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Graded problems:

Section Number
7.4 15, 26
7.7 14, 18, 24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problem 3.1 (7.4 # 15). If the row vectors of a square matrix are linearly indepen-
dent, so are the column vectors, and conversely.
Solution. Let A be an n× n matrix. Then, rank A = n if and only if the rows of A
are linearly independent. Since rank A = rank AT, by Theorem 6, the rows of A are
linearly independent if and only if the columns of A are linearly independent. 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problem 3.2 (7.4 # 26). Linearly independent subset. Beginning with the last
of the vectors (3, 0, 1, 2), (6, 1, 0, 0), (12, 1, 2, 4), (6, 0, 2, 4), and (9, 0, 1, 2), omit one
after another until you get a linearly independent set.
Solution. One thing which will serve us well for this problem is to write down the set
of vectors as the rows of the matrix A, as we do below

A =


3 0 1 2
6 1 0 0
12 1 2 4
6 0 2 4
9 0 1 2
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and perform Gaussian elimination on A being careful to keep track of which vector
used to be which.

Without further ado, by elimination we have

A =⇒


1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 0
0 0 0 0


so there are at most three linearly independent vectors. The vectors are (3, 0, 1, 2),
(6, 1, 0, 0), and (9, 0, 1, 2) since

(1, 0, 0, 0) = 1
6

[
(9, 0, 1, 2)− (3, 0, 1, 2)

]
(0, 1, 0, 0) = (6, 1, 0, 0) + (3, 0, 1, 2)− (9, 0, 1, 2)
(0, 0, 1, 2) = −1

2

[
(9, 0, 1, 2)− 3(3, 0, 1, 2)

]
.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problem 3.3 (7.7 # 14). Showing the details, evaluate:∣∣∣∣∣∣∣∣∣

4 7 0 0
2 8 0 0
0 0 1 5
0 0 −2 2

∣∣∣∣∣∣∣∣∣.

Solution. We will mostly be using (b) from Theorem 1 to compute these determinants.
Recall what that says: addition of a multiple of a row to another row does not change
the value of the determinant. Therefore,∣∣∣∣∣∣∣∣∣

4 7 0 0
2 8 0 0
0 0 1 5
0 0 −2 2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
4 6 0 0
0 9

2 0 0
0 0 1 5
0 0 0 12

∣∣∣∣∣∣∣∣∣ = 4 · 9
2 · 1 · 12 = 216.
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Problem 3.4 (7.7 # 18). Find the rank by Theorem 3 (which is not very practical)
and check by row reduction. Show details 0 4 −6

4 0 10
−6 10 0

.

Solution. Recall that Theorem 3 that a matrix A has rank r ≥ 1 if and only if it
contains an r × r submatrix whose determinant is nonzero. Now,∣∣∣∣∣∣∣

0 4 −6
4 0 10
−6 10 0

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
4 0 10
0 4 −6
0 0 30

∣∣∣∣∣∣∣ = −480 6= 0.

Therefore, the rank of the matrix must be 3. Note that in the process of finding the
determinant we performed elimination on the original matrix, so we need not do this
again. 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problem 3.5 (7.7. # 24). Solve by Cramer’s rule. Check by Gauss elimination and
back substitution. Show details.

3x− 2y + z = 13
−2x + y + 4z = 11

x + 4y − 5z = −31.

Solution. By Cramer’s rule, we have

D =

∣∣∣∣∣∣∣
3 −2 1
−2 1 4
1 4 −5

∣∣∣∣∣∣∣ = −60,

x =

∣∣∣∣ 13 −2 1
11 1 4

−31 4 −5

∣∣∣∣
−60 = −60

−60 = 1,

y =

∣∣∣∣ 3 13 1
−2 11 4
1 −31 −5

∣∣∣∣
−60 = −3,

z =

∣∣∣∣ 3 −2 13
−2 1 11
1 4 −32

∣∣∣∣
−60 = 4.
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By back substitution,

3(1)− 2(−3) + 4 = 3 + 6 + 4 = 13,

−2(1) + (−3) + 4(4) = −2− 3 + 16 = 11,

1 + 4(−3)− 5(4) = 1− 12− 20 = −31.
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