Student Name:_____

Purdue ID:_____

STAT 472 – Spring 2025 Quiz 5

MTHW 304 12:50 – 1:15 PM Tuesday, April 1st, 2025

INSTRUCTIONS

- Do not open this quiz until you are told to do so.
- There are 20 points possible on this quiz.
- You have 25 minutes to complete this quiz.
- Be sure you have filled in your name and Purdue ID in the slots at the top of the page.
- Show all work to maximize partial credit.
- Be sure all cell phones are silenced and put away out of view. This policy applies to smart watches as well.
- Headphones are not permitted unless prior approval was granted by your instructor.
- Formula sheets are not permitted.
- You are only permitted to use calculator(s) from the following list:
 - BA II Plus
 - o BA II Plus Professional
 - o BA-35
 - \circ TI–30Xa or TI–30XA (same model just different casing)
 - \circ ~ TI-30X II (IIS solar or IIB battery)
 - TI-30XS MultiView (or XB battery)
- When time expires, put your pencil down and close your exam. Failure to do so will result in automatic disqualification from obtaining University-Earned Credit.

PURDUE HONORS PLEDGE

"As a boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - we are Purdue."

STUDENT AGREEMENT

By signing below,

- I agree with the Purdue Honors Pledge stated above.
- I will not give or receive any assistance on this exam, and I will report any infractions of the honors pledge.
- I acknowledge that I only used calculator(s) from the above list.
- I am claiming all work in this exam as my own.
- X_____

- 1. (5 points) Let Y be the present value random variable for a whole life annuity due with annual payments of 500 issued to (70). You are given:
 - i. Mortality follows the Standard Ultimate Life Table
 - ii. *i* = 0.05
 - a. (2 points) Define the present value random variable, Y.

Solution:

$$Y = 500 \ddot{a}_{k_{70}+1} \text{ or } 500 \left(\frac{1 - V^{k_{70}+1}}{d}\right)$$

Points	
1	Annuity payment coefficient and use of (Kx+1)
1	Certain annuity (either as a or the formula for it)

b. (3 points) Calculate Var(Y).

Solution:

$$Var(Y) = (500)^{2} = {}^{2}A_{70} - (A_{70})^{2}$$

$$= (500)^{2} (0.21467) - (0.42818)^{2} (\frac{0.05}{1.05})^{2}$$
$$= 3,454,340.608$$

Points	
1	Include death benefit squared as coefficient
1	Correct Var(Z) as numerator
1	Discount rate squared as denominator

- 2. (5 points) You are given:
 - i. $\ddot{a}_{36} = 20.940$
 - ii. $\ddot{a}_{65} = 13.052$
 - iii. $_{30}E_{35} = 0.27225$
 - iv. $_{30} p_{35} = 0.883$
 - v. $_{29} p_{36} = 0.884$
 - vi. i = 0.04

Calculate $\ddot{a}^{(2)}_{_{35;\overline{30}}}$ using the two-term Woolhouse approximation.

Solution:

$$Y = 500 \ \ddot{a}_{k_{70}+1} \ or \ 500 \left(\frac{|-V^{k_{70}+1}}{d} \right)$$

Points	
1	Setup for finding p_{35}
2	Setup for $\ddot{a}^{(2)}_{35:\overline{30}}$ as combination of whole life or other correct form
1	Setup for finding \ddot{a}_{35}
1	Setup for two-term woolhouse formula adjustment

- 3. (10 points) You (60) won the lottery. You will receive <u>both</u> of the following:
 - i. A deferred term life annuity due that makes monthly payments of 600 for 10 years, starting at age 65.
 - ii. An annuity due with 5 years of guaranteed monthly payments of 600, starting now (age 60).

You are given that i = 0.05, deaths are uniformly distributed between integral ages, and mortality follows the Standard Ultimate Life Table.

Calculate the actuarial present value of the payments to two decimal places.

Solution:

Points	
6	Correct setup for (i)
	 2 points for correct treatment of deferral (v and p)
	 2 points for correct conversion to monthly payments
	 2 points for correct formula for finding term life annuity due
3	Correct setup for (ii)
1	Correct coefficient of 12 for both (i) and (ii)