Topic: Continuous Annuities

Ram is receiving a continuous annuity with payments of $13 t^{2}$ at time t for 16 years.

Using a discount function of $v(t)=1-0.03 t$, calculate the present value of Ram's annuity.

Solution:

$$
\begin{aligned}
P V & =\int_{0}^{16}\left(13 t^{2}\right)(1-0.03 t) d t \\
& =\int_{0}^{16}\left(13 t^{2}-0.39 t^{3}\right) d t \\
& =\left[\frac{13}{3} t^{3}-\frac{0.39}{4} t^{4}\right]_{0}^{16} \\
& =11,359.57
\end{aligned}
$$

Claire is receiving a 25 year continuous annuity with payments of $1234 t$ at time t.
Using a force of interest of 6%, calculate the present value of Claire's annuity.

Solution:

$$
\begin{aligned}
\int_{0}^{25}(1234 t) v^{t} d t & =1234(\bar{I} \bar{a})_{\overline{25}} \\
& =1234\left(\frac{\frac{1-e^{-(25)(0.06)}}{0.06}-25 e^{-(25)(0.06)}}{0.06}\right) \\
& =1234(122.83) \\
& =151,567.63
\end{aligned}
$$

Dylan is receiving a continuous annuity that pays at a rate of $1000 t+500$ at time t for 25 years.

Calculate the present value at $\delta=0.09$.

Solution:

$\int_{0}^{25}(1000 t+500) v^{t} d t=\int_{0}^{25}(1000 t) v^{t} d t+\int_{0}^{25}(500) v^{t} d t=1000(\bar{I} \bar{a})_{\overline{25}}+500 \bar{a}_{25}$
$=1000\left(\frac{\frac{1-e^{-(25)(0.09)}}{0.09}-25 e^{-(25)(0.09)}}{0.09}\right)+500\left(\frac{1-e^{-(25)(0.09)}}{0.09}\right)$
$=81,166.98+4970.00=86,136.98$
lan can purchase any of the following perpetuities. All three perpetuities have the same price at an annual interest rate of i.
a. Perpetuity A pays continuously at a rate of 20,000 per year.
b. Perpetuity B pays continuously at a rate of 1000 t at time t.
c. Perpetuity C has quarterly payments at the end of each quarter. Each payment in the first year is P. Each payment in the second year is $2 P$. Each payment in the third year is $3 P$. The payments continue to increase in the same pattern.

Determine P.

Solution:

$$
\begin{aligned}
& A=B=>\frac{20,000}{\delta}=\frac{1000}{\delta^{2}}==>20,000 \delta=1000 \Rightarrow=>\delta=0.05 \\
& P V o f A=\frac{20,000}{\delta}=\frac{20,000}{0.05}=400,000 \\
& P V o f C=P\left(\frac{(1+i)}{i \cdot \frac{i^{(4)}}{4}}\right) \\
& e^{\delta}=1+i==>i=0.051271096 \\
& 1+i=\left(1+\frac{i^{(4)}}{4}\right)^{4}==>\frac{i^{(4)}}{4}=(1.051271096)^{1 / 4}-1=0.01257845 \\
& 400,000=P\left(\frac{1.051271096}{(0.051271096)(0.01257845)}\right)=>P=245.38
\end{aligned}
$$

Flo is making payments continuously at a rate of $1000 t+500$ at time t for the next 10 years.
Using a discount function of $1-0.006 t^{2}$, calculate the present value of Flo's payments.

Solution:

$$
\begin{aligned}
& P V=\int_{0}^{10}(1000 t+500)\left(1-0.006 t^{2}\right) d t \\
& =\int_{0}^{10}\left(1000 t+500-6 t^{3}-3 t^{2}\right) d t \\
& {\left[500 t^{2}+500 t-\frac{6}{4} t^{4}-t^{3}\right]_{0}^{10}=39,000}
\end{aligned}
$$

Kimberly purchases an 18 year continuous annuity that pays at a rate of $1300 t$ at time t. Calculate the present value of this annuity using a force of interest of $\delta=0.0625$.

Solution:

$$
1300(I a)_{\overline{18}}=1300\left[\frac{\frac{1-e^{-18(0.0625)}}{0.0625}-18 e^{-18(0.0625)}}{0.0625}\right]=103,205.78
$$

Jordan is the beneficiary of a 12 year continuous annuity. The annuity pays at a rate of $300+10 t$ at time t.

Using a discount function of $1-0.04 t$, calculate the present value of Jordan's annuity.

Solution:

$$
\begin{aligned}
& P V=\int_{0}^{12} f(t) v(t) d t=\int_{0}^{12}(300+10 t)(1-0.04 t) d t=\int_{0}^{12} 300-12 t+10 t-0.4 t^{2} \cdot d t= \\
& {\left[300 t-t^{2}-\frac{0.4 t^{3}}{3}\right]_{0}^{12}=3600-144-230.40=3225.60}
\end{aligned}
$$

Caroline has the option of the following two continuous annuities:
a. An annuity that pays continuously at an annual rate of 1000 for 20 years.
b. An annuity that pays continuously at a rate of $X t$ at time t for 20 years.

Both annuities have the same present value at a force of interest of 8%.
Determine X.

Solution:

Option $a=$ Option b
$1000 \bar{a}_{201}=X\left[(\overline{I \bar{a}})_{20}\right]$
$1000\left(\frac{1-e^{-0.08(20)}}{0.08}\right)=X\left[\frac{\frac{1-e^{-0.08(20)}}{0.08}-20 e^{-0.08(20)}}{0.08}\right]$
$9976.29=X(74.2295)=\Rightarrow X=134.40$

A 20 year continuous annuity pays at the rate of $300+10 t$ at time t.
Calculate the present value of this annuity at a force of interest of 7\%.
Solution:

$$
\begin{aligned}
& P V=300 \bar{a}_{20 \mid}+10(\overline{I \bar{a}})_{\overline{20 \mid}}= \\
& 300\left(\frac{1-e^{-(200)(0.07)}}{0.07}\right)+10\left[\frac{\left(\frac{1-e^{-(20)(0.07)}}{0.07}\right)-20 e^{-(20)(0.07)}}{0.07}\right] \\
& =3228.87+832.99=4061.86
\end{aligned}
$$

A continuous annuity pays at a rate of $1000 t$ at time t for 30 years.
Calculate the present value of this annuity using $\delta=0.10$.

Solution:

$1000(\bar{I} \bar{a})_{\overline{30}}=1000\left(\frac{\bar{a}_{30 \mid}-30 v^{30}}{\delta}\right)=1000\left(\frac{\frac{1-e^{-30(0.1)}}{0.1}-30 e^{-30(0.1)}}{0.10}\right)=80,085.17$

A continuous perpetuity that pays at a rate of $1000 t$ at time t has a present value of 25,000 when calculated at a force of interest of δ.

Chengjia is receiving a continuous 20 year annuity that pays at a rate of $500 t$ at time t.

Calculate the present value of Chengjia's annuity using a force of interest equal to 0.5δ which is one half the force of interest used to calculate the present value of the perpetuity.

Solution:

We will use the perpetuity to find δ.

$$
25,000=\frac{1000}{\delta^{2}}==>\delta^{2}=\frac{1}{25}==>\delta=0.2
$$

Now we will find the present value of the annuity at $0.5 \delta=0.10$

$$
P V=(500)\left(\frac{\bar{a}_{20}-20 e^{-20(\delta)}}{\delta}\right)=(500)\left(\frac{\frac{1-e^{-20(0.1)}}{0.1}-20 e^{-20(0.1)}}{0.1}\right)=29,699.71
$$

Caroline has just been named the beneficiary of the Chen Trust Fund. The balance in the Chen Trust Fund is $1,000,000$.

Caroline can choose one of the following options as her payout from the trust fund:
a. A continuous perpetuity that will pay at a rate of $10,000 t$ at time t; or
b. An 30 year increasing annuity with quarterly payments at the end of each quarter. The first payment will be P. The second payment will be $2 P$. The third payment will be $3 P$. The payments will continue to increase in the same pattern until the last payment is made.

The two options have a present value of $1,000,000$ based on a force of interest of δ.
Determine P.

Solution:

Option a:

$1,000,000=\frac{10,000}{\delta^{2}}=>\delta=0.1$

Option b:

Since payments are quarterly, we need $\frac{i^{(4)}}{4} \cdot e^{0.1}=\left(1+\frac{i^{(4)}}{4}\right)^{4}$.

$$
\begin{aligned}
& \frac{i^{(4)}}{4}=e^{0.25}-1=0.025315121 \\
& 1,000,000=P a_{\overline{120}}+\frac{P}{0.025315121}\left(a_{\overline{120}}-120(1.025315121)^{-120}\right)
\end{aligned}
$$

$P=\frac{1,000,000}{a_{\overline{120}}+\frac{1}{0.025315121}\left(a_{\overline{120}}-120(1.025315121)^{-120}\right)}=778.66$

