Seth borrows 1000 to be repaid at an annual interest rate of 7.2%. Seth will make payments of 2 P at time 3 and P at time 5 .

Determine P.

Solution:

$1000=2 P(1.072)^{-3}+P(1.072)^{-5}$
$P=\frac{1000}{2(1.072)^{-3}+(1.072)^{-5}}=429.21$

OR
$1000(1.072)^{5}=2 P(1.072)^{2}+P$
$P=\frac{1000(1.072)^{5}}{2(1.072)^{2}+1}=429.21$

Kiersten borrows 20,000 from Sarah at a nominal annual interest rate of 9\% compounded monthly.

Kiersten will repay the loan with two payments of P. The first payment of P will be at the end of three years and the second payment of P will be at the end of seven years.

Determine P.

Solution:

$20,000\left(1+\frac{0.09}{12}\right)^{(12)(7)}=P\left(1+\frac{0.09}{12}\right)^{(12)(4)}+P$
$P=\frac{20,000\left(1+\frac{0.09}{12}\right)^{(12)(7)}}{\left(1+\frac{0.09}{12}\right)^{(12)(4)}+1}=15,408.39$

Walker borrows 25,000 at an annual effective interest rate of 8%. Walker will repay the loan with three payments over the next five years. The first payment will be $3 P$ at the end of 2 years. The second payment will be P at the end of 3 years. The final payment will be $2 P$ at the end of five years.

Determine P.

Solution:

$$
\begin{aligned}
& 25,000=3 P(1.08)^{-2}+P(1.08)^{-3}+2 P(1.08)^{-5} \\
& P=\frac{25,000}{3(1.08)^{-2}+(1.08)^{-3}+2(1.08)^{-5}}=5288.75
\end{aligned}
$$

Or
$25,000(1.08)^{5}=3 P(1.08)^{3}+P(1.08)^{2}+2 P$
$P=\frac{25,000(1.08)^{5}}{3(1.08)^{3}+(1.08)^{2}+2}=5288.75$

Bri borrows 5000 which will be repaid with a payment of P at the end of one year and $2 P$ at the end of three years. The annual effective interest rate on this loan is 6%

Determine P.

Solutions:

$5000=P(1.06)^{-1}+2 P(1.06)^{-3}$
$P=\frac{5000}{(1.06)^{-1}+2(1.06)^{-3}}=1906.48$

OR
$5000(1.06)^{3}=P(1.06)^{2}+2 P$
$P=\frac{5000(1.06)^{3}}{(1.06)^{2}+2}=1906.48$

Billy borrows 10,000 to be repaid with three payments. The first payment is P at the end of two years. The second payment is $2 P$ at the end of 4 years. The final payment is $3 P$ at the end of five years.

The loan has an annual effective interest rate of 6%.

Determine P.

Solution:
$(10,000)(1.06)^{5}=P(1.06)^{3}+2 P(1.06)+3 P$
$P=\frac{(10,000)(1.06)^{5}}{(1.06)^{3}+2(1.06)+3}=2120.46$

