MATH 373
Quiz 4
Spring 2024
March 7, 2024

1. You borrow 200,000 to be repaid with level monthly payments of 2,000 . You have the choice of paying the loan off with a final balloon payment, B, or a final drop payment, D. The interest rate on your loan is an annual effective rate of 5%. need $\frac{i^{(12)}}{12}$, given i Calculate $B-D$.

Find n

$$
200,000=2000 a \underset{n}{ } \frac{(12)}{12} \text { \& solve for } n
$$

or on calculator

$$
\begin{aligned}
& P V=200.000 \\
& P_{M T}=-2000 \\
& I / Y=0.407412378 \quad(\text { (enter as a } \%) \\
& F V=0 \\
& \text { CDT N }=128.695578 \quad \therefore B \text { (a) } 128 \\
& 129
\end{aligned}
$$

Find OLB 128
IND AMOR $P_{1}=1 \quad P 2=128 \quad B A L=1386.37$

$$
\begin{aligned}
\therefore & B=2,000+1386.37=3386.37 \\
& D=1386.37(1.004074124)=1392.017 \\
& B-D=1994.35
\end{aligned}
$$

$$
\begin{aligned}
\text { or } B & =(200,000)(1.004074)^{128}-2000 \\
D & \ddot{s} \text { (2710.001074124 } \\
D & =(200,000)(1.004074)^{129} 2000 \stackrel{\mathrm{~S}}{12810.004074124}
\end{aligned}
$$

t should hive

$$
\begin{aligned}
& \text { mould have }(b) \text { i } \\
& \text { harified arithri }
\end{aligned}
$$

2. You have the option to purchase one of the following:
a. A perpetuity where the first payment occurs at the beginning of the first year in the amount of 100 . Each quarter thereafter, the payment increases by 1%.
b. A annuity with 20 annual payments. The first payment occurs at the end of the first year in the amount of 500. Each year thereafter, the payment increases by a constant, Q.

The present value of these options are equivalent today using an annual effective interest rate of 7%.

Calculate Q.

20

$$
\begin{aligned}
& \uparrow_{V V}=500 \underbrace{a_{20007}}_{10.594014}+\underbrace{Q}_{0.07}(\underbrace{a_{200}}_{20007}-20\left(\frac{1}{1.07}\right)^{20}) \\
& 74.408 .938=5297.007+77.50905985 Q \\
& Q \\
& \hline 1117.5596
\end{aligned}
$$

if rad as geometric...

$$
\text { ratio }=Q V
$$

$$
\begin{aligned}
& 14408.938=\frac{500 \mathrm{~V}-500 Q^{20} V^{21}}{1-Q V} \\
& 14408.938\left(1-\frac{Q}{1.07}\right)=\frac{500}{1.07}-500 \frac{Q^{20}}{(1.07)^{21}}
\end{aligned}
$$

...how do you solve?

