MATH 373
Quiz 5
Spring 2024
April 4, 2024

1. Cole, Sam, and Matthew enter a three-way loan agreement. As part of this agreement, Cole pays Sam 100,000 at time 0 . Additionally, at the end of 4 years, Sam agrees to pay 115,000 to Matthew. Finally, at the end of N years, Matthew pays Cole a total of $150,000$.

Using the bottom line approach, all three participants have the same annual yield.
Determine N. (Please note that N is not an integer.)

Cole

$$
115,000
$$

Mathew

Use Sam's to determine annual yield.

$$
\begin{aligned}
100,000(1+i)^{4} & =115,000 \\
i & =0.035558076
\end{aligned}
$$

Use cole's or Matthew's to find N.

$$
\text { Cole: } \begin{array}{r}
100,000(1.03558076)^{N}=150,000 \\
N \ln (1.03558076)=\ln (1.5) \\
N=11,60444972
\end{array}
$$

2. You loan me 5,000 . I repay the loan by paying you 3,000 at the end of 1 year and 2,000 at the end of years 2 and 3. You immediately reinvest the repayments in an account that earns an annual effective interest rate of 5\%.

Determine your return on the loan taking into account reinvestment.

$$
\begin{aligned}
5000(1+i)^{3} & =3.000(1.05)^{2}+2000(1.05)+2000 \\
5000(1+i)^{3} & =7407.50 \\
i & =0.1399887
\end{aligned}
$$

3. You have a loan that requires four annual non-level payments to repay the loan, listed in the table below. The loan has an annual effective interest rate of 6%. Complete the following amortization table. Please show your work for at least the first two rows for full credit.

Time	Payment	Payment Interest	Payment Principal	Outstanding Loan Balance
0	N/A	N/A	N/A	$34,950.64$
1	11,000	$(34,950.64)(0.06)$ $=2097.04$	$11,000-2097.04$ $34,950.64-89,02.96$ 26.96	
2	12,000	1562.86	$10,437.14$	$15,610.54$
3	9,000	936.63	8063.37	7547.17
4	8,000	452.83	7547.17	

$$
\begin{aligned}
O L B & =\frac{11,000}{1.06}+\frac{12,000}{(1.06)^{2}}+\frac{9,000}{(1.06)^{3}}+\frac{8000}{(1.06)^{4}} \\
& =34,950.63862
\end{aligned}
$$

