Math 373

Quiz 1

Spring 2024

1. Under a simple interest rate arrangement, an investment grows from 300 to 510 in 10 years. Calculate the effective interest rate in the $8^{\text {th }}$ year.

2. Raphael invests X in an account that earns 5% compound interest.

They earn the same effective interest rate in the $6^{\text {th }}$ year and their account balance is the same at the end of the $10^{\text {th }}$ year.

Solve for X.

$$
i_{6}=i[5,6]
$$

(1) find S.

$$
\begin{aligned}
0.05=\frac{a(6)-a(5)}{a(5)} & =\frac{5}{1+5 \mathrm{~S}} \\
0.05+0.255 & =5 \\
0.75 S & =0.05 \\
\therefore 5 & =0.0666 \overline{6}
\end{aligned}
$$

(2) $488.67 a(10)=488.67[1+(10)(0.06)]=814.45$
(3)

$$
\begin{aligned}
x(1.05)^{10} & =814,45 \\
x & =500.0016493 \\
& {[500}
\end{aligned}
$$

$$
1+\beta t+w t^{3}
$$

3. Splinter invests 200 in a fund that has an accumulation function of $a(t)=\alpha+\beta t+\omega t^{3}$. At the end of one year, Splinter has 215. At the end of three years, Splinter has 250.

Determine the amount that Splinter has at the end of five years.

$$
\begin{array}{ll}
x=1 & a(0)=1 \\
& a(0)=x+0+0=1=\alpha
\end{array}
$$

(1) $200 a(1)=215$
(2) $200 a(3)=250$
$200[1+\beta+\omega r]=215$

$$
\begin{aligned}
& \beta+w=0.075 \text { sustrets } 1+3[0.075-w]+27 w=1.25 \\
& \beta=0.075-w \\
& 24 w=0.025 \\
& w=0.001041667
\end{aligned}
$$

$$
\beta=0.075-0.001041667=0.0739585
$$

(3)

$$
\begin{aligned}
200 a(5) & =200\left[1+5(0.0739583)+(5)^{3}(0.001041647)\right] \\
& =300
\end{aligned}
$$

