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SUMMARY

The initial boundary-value problem (IBVP)representing the
thermo-poroelasticity wave equation is solved applying con-
tinuous and discrete-time finite-element (FE) methods. The
mathematical model is obtained combining Biot and Lord-
Shulman (LS) theories that describe the porous and thermal
effects, respectively. The FE methods are formulated on a
bounded domain with absorbing boundary conditions at the ar-
tificial boundaries. The model predict the propagation of four
waves: a fast P wave, a Biot slow wave, a thermal wave, and
a shear wave. The solid displacements and the temperature
are discretized using globally continuous bilinear polynomi-
als while the fluid displacements is represented by the vector
part of the Raviart-Thomas Nedelec of zero order. The theory
is illustrated by numerical experiments in a 1D domain. The
propagation of the P, slow and thermal waves is shown. We
compare the coupled and uncoupled cases, including or ne-
glecting viscosity. The algorithms can be useful for a better
understanding of the behavior of seismic waves in hydrocar-
bon reservoirs and crustal rocks, because the assumption of
isothermal wave propagation is now removed.

INTRODUCTION

Falta cambiar y arreglar el tema referencias

Thermoelasticity is the theory that couples the fields of de-
formation and temperature, where an elastic source gives rise
to a temperature field and attenuation and a heat source in-
duces anelastic deformations. The theory is useful in a variety
of applications such as seismic attenuation in rocks and ma-
terial science ???. The theory might also be relevant in low-
temperature physics, theories of shocks and vibrations and as-
trophysics.

The classical parabolic-type differential equations of thermoe-
lasticity (non-porous) for the Fourier law of heat conduction
were reported by Biot ?, but his theory has unphysical so-
lutions, such as discontinuities and infinite velocities at high
frequencies. Later, Lord and Shulman (LS) ? overcame these
problems by formulating a hyperbolic-type differential equa-
tions, introducing MVC relaxation times into the heat equation
?. The thermoelasticity theory predicts and S wave and two
P waves, an elastic wave and a thermal wave having similar

characteristics to the fast and slow P waves of poroelasticity,
respectively ?. Zener work ? already contains the concept of
mode conversion from P wave to a thermal mode, e.g., he ex-
plains P-wave dissipation due to the presence of “microscopic
stress inhomogeneities arise from imperfections, such as cav-
ities, and from the elastic anisotropy of the individual crys-
tallites”, in the same way that the White model ? describes
attenuation in porous media due to mesoscopic-scale inhomo-
geneities (as P wave converted to Biot slow mode). Early
works in geophysics worth to mention in this sense were con-
ducted by Treitel ?, Savage ?, who obtained the P- and S-wave
quality factors for empty round cavities or pores, and Arm-
strong ?, who considered a finely layered medium. Then, the
subject has been neglected in practice till recent works by Car-
cione and co-workers who performed the first simulation of
the thermal wave in the context of thermoelasticity and poro-
thermoelasticity ??????. In these works, the numerical simu-
lation is performed with a direct method to compute the spatial
derivatives, namely, the Fourier pseudospectral differential op-
erator (e.g., ?). The development of a new technique, based on
the FEM algorithm, will provide a more flexible approach to
represent the heterogeneities of the medium and will provide
further crosscheck of both algorithms and the physics of wave
propagation.

Santos and co-workers ? prove the existence and uniqueness of
the Biot/Lord-Shulman formulation in linear thermo-poroelastic
isotropic media, with bounded domains under appropriate bound-
ary and initial conditions. The analysis shows the existence
of a unique solution, given in terms of displacements of the
solid and fluid phases and temperature, and proves its regu-
larity in the space and time variables. The FE spaces used
for the spatial discretization of the IBVP are as follows. The
components of the solid displacement vector and the temper-
ature are represented by globally continuous piecewise bilin-
ear functions. For the fluid phase, we use locally the vector
part of the Raviart-Thomas-Nedelec space of zero order. First,
we derive a variational formulation of the continuous-time FE
IBVP problem and show the existence and uniqueness of the
continuous-time FE solution. Then a priori error estimates are
given, which are optimal for the FE spaces used and the as-
sumed regularity of the solution. Finally, explicit and implicit
discrete-time FE algorithms are defined, and the conditional
stability of the explicit FE procedure is analyzed.

MATHEMATICAL MODEL

We consider a porous medium saturated by a single phase,
compressible viscous fluid and assume that the whole aggre-
gate is isotropic. Let θ be increment of temperature above a
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reference absolute temperature θ0 for the state of zero stress
and strain.

Let u = (us,u f ), where us = (us
i ) and u f = (u f

i ) denote the
average particle displacement vectors of the solid and relative
fluid phase, respectively. Let ε(us) = (εi j(us)) and σ(u,θ) =
(σi j(u,θ)) be stress tensors of the solid and bulk material, re-
spectively, and p f = p f (u,θ) be the fluid pressure, with asso-
ciated constitutive relations

σi j(u,θ) = 2µ εi j(us)

+δi j(λu ∇ ·us +B∇ ·u f −β θ), (1)

p f (u,θ) = −B∇ ·us−M∇ ·u f +β f θ . (2)

Biot’s dynamical equations taking into account temperature
are

ρbus +ρ
f u f −∇ ·σ(u,θ) = fs (3)

ρ
f us +gu f +

η

κ
u f +∇p f (u,θ) = f f ,

where ρb = (1− φ)ρs + φρ f denotes the mass density of the
bulk material, with φ , ρs and ρ f denoting the effecive porosity
and mass densities of the solid grains and fluid, respectively ).

Also, η is the fluid viscosity, κ the permeability and g =
Sρ f

φ

the tortuosity.

In (1)-(2) , µ is the dry-rock shear modulus, λu = λ +α2M,

α = 1− Km

Ks
, M =

(
α−φ

Ks
+

φ

K f

)−1
, φ is the porosity, B =

α M, β = βm + β f , with λu being the Lamé coefficient of
the fluid-saturated frame and Ks,Km and K f denoting the bulk
moduli of the grains, solid and fluid, respectively. The posi-
tive coupling coefficients βm and β f are the thermoelasticity
coefficients of the frame and fluid, respectively.

On the other hand, the generalized heat equation is (?, ?):

τ c θ̈ + c θ̇ −∇ · (γ∇θ)+(1−φ)βmθ0∇ · u̇s

+φβ f θ0∇ · u̇ f + τ(1−φ)βmTo∇ · üs (4)

+τφβ f To∇ · ü f =−q.

where q is a heat source. Also, γ = (1−φ)γm+φγ f is the bulk
coefficient of heat conduction (or thermal conductivity), with
γm and γ f being the heat conduction of the frame and the fluid,
respectively; c = (1− φ)cm + φc f is the bulk specific heat of
the unit volume in the absence of deformation and τ is a MVC
relaxation time. These equations assume thermal equilibrium
between the solid and the fluid, i.e., the temperature in both
phases is the same. Thermal equilibrium is valid when the in-
terstitial heat transfer coefficient between the solid and fluid is
very large and the ratio of pore surface area to pore volume is
sufficiently high. Here, we consider βm, β f , γ and c as param-
eters, obtained from experiments or from a specific theoretical
model.

A plane wave analysis presented in ? shows in a thermoporoe-
lastic medium four waves can propagate, a fast (P1) wave, a

slow (P2) wave, a thermal (T) wave and a shear (S) wave. The
P2 and T waves are diffusive at low frequencies, and the T
wave is coupled with both P-waves.

The initial boundary-value problem
The initial boundary-value problem (IBVP) is formulated in an
open bounded domain Ω⊂ Rd , d=1,2,3 with boundary Γ and a
time interval J = (0,T ) as follows: find (u,θ) satisfying (??)
and (4) with initial conditions

u(x,0) = u0 = (u0,s,u0, f ),

u̇(x,0) = u1 = (u1,s,u1, f ),

θ(x,0) = θ
0, θ̇(x,0) = θ

1, x ∈Ω, (5)

and absorbing boundary conditions

−GΓ(u,θ) = DS (u̇),
−γ∇θ ·ν = τcvθ θ̇ x ∈ Γ, t ∈ J, (6)

where

G (u,θ) =
(
σν ·ν ,σν ·χ, p f

)
(u,θ),

S (u̇) =
(

u̇s ·ν , u̇s ·χ, u̇ f ·ν
)

(7)

In (6)-(7), ν and χ are the unit vector outer normal and unit
vector tangent on Γ oriented counterclockwise. The matrix D
is positive definite and vθ =

√
γ/(τc) is the heat speed (e.g.,

Carcione et al.?).

An existence and uniqueness result for the solution of (??)-(5)
with different boundary conditions than those in (6) is given in
?.

The initial boundary-value problem (??)-(6) was solved in the
1D case using a time-explicit conditionally stable Finite El-
ement (FE) method with linear polinomials to represent the
temperature and the solid and fluid displacements.

NUMERICAL RESULTS

The IVBP was solved for the 1D case in an interval of 150 m
length discretized using a uniform mesh with mesh size h =
0.175 m and a time step dt = 7.95 ×10−3 ms.

The thermoporoelastic material properties are given in Table 1
?.
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Table 1. Material Properties

Grain bulk modulus, Ks 35 GPa
density, ρs 2650 kg/m3

Frame bulk modulus, Km 1.7 GPa
shear modulus, µm 1.885 GPa

porosity, φ 0.3
permeability, k 1 darcy

Fluid bulk modulus, K f 2.4 GPa
density, ρ f 1000 kg/m3

viscosity, η f 0.001 Pa · s
thermoelasticity coefficient, β f 40000 kg/(m s2 K)

Bulk specific heat, c 820 kg/(m s2 K)
thermoelasticity coefficient, β 120000 kg/(m s2 K)

absolute temperature, T0 300 K
thermal conductivity, γ 4.5 ×106 kg/m3

relaxation time, τ 1.5 ×10−2 s

The medium is uniform in all experiments, initially at rest with
a point dilatational source f = (fs, fs,q) of time history

g(t) =−16 f 2
0 (t− t0)e−8 f 2

0 (t−t0)2
(8)

with t0 = 1.25/ f0 and f0 being the dominant frequency, chosen
to be 200 Hz. At this frequency the approximate values of the
phase velocities of P1, P2 and T waves at zero frequency are
2400 m/s, 800 m/s and 500 m/s, respectively.

The source is located at 1 m and temperature and frame and
fluid displacements traces are recorded at 61 m.

The experiments consider the uncoupled and coupled Cases
considering the vanishing or non-zero coupling coefficients
β ,βm and β f .

Figures 1 and 2 display snapshots of the frame at times 23.5
and 47 ms for the coupled Case and zero viscosity and non-
zero viscosities. Figure 1 exhibits clearly the P1, P2 and T
waves as they travel along the domain. On the other hand Fig-
ure 2 only shows traveling P1 and T waves due to the diffusive
behavior of the P2 wave.

Figure 3 compares temperature snapshots at time 23.5 and 47
ms for the uncoupled and coupled Cases for non-zero viscos-
ity. The T wave is seen to travel at lower speed and with much
higher amplitude in the coupled than the uncoupled Case. Fur-
thermore in the coupled Case the T wave suffer attenuation
when traveling in the domain, while the P1 wave is observed
to travel without attenuation.

Figures 4 and 5 displays temperature and frame traces for the
coupled Case and zero and non-zero viscosity. As expected,
for zero viscosity three wave arrivals are observed (red curve)
at early times as compared with the non-zero viscosity curves,
where only two arrivals are seen. The T wave is the one with
lower amplitude as compared with the P1 and P2 waves.

Finally, Figure 6 shows a frame snapshot at 47 ms for the case
when the dilatational source is located only the frame. The
additional slowest wavefront corresponds to a T wave gener-
ated due to the coupling of the Biot’s equation with the heat
equation as defined in (3)–(4)
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Figure 1: Frame snapshots at 23.5 and 47 ms, coupled Case,
zero viscosity case
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Figure 2: Frame snapshots at 23.5 and 47 ms, coupled Case,
non-zero viscosity case
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Figure 3: Temperature snapshots, non-zero viscosity case.
Comparison between uncoupled and couples Cases at two dif-
ferent times: 23.5 ms and 47 ms
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Figure 4: Temperature traces, coupled Case. Comparison be-
tween non-zero and zero viscosity cases
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Figure 5: Frame traces, coupled Case. Comparison between
non-zero and zero viscosity cases
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Figure 6: Frame snapshot at 47 ms for zero viscosity. Coupled
Case. The source is located only on the frame.
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