Topic: Callable Bonds

Ally buys a 10 year callable bond. The bond matures at the end of 10 years for 10,000 . The bond has semi-annual coupons at a rate of 7.5% convertible semi-annually.

The bond can be called at the end of 5 years for a call value of 10,225 .
The bond can be called at the end of 7 years for a call value of 10,125 .
The bond can be called at the end of 9 years for a call value of 10,050 .
The bond is purchased to yield 7% convertible semi-annually.
Determine the price of the bond.

Solution:

Calculate the value at each call date and the maturity date and select the lowest price.

N	I / Y	PMT	FV	CPT PV
10	3.5	$(10,000)(0.0375)=375$	10,225	$10,367.42$
14	3.5	375	10,125	$10,350.24$
18	3.5	375	10,050	$10,356.66$
20	3.5	375	10,000	$10,355.31$

The lowest present value is the price $\rightarrow 10,350.24$

The Vinyard Corporation issues a 10 year callable bond. The bond matures for its par value of 10,000. The bond has coupons payable semi-annually at a rate of 7.5% compounded semi-annually.

The bond is callable at the end of 6 years with a call value of 10,250 .
The bond is callable at the end of 8 years with a call value of 10,125 .
The bond is purchased to yield 6.8\% compounded semi-annually.
Determine the price of the The Vinyard's bond.

Solution:

n	I/Y	PMT	FV	CPT PV
$(6)(2)=12$	$6.8 / 2=3.4$	$(10,000)(0.075 / 2)=375$	10,250	$10,507.59$
$(8)(2)=16$	3.4	375	10,125	$10,499.70$
$(10)(2)=20$	3.4	375	10,000	$10,501.97$

Answer is lowest price of $10,499.70$

ROPS Corporation issues a 25 year callable bond with a par and maturity value of 100,000. The bond has semi-annual coupons at a rate of 8% convertible semi-annually.

The bond is callable at the end of 10 years. The call value at the end of 10 years is 119,500 .
The bond is callable at the end of 15 years. The call value at the end of 15 years is 114,500 .
Calculate the price of this bond to ensure a yield of 6% convertible semi-annually.

Solution:

\mathbf{N}	\mathbf{I} / \mathbf{Y}	PMT	FV	CPT PV
$(10)(2)=20$	$6 \% / 2=3$	$(100,000)(0.08 / 2)=4000$	119,500	$125,674.15$
$(15)(2)=30$	3	4000	114,500	$125,574.25$
$(25)(2)=50$	3	4000	100,000	$125,729.76$

We select the lowest price so Price $=\mathbf{1 2 5 , 5 7 4 . 2 5}$

A callable bond matures at the end of 20 years for 10,000 . The bond pays coupons at a rate of 7% convertible semi-annually.

The bond can be called at the end of 14 year for a call value of 10,500 . The bond can be called at the end of 16 years for a call value of 10,350 . Finally, the bond can be called at the end of 18 years for a call value of 10,200 .

Determine the price of this callable bond to yield a return of 7\% convertible semi-annually.

Solution:

\mathbf{I} / \mathbf{Y}	\mathbf{N}	FV	PMT	CPT PV
$7 / 2=3.5$	$14^{*} 2=28$	10,500	$(10,000)(0.07 / 2)=350$	$10,190.83$
3.5	32	10,350	350	$10,116.41$
3.5	36	10,200	350	$10,057.97$
3.5	40	10,000	350	$10,000.00$

Price is 10,000 since that is the lowest price.

A callable bond matures at the end of 20 years for its par value of 10,000 . The bond pays coupons at a rate of 7% convertible semi-annually.

The bond can be called at the end of 14 years for a call value of 10,500 . The bond can be called at the end of 16 years for a call value of 10,350 . Finally, the bond can be called at the end of 18 years for a call value of 10,200 .

Determine the price of this callable bond to yield a return of 6\% convertible semi-annually.

Solution:

\mathbf{N}	\mathbf{I} / \mathbf{Y}	PMT	FV	CPT PV
$(14)(2)=28$	$6 \% / 2=3$	$(10,000)(0.07 / 2)=350$	10,500	$11,156.74$
$(16)(2)=32$	3	350	10,350	$11,155.36$
$(18)(2)=36$	3	350	10,200	$11,160.62$
$(20)(2)=40$	3	350	10,000	$11,155.74$

Price $=\mathbf{1 1 , 1 5 5 . 3 6}$

A 20 year callable bond has a maturity value equal to the par value of 20,000 and semi-annual coupons paid at a coupon rate of 7.5% convertible semi-annually. The bond may be called at the end of 12 years for a call value of 21,500 . The bond may be called at the end of 15 years for a call value of 20,800 .
Finally, the bond may be called at the end of 18 years for a call value of 20,300 .
Yang purchased the bond at issue to yield 6% convertible semi-annually.
Determine the price that Yang paid.

Solution:

Calculate the value at each call date and the maturity date and select the lowest price.

N	I / Y	PMT	FV	CPT PV
24	3	$(20,000)(0.0375)=750$	21,500	$23,278.23$
30	3	750	20,800	$23,269.66$
36	3	750	20,300	$23,378.35$
40	3	750	20,000	$23,467.22$

The lowest present value is the price $\boldsymbol{\rightarrow} 23,269.66$

Jackson purchases a callable bond. The bond matures at the end of 20 years for 52,000 . The bond pays semi-annual coupons of 1300 .

The bond can be called at the end of 14 years. The call value is 54,925 .
The bond can be called at the end of 16 years. The call value is 53,950 .
The bond can be called at the end of 18 years. The call value is 52,975 .

Jackson buys the bond to yield 4\% convertible semi-annually.

Determine the price of the bond.

Solution:

Calculate the price at each call date and the maturity date and pick the lowest price.

I / Y	$\leftarrow 4 \% / 2=2 ; P M T$	$\leftarrow 1300$
N	$F V$	$P V$
28	54,925	$59,123.20$
32	53,950	$59,136.50$
36	52,975	$59,105.07$
40	52,000	$59,112.42$

