STAT 472 Spring 2024 Quiz 3 February 6, 2024

- 1. You are given:
 - a. $p_{80} = 0.94$
 - b. $p_{81} = 0.91$
 - c. $e_{80.3} = 9$
 - d. The force of mortality is constant between ages 80 and 81.
 - e. Deaths are uniformly distributed between 81 and 82.

Calculate $e_{81,3}$.

$$\frac{(100)}{180.3} = (180)^{0.7} (181)^{0.3} = 98.16$$

$$\frac{(100)}{181.3} = (181)(0.7) + (182)(0.3) = 91.462$$

$$\frac{181.3}{180.3} = \frac{181.3}{180.3} = \frac{91.462}{98.16} = 0.93(764)$$

7 9 =
$$(0.931764)(1+881.3)$$

 $e_{81.3} = [8.65918]$

2. (10 points) You are given two groups of people. Group 1 contains 100,000 people, each aged 50 whose mortality is assumed to follow the Standard Ultimate Life Table.

Group 2 also contains 100,000 people, each aged 50. Their mortality is described in the following table.

t	$_{\prime }q_{50}$
0	0.00148
1	0.00150
2	0.00164
3	0.00177

Calculate how many more people from Group 1 survive to age 54 than do from Group 2.

$$\frac{G_{100} p 1}{100,000} (4 P_{50}) = 100,000 \left(\frac{1_{54}}{1_{50}}\right) = 100,000 \left(\frac{98,022.40}{38,576.40}\right)$$
$$= 99,437.99$$

Group 2

$$4950 = "$$
 chance of death in year (50++) to (50+++1)
provided the life has survived to (50++)"
 $\frac{\# die}{100,000(0.00148)} = 148$
 $2 \rightarrow 150$
 $3 \rightarrow 164$
 177
 $639 die$