Topic: First Order Price Approximation

Tong LTD owns two bonds. The bonds have the following characteristics:

	Price	Modified Convexity	Macaulay Convexity
Bond A	40,000	58	60
Bond B	60,000	86	90

The above values are all based on an annual effective interest rate of 8%.

Using the First Order Macaulay Approximation, calculate the estimated price of this bond portfolio if the annual effective interest rate is 7%.

Solution:

$P(i)=P\left(i_{0}\right)\left[\frac{1+i_{0}}{1+i}\right]^{\text {MacDur }}$
$P\left(i_{0}\right)=40,000+60,000=100,000$
$i=0.07$ and $i_{0}=0.08$

ModCon $=v^{2}($ MacDur + MacCon $)==>58=(1.08)^{-2}($ MacDur +60$)$
==> MacDur Bond A=7.6512

ModCon $=v^{2}($ MacDur + MacCon $)=\Rightarrow 86=(1.08)^{-2}($ MacDur +90$)$
==> MacDur Bond $\mathrm{B}=10.3104$
$D_{\text {MacDur }}^{\text {Port }}=\frac{(40,000)(7.6512)+(60,000)(10.3104)}{100,000}=9.2467$
$P(i)=(100,000)\left[\frac{1.08}{1.07}\right]^{9.2467}=108,982.42$

A 10 year bond has a price of 24,000 . The Macaulay duration of the bond is 12 . The Modified convexity of the bond is 123. All values are calculated using an annual effective interest rate of 4.5\%.
$P_{1}=$ the estimated price of this bond using the first order Macaulay approximation at an annual effective interest rate of 5.75%.
$P_{2}=$ the estimated price of this bond using the first order Modified approximation at an annual effective interest rate of 5.75\%.

Determine $P_{1}-P_{2}$.

Solution:

$\operatorname{ModDur}=\operatorname{MacDur}(1.045)^{-1}=(12)(1.045)^{-1}=11.4832536$

$$
\begin{aligned}
& P_{1}=(24,000)\left[\frac{1.045}{1.0575}\right]^{12}=20,808.57 \\
& P_{2}=(24,000)(1-(0.0575-0.045)(11.4832536))=20,555.02
\end{aligned}
$$

$$
P_{1}-P_{2}=20,808.57-20,555.02=253.55
$$

Graham owns a bond with a price of 130,000 at an annual effective yield rate of 7%. The bond has a Modified Duration of 14.0187 and a Modified Convexity of 100 at an annual effective interest rate of 7%.

Graham estimates that price of this bond at an interest rate of i using the first order Macaulay approximation to be 117,886.61.

Determine i.

Solution:

First Order Macaulay Approximation

$$
P(i)=P\left(i_{0}\right)\left[\frac{1+i_{0}}{1+i}\right]^{\text {MacDur }}
$$

$$
\text { ModDur }=V(\text { MacDur })==>14.0187=(1.07)^{-1}(\text { MacDur })=\Rightarrow \text { MacDur }=(14.0187)(1.07)=15
$$

$$
P(i)=117,886.61=(130,000)\left[\frac{1.07}{1+i}\right]^{15}=\Rightarrow \frac{1.07}{1+i}=\left[\frac{117,886.61}{130,000}\right]^{\frac{1}{15}}=0.993500466
$$

$$
==>1+i=\frac{1.07}{0.993500466}=1.077=\Rightarrow i=0.077
$$

