Topic: Annuities Immediate and Due

Brenna wants to have 500,000 on her $40^{\text {th }}$ birthday. Today is her $20^{\text {th }}$ birthday. She will make a deposit of P into an account at the beginning of each month for the next 20 years. The account will earn an annual effective interest rate of 8%.

Determine P so that Brenna will have exactly 500,000 on her $40^{\text {th }}$ birthday.

Solution:

Since payments are monthly, we need the monthly effective interest rate of $\frac{i^{(12)}}{12}$.

$$
\begin{aligned}
\left(1+\frac{i^{(12)}}{12}\right)^{12}=1+i=1.08 \Rightarrow & \frac{i^{(12)}}{12}=(1.08)^{\frac{1}{12}}-1=0.006434 \\
P \ddot{s}_{240}=500,000 & \Rightarrow P\left(\frac{(1.006434)^{240}-1}{0.006434}\right)(1.006434)=500,000 \\
& =>572.66 P=500,000 \quad \Rightarrow \quad P=873.12
\end{aligned}
$$

Kiran wants to have $1,000,000$ when she turns 65 . Today is Kiran's $25^{\text {th }}$ birthday. In order to accomplish her goal, she will deposit D into an account earning an annual effective interest rate of 8% at the beginning of each year for the next 40 years.

Determine D.

Solution:

$$
\begin{aligned}
& D \ddot{s}_{401}=1,000,000 \\
& D=\frac{1,000,000}{\left(\frac{(1.08)^{40}-1}{0.08}\right)(1.08)}=3574.22
\end{aligned}
$$

Or

Set BGN

$N \leftarrow 40$
$I / Y \leftarrow 8$
$F V \leftarrow 1,000,000$
$C P T$ PMT $\Rightarrow 3574.22$

Emily is saving for her retirement. She invests 100 at the beginning of each month for 40 years into an account earning an annual effective interest rate of 9%.

Calculate the amount that Emily will have at the end of 40 years.

Solution:

$$
\text { Amount }=(100) \ddot{S}_{\overline{480}}
$$

Since payments are monthly, we need the monthly effective interest rate of $\frac{i^{(12)}}{12}$.

$$
\begin{aligned}
& \left(1+\frac{i^{(12)}}{12}\right)^{12}=1+i=1.09==>\frac{i^{(12)}}{12}=(1.09)^{1 / 12}-1=0.007207323 \\
& (100) \ddot{s}_{480}=(100)\left(\frac{(1.007207323)^{480}-1}{0.007207323}\right)(1.007207323)=424,964.87
\end{aligned}
$$

Kayla borrows 10,000 from Alex. Alex tells Kayla that she can repay him using one of the following two options:
a. Pay a single payment $26,017.40$ at the end of 10 years; or
b. Make monthly payments of P for the next 10 years.

Both payment options are equivalent which means that Kayla will be paying the same interest rate.

Determine P.

Solution:

Option a:
$10,000(1+i)^{10}=26,017.40==>i=\left(\frac{26,017.40}{10,000}\right)^{1 / 10}-1=0.100339$

Option b:

For this option since payments are monthly, we need $\frac{i^{(12)}}{12}$.
$\left(1+\frac{i^{(12)}}{12}\right)^{12}=1+i=1.100339 \Longrightarrow \frac{i^{(12)}}{12}=(1.100339)^{1 / 12}-1=0.008$
$P a_{\overline{120}}=10,0000 \Rightarrow P\left(\frac{1-(1.008)^{-120}}{0.008}\right)=10,000 \Rightarrow=>P=\frac{10,0000}{\frac{1-(1.008)^{-120}}{0.008}}=129.95$

Alex wants to invest for his retirement. Today is his $22^{\text {nd }}$ birthday.
He will make a payment of 10,000 on each birthday beginning with his $30^{\text {th }}$ birthday. His last payment will be on his $64^{\text {th }}$ birthday.

Alex earns an annual effective interest rate of 6\%.

Calculate the amount that Alex will have at the age 65.

Solution:

First, we note that the number of payments is 35 . Second, we note that we want the accumulated value at age 65 which is one period after the last payment at age 64.

Answer $=(10,000) \ddot{s}_{351}=(10,000)\left(\frac{(1.06)^{35}-1}{0.06}\right)(1.06)=1,181,208.67$

Alan buys a house for 300,000 . He finances the entire amount with a mortgage. The mortgage requires monthly payments for 30 years. The interest rate on the mortgage is an annual effective interest rate of 9%.

Calculate Alan's monthly payment.

Solution:

Payments are monthly so we need the monthly effective interest rate but we are given the annual effective interest rate.
$\left(1+\frac{i^{(12)}}{12}\right)^{12}=1.09=>\frac{i^{(12)}}{12}=(1.09)^{1 / 12}-1=0.007207323$
$Q a_{360 \mid}=300,000 \Longrightarrow Q=\frac{300,000}{\left(\frac{1-(1.007207323)^{-360}}{0.007207323}\right)}=2338.45$

Kylie invests P at the beginning of each year into an account which earns an annual effective interest rate of 7.2%.

Kylie's balance at the end of 13 years is 100,000 .
Determine P.

Solution:

$$
\begin{aligned}
& P \ddot{s}_{13}=100,000 \\
& P=\frac{100,000}{\ddot{s}_{13}}=\frac{100,000}{\left(\frac{(1.072)^{13}-1}{0.072}\right)(1.072)}=4571.91
\end{aligned}
$$

You are given that $1000 a_{n}=12,676.16$ and $1000 s_{n}=45,068.90$.
Both annuity values are calculated using the same interest rate.

Determine n.

Solution:

$\frac{1}{a_{n}}=\frac{1}{s_{n}}+i$
$1000 a_{n}=12,676.16 \Rightarrow a_{n}=12.67616$ and $1000 s_{n}=45,068.90 \Rightarrow s_{n}=45.06890$
$\frac{1}{12.67616}=\frac{1}{45.06890}+i=\Rightarrow i=0.0567$

If you do not remember the formula above, you still find i using algebra.
$\mathrm{a}_{n}(1+i)^{n}=s_{n}==>12.67616(1+i)^{n}=45.06890 \Longrightarrow(1+i)^{n}=\frac{45.06890}{12.67616}=3.555406369$ $s_{n}=\frac{(1+i)^{n}-1}{i}=\frac{3.55506369-1}{i}=45.06890 \Longrightarrow \quad \Rightarrow i=\frac{2.55506369}{45.06890}=0.0567$

Then

$$
\begin{aligned}
& \frac{(1.0567)^{n}-1}{0.0567}=45.0689==>(1.0567)^{n}=(45.0689)(0.0567)+1=3.55540663 \\
& n=\frac{\ln (3.55540663)}{\ln (1.0567)}=23
\end{aligned}
$$

