Temperature effects on the seismic response in fluid-saturated poroelastic media
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SUMMARY

We analyze the changes in seismic response in a fluid saturated
poroelastic media due to the inclusion of temperature effects
in the model. The mathematical model is obtained combining
Biot and Lord-Shulman (LS) theories that describe the porous
and thermal effects. The model predicts the propagation of
four waves: two compressional P waves, one fast and one
slow, a thermal wave, and a shear wave. An initial boundary-
value problem (IBVP) for the thermo-poroelastic wave equa-
tion is formulated and solved by applying the finite-element
(FE) method. The FE procedure is formulated for the 1D case
on an open bounded interval with absorbing boundary condi-
tions at the artificial boundaries. The procedure discretizes
the solid and fluid displacements and the temperature using
piecewise linear globally continuous polinomials. The theory
is used to study the propagation of the two compressional P
waves and the thermal wave. We compare the coupled and
uncoupled cases, including and neglecting viscosity. The algo-
rithms may become useful for a better understanding of the be-
havior of seismic waves in hydrocarbon reservoirs and crustal
rocks, because the assumption of isothermal wave propagation
is now removed.

INTRODUCTION

The thermoelasticity theory, that combines deformation and
temperature, has applications in a variety of fields, such as
seismic attenuation, material science and shocks and vibra-
tions Zener (1938); Lifshitz and Roukes (2000); Carcione et al.
(2019b). This theory predicts the existence of one S wave and
two P waves, an elastic wave and a thermal wave having sim-
ilar characteristics to the fast and slow P waves of poroelas-
ticity, respectively (Carcione et al. (2019b)). The mathemati-
cal models were formulated by Lord and Shulman (LS) (Lord
and Shulman, 1967) that derived hyperbolic type differential
equations introducing Maxwell-Vernotte-Cattaneo (MVC) re-
laxation times into the heat equation (Rudgers, 1990). With
this formulation they overcame the inconsistences of the so-
lution of the classic parabolic thermoelasticity equations, pre-
sented by Biot (1956) for the non-porous case. Rudgers (1990).
analyzed the properties of P and T waves as a function of fre-
quency, while Carcione et al. (Carcione et al., 2019a) devel-
oped a numerical algorithm for simulating wave propagation
in linear thermoelastic media, based on LS theory, and Wang
et al. (2020) derived the corresponding Green function.

Thermo-poroelasticity is a relatively recent field. Sharma (2000)

and Carcione et al. (2019a) presented the first clear set of dif-

ferential equations and plane wave analysis. Besides, the latter
authors developed a modeling algorithm to compute transient
wave fields (seismograms). The theory predicts the propaga-
tion and attenuation of four waves, two compressional waves,
fast P (P1) and slow Biot P (P2), a slow thermal wave (T), and
a shear wave. The two slow waves exhibit diffusive behavior
at low frequencies, depending on the viscosity and thermoelas-
ticity constants. The T wave is coupled with both P-waves.The
theory assumes that the temperature in the solid and in the fluid
is the same. Wei et al. (2020) acquired the corresponding
Green function. In these works, the numerical simulation is
performed with a direct method to compute the spatial deriva-
tives, namely, the Fourier pseudospectral differential operator
(e.g., Carcione (2014)). The development of a new technique,
based on the FEM algorithm, will provide a more flexible ap-
proach to represent the heterogeneities of the medium and will
provide further crosscheck of both algorithms and the physics
of wave propagation.

Santos et al. (2021) prove the existence and uniqueness of the
Biot/Lord-Shulman formulation in linear thermo-poroelastic
isotropic media, with bounded domains under appropriate bound-
ary and initial conditions. The analysis shows the existence of
a unique solution, given in terms of displacements of the solid
and fluid phases and temperature, and proves its regularity in
the space and time variables.

MATHEMATICAL MODEL

We consider a porous medium saturated by a single phase,
compressible viscous fluid and assume that the whole aggre-
gate is isotropic. Let 6 be increment of temperature above a
reference absolute temperature 6y for the state of zero stress
and strain.

Let u = (u’,u/), where u’ = (i) and u/ = (ulf ) denote the
average particle displacement vectors of the solid and relative
fluid phase, respectively. Let £(u*) = (g;(u’)) and 6(u,0) =
(0ij(u,0)) be stress tensors of the solid and bulk material, re-
spectively, and py = p(u, ) be the fluid pressure, with asso-
ciated constitutive relations

oij(w,0) = 2uei(u)
+8j(2 V- +BV-u/ ), ()
pr(u,6)= —BV-u'—MV-u+py6. @

Biot’s dynamical equations taking into account temperature
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are
ppt’ +p/u/ —V.o(u,6)=f 3)
pf~us +guf+ guf «|»fo([17 9) — ff7

where pj, = (1 —¢)ps + ¢ps denotes the mass density of the
bulk material, with ¢, ps and p ¢ denoting the effective porosity
and mass densities of the solid grains and fluid, respectively ).

S .
Also, 1 is the fluid viscosity, k the permeability and g = il

¢

the tortuosity.

In (1)-(2) , u is the dry-rock shear modulus, A, = A + a*M,

K a— -1
a:l—?':,M:( Ks¢+%) , ¢ is the porosity, B =

a M, B = By+ By with A, being the Lamé coefficient of
the fluid-saturated frame and K, K;, and Ky denoting the bulk
moduli of the grains, solid and fluid, respectively. The posi-
tive coupling coefficients B,, and By are the thermoelasticity
coefficients of the frame and fluid, respectively.

On the other hand, the generalized heat equation is (Sharma
(2000), Carcione et al. (2019b)):

Tch+cO—V-(yVO)+ (1 —¢)Bu6V -0’
+0Br60V -0/ +7(1— )BT,V -’ @
+19 BT,V it/ = —q.

where ¢ is a heat source. Also, Y= (1—¢)%,+ @7y is the bulk
coefficient of heat conduction (or thermal conductivity), with
Y and ¥y being the heat conduction of the frame and the fluid,
respectively; ¢ = (1 — ¢)cy + @cy is the bulk specific heat of
the unit volume in the absence of deformation and 7 is a MVC
relaxation time. These equations assume thermal equilibrium
between the solid and the fluid, i.e., the temperature in both
phases is the same. Thermal equilibrium is valid when the in-
terstitial heat transfer coefficient between the solid and fluid is
very large and the ratio of pore surface area to pore volume is
sufficiently high. Here, we consider B, B, ¥ and ¢ as param-
eters, obtained from experiments or from a specific theoretical
model.

The initial boundary-value problem
The initial boundary-value problem (IBVP) is formulated in an
open bounded domain Q C R4 , d=1,2,3 with boundary I" and
a time interval J = (0,T') as follows: find (u, 6) satisfying (3)
and (4) with initial conditions

u(x,0) = = (W, u®/),

u(x,0)=u' = (u"*,u"/),

0(x,00=06" 6(x,0)=6" xeQ, 5)
and absorbing boundary conditions

—%r(u,0) =2.7(),

—YVO-v=1cvg0 xcT, tecl, (6)
where

g(uv 6) = (GV "V,0V- pr) (u7 6)7
() = (8 v, g0 v) )

In (6)-(7), v and x are the unit vector outer normal and unit
vector tangent on I" oriented counterclockwise. The matrix &
is positive definite and vg = 1/¥/(7c) is the heat speed (e.g.,
Carcione et al.Carcione et al. (2020)).

An existence and uniqueness result for the solution of (3)-(5)
with different boundary conditions than those in (6) is given in
Santos et al. (2021).

The initial boundary-value problem (3)-(6) was solved in the
1D case using a time-explicit conditionally stable Finite El-
ement (FE) method with linear polynomials to represent the
temperature and the solid and fluid displacements.

NUMERICAL RESULTS

The IVBP was solved for the 1D case in an interval Q = (0, L),
L = 150 m discretized using a uniform mesh with mesh size
h=0.175 m and a time step df = 7.95 x 1073 ms.

The thermoporoelastic material properties are given in Table 1
Carcione (2014).

Table 1. Material Properties

Grain bulk modulus, K 35 GPa
density, p; 2650 kg/m>

Frame bulk modulus, K, 1.7 GPa
shear modulus, L, 1.885 GPa

porosity, ¢ 0.3

permeability, k 1 darcy

Fluid bulk modulus, K¢ 2.4 GPa
density, py 1000 kg/m3
viscosity, 1y 0.001 Pa - s

40000 kg/(m s2 K)
820 kg/(m s° K)
120000 kg/(m s2 K)

thermoelasticity coefficient, B/
Bulk specific heat, ¢
thermoelasticity coefficient, 3

absolute temperature, Tp 300 K
thermal conductivity, y 4.5 x10° kg/m?
relaxation time, T 1.5 x107% s

The medium is uniform in all experiments, initially at rest with
a point dilatational source f = (f*,f*, ¢) on the spatial axis x of
time history

g(t) = —16£2(t —tg)e 8o =00)’ 8)

with 79 = 1.25/fp and fj being the dominant frequency, chosen
to be 200 Hz. At this frequency the approximate values of the
phase velocities of the P1, P2 and T waves at zero frequency
are 2400 m/s, 800 m/s and 500 m/s, respectively.

The source is located at x; =1 m and temperature and frame
and fluid displacements traces are recorded at x, = 61 m.

The experiments consider the uncoupled and coupled Cases
considering the vanishing or non-zero coupling coefficients

B?Bm and ﬁf

Figures 1 and 2 display snapshots of the frame at times 23.5
and 47 ms for the coupled Case and zero viscosity and non-
zero viscosities. Figure 1 exhibits clearly the P1, P2 and T
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waves as they travel along the domain. On the other hand Fig-
ure 2 only shows P1 and T traveling waves, the P2 wave is not
observed due to its diffusive behavior.

Figure 3 compares temperature snapshots at time 23.5 and 47
ms for the uncoupled and coupled Cases for non-zero viscos-
ity. The T wave is seen to travel at lower speed and with much
higher amplitude in the coupled than the uncoupled Case. Fur-
thermore in the coupled Case the T wave suffer attenuation
when traveling in the domain, while the P1 wave is observed
to travel with almost no attenuation.

Figures 4 and 5 displays temperature and frame traces for the
coupled Case and zero and non-zero viscosity. As expected,
for zero viscosity three wave arrivals are observed (red curve)
at early times as compared with the non-zero viscosity curves,
where only two arrivals can be seen. The T wave is the one
with lower amplitude as compared with the P1 and P2 waves.

Finally, Figure 6 shows a frame snapshot at 47 ms for the case
when the dilatational source is located only in the frame. The
additional slowest wavefront corresponds to a T wave gener-
ated due to the coupling of the Biot’s and heat equations as
defined in (3)—(4)

Frame snapshots Gme 235 ms| |
—— time 47 ms

P2 wave Coupled Case
Zero viscosity

P1 wave

| | | | |
0 25 50 75 100 125 150
Distance (m)

Figure 1: Frame snapshots at 23.5 and 47 ms, coupled Case,
Zero viscosity experiment.
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Figure 2: Frame snapshots at 23.5 and 47 ms, coupled Case,
non-zero viscosity experiment.
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Figure 3: Temperature snapshots, non-zero viscosity experi-
ment. Comparison between uncoupled and coupled Cases at
two different times: 23.5 ms and 47 ms.
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Figure 4: Temperature traces, coupled Case. Comparison be-
tween non-zero and zero viscosity experiments.
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Figure 5: Frame traces, coupled Case. Comparison between
non-zero and zero viscosity experiments.



Temperature effects on seismic response in reservoir rocks

T T T T T T
Frame snapshot, coupled Case
— | Zero viscosity

P2 wave

| | | 1 | 1 |
0 25 50 75 100 125 150
Distance (m)

Figure 6: Frame snapshot at 47 ms for zero viscosity, coupled
Case. The source is located only in the frame.

CONCLUSIONS

We have presented a time-explicit Finite Element procedure
to analyze the propagation of waves in fluid-saturated thermo-
poroelastic materials. The examples illustrate the changes in
response of the medium when temperature effects are taken
into account. The new FE algorithm used in the experiments is
time-explicit and permits to solve sequentially the Biot’s and
heat equation, allowing its simply computational implementa-
tion. T waves are coupled with the compresional P1 and P2
waves, inducing additional energy losses not present in the
classical Biot model. Furthermore, in the coupled case tem-
perature T waves exhibit higher amplitudes than the compres-
sional waves, suffering attenuation while traveling. Besides,
frame sources are seen to induce T waves. Energy losses asso-
ciated with T waves will be investigated in future research.
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