Topic: Nominal Interest and Discount Rate

Lauren invests 100,000 in the Diego Fund. The Diego Fund pays a nominal interest rate of 10\% compounded quarterly. At the end of Y years, Lauren has 361,111.23.

Alex invests 100,000 in Ethan Bank. Ethan Bank pays simple interest at a rate of s. At the end of Y years, Alex has 361,111.23.

Determine the annual effective interest rate that Alex earns during the $10^{\text {th }}$ year of his investment.

Solution:

Lauren:
$100,000\left(1+\frac{i^{(4)}}{4}\right)^{(4)(Y)}=361,111.23=>\left(1+\frac{0.10}{4}\right)^{(4)(Y)}=3.6111123$
$(4)(Y) \ln (1.025)=\ln (3.6111123)$
$Y=\frac{\ln (3.6111123)}{(4) \ln (1.025)}=13$

Alex:
$100,000(1+13 s)=361,111.23==>1+13 s=3.6111123$
$==>s=\frac{3.6111123-1}{13}=0.2008547923$
$i_{10}=\frac{a(10)-a(9)}{a(9)}=\frac{s}{1+(10-1) s}=\frac{0.2008547923}{1+(9)(0.2008547923)}=0.071537$

Calculate the $d^{(4)}$ that is equivalent to an interest rate of 8% compounded monthly.
Solution:

$$
\begin{aligned}
& \left(1+\frac{i^{(12)}}{12}\right)^{12}=\left(1-\frac{d^{(4)}}{4}\right)^{-4} \\
& \left(1-\frac{d^{(4)}}{4}\right)^{-4}=\left(1+\frac{0.08}{12}\right)^{12}=>\left(1-\frac{d^{(4)}}{4}\right)=\left(1+\frac{0.08}{12}\right)^{12 /-4} \\
& ==\frac{d^{(4)}}{4}=1-\left(1+\frac{0.08}{12}\right)^{-3} \\
& ==d^{(4)}=4\left[1-\left(1+\frac{0.08}{12}\right)^{-3}\right]=0.07895
\end{aligned}
$$

Deepa borrows 1000 from Ally. Deepa agrees to pay a nominal interest rate of 9\% compounded quarterly.

At the end of X years, Deepa repays the loan with a payment of 1427.62 .

Calculate X.

Solution:

$$
\begin{aligned}
& i^{(4)}=9 \% \\
& (1+i)^{X}=\left(1+\frac{i^{(4)}}{4}\right)^{4 X} \\
& 1000(1.0225)^{4 X}=1427.62 \quad==>\quad(1.0225)^{4 X}=1.42762 \\
& 4 X=\frac{i^{(4)}}{4}=\frac{9 \%}{\ln (1.42762)} \\
& \ln (1.0225)
\end{aligned}=16 \quad==>\quad X=48
$$

You are given that $i=8 \%$.
Let $i^{(4)}$ be the nominal annual interest rate compounded quarterly that is equivalent to i.

Let $d^{(12)}$ be the nominal annual discount rate compounded monthly that is equivalent to i.

Calculate $(1000)\left(i^{(4)}-d^{(12)}\right)$.

Solution:

$$
\begin{aligned}
& (1+i)=1.08=\left(1+\frac{i^{(4)}}{4}\right)^{4} \Rightarrow i^{(4)}=0.077706188 \\
& (1+i)=1.08=\left(1-\frac{d^{(12)}}{12}\right)^{-12} \Rightarrow d^{(12)}=0.076714776 \\
& \begin{aligned}
1000\left(i^{(4)}-d^{(12)}\right) & =1000(0.077706188-0.076714776) \\
& =0.991412
\end{aligned}
\end{aligned}
$$

Amber has a loan which will be repaid with a lump sum at the end of five years. The amount of the loan is 40,000 and has an interest rate of 12% compounded quarterly.

Calculate the amount of interest that Amber will pay on this loan.

Solution:

After five years, Amber will have:
$(40,000)\left(1+\frac{0.12}{4}\right)^{(4)(5)}=72,244.45$

The amount of interest will be $72,244.45-40,000.00=32,244.45$

Varun invests 10,000 in an account today.

During the first 5 years, the account earns an interest rate of 6% compounded quarterly.
During the second 5 years, the account earns a rate equivalent to a discount rate of 12% convertible monthly.

Determine the amount that Varun has at the end of 10 years.

Solution:

$$
\begin{aligned}
10,000\left(1+\frac{0.06}{4}\right)^{4(5)}\left(1-\frac{0.12}{12}\right)^{-12(5)} & =10,000(1.015)^{20}(0.99)^{-60} \\
& =24,615.53
\end{aligned}
$$

