Topic: Loan Amortization

Josh has a 10 year loan which is being repaid with non-level annual payments. The first payment is 10,000 . The second payment is 9000 . The third payment is 8000 . The payments continue to decrease until the last payment is 1000 .

The loan has an annual effective interest rate of 6\%.
Determine the principal in the payment of 3000 at the end of the $8^{\text {th }}$ year.

Solution:

To find the principal in the $8^{\text {th }}$ payment, we need to find the OLB after the $7^{\text {th }}$ payment.

$$
\begin{aligned}
& O L B_{7}= 3000(1.06)^{-1}+2000(1.06)^{-2}+1000(1.06)^{-3} \\
& \quad=5449.80 \\
& I_{8}=(5449.80)(0.06)=326.99 \\
& P_{8}= P M T_{8}-I_{8}=3000-326.99=2673.01
\end{aligned}
$$

A 30 year mortgage loan is being repaid with level monthly payments of 1630.48. The principal in the $90^{\text {th }}$ payment is 352.27 .

Determine the annual effective interest rate on the loan.

Solution:

Principal in $90^{\text {th }}$ Payment $=P_{90}=352.27$

$$
\begin{aligned}
& P_{k}=Q v^{n-k+1} \\
& n=(30)(12)=360 \\
& P_{90}=1630.48 v^{360-90+1}=1630.48 v^{271} \\
&=1630.48\left(1+\frac{i^{(12)}}{12}\right)^{-271}=352.27 \\
& \Rightarrow\left(1+\frac{i^{(12)}}{12}\right)^{-271}=\frac{352.27}{1630.48}=0.216052941 \\
& \Rightarrow \frac{i^{(12)}}{12}=(0.216052941)^{-1 / 271}-1=0.00567
\end{aligned}
$$

Annual Effective Interest Rate $=i$

$$
i=\left(1+\frac{i^{(12)}}{12}\right)^{12}-1=(1.00567)^{12}-1=0.070202521 \approx 0.07020
$$

Shobana takes out a 30 year mortgage loan to buy a new house. The loan is for $1,000,000$ and will be repaid with level monthly payments. The interest rate is 9% compounded monthly.

Determine the principal in the $240^{\text {th }}$ payment.

Solution:

The best way to do this is with the calculator
$N \leftarrow(30)(12)=360$
$I / Y \leftarrow \frac{0.09}{12}(100)=0.75$
$P V \leftarrow-1,000,000$
$C P T \quad P M T \Rightarrow 8,046.226169$

$2 n d$	Amort

$P 1 \leftarrow 240$
$P 2 \leftarrow 240$
$\downarrow \downarrow \operatorname{Pr}$ in $==>3257.92$

James has a loan for 100,000 which will be repaid with level annual payments of Q for n years. The interest rate on the loan is 5.43%.

The principal in the $20^{\text {th }}$ payment is 60.90 .

Determine Q.

Solution:

Interest in the First Payment $=(\mathrm{L})(\mathrm{i})=(100,000)(0.0543)=5430$

Principle in the first payment $=($ principle in the 20th Payment $)(1.0543)^{-(20-1)}$
$=60.90(1.0543)^{-19}=22.30$
$Q=5430+22.30=5452.30$

Ben has a loan for 50,000 which will be repaid with three non-level annual payments. The interest rate on the loan is an annual effective interest rate of 10%.

The first loan repayment is 30,000 . The second loan repayment 20,000. The third loan repayment is P. The loan is repaid after the third payment.

Calculate the principal in the second payment.

Solution:

k	Payment	Interest	Principal	OLB
0				50,000
1	30,000	$(50,000)(0.10)=5000$	$30,000-5000=25,000$	$50,000-25,000=25,000$
2	20,000	$(25,000)(0.10)=2500$	$20,000-2500=17,500$	

David has a loan with n annual payments of 1000 . The interest in the $15^{\text {th }}$ payment is 799.02 . The principal in the $20^{\text {th }}$ payment is 246.89 .

Find the outstanding loan balance right after the $30^{\text {th }}$ payment.

Solution:

$$
\begin{aligned}
& P_{15}=1000-799.02=200.98 \\
& P_{15}(1+i)^{20-15}=P_{20}==>200.98(1+i)^{5}=246.89 \Rightarrow=\left(\frac{246.89}{200.98}\right)^{01 / 5}-1=0.042 \\
& O L B_{30}(0.042)=I_{31} \\
& P_{31}=(246.89)(1.042)^{11}=388.19=\Rightarrow I_{31}=1000-388.19=611.81 \\
& O L B_{30}=\frac{I_{31}}{0.042}=\frac{611.81}{0.042}=14,566.90
\end{aligned}
$$

There are other ways to do this which will get you a slightly different answer.

A loan which is being repaid with level annual payments at an interest rate of 8%. The interest in the $10^{\text {th }}$ payment is 846.41 . The principal in the $20^{\text {th }}$ payment is 609.92 .

Calculate the amount of the loan.

Solution:

$$
P_{10}=P_{20}(1.08)^{-10}=609.92(1.08)^{-10}=282.51
$$

$$
Q=P_{10}+I_{10}=846.41+282.51=1128.92
$$

$$
P_{1}=282.51(1.08)^{-9}=141.326
$$

$$
I_{1}=1128.92-141.326=987.594
$$

$$
I_{1}=i L=\Rightarrow 987.594=(0.08)(L)=\Rightarrow L=12,344.93 \approx 12,345
$$

Aisling has a 30 year loan with non-level annual payments. The payment at the end of each odd numbered year (year $1,3,5, \ldots, 29$) will be 5000 . The payment at the end of each even numbered year (year $2,4,6, \ldots, 30$) will be 10,000 .

The interest rate on the loan is an annual effective interest rate of 6%.
Determine the principal in the payment of 5000 at the end of the $27^{\text {th }}$ year.

Solution:

To find the principle in the 27th payment, we need to find the OLB after the 26th payment.

$$
O L B_{26}=5000(1.06)^{-1}+10,000(1.06)^{-2}+5000(1.06)^{-3}+10,000(1.06)^{-4}=25,735.98
$$

$$
I_{27}=(25,735.98)(0.06)=1544.16
$$

$$
P_{27}=5000-1544.16=3455.84
$$

Bokun has a loan that is being repaid with n annual payments of 1000.

The principal in the $6^{\text {th }}$ payment is 147.53 . The principal in the $12^{\text {th }}$ payment is 206.80 .
Calculate the interest in the $20^{\text {th }}$ payment.

Solution:

$147.53(1+i)^{12-6}=206.80=\Rightarrow(1+i)^{6}=\frac{206.80}{147.53} \Longrightarrow>i=\left(\frac{206.80}{147.53}\right)^{1 / 6}-1=0.0579$
$\operatorname{Prin}_{20}=206.80(1.0579)^{20-12}=324.42$

Int ${ }_{20}=$ Payment - Prin $_{20}=1000-324.42=675.58$

Christian has a 20 year loan of $110,950.62$ that is being repaid with annual payments. The first payment is 1000 . The second payment is 2000 . The third payment is 3000 . The payments continue to increase in the same pattern with a payment of 20,000 being made at the end of the $20^{\text {th }}$ year.

The interest rate on the loan is an annual effective interest rate of 5%.

Calculate the principal in the third payment.

Solution:

We must find the Outstanding Loan Balance after two payments.
$O L B_{2}=$ Accumulated Value of Past Cash Flows
$=(110,950.62)(1.05)^{2}-(1000)(1.05)-2000=119,273.06$
$I n t_{3}=\left(O L B_{2}\right) i=(119,273.06)(0.05)=5963.65$

Prin $_{3}=$ Payment - Int $_{3}=3000-5963.65=-2963.65$

A 20 year loan is being repaid with 20 annual non-level payments. The first payment is 25,000 . The second payment is 24,000 . The payments continue to decrease until the last payment of 6000 is paid. The interest rate on the loan is an annual effective rate of 6%.

Calculate the principal in the $11^{\text {th }}$ payment.

Solution:

We want to find the outstanding loan balance at time 10 .

$$
\begin{aligned}
& \mathrm{OLB}_{10}=(15,000) a_{\overline{10 \mid}}-\left(\frac{1000}{0.06}\right)\left(a_{\overline{10}}-10(1.06)^{-10}\right)=80,798.98 \\
& I_{11}=\left(O L B_{10}\right)(0.06)=(80,798.98)(0.06)=4847.94 \\
& P_{11}=15,000-4847.94=10,152.06
\end{aligned}
$$

Yuchen has a loan which is being repaid with level monthly payments of 500. The interest in the $30^{\text {th }}$ payment is 113.74 . The principal in the $36^{\text {th }}$ payment is 402.77 .

Determine the amount of the loan.

Solution:

Principal in 30th Payment $=P_{30}=500-113.74=386.26$
$P_{30}(1+i)^{6}=P_{36}==>386.26(1+i)^{6}=402.77==>i=\left(\frac{402.77}{386.26}\right)^{\frac{1}{6}}-1=0.007$
$P_{1}=P_{30}(1+i)^{1-30}==>P_{1}=386.26(1.007)^{-29}=315.52$
$I_{1}=500-315.52=184.48=O L B_{0}(i)=O L B_{0}(0.007)$

Amount of Loan $=O L B_{0}=\frac{184.48}{0.007}=26,354.29$

If you carry more decimals or do the problem a different way, your answer will be slightly different.

Spencer is repaying a loan with n level annual payments of 8726 .18. The interest in the fifth payment is 4945.11. The interest in the $10^{\text {th }}$ payment is 4014.28 .

Determine n.

Solution:

$\operatorname{Prin}_{5}=8726.18-4945.11=3781.07$
$\operatorname{Prin}_{10}=8726.18-4014.28=4711.90$
$\operatorname{Prin}_{5}(1.05)^{5}=\operatorname{Prin}_{10}=\Rightarrow 3781.07(1+i)^{5}=4711.90 \Rightarrow=>i=\left(\frac{4711.90}{3781.07}\right)^{1 / 5}-1=0.045$
$Q v^{n-k+1}=\operatorname{Prin}_{k}$
$8726.18\left(\frac{1}{1.045}\right)^{n-5+1}=3781.07$
$\left(\frac{1}{1.045}\right)^{n-4}=\frac{3781.07}{8726.18}==>(n-4)\left[\ln \left(\frac{1}{1.045}\right)\right]=\ln \left(\frac{3781.09}{8726.18}\right)$
$n=\frac{\ln \left(\frac{3781.09}{8726.18}\right)}{\ln \left(\frac{1}{1.045}\right)}+4=23$

