, it is easy to arclength parametrize $\mathbf{r}(t)$ using the equality $s=\sqrt{10} t$, i.e.,

$$
\begin{aligned}
\mathbf{r}(s) & =\left\langle\frac{s}{\sqrt{10}}, 3 \sin \left(\frac{s}{\sqrt{10}}\right), 3 \cos \left(\frac{s}{\sqrt{10}}\right)\right\rangle \\
\mathbf{r}^{\prime}(s) & =\left\langle\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \cos \left(\frac{s}{\sqrt{10}}\right),-\frac{3}{\sqrt{10}} \sin \left(\frac{s}{\sqrt{10}}\right)\right\rangle \\
\mathbf{r}^{\prime \prime}(s) & =\left\langle 0,-\frac{3}{10} \sin \left(\frac{s}{\sqrt{10}}\right),-\frac{3}{10} \cos \left(\frac{s}{\sqrt{10}}\right)\right\rangle .
\end{aligned}
$$

Therefore,

$$
\kappa=\left|\mathbf{r}^{\prime \prime}(s)\right|=\frac{3}{10}
$$

Answer: (D).

