Chapter 2 - Past Test and Quiz Problems

You are given that ${ }_{t} p_{90}=1-0.04 t^{2}$ for $0 \leq t \leq 5$.
Calculate μ_{91}.
Solution:

$$
\begin{aligned}
& \mu_{90+t}=-\frac{\frac{d}{d t}{ }_{t} p_{90}}{{ }_{t} p_{90}}=\frac{0.08 t}{1-0.04 t^{2}} \\
& \mu_{91}=\frac{0.08(1)}{1-0.04(1)^{2}}=0.0833333
\end{aligned}
$$

You are given that $\mu_{80+t}=0.04 t$.
Calculate ${ }_{10} p_{80}$.

Solution:
${ }_{10} p_{80}=e^{-\int_{0}^{10} \mu_{80+t} \cdot d t}=e^{-\int_{0}^{100.04 t \cdot d t}}=e^{-\left[0.02 t^{2}\right]_{0}^{]^{10}}}=e^{-2}=0.13534$

You are given that ${ }_{t} p_{90}=1-0.04 t^{2}$ for $0 \leq t \leq 5$.
Calculate the $\operatorname{Var}\left[T_{90}\right]-\operatorname{Var}\left[K_{90}\right]$.

Solution:

$$
\begin{aligned}
& \operatorname{Var}\left[T_{90}\right]=E\left[T_{90}{ }^{2}\right]-\left(E\left[T_{90}\right]\right)^{2}=12.5-(3.33333)^{2}=1.38889 \\
& E\left[T_{90}\right]=\int_{0}^{5} p_{90} \cdot d t=\int_{0}^{5}\left(1-0.04 t^{2}\right) \cdot d t=\left[t-\frac{0.04 t^{3}}{3}\right]_{0}^{5}=\left[5-\frac{0.04(5)^{3}}{3}\right]=3.33333 \\
& E\left[T_{90}{ }^{2}\right]=2 \int_{0}^{5} t \cdot{ }_{t} p_{90} \cdot d t=2 \int_{0}^{5}(t)\left(1-0.04 t^{2}\right) \cdot d t=2\left[\frac{t^{2}}{2}-\frac{0.04 t^{4}}{4}\right]_{0}^{5}=2\left[\frac{(5)^{2}}{2}-\frac{0.04(5)^{4}}{4}\right]=12.5 \\
& \operatorname{Var}\left[K_{90}\right]=E\left[K_{90}{ }^{2}\right]-\left(E\left[K_{90}\right]\right)^{2}=9.2-(2.8)^{2}=1.36 \\
& E\left[K_{90}\right]=\sum_{k=1}^{5}{ }_{t} p_{90}=\sum_{k=1}^{5}\left(1-0.04 t^{2}\right)= \\
& \left(1-0.04(1)^{2}\right)+\left(1-0.04(2)^{2}\right)+\left(1-0.04(3)^{2}\right)+\left(1-0.04(4)^{2}\right)+\left(1-0.04(5)^{2}\right)=2.8 \\
& E\left[K_{90}{ }^{2}\right]=2 \sum_{k=1}^{5} t \cdot{ }_{t} p_{90}-\sum_{k=1}^{5}{ }_{t} p_{90}=\left[2 \sum_{k=1}^{5} t\left(1-0.04 t^{2}\right)\right]-2.8 \\
& =(1)\left(1-0.04(1)^{2}\right)+(2)\left(1-0.04(2)^{2}\right)+(3)\left(1-0.04(3)^{2}\right)+(4)\left(1-0.04(4)^{2}\right)+(5)\left(1-0.04(5)^{2}\right)-2.8 \\
& =9.2
\end{aligned}
$$

$$
\operatorname{Var}\left[T_{90}\right]-\operatorname{Var}\left[K_{90}\right]=1.38889-1.36=0.02889
$$

You are given that $\mu_{x}=0.001 x+0.01$.

Calculate ${ }_{10} q_{50}$.
Solution:

$$
\begin{aligned}
& S_{0}(x)=e^{-\int_{0}^{x} \mu_{r} d r}=e^{-\int_{0}^{x}(0.001 r+0.01) \mathrm{d} r}=e^{-\left[0.0005 r^{2}+0.01 r\right]_{0}^{x}}=e^{-0.0005 \mathrm{x}^{2}-0.01 \mathrm{x}} \\
& S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=\frac{e^{-0.0005(\mathrm{x}+\mathrm{t})^{2}-0.01(\mathrm{x}+\mathrm{t})}}{e^{-0.0005(\mathrm{x})^{2}-0.01(\mathrm{x})}} \\
& { }_{10} q_{50}=1-{ }_{10} p_{50} \\
& p_{x}=\frac{e^{-0.0005(\mathrm{x}+\mathrm{t})^{2}-0.01(\mathrm{x}+\mathrm{t})}}{e^{-0.0005(\mathrm{x})^{2}-0.01(\mathrm{x})}} \\
& { }^{10} \\
& p_{50}=\frac{e^{-0.0005(60)^{2}-0.01(60)}}{e^{-0.0005(50)^{2}-0.01(50)}}=\frac{0.090718}{0.173774}=0.52205 \\
& { }_{10} q_{50}=1-0.52205=0.47795
\end{aligned}
$$

You are given that ${ }_{t} p_{x}=1-\frac{t^{3}}{n^{3}}$ for $0 \leq t \leq n$.
You are also given that $e_{x}=4.5$
Calculate n.

Solution:

$\dot{e}_{x}=\int_{0}^{n}{ }_{t} p_{x} d t=\int_{0}^{n}\left(1-\frac{t^{3}}{n^{3}}\right) d t=\left[t-\frac{t^{4}}{4 n^{3}}\right]_{0}^{n}=n-\frac{n}{4}=0.75 n=4.5 \Rightarrow n=\frac{4.5}{0.75}=6$

You are given that $S_{0}(x)=1-\frac{x^{2}}{6400}$ for $0 \leq x \leq 80$.
If $\mu_{x}=\frac{17}{222}$, determine x.

Solution:

$$
\mu_{x}=\frac{-\frac{d}{d x} S_{0}(x)}{S_{0}(x)}
$$

$$
\mu_{x}=\frac{17}{222}=\frac{-\frac{d}{d x}\left(1-\frac{x^{2}}{6400}\right)}{1-\frac{x^{2}}{6400}}==>\frac{17}{222}=\frac{2 x}{6400-x^{2}}=>(17)\left(6400-x^{2}\right)=(222)(2 x)
$$

$$
\therefore 17 x^{2}+444 x-108,800=0
$$

$$
x=\frac{-444 \pm \sqrt{444^{2}-4(17)(-108,000)}}{2(17)}=\frac{-444 \pm 2756}{34} \rightarrow x=68,-94.12
$$

$$
x=68
$$

You are given that ${ }_{t} q_{90}=\frac{t^{3}}{1000}$.
Calculate the $\operatorname{Var}\left[T_{90}\right]$.

Solution:

$$
\begin{aligned}
& { }_{\mathrm{t}}^{90} \\
& \mathrm{p}_{90}=1-{ }_{\mathrm{t}} \mathrm{q}_{90}=1-\frac{t^{3}}{1000} \\
& \mathrm{t}_{90}=\frac{1000-t^{3}}{1000} \\
& \operatorname{Var}\left[\mathrm{~T}_{\mathrm{x}}\right]=\mathrm{E}\left[T_{x}^{2}\right]-E\left[T_{x}\right]^{2} \\
& e_{90}=E\left[T_{90}\right]=\frac{1}{1000} \int_{0}^{10}\left(1000-t^{3}\right) d t \\
& E\left[T_{90}\right]=\frac{1}{1000}\left[1000 t-\frac{t^{4}}{4}\right]_{0}^{10}=7.5 \\
& E\left[T_{90}^{2}\right]=(2) \frac{1}{1000} \int_{0}^{10} t\left(1000-t^{3}\right) d t \\
& E\left[T_{90}^{2}\right]=\frac{1}{500}\left[500 t^{2}-\frac{t^{5}}{5}\right]_{0}^{10}=60 \\
& \operatorname{Var}\left[T_{90}\right]=60-7.5^{2}=3.75
\end{aligned}
$$

Note that the integral is from 0 to 10 , because the q-value becomes greater than 1, and therefore invalid, for any integer greater than 10 . Therefore you can treat $(\omega-x)$ as 10.

You are given than ${ }_{t} q_{95}=\frac{t^{3}}{125}$.
Calculate the $\operatorname{Var}\left(K_{95}\right)$.

Solution:

$$
\begin{aligned}
& { }_{\mathrm{t}} \mathrm{p}_{95}=1-{ }_{\mathrm{t}} q_{95}=1-\frac{t^{3}}{125} \\
& { }_{t} \mathrm{p}_{95}=\frac{125-t^{3}}{125} \\
& \operatorname{Var}\left[\mathrm{~K}_{\mathrm{x}}\right]=\mathrm{E}\left[K_{x}^{2}\right]-E\left[K_{x}\right]^{2} \\
& E\left[K_{95}\right]=\sum_{K=1 \quad k}^{5} p_{x} \\
& =\frac{125-1^{3}}{125}+\frac{125-2^{3}}{125}+\frac{125-3^{3}}{125}+\frac{125-4^{3}}{125}+\frac{125-5^{3}}{125} \\
& =3.2 \\
& E\left[K_{95}^{2}\right]=2 \sum_{k=1}^{5} k \cdot{ }_{k} p_{x}-\mathrm{E}\left[\mathrm{~K}_{95}\right] \\
& =2\left[(1) \frac{125-1^{3}}{125}+(2) \frac{125-2^{3}}{125}+(3) \frac{125-3^{3}}{125}+(4) \frac{125-4^{3}}{125}\right]-3.2 \\
& E\left[K_{95}^{2}\right]=11.136 \\
& \operatorname{Var}\left[\mathrm{~K}_{95}\right]=11.136-3.2^{2}=0.896
\end{aligned}
$$

Note that the summation is from 1 to 5 , because the p-value goes negative, and therefore invalid, for any integer greater than 5 . Therefore you can treat $(\omega-x)$ as 5 .

You are given that ${ }_{t} p_{95}=1-0.04 t^{2}$ for $0 \leq t \leq 5$
Calculate $\operatorname{Var}\left[K_{95}\right]$.

Solution:

$\operatorname{Var}\left[K_{95}\right]=E\left[K_{95}{ }^{2}\right]-\left(E\left[K_{95}\right]\right)^{2}$
$E\left[K_{95}\right]=\sum_{k=1}^{4}{ }_{k} p_{95}=\sum_{k=1}^{4}\left(1-0.04 k^{2}\right)$
$=1-0.04\left(1^{2}\right)+1-0.04\left(2^{2}\right)+1-0.04\left(3^{2}\right)+1-0.04\left(4^{2}\right)=2.8$
$E\left[K_{95}{ }^{2}\right]=2 \sum_{k=1}^{4} k \cdot{ }_{k} p_{95}-E\left[K_{x}\right]=2 \sum_{k=1}^{4} k\left(1-0.04 k^{2}\right)-2.8$
$=2\left\{1\left[1-0.04\left(1^{2}\right)\right]+2\left[1-0.04\left(2^{2}\right)\right]+3\left[1-0.04\left(3^{2}\right)\right]+4\left[1-0.04\left(4^{2}\right)\right]\right\}-2.8=9.2$
$\operatorname{Var}\left[K_{95}\right]=9.2-(2.8)^{2}=1.36$

You are given that ${ }_{t} q_{75}=\frac{t^{2}+t}{240}$ for $0 \leq t \leq 15$.
Calculate $\operatorname{Var}\left[T_{75}\right]$
Solution:

$$
\begin{aligned}
& \operatorname{Var}\left[T_{75}\right]=E\left[T_{75}{ }^{2}\right]-\left(E\left[T_{75}\right]\right)^{2} \\
& E\left[T_{75}\right]=\int_{0}^{15} p_{75} \cdot d t=\int_{0}^{15}\left(1-{ }_{t} q_{75}\right) \cdot d t=\int_{0}^{15}\left[1-\frac{t^{2}+t}{240}\right] \cdot d t \\
& =\left[t-\frac{t^{3}}{720}-\frac{t^{2}}{480}\right]_{0}^{15}=15-\frac{15^{3}}{720}-\frac{15^{2}}{480}=9.84375 \\
& E\left[T_{75}{ }^{2}\right]=2 \int_{0}^{15} t \cdot{ }_{t} p_{75} \cdot d t=2 \int_{0}^{15} t\left(1-{ }_{t} q_{75}\right) \cdot d t=2 \int_{0}^{15}\left[t\left(1-\frac{t^{2}+t}{240}\right)\right] \cdot d t \\
& =2\left[\frac{t^{2}}{2}-\frac{t^{4}}{960}-\frac{t^{3}}{720}\right]_{0}^{15}=2\left[\frac{15^{2}}{2}-\frac{15^{4}}{960}-\frac{15^{3}}{720}\right]=110.15625
\end{aligned}
$$

$\operatorname{Var}\left[T_{75}\right]=110.15625-(9.84375)^{2}=13.25684$

