Topic: Perpetuities

A perpetuity due has a present value of 25,000 and makes quarterly payment of 500 per quarter.

Calculate the annual effective interest rate used to calculate the present value.

Solution:

$$
\begin{aligned}
& (500)\left(\frac{1}{i}\right)(1+i)=25,000==>\frac{500}{i}+500=25,000 \\
& \frac{500}{i}=24,500 \Rightarrow i=\frac{500}{24,500}
\end{aligned}
$$

But since payments are quarterly, the above rate is a quarterly effective rate. We need the annual effective rate.

$$
(1+i)=\left(1+\frac{i^{(4)}}{4}\right)^{4}==>1+i=\left(1+\frac{500}{24,500}\right)^{4}==>i=0.84165785
$$

Mindy has won the lottery! She has the option of the following two payouts:
a. A perpetuity due with monthly payments of 50,000 .
b. An annuity due for 35 years with annual payments of P.

The present value of the payments under either option calculated using an annual effective interest rate of i is 10 million which is $10,000,000$.

Determine the payment P under Option b.

Solution:

From Option a, we can get the interest rate:
$10,000,000=(50,000)\left(\frac{1}{i}+1\right)=>i=\frac{50,000}{9,950,000}=0.005025126$

This is the mothhly effective rate since payments are monthly. For Option b, we need the annual effective rate since the payments are annual. The annual effective interest rate is:
$i=(1.005025126)^{12}-1=0.061996372$
$P V=P \ddot{a}_{351}=\Rightarrow 10,000,000=P\left(\frac{1-(1.061996372)^{-35}}{0.061996372}\right)(1.061996372)=\Rightarrow P=664,746.82$

