Topic: Convexity

Christopher has agreed to pay Anthony an annuity due with four payments of 1000 . The payments are at the beginning of each 6 months period for two years.

Calculate the Macaulay Convexity of this annuity at an annual effective interest rate of 6\%.

Solution:

Since payments are made semiannually, we need $\frac{i^{(2)}}{2}$ and we have i.

$$
\frac{i^{(2)}}{2}=(1+i)^{\frac{1}{2}}-1=(1.06)^{\frac{1}{2}}-1=0.029563
$$

$$
M a c C o n=\frac{\Sigma C_{t}\left(t^{2}\right) v^{t}}{\Sigma C_{t} v^{t}}
$$

$$
\begin{aligned}
& =\frac{1,000(0) v^{0}+1,000(0.5)^{2} v^{1}+1,000(1)^{2} v^{2}+1,000(1.5)^{2} v^{3}}{1,000 \ddot{a}_{40.029563}} \\
& =\frac{1,000(0.5)^{2}(1.06)^{-0.5}+1,000(1)^{2}(1.06)^{-1}+1,000(1.5)^{2}(1.06)^{-1.5}}{1,000 \ddot{a}_{40.029563}} \\
& =\frac{1,000(0.5)^{2}(1.06)^{-0.5}+1,000(1)^{2}(1.06)^{-1}+1,000(1.5)^{2}(1.06)^{-1.5}}{1,000\left(\frac{1-(1.029563)^{-4}}{0.029563}\right)(1.029563)} \\
& =0.84779908
\end{aligned}
$$

Shikun is the recipient of an annuity that will pay the following:
i. 100,000 today;
ii. 200,000 at the end of two years; and
iii. 300,000 at the end of four years.

Calculate the Macaulay Convexity of Shikun's payments at an interest rate of 4\%.

Solution:

MacCon $=\frac{\sum C_{t} \cdot t^{2} \cdot v^{t}}{\sum C_{t} \cdot v^{t}}=\frac{(100,000)\left(0^{2}\right)\left(v^{0}\right)+(200,000)\left(2^{2}\right) v^{2}+(300,000)\left(4^{2}\right) v^{4}}{100,000+200,000 v^{2}+300,000 v^{4}}$
$=\frac{4,842,705.087}{541,352.4999}=8.945567053$

Tomas has agreed to pay the following payments to Taylen:
a. 100,000 at the end of one year;
b. 250,000 at the end of two years; and
c. 400,000 at the end of four years.

Calculate the Modified Convexity of these payments at an interest rate of 8%.

Solution:

ModCon $=v^{2} \frac{\sum C_{t}(t)(t+1) v^{t}}{\sum C_{t} v^{t}}$
$=(1.08)^{-2}\left(\frac{(100,000)(1)(2)(1.08)^{-1}+(250,000)(2)(3)(1.08)^{-2}+(400,000)(4)(5)(1.08)^{-4}}{(100,000)(1.08)^{-1}+(250,000)(1.08)^{-2}+(400,000)(1.08)^{-4}}\right)$
$=10.488$

A three year bond has a maturity value of 10,000 and annual coupons of 600 .
Calculate the Modified Convexity of this bond at an annual effective interest rate of 6%. Solution:

ModCon $=v^{2} \frac{\sum C_{t}(t)(t+1) v^{t}}{\sum C_{t} v^{t}}$
$=(1.06)^{-2} \frac{(600)(1)(2)(1.06)^{-1}+(600)(2)(3)(1.06)^{-2}+(10,600)(3)(4)(1.06)^{-3}}{(600)(1.06)^{-1}+(600)(1.06)^{-2}+(10,600)(1.06)^{-3}}$
$=9.8910$

Ashley just got fired by Huljack LTD. Huljack has agreed to make the following payments to Ashley as a severance package:
a. Payment of 100,000 today;
b. Payment of 200,000 at the end of two years; and
c. Payment of 400,000 at the end of four years.

Calculate the Modified Convexity of Ashley's payments at an annual effective interest rate of 8%.

Solution:
ModCon $=v^{2} \frac{\sum C_{t}(t)(t+1) v^{t}}{\sum C_{t} v^{t}}=$
$(1.08)^{-2} \frac{(200,000)(2)(3)(1.08)^{-2}+(400,000)(4)(5)(1.08)^{-4}}{100,000+(200,000)(1.08)^{-2}+(400,000)(1.08)^{-4}}=10.475$

Beau is receiving the following payments from a trust fund:
a. 200,000 at time 2
b. 400,000 at time 10
c. 800,000 at time 16

Calculate the Macaulay Convexity of these payments at an interest rate of 7\%.

Solution:

MacCon $=\frac{\sum C_{t}\left(t^{2}\right) v^{t}}{\sum C_{t} v^{t}}$
$=\frac{(200,000)\left(2^{2}\right)(1.07)^{-2}+(400,000)\left(10^{2}\right)(1.07)^{-10}+(800,000)\left(16^{2}\right)(1.07)^{-16}}{(200,000)(1.07)^{-2}+(400,000)(1.07)^{-10}+(800,000)(1.07)^{-16}}$
$=139.80$

The Purdue Insurance Company has agreed to pay Summer 100,000 at the end of 2 years and 200,000 at the end of 3.5 years.

Calculate the Macaulay Convexity of Summer's payments at an annual effective interest rate of 9\%.

Solution;

$\operatorname{MacCon} \frac{\sum C_{t}\left(t^{2}\right) v^{t}}{\sum C_{t} v^{t}}$
$=\frac{(100,000)\left(2^{2}\right)(1.09)^{-2}+(200,000)\left(3.5^{2}\right)(1.09)^{-3.5}}{100,000(1.09)^{-2}+200,000(1.09)^{-3.5}}$
$=9.258$

A three year bond has an annual coupon of 40 and a maturity value of 1100 .
Calculate the Modified Convexity for this bond at an annual effective interest rate of 6.5%.
Solution:
ModCon $=\frac{v^{2} \sum C_{t}(t)(t+1) v^{t}}{\sum C_{t} v^{t}}$
$=(1.065)^{-2} \frac{40(1)(2)(1.065)^{-1}+40(2)(3)(1.065)^{-2}+1140(3)(4)(1.065)^{-3}}{40 a_{31}+1100(1.065)^{-3}}$
$=10.07065$

A three year bond with annual coupons of 300 matures for 4000.
Calculate the Macaulay Convexity of this bond at an annual effective rate of 5%.

Solution:

MacCon $=\frac{\sum C_{t}\left(t^{2}\right) v^{t}}{\sum C_{t} v^{t}}$
$=\frac{300\left(1^{2}\right)(1.05)^{-1}+300\left(2^{2}\right)(1.05)^{-2}+4300\left(3^{2}\right)(1.05)^{-3}}{300 a_{3}+4000(1.05)^{-3}}$
$=\frac{34,804.66472}{4272.324803}=8.14654$

