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Abstract We propose continuous and discrete-time finite-element (FE) methods
to solve an initial boundary-value problem (IBVP) for the thermo-poroelasticity
wave equation based on the combined Biot/Lord-Shulman (LS) theories to de-
scribe the porous and thermal effects, respectively. In particular, the LS model,
that includes a Maxwell-Vernotte-Cattaneo (MVC) relaxation term, leads to a hy-
perbolic heat equation, thus avoiding infinite signal velocities. The FE methods
are formulated on a bounded domain with absorbing boundary conditions at the
artificial boundaries. The dynamical equations predict four propagation modes,
namely, a fast P wave, a Biot slow wave, a thermal wave, and a shear wave. The
spatial discretization uses globally continuous bilinear polynomials to represent
the solid displacements and the temperature, while the vector part of the Raviart-
Thomas Nedelec of zero order is used to represent the fluid displacements. First, a
priori optimal error estimates are derived for the continuous-time FE method, and
then explicit and implicit discrete-time FE methods are defined. The stability of
the explicit FE method is analyzed and the stability constrain is derived. The al-
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gorithms can be useful for a better understanding of seismic waves in hydrocarbon
reservoirs and crustal rocks, whose description is mainly based on the assumption

of isothermal wave propagation.

1 Introduction

Thermoelasticity is the theory that couples the fields of deformation and tempera-
ture, where an elastic source gives rise to a temperature field and attenuation and
a heat source induces anelastic deformations. The theory is useful in a variety of
applications such as seismic attenuation in rocks and material science [1-3]. The
theory might also be relevant in low-temperature physics, theories of shocks and
vibrations and astrophysics.

The classical parabolic-type differential equations of thermoelasticity (non-porous)
for the Fourier law of heat conduction were reported by Biot [4], but his theory has
unphysical solutions, such as discontinuities and infinite velocities at high frequen-
cies. Later, Lord and Shulman (LS) [5] overcame these problems by formulating
a hyperbolic-type differential equations, introducing MVC relaxation times into
the heat equation [6]. The thermoelasticity theory predicts and S wave and two
P waves, an elastic wave and a thermal wave having similar characteristics to the
fast and slow P waves of poroelasticity, respectively [3]. Zener work [1] already
contains the concept of mode conversion from P wave to a thermal mode, e.g.,
he explains P-wave dissipation due to the presence of “microscopic stress inhomo-
geneities arise from imperfections, such as cavities, and from the elastic anisotropy
of the individual crystallites”, in the same way that the White model [7] describes
attenuation in porous media due to mesoscopic-scale inhomogeneities (as P wave
converted to Biot slow mode). Early works in geophysics worth to mention in this
sense were conducted by Treitel [8], Savage [9], who obtained the P- and S-wave
quality factors for empty round cavities or pores, and Armstrong [10], who con-
sidered a finely layered medium. Then, the subject has been neglected in practice
till recent works by Carcione and co-workers who performed the first simulation of
the thermal wave in the context of thermoelasticity and poro-thermoelasticity [3,
11-15]. In these works, the numerical simulation is performed with a direct method
to compute the spatial derivatives, namely, the Fourier pseudospectral differential
operator (e.g., [16]). The development of a new technique, based on the FEM algo-
rithm, will provide a more flexible approach to represent the heterogeneities of the
medium and will provide further crosscheck of both algorithms and the physics of

wave propagation.
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Santos and co-workers [17] prove the existence and uniqueness of the Biot/Lord-
Shulman formulation in linear thermo-poroelastic isotropic media, with bounded
domains under appropriate boundary and initial conditions. The analysis shows
the existence of a unique solution, given in terms of displacements of the solid
and fluid phases and temperature, and proves its regularity in the space and time
variables. The FE spaces used for the spatial discretization of the IBVP are as
follows. The components of the solid displacement vector and the temperature are
represented by globally continuous piecewise bilinear functions. For the fluid phase,
we use locally the vector part of the Raviart-Thomas-Nedelec space of zero order.
First, we derive a variational formulation of the continuous-time FE IBVP problem
and show the existence and uniqueness of the continuous-time FE solution. Then a
priori error estimates are given, which are optimal for the FE spaces used and the
assumed regularity of the solution. Finally, explicit and implicit discrete-time FE
algorithms are defined, and the conditional stability of the explicit FE procedure

is analyzed.

2 Model equations

We consider a porous medium saturated by a single phase, compressible viscous
fluid and assume that the whole aggregate is isotropic. Let u® = (u$) and uf = (u{ )
denote the average displacement vectors of the solid and relative fluid phases,
respectively and set u = (u®,u’). Let e(u®) = (g;;(u®)) be the strain tensor of the
solid. Also, let o(u,0) = (04;(u,0)), and pr = ps(u,6) denote the stress tensor of
the bulk material and the fluid pressure, respectively, with 6 being the increment
of temperature above a reference absolute temperature 6y for the state of zero

stress and strain. The stress-strain relations are:

0ij(u,60) = 2uei;(u°) + 8;;(\u V- u® + BV -0/ — 80), (1)
pr(u,0) = =BV -u® — MV -ul + 5,6, (2)
. 2 K,
where p is the wet- or dry-rock shear modulus, \y = A+ a*M, a =1 — 7o
6, ¢\ S
M= (224 2 ) | 4is the porosity, B=a M, B = Bm + B¢, with Ay being
K, Ky

the Lamé coefficient of the fluid saturated frame and Ks, K and Ky denoting
the bulk moduli of the grains, solid and fluid, respectively. The positive coupling
coefficients B, and By are the coefficients of thermoelasticity of the frame and

fluid, respectively.
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2.1 Dynamical equations

Let pp = (1 —¢)ps + ¢ps denote the mass density of the bulk material, with ps and
ps being the mass densities of the grains and fluid, respectively. Let the positive

definite matrix P and the nonnegative matrix B be defined by

_ (! pfl) B (01 0])
P= ( B= n (3)
) I 7]’ b
prl gl 0 o
where I is the identity matrix in RdXd, with d = 2,3, n is the fluid viscosity, x is

S
the permeability and g = %, where S is the tortuosity.

Let us define the differential operator £(u,0) = (V o (u,0), —fo(u,ﬁ)) . Then,

Biot’s dynamical equation taking into account temperature is
Pii+ Bl — L(u,0) =t (4)
Following Sharma [18] and Carcione et al [3], the generalized heat equation is

Teh+ch—V-(yV0) + (1 - ¢)BmboV - 0° + ¢80V - af (5)
+7(1 = ¢)BmToV - & + 765, TV - il = —q.

In (4)-(5) f = (f°,f) is an external force and ¢ is a heat source. Also, v =
(1—¢)ym~+¢7¢ is the bulk coefficient of heat conduction (or thermal conductivity),
with ym and vy being the heat conduction of the frame and the fluid, respectively,
and ¢ = (1 — @)em + ¢cy , is the bulk specific heat of the unit volume in the
absence of deformation and 7 is a MVC relaxation time. These equations assume
thermal equilibrium between the solid and the fluid, i.e., the temperature in both
phases is the same. Thermal equilibrium is valid when the interstitial heat transfer
coefficient between the solid and fluid is very large and the ratio of pore surface
area to pore volume is sufficiently high. Here, we consider Bm, Bf, v and c as

parameters, obtained from experiments or from a specific theoretical model.

2.2 The initial boundary-value problem

The initial boundary-value problem is formulated in the 2D case (with obvious
extension to the 3D case) for the case of thermal equilibrium in an open bounded
domain 2 with piecewise smooth boundary and a time interval J = (0,7) as

follows: Find (u, 8) satisfying (4)-(5) with initial conditions

u(z,0) =u’ = (uO"S,uO’f), u(z,0) =u' = (ul’s,ul’f)7 rx e, (6)

0(z,0) =6°, 6(z,0)=0", z € R, (7)
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and absorbing boundary conditions
—Gr(u,0) = DS(n), —AVO-v=Tcvg xel, tel, (8)
where
G(u,0) = (ov-v,ov xpy) (w0),  S@)=(a v x0lv)  (9)

In (8)-(9), v and x are the unit vector outer normal and unit vector tangent on I’
oriented counterclockwise. The matrix D is positive definite and vg = \/~/(rc) is
the heat speed (e.g., Carcione et al.[12]).

An existence and uniqueness result for the solution of (4)-(7) with different bound-

ary conditions than those in (8) is given in [17].

3 A variational formulation

In order to obtain a variational formulation, we need to introduce some notation.
For 2 ¢ R? with boundary I' = 92, let (-,-) and (-,-) denote the L?(£2) and
L?(I') inner products for scalar, vector, or matrix valued functions. Also, for s € R,
|- lls,2 and | - |s,r will denote the usual norms for the Sobolev space H*(2) and
H?(I'), respectively. If X = 2 or X = I', the subscript X may be omitted such
that (-,-) = ()e, ()= )por [ [s =[5 Let

H(div;2)={v e [LQ(.Q)]2 :V-ve L)},

provided with the norm [|v| g (div;2) = [||v\|(2) + V- VH%]I/Q. We also will refer to
the space

HY(div;2) = {ve [H'(2)*: V-ve H'(2)}.

The following known results will be used [19]

|V ! ’/|71/2,F < C||VHH(div;Q)7 (10)
1/2 1/2
Vlo.r < ClIvllg/a VI3 < Clvil, - (11)

Here and in what follows, C' denotes a generic constant that may take different

values at different places. Also recall Korn’s second inequality [20]
|| | an+ v = v (12)
ij

Next, we introduce the space V = [Hl (Q)] % H(div; 2), provided with the natural

norm

. /2 .
vl = (VI + v/ Wiy ) V" € '@V € Hdiv; ).
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Also, for any Banach space Y let
2 2 r 2
POY) = {f 05 Y flfy = [ 170l <o),
0
L¥(LY)={f:J =Y : [f|Ty = ess.supe s [ f(£) Iy }-

To obtain a variational formulation of the initial boundary-value problem (4)-(8),
multiply (4) by v*, (5) by v/ such that v = (v®,v/) € V, use integration by parts
and the boundary conditions (8) to get

add here bry terms in the beta terms of biot equation

(Pii(x),v) + (guﬁvf) A, v) — (86,V -v) — (5f9,v-vf) (13)

+ <vs -V, ,39> + <vf -V, ,Bf9>
(

=(£,v) = (gw), v=K' v, w)eVvxH (), tel
where A(u,v) is the bilinear form

A, v) =Y (oum (W), 1 (v*)) = (€ €(u),€(v)) - (14)

l,m

In (14), the matrix £ and the column vector £(u) are defined by

A +20 Ay B 0 e11(u®)

. Ai A+20 B O ~ | e33(u®)
E= B 5 Mol g(u) = v.uf | (15)

0 0 0 4,u 513(us)

The term (€ €(u),€(v)) in (14) is associated with the strain energy of the system,
so that the symmetric matrix £ must be positive definite. Furthermore, A(u,v) <
Cllullvliviy.

Also, note that using (12), if A is the minimum eigenvalue of &, the following

Garding inequality holds:

A(v,v) > C1|vlp = XE v (16)
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4 Finite-element formulations

We will find a FE solution of (13) as follows. Let 7"(£2) be a quasiregular non-
overlapping partition of {2 into rectangles (2; of diameter bounded by A such that
n = Uﬁﬁj. Let us denote by W"(£2) the space of globally continuous piecewise
bilinear polynomials to be used to approximate each component of the solid dis-
placement u® and the temperature 6. Also, let V" (£2) be the vector part of the
Raviart-Thomas-Nedelec space of zero order [21,22] used to approximate the fluid

displacement vector u/. Then, let
zh () = Wh(0) x Wh(2) x V'(2) x wh(9).

Next, let IT : H2(£2) — W"(2) be the interpolant operators associated with the
space W and set IT®) = IT x IT — [W"(2)]?. Let Q : H*(div; 2) — V"(£2) be the
projection defined by

<(Q¢7¢)V31>B:0, B:F]kOI‘B:FJ
The approximating properties of IT and Q are [21,7]

lp — o+ hlle — Hell1 < CR*||pll2, ¢ € H*(2) (17)
le — (D) Ppllo + hlle — ()Pl < CR?|lpll2, ¢ e [H(2)]*  (18)
1 — Qullo < Chlj]|1, (19)

IV (3 — Q¥)llo < Ch (|91 + IV -9ll1) o € H' (div; 2). (20)

4.1 Continuous-time finite-element procedure

Find (U(t),0(t)) € Z"(£2) such that
(PU,v) + (gUf7vf) +A(UV) — (80,V -v*) — (ﬁf@,v-vf) (21)
+(re6,w) + (c O,w) + (vVO,Vw) + ((1 — ¢)BmboV - U, w)
+ (qsﬁfeov : Uf,w) + (71 = ¢)BmboV - U°,w) + (mﬂfeov : Uf,w)
+(DS(U),8(v)) + (rcvg®, w)
=(f,v) = (qgw), v= v wezh), te

In the next theorem we demonstrate the existence and uniqueness of the solution
of problem (21).
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Theorem 1 Assume that the matrices P and BB in (3) are positive definite and semidef-
inite, respectively and that the matriz € in (15) is positive definite. Then, there exists

a unique solution (U,0) € Z" of the continuous-time FE procedure (21) and satisfies
the inequality

U@ 7o gy + T N7 a1y + 1@ Z 200102290 (22)
H1O®F2(s,L2(0)) + 1O 200,11 (02
(||U(0 I+ 10015 + 100115 + T(0)I5 + 10(0) 15 + le(0)I3 )

+<C (Hf||L2(J,[L2(Q)]4) + ||f||2L2(J,[L2(Q)]4) + +Hq(s)||%2(J,L2(Q))> .
Proof Choose v =TU, w=© in (21) to obtain
% [(PU,U) + A(U,U) + (1¢ ©,0) + (vVO,VO)] + (gUf,t‘Jf)
- (86,V-U") - (8;6,V -1/ ) + (c 6,6) (23)
+ (1= ¢)BmboV - U*,0) + (qsﬁfaov v/, e )+<DS(U S(U))
+(7euy®,0) + (r(1 = 6)Bmbo¥ - U*,0) + (r¢p60v - U/, 6)
= (0% + (¢, 07) - (¢,0), te

To handle the last two terms in the left-hand side of (23), take time derivative in
(21) and choose w = 0 to obtain

(Pﬁs,v) + AU, V) — (86,7 V) — (,Bfé,v‘vf) (24)
+ (267 V) + (DS(0), 5(v)) = (£5,v7) + (£7,v7).
Choose v* = U* v/ =0 in (24) to get

(PU, (0%,0)) + A(U, (T°,0)) — (86, V - U?) (25)
+(DS8(0),S(0%,0)) = (£5,0°).

Also, the choice v* = 0,v/ = Uf in (24) yields

(P, (0,6%)) + 400, (0,07) - (86,9 - 07) + (267, 67)  (26)
+ <DS(I"J),3(0,I"Jf)> = (f'f,tjf) .

Set

C,p = infrep (MM)  Crp = inf e (7¢60), Cp = min(cm,ﬁﬂ Cfﬁ)
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Then, from (25)
(r(1 = ¢)Bmb0V - U*,6) > C5(86,V - U*) (27)
= C3 [(PU, (0%,0)) + A(T, (0°,0)) + (DS(0),S(T°,0)) — (f5,0%)].
Also, from (26)
<T¢5feov : I"Jf,@') > 048,60,V - UF) (28)
= [(PU (o,t'Jf)) + AT, (0,07) + (gUfo) + <DS(I"J),8(0, o)) - (f'f,t'Jf)} .
Next after algebraic manipulations, setting P = CsP we get
Cj (P, (U°,0)) + Oy (PU (0,01 )) - (73UU) . (29)
Also, if A(U,U) = C5A(U,U) = (C5€ &U),&(U)) we see that
CpA(U, (T%,0)) + CoA(U, (0,07)) = A(U, 0). (30)

Furthermore,

C5 (DS(17), S(T%,0)) + C <DS(U),S(O, t"Jf)> = (C4DS(0), S(1)) .
Hence,
(r(1 = ¢)BmboV - U*,6) + (mbﬁfeov 0/, 9) (31)
> 2 L[(PU,0) + AU, 0)] + 05 [(DS(D), S(0))
+ (101, 07) - (£, 0°) - (£, 07)].
Using (31) in (23) we get

14d
2.dt
n (gUf,Uf) — (86,V-U%) — (ﬁfava) +(c 6,6) (32)

[(PU,0) + (PO, T) + AU, U) + A0, 0) + (¢ 6,6) + (76, V6)|

+ (1= 9)8nboV - U%,6) + (68,607 - U, 6) + (DS(V), S(1))

+ (1cvg0,0) + C [(DS(U), S(0))

+ (207, 07) - (£,0°) - (£, 07)], teu

< L [(PU,0) + 40, 0) + (rc 6,6) + (7v6,v6)] + (107, 1)
—(86,v-U*) — (ﬂf@,v-Uf) +(c 6,0)

+ (1= 9)8nboV - U%,6) + (68,607 - U7, 6) + (DS(U), S(1))

+ (70, 6) + (r(1 - ) B0V - U*,0) + (ré8;60v - U, 6)

= (U + (t1,U7) - (¢,6), teu
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Next note that using the Géarding inequality (16), we can choose (1,2 to define

the bilinear forms
A, (viv) = A(v,v) + G (v, V), Ag,(v,v) = A(v,v) + G (v, v)
such that A;, and A, are V-coercive, i.e.
A (viv) 2 Callvli}, Ay (v,v) = CsvD. (33)

Thus, adding to (32) the inequalities

¢l < ¢ (IUIB+1013) , ¢ = cu,ca 1072013 < (152605 + I /2613)
we obtain

5 [(PU0) 4 (PU,T) + 44, (U, 0) + 4, (0,0) + - /2 O + |26 2]

+ (gvf,Uf) + (c 6,0) + (DS(U), S(U)) + {1y, 6) (34)

+Cp [(Ds(t‘ms(ﬂ)) + (gUfo)}

< © (I3 + lall3 + I1UNE + [OIE + 16113 + 1613) + (86, V- U%) + (80,7 - T

(1= $)Bnb0¥ - U,0) — (98,007 - UF,0) +Cy [(£5,0°) + (£/,07)] , t e .
Next we will integrate in time (34). Using that

+‘/Ot (5f@,v.Uf) (s)ds gc/ot [Hg(s)||%+|\U(s)\|$,} ds,

t
| ey

+ /Ot (qsﬁfeov : Uf,@') (s)ds

/0 (1= ¢)BmboV - U*,0) (s)ds
< [ (16613 + 106)] ds

/ L6, 0%) (s)as| + ‘ / (607 (s

integration in time of (34) and (33) yields

<c| [+ 18] ds,

(PU,0) 1)+ (PO, T) () + [UIS + [0 + 1m0 0@ + Iy *6(0) I}
+/ [(va,Uf) (5) + (¢ 6,0) () + (DS(U), (V) (s) (35)
0
+(7e09®,6) (5) + C ((PS(0), (1)) (s) + (207,67 (5)) ] s
t
<0 [ (IIE + la(o)13) a
+C (V)5 + 10O + [T + 1TO)[3 + 160)]3 + 10(0)1 )

+C [ (0GB + IO+ 1T+ O + 1015 +1€(:)IF) . ¢ € 1
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Since all integral terms in the left-hand side of (35) are non-negative and the
matrices P and P are positive definite, apply Gronwall’s lemma in (34) to obtain

the conclusion of Theorem 1.

4.2 A priori error estimates
From (13) and (21) we see that Eu = (Eu®,Euf) = (u® — U*,u/ — Uf) and
Ef = 0 — O satisfy the equation

(PEii, v) + (gEuf,vf) + A(BEu,v) — (BEO,V -v*) — (5fEe,v : vf>

+ (rc B, w) + (c Bd,w) + (YVEO, Vw) + (1 — ¢)BmboV - Ei®, w)

+ (68700 - Bid ,w) + (7(1 - 9)8im00¥ - Bit*, w) + (r0B00V - Eiif ,w)

+ (DS(E), S(v)) + (TcvyEf,w) =0, te J. (36)

Choose v* = Ei® + [1P0* —w®, v/ = B/ + Qu/ — o/, w = Ef + 116 — 6 in (36)

5 g [(PEwEw) + A(Eu, Eu) + (7 c EJ, Ed) + (yVE0, VE)]

+ (ﬂEu Eu') - (5E0,V - Eu*) - (8,E6,V - Ea/)

+ (c EO,Ef) + (DS(E1t), S(E)) + (rcvgEf, EO)

+((1 = ¢)BmboV - Ei®, Ef) + (qsﬂfeov : Euf,Eé) + (1(1 = ¢)Bmb0V - Eii*, Ef)
+

768,00V - Eaf Eo)

= (PEi, (0 - 1@ i, - Qal)) + (LB of - Qi) + A(Bu, (0" - 10", o
KR

(BEG V- (0 — T S)) - (/3fE9,V- (Qu' —ﬁf))

(37)

—Qu'))

+(1c EO, 116 — 0) + (c EO,0 — I10) + (YVES, V(116 — 6)) + ((1 — ¢)BmboV - Ed®, 116 — 6)
+ (68760V - Eaf 116 — 9) + (r(1 = 6)Bmb0V - Ei®, 10 — 6) + (mﬁfeov EBal, 116 — 9’)

<DS Eu),S(u’ —Pa o —Quf)>—|—<7'cv(91*]9.,]79'—9.>7 teJ

The last two terms in the left-hand side of (37) can be handled by taking time
derivative in (36) and choosing w = 0, v¢ = Ei®, v/ =0 and v* = 0,v/ = Eu/ in

the resulting equation. Then the argument leading to (31) yields the inequality

(r(1 = ¢)BmboV - Eit’, ©) + (nwfeov Ei, 9) (38)
2 %% |(PEis,Eit) + A(Ba, Ba)| + Cp [(DS(E), S(Bi) + (LB Eidf)]

Use (38) in (37) and add to the resulting equation the inequalities

d . :
C2 B3 < ¢ (IRl + 1B4I3) , ¢ = GG, I 2B003 < (172003 + v/ *B6)3)
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to obtain

1 d . o = . . —~ . .
5o |(PE& ) + (PEi Ei) + A, (Bu, Eu) + A, (B, Ei)

+ (7 ¢ Ef,Ef) + (yEO, EO) + (YVEY, VEO)]
+ (gEﬁf B’ ) + (c B0, B6) + (DS(Ew), S(BW)) + (rcvgBo, EG) (39)
< (1Bl + 1Bl + [B6JE + [EAI) + (5, v - Bi') + (8,E6, V - Baf)
— (r(1 = ¢)BmboV - E®, Bf) — (quﬁfeov : Eﬁf,Eé)
+ (PR, (0 - 1@, o/ - Quf)) + (1Bal 0 - Qul)
+A(Bu, (0° — T@a® o — Qul))
- (,@Ee,v (@ - H<2>a5)) - (ﬁfEG, V- (Quaf - uf))
+ (rc BO,116 — 0) + (c EO,0 — 110) + (vVEO, V(II0 — 0)) + ((1 — ¢)BmboV - Ed®, 116 — §)
4 (¢,3f90v Baf 116 — é) + (r(1 = 6)BmboV - Ei®, 116 — §) + (mﬁfeov Eaf, 16— é)
+ <’DS(E1’1),S(1’18 I (ORCIEY Qﬁf)> + (revgBO, 116 — 6), te ..
Next we get estimates for the time integrals of the terms in the right-hand side of

(39). First,

(40)

/Ot (BEO,V - Ea®) (s)ds| + ’/Ot (/BfE07v.El'lf) (s)ds

<o ([ imogas+ [ pmacias)

Also,

t
+ / (TqbﬁfGoV-Eﬁf,Eé) (s)ds
0

/Ot (T(l - d))ﬁmeov . Eils, E@) (s)ds

<c ( /0 () s + /0 t uEn(s)n%ds) . (41)

Next, using the approximating properties of IT in (17)

+

t
/ (qsﬁfeov Eu’, 116 — é) (s)ds
0

/t (1 — 8)BmboV - Eu®, 110 — ) (s)ds
0

t
<c ( [ 1) s + h4||e<s)||%ds) (42)
0
t 2 4112
<c ( [ i) s 1 ||e|\L2(J,Hz<Q>)> .
0
Also, using (19)

t t
/ (gEﬁf,ﬁf - Ql'lf) (s)ds| < C </ B’ (s)[|3ds + h2\|ﬁ'f|\%2(.I,H1(Q))>(43)
0 0
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Next,

/ t A(Bu, (0® — 1®a% ol — Qu’))(s)ds (44)

0

< ¢ (IBulyla = 1®6 | + 7 - Q| s aivier) )
t
<C (/ [Bu(s)|[Hds + b (105172112 g2y + 10 1720 pmr 2y + 1V - ﬁf|‘2L2(J,H1(Q)))) :
0
(45)

/Ot (ﬂE&V (@ - H(2)f15)> (s)ds| + ’/Ot (ﬁfEaV- (Quf — ﬁf)) (s)ds

t
<C (/ IEO(s)(15ds + h? [|\ﬁs\|%2(J,[H2(Q)]2) + (V- ﬁf”%Z(J,Hl(Q))D ;
0

t t
/(cEa',é—né) (s)ds gC(/ ||E9(s)||gds+h4||é\|%z(J’H2(m)), (46)
0 0

and

t t
/O(WEQ,V(He—e)) (s)ds gc(/o ||E9||%(s)ds+h2\|e\|L2(J7H2<Q))) .(47)

The terms on second time derivatives of Eu and Ef in the right-hand side of (39)

can be bounded using integration by parts in time as follows. First,

/O t (PEiL (@ — 1@a, o’ - Quf )(s)ds) (48)

= |(PEa, (@ - 10" 0/ - Qal)) () - (PEa, (0 - 14", w/ - Qal)) (0)

i
—/ (PEw, (& - 1P, il — Qi) (s)ds
0

t

< e|Ba(t)|s +C / [Bia(s) 3ds + C (IBa(O)I3 + b 16”17 = 12 oy
0

AR ([T oo g g2y + R0 T2 gz ) + hQHﬁfH%Z(J,[Hl(Q)]Z)) :

Also,

’/t (7'(1 — ¢)BmboV - EQ°, o — 0) (s)ds (49)
0

= |7(1 = ¢)Bmbo [(V - E0*, 11 — 0) (t) — (V- E0®, 116 — 6) (0)]

t
—/ (T(1 = ¢)Bmb0V - B0®, 16 — 6) (s)ds| < €|V - Ea®(¢)13
0

t
+0 (19 Bt @)1 + [ 19 B [36)as ) + O (100w ars00n) + 10 m200) -
0
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Proceeding similarly

< €| v-Eaf (1)[3 (50)

t
/ (T¢,6f90v EBal 16— 9’) (s)ds
0

t
+0 (19 B O+ [ 17 Bl ()1Bar + 0 1010200 + 1002 o)) -
0
Next,

/Ot (tc E6, 170 — 9) (s)ds (51)

(v Bb, 110 — 6) (&)  (r e Ed, 116 — 0) (o)f/t (v Bb, 116 — ) (s)ds

t
< cIRAR() + C (IBAIR0)+ [ IBAIR()ds + 0 1010200 + 1005 o)) -
0

Also, using the approximating properties of the projections I7, Q in (17)- (19) and
(11) we get

‘/Ot <DS(E1‘1),S(1’15 I ORTT Qﬁf)> (s)ds (52)

t
<e /0 (DS(E), S(E)) (s)ds
+C </t <S(1’15 — @t o — Qul), s - 1®atal - Quf)> (s)ds)

tO t

< [ (ps(Ba).sma) (s + 3 [ = 1 o, ()

t t
+ [ 1 Qi) vl rean, (9] < [ (i, s ()as

t t

+Y [ s 42 [ 1ol o, ()

t t
< 6/ (DS(Ew), S(EW)) (s)ds + {/ WA (T2 g pme )2y + h2||ﬁf||2L2(J,[H3/2(Q)]2)
0 0

In a similar fashion,

’ /0  (reoEd, 116 — 0) (s)ds

t t
§e/ <ch9Eé,Eé> (s)ds+C/ E ‘Hé—é%,[‘ﬂagj(S)dS
0 0
j

t
< 6/ <TC’U9E9,E9> (S)ds + Oh3|‘é|‘%2(J)H2(Q)). (53)
0

Thus, integrate in time the inequality (39) and absorb the e terms in (40)-(53) in
the left-hand side of (39). Then apply Gronwall’s lemma in the resulting equation

and use that P and P are positive definite, and A, A are V-coercive to obtain
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IEQ|l oo (7,122 (2))2) + 1Bl poo (1,122 (2)14) + 1Bl Loo (7,v) + B0 100 (5,1
HIEO| oo (1,111 (02)) + 1B oo (5,22 (2

< ¢ (IEa(0)I3 + IE(0)[3 + [Bu(0)3 + [Ea(0) 3

+[IE6(0)[I5 + 1EO(0) |13

(54)

+h [”ﬁSHLZ(J,[HZ(Q)]Z) + ||ﬁf\|Loc(J,[H1(n)]2) + Hﬁf||L2(J,[H3/’2(Q)}2) + HVﬁfHLz(J,HL(Q))

H6% | 2 a2 2y + 10 1 n2 0w (2))2) + 161l Lo (. m2002)) + HéHLQ(J,HHQ))})

The error at t = 0 in (54) can be estimated by defining the FE initial conditions
as follows. First, take U(0),U(0) € W" x W" x V" such that

A, (0® = U(0),v) = A¢, (Eu(0),v) =0, veW"x whxvh, (55)
A, (0t = U(0),v) = Ag, (E(0),v) =0, veWr x wh x V", (56)

Choose v = Eu(0) 4 (11 u%* —u®*, Qu®/ —u®/) in (55) and use the V-coercivity
of A¢, and the approximating properties of I? and Q in (17)-(20) to get

Cal Bu(0)[} < A, (Bu(0), (T u"* —u®*,Qu™/ —u)) (57)
< Csh[Bu(0) |y ([[u®*ll2 + a1 + 7 - u®7 ).

Thus,
IEu(O)l < Ch (2 + a1 + V- a1 ). (58)
Similarly, by choosing v = Eu(0)+ (1P a"* —u®*, Qu'/ —u'f) in (56) we obtain
IEa(0)ly < Ch (a2 + [ [l + 7w ). (59)

To get a bound for the term ||Ew(0)|o in(54) we assume that the initial value
problem (4)-(5) with the initial conditions (6) and the boundary condition (8)

satisfies the regularity inequality
a2 + [l |s + IV o |y + 18]z < € (11 £llo + llallo) - (60)

We also assume that (60) holds for time derivatives of u and 6. Thus, at t = 0 we

have
[6°(0)[l2 + 167 (0)l1 + 1V - &/ (0) [l + 16(0)]12 < € (I£(0)llo + [|G(0)]l0) - (61)
Hence, defining U(0) by the equation

A¢, (@(0) = U(0),v) = 4¢, (EBa(0),v) =0, veWw'xwhxv" (62
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the choice v = Eu(0)+ (11 *(0)—i*(0), Qi (0)—iif (0)) in (62) yields the bound

IEa(0) 1y < Ch (1 O) 12 + & O + IV - i/ (0)]11 + 1(0) )~ (63)
< Ch((15(O)llo + 1d(0)lo) -

For the temperature variables, take ©(0), ©(0) € W" such that
E6(0) = 6° — 0(0), EH(0) =6" —O(0)
satisfy the relations

(vE6(0), w) + (vVEB(0), Vw) = 0,w € W", (64)
(vEO(0),w) + (YVEB(0), Vw) = 0,w € W". (65)

Since

C6l|EO(0)|F < (E0(0), E0(0)) + (vVEO(0), VEH(0)),
choose w = EA(0) 4 1716° — 6° in (64) to obtain
C5IBOO)I1F < (vEO(0),0° - 116°) + (yVEO(0), V(6° — 116°) ) < CrhlEO(0)]11 6"
so that
[E6(0) [l < Chl|6°|2. (66)
Similarly, the choice w = Ef(0) 4 I16* — 01 in (65) yields the inequality
IE6(0)|]x < Ch[|0"]2. (67)
The bounds(58)-(67) in (54) imply the validity of the following theorem.

Theorem 2 Assume that the matrices P and B in (3) are positive definite and semidef-
inite, respectively and that the matriz € in (15) is positive definite. Then, the solution

(U,0) € Z" of the FE procedure (21) satisfies the a priori error estimate

IEQl oo (7,122 (2))2) + 1Bl poo (g, (L2 (2)14) + 1Bl Loo (7,v) + IEQ| 100 (5,1 (68)

HIEO oo (g, 111 (2)) + 1BOl| oo (1,22(02))

< O ([ o + [u® o+ 190l + a2 + a4 9 a7 )
+16%012 + 1612 + 17 (0) lo + [1(0) o

00| L2 g prz 2y + 107 | Lo (g pm ()2 + Hﬁf||L2(J,[H3/2([))]2) + IV | 20 m (0

6 L2 (g, 2 (2))2) + ||ﬁfHL2(J,[H1(Q)]2) + 1101 oo (7, 1r2(02)) + \|§HL2(J,H2(Q))) .
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5 Time stepping procedures

Let
Un-‘,—l o 2UTL + Un—l UTL—‘rl o Un—l Un-‘,—l o U'IL
211N n n

= e D R ———

o°u Al , U 24t , DU At
n+2 n n—2

g2ryn = Y (ZQIAJt);— v 227: [8U"+1 8U”_1} - % [DtaUn +DtaUn_1}
D?Un _ Un+242t[Jn—2 _ % [aUnJrl +8Un_1} )

An implicit time discretization of (13) is: Find (U",0") € £" such that
(P@QU”,V) n (EBUf’n,vf) FAG U Uty V) — (807, Vv — (ﬁf@”,v : vf)
K 2
2 N n 1 n+1 n—1 S,m
+ (Tca e ,w) +(c 00" w) + (VV(5 (O™ +6"71), Vw ) + (1= @)BnboV - 9U™", w)
+ (687607 - 0UT" w) + (7(1 = 6)Bnb0V - 8" w) + (768,607 - 97U w)

+(DS(0U"),8(v)) + (Tcvg0O™ ,w) (69)
= (f”,v) - (q ’w)7 v= (V 7Vf7w) € Zh(‘Q)v n=12--- M,

where M At =T and T is the final time to compute the solution.
Also, an explicit time discretization of (13) can be stated as follows: Find (U",0") €
" such that

(PoPum.v) + (Lou!" 1) + A(U" v) - (80", 9 -v*) — (07,9 vF)  (70)
Tc %", w) + (00", w) + (vVO",Vw) + (1 = ¢)BmboV - 9U™", w)

+(
+ ((erov ‘ aUﬁn’w) + (7'(1 — $)BmboV - 82’*US’",w) + (Ttbﬁf@ov . 32’*Uf’"7w)
+(DS(OU™),S(v)) + (rcupdO™ , w)

=" v)-(¢",w), v=(* ,vf,w) c Zh(_(]), n=1,2,--,M.

5.1 Conditional stability of the discrete FE procedurel (70)

Choose v = U™ = (JU*",aU"™), w = 90" in (70) to get
(P&QU",aU”) + (ganv",anv") + AU, 9U™) — (BO",V - JUT) — (ﬁf@",v : an’")
n (Tc a%er, a@”) 1 (c 9O™,00™) + (AVO",VIO™) + ((1 — $)BmboV - JU*™, 90™)

(¢ﬁf90v auln a@") (T(l — $)BmboV - 82’*U3’",8@”) 4 (wﬁfeov : 82’*Uf’",8@”)
+(DS(0U™),8(0U")) + (Tcvg00™,00™) (71)
= (£",0U™) — (¢",00™), n=1,2,--- M.
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Next, use the identities

QAtA(U" 8Un) _ [A(Un+1 Un+1) A(Un_l,Un_l) 4 A(Un _ Un—17Un _ Un—l)

7A(Un+1 . Un’Un—&-l . Un)i| ,

At (V6" VOO™) — %

+ (W(Q” —e" ), v(e" - 9”*1) - (w(@”“ —emn),v(ent! - 9")} :

[(varwrl’ v@n+1) _ (ryvgn—17 V@n—l)

and add to (71) the inequalities

S = o] < S (ot E 4 1O 4 IDeum R + e E)

s (oo ) - (yor e ) < o (jlen U + 10" + ;e I + 100" )
to get

21 ; [(PDtU ,DyU") — (PDtU"*,DtU”*)} (72)

o [ Ut g o)

+ﬁ [A(U" Ul Ut - Uttt - AUttt S ot ottt U")}

+% [ (reDyO", D;O™) — (Tth@”*,Dt@”*)}

o (IW26m 1 — I /2em 1 )

-1 [( v(er-e ) v(er-e" ") - (W(@"+1 —em),v(ert! - 9")}

141

+ (Loulm, ouh") 4+ (c 90", 00") + (DS(OU™), S(OU™)) + (reugd6" 00"
4 (r(1 — $)BmboV - 62’*US’”,8@”> + (msﬁfeov : 82’*Uf’",68”)

< ("3 + U™ 3 + | DeU™ | + DU 3

+IO™ [+ 167 I + D0 3 + 10:6™ 1)

(£, 0U") — (¢",00") + (O™, V - 9US™) + (ﬁf@", v. anv”)

“((1 = $)BmboV - JUS™, 9O™) — (¢,3f90v : an’",a@”) , n=1, M.

Next, we obtain estimates for the last two terms in the left-hand side of (72) with

an argument similar to that in the continuous-time case. A discrete-time form of
(24) is

(P@Q(BU"),V) n (%a“uf’",vf) + A(D2U",v) — (896", ¥ -v*) — (ﬁfa@”,va)

+ <DS(82’*U”),S(v)> = (BF"™ V) + (aff’",vf) L on=12- M. (73)
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Choose v¥ = §**U" v/ = 0 and v® = 0,v/ = 8>*US" in (73) to get the

equations
(7382(8U”), (82’*U3’",0)) + A(DFU™, (97 U™, 0)) — (68@”,V82’*US’">
+ <DS(82’*U5’”,0),8(82’*U5’”,0)> - (fs’”,f)?’*Us’”) , (74)
(7?82(6U”), (0, an*va")) n (282’*Uf’",82’*Uf’") + A(DZU™, (0,0* Ul
~ (8po0", vo* Ul ) + (DS(0,0% US"), 5(0,07 U™ ) (75)
- (ff7”,827*Uf’") n=1,2,- M.

Then using (74) and (75), we obtain the estimates

(T(1 — $)BmboV - 92U, a@") (76)
> O (w : 62’*U5’”766") =y [(P@Q((?U”L (82’*U8’”,0))
FA(DFU™, (927U, 0)) + <DS(82’*U3’",0),8(82’*US’",0)> - (fs’",GQ’*US’")} :
(msﬂfaov N Vi a@”) (77)
>

Cs (BV MUt a@") =Cp [(P@Q(aun), (0, an*va"))
+(LoPrulm oP Ul ) + ADPUT, (0,07 USM)

(o019, 0. (201

Next, a calculation shows that

Cy (DS(@"U™",0),8(9>"U™",0)) + Cy (DS(0,6°7UT™), 80,07 U ™))

=y <DS(82’*U”),S(62’*U")> , (78)

Cy (P@Q(aU”), (82’*US’",0)) + 0y (P82(8U"), (0, 82’*Uf’")) (79)

= (Pe?(ou™), 0> u") = o [(PDi(our), D(ou™)) ~ (Poi(oum), DU )]

and
CpA(DFU", (97*U*",0)) + CgA(DFU", (0,0 US"™)) (80)
= A(D}U", 5% U") = %m [/T(aU”“,aU"“) - /T(aU"—l,aU"‘l)} ,

Then, use (76)-(80) in the last two terms of the left-hand side of (72), add the

inequality

22 [loum 3~ oun 3] < ¢ (19* U™ 3 + 1903 + U™ 3)

< C (ID«@U™)E + ID(@U™ )3 + 9U™ 3 + 00" 3)
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multiply the resulting equation by At and sum formn=1ton =N, N < M to

obtain

% (PDtU DU )—(PDtUO,DtUOH (81)

+% [(PDtaU D;oU ) - (ﬁDtaUO,DtaUO)}
1

5 [46 (UL UMY 44 (N, 0Y) - 4 (U UY) - 4, (U°,0°)]

+H L(OUNTL guN Yy 4 A, (8UN,8UN)—/T<2(8U1,8U1)—/Tcz(aUO,an)}
N
1

[A(UNﬂ UVt Ao, uY) - AUt Ut - AU, UO)}
2
_ (4 A(DtUN7DtUN) + (Ai) A(D,U°, D,UY) + % {(Tth@N,DtQN) - (TCDtQ()?Dt@O)}

4
1
+5 (020N TR + 191 20N I} — 1y /26°I1 - 10?6 IR)

2 2
B iz pen 4 B ooy
n=N
+ Z ( auln Ufm) At + Z c96",00") At +C5 3 <DS(82*U") 8(82*U”)>A

n=1

+ i Cs (gan*va",a%*va") + Z (Tcvgde™,00™) At
n=

n=N
<C > (llf”H% + 1" 15+ [T THE + UG + [1DeU™ 5 + DU G + | Do (9U™)3

HO" B+ 107 I3 + 106" I3 + 16" 3
+De(@UM3 + 1D (U™ )F + 10U + 9™ 3 ) At

n=N n=N ‘
+3 (O™, v out At+ Y (50", V-0UT") At
n=1
n=N
" (1 ¢)BmboV - U™, 00™) At — S (qsﬁfeov : an’”,a@") At

n=1

S 3
[T
2 -

n=1

Let us get bounds of the last four terms in the right-hand side of (81). First,

n=N
> (8", V- 0US") At| +

n=1

(82)

n=N
> (80" v-oulm) At
n=1

n=N n=N
<> (10" +1IV-0Us" 3 + IV -0ul M) ar< ¢ S (119713 + 10”1} ) At
— n=1
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Also,

n=N
3" (1~ ¢)BmboV - 9U>", 00™) At| +

n=1

(83)

i (qsﬂfeov.aufv”,a@") At

n=N
<o) ((IV-0U o+ 1900 " o) (106" lo + 120" ) ) At

3:
Ll

Z (1D@™ I3 + D™ 13 + lU™ %) At

Using the bounds (82)-(83) in (81) yields the inequality

(PDtUN ,D,UuN ) 4 (ﬁDtaUN . DoUN ) (84)

+ A, (UL UMY A ol U + A (U T auN T 4 A (au?, aut)

FAUNFL UV N o) — (At) 27 4 (pyu, p,ut)
(At) A7 A(pu®, p,U° DoV DoV 1/2gN+1)2 1/2gN 12
1 ¢ +U") + (7e¢D:O7, Dy + Iy 17+ llv 7
2
7({:) ”,YI/ZDt@N”% (At) H’yl/QD @O” + Z ( ouln an’n) At
n=1
n=N n=N
+3 (coem 00" At +Cp Y <DS(82’*U"),S(82’*U")>A7§
n=1 n=1

n=N n=N
N a2,xp7fin 92,% f,n) n ny A
+n§71j Cy (LoPrulm 0P Ul + n§71 (rcvgdO™,00™) At

<C (IIUOII% +IIUM + DU + [0U° 3 + |oU 5

n=N
6% + 1671 + IDee I3 + S (17113 + 114" 1) At)

n=1
n=N
+C 37 (U3 + U™ + 1D U™ 3 + DU 3
n=1

16" 13 + €78 + 10" + 100" 3 + |1D0™ I3 + 00" 3
HIDUOU + DU E + 90" 3 + U™ 3) At

Since P and P are positive definite and A¢ and /TCI are V-coercive, use that the

last five terms in the left-hand side of (84) are nonnegative and apply Gronwall’s
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lemma in (84) to conclude that

1/2 N2 S1/2 N |2 N+1,2 N2 N+1,2 N2
1P 2D, UN |3 + PV 2D 0U™N 1§ + [TUNTYR + UM + 100N T3 + lou |13

(At)?

+AUNTL Nt AU, Ul - TA(DtUNJ?tUN) (85)

At)?
+ (reDi™ DY) 4 |y 2O 1y 20N - B2 p oM

<C (IIUOII% TS + IDU°G + 10U°5 + 19U )13
n=N

+IO°IF + 1€ 1 + 1D:6° 15 + > (1€ 13+ lla™13) At) L<N <M.
n=1

Next, note that there exist constants Cs,Cg independent of h such that the fol-

lowing inverse hypothesis hold:

AUY,UN) <X (E)[|(D:U™) 1 < CER72([(DeU™)|I3, (86)

72D 0N |1} < v*CERT2||(D:0™)|3

In (86) the constants Cg and Cy have a factor that measures the quasiuniformity
of 7", and A*(£) and v* denote the maximum eigenvalue of £ and the maximum
value of v, respectively. Let A«(P) and (7¢)« be the minimum eigenvalue of P and

the minimum value of (r¢). Hence

|731/2D UN 2 (At)ZA N N 7
| U o — === A(D: U, DUT) (87)
o (At)? 1
> (3P) - i 503 ©) ) IDUIE = S P)IDN,
(ar?

I(re)* /2 D01 — == Iy 20N 12

CONCH

At)? o . n
> ((TC)* _ (49 C3v*h 2) |D6™ 5 >

1
4 2

provided that At and h satisfy the stability constrain

At < min (h g—f (ii%)lm,h \C/% <(T;)*>1/2> . (88)

Thus we conclude the validity of the following Theorem:

Theorem 3 Assume that the matrices P and B in (3) are positive definite and semidef-

inite, respectively, and that the matriz £ in (15) is positive definite. Also, assume that
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At and h satisfy the stability constrain (88). Then, there ezists a unique solution
(U™,0") € 2" of the discrete time explicit FE procedure (70) which satisfies the

estimate
maxy <y <ar (ID00N I3 + 1D 00N I3 + UV}
+H1oUN I3 + 1D 5 + 10717 (89)

<C (HUOII% +U + IDU°)G + |0U°]5 + 9075

n=M
+1O%12 + 1612 + 10:6°15 + > (1113 + lla™13) At) :

n=1
Remark Under the hypothesis of Theorem 3, it can be shown that the time dis-
crete implicit procedure (69) is unconditionally stable and has a unique solution
satisfying the estimate (89).
Remark Note that the first and second time derivatives in the formulation of the
time-discrete implicit and explicit FE procedures (69) and (70) are discretized
with errors on the order of (At)?. Thus, the arguments for obtaining a priori error
estimates for the time-continuous FE procedure (21) can be used to conclude that
the a priori errors associated with those discrete-time FE methods are on the order
of (At)? + h.

6 Conclusions

We solve the initial boundary-value problem associated with the thermo-poroelasticity
wave equation by applying continuous and discrete-time finite-element methods.
A priori error estimates are derived, which are optimal for the assumed regularity
of the solution. Furthermore, we present explicit and implicit discrete-time FE
methods and analyze the stability of the explicit formulation and establish sta-
bility constrains. The proposed algorithms overcome the limitations of isothermal

wave propagation.
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