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SUMMARY

P-waves traveling in thermoelastic materials suffer attenuation
and dispersion due to existence of the thermal wave, which is
diffusive at low frequencies (mesoscopic loss) and is a truly
propagation wave at high frequencies. Thus the thermal wave
behaves similarly to the slow P-wave in Biot media. This work
presents a Finite Element procedure to determine an effective
viscoelastic medium complex long-wave equivalent to a ther-
moelastic material. The experiments consist on applying com-
presiibility and shear test on numerical samples. Each test is
defined by a boundary value problem that is solved uisng the
Finite Element (FE) First the procedure is validated by com-
parison with the case of equal layer thicknes and different Gru-
ensen ratios. Next is analyzed the case of a layered media
with varying Gruensen ratios and random layer thickness, for
which not analytical solution is avalaible. This case shows an
increase in pahse velocities and dissipation factors.

INTRODUCTION

Hydraulic fracturing is a standard procedure used to allow hy-
drocarbon production in tight gas and shale oil and gas reser-
voirs. It consist on injecting water mixed with sand or ceramic
materia in the formation at high pressures in order to gener-
ate paths where hydrocarbons can flow to production wells.
In this fashion new fractures are added to pre-existing natu-
ral ones enhancing the absolute permeability of the reservoir.
Generally, this procedure generates bi-wing and planar frac-
tures, normal to the minimum principal stresses. To simulate
one stage of the fracking procedure, the numerical model com-
bines a two-phase flow simulator, based in the Black-Oil for-
mulation Aziz and Settari (1985); Fanchi (1997), to represent
fluid injection with a breakdown criterion that follows the for-
mation weakness zones. The flow simulator is run until the
pressure reaches a threshold breakdown value at a given com-
putational cell. Then such cell and its neighbours are fractured,
i. e. their permeability and porosity are increased with pre-
scribed values. This, in turn, induces an inmediate pressure
decay in the formation. Once the planar fracture is completed,
the two-phase simulator is applied to predict hydrocarbon pro-
duction. At early times part of the injected water flows back
before the hydrocarbon starts to be produced.

Among other approaches to numerical simulate hydraulic frac-
turing we mention Pak and Chan (2008), presenting a fully
coupled thermal hydro-mechanical model and Zhao et al. (2014)
analyzing a shale gas reservoir with large amounts of natural
fractures. Furthermore, Lee and Wheeler (2018) present a ge-

netic algorithm to optimize the design of hydraulic fracturing
scenarios.

THE NUMERICAL HYDRAULIC FRACTURE PROCE-
DURE

The injection and production flow numerical model uses the
Black-Oil formulation to two-phase, two component fluid flow
allows the gas component to dissolve in the water phase. These
equations are obtained by combining the mass conservation
equation for each component with the two-phase Darcys law
Aziz and Settari (1985). To discretize the Black-Oil equations
we use the public domain BOAST simulator (Fanchi, 1997),
that solves the system using IMPES finite difference technique.
Thus, a CFL time step needs to be imposed Savioli and Bidner
(2005).

The fracture criterium to increase porosity and permeability at
a given computational cell is defined in terms of a threshold
pressure value Pbd defined as Economides and Hill (1994).

Pbd = 3σHmin −σHmax +T0 − pH , (1)

where T0 is the tensile stress of the rock, pH the hydrostatic
pressure and

σHmax = σHmin +σTect , (2)

with σTect being the tectonic stress contribution, σHmax and
σHmax the maximum and minimum horizontal stresses, respec-
tively, obtained as

σHmin =
ν

1−ν
σV , σV = g

∫ H

0
ρ f dH, (3)

where H is the formation depth, ν the Poisson ratio, ρ f the
formation density and g the gravity constant.

SEISMIC MODELING

A 2D viscoelastic approach is applied to simulate wave prop-
agation in porous media Santos et al. (2011). This model is
able to represent at field scales the mesoscopic attenuation and
dispersion effects caused by heterogeneities of rock and fluids.
It considers a single phase fluid, so its properties are computed
using gas and water saturations as weighting factors. Numer-
ically, the equation is solved by finite elements, applying an
iterative domain decomposition procedure; besides a discrete
inverse Fourier transform (Ha et al., 2002) computes the time
domain solution.
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NUMERICAL RESULTS

Validation

To validate the procedure we consider a square sample of side
length 2 mm with 5 periods of alternating layers where Γ1
takes a fix value 1.1 and Γ2 = 1.19,1.28,1.325,1.37,1.46,1.55,
1.73,1.82,2.. Frequency is 100 Hz. The sample is discretized
using a 160× 160 uniform mesh. The material properties are
given in Table 1. (son los datos de la Figura 6) Figures 1 and
2 compare P-wave velocity and dissipation factor 1000/Q at
100 Hz obtained with the FE harmonic experiments with those
predicted by the theory. A good fit is observed, better for dis-
ispation factors than for phase velocities.

A layered medium with randon layer thickness

Next we consider two experiments for a square sample of 2mm
side length with variable layer thicknesa, wdiscretized with an
uniform 160x160 mesh. Figure 3 displays the ten layers sam-
ple used in the first experiment. Black corresponds to Γ1, that
is fixed at the value 1.1 and white corresponds to Γ2, that varies
according to the values in the horizontal axis in Figures.

Figures 4 and 5 display P-wave phase velocity and dissipation
factors at 100Hz for the variable thickness case and a reference
theoretical curve for equal thickness layers.
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Figure 1: Theory versus FE P-wave phase velocity as function
of Γ2 for fixed Γ1 = 1.1. The sample is square of side length
2 mm with five periods of alternating layers of equal thickness
varying Γ2 as shown in the horizontal axis. Frequency is 100
Hz.

CONCLUSIONS
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Figure 2: Theory versus dissipation factor as function of Γ2 for
fixed Γ1 = 1.1. The sample is square of side length 2 mm with
five periods of alternating layers of equal thickness varying Γ2
as shown in the horizontal axis. Frequency is 100 Hz.
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Figure 3: Illustration of a representative sample with 27 layers
of variable (random) layer thickness. Side length is 2 mm.
White corresponds to Γ2, black to Γ1 = 1.1.
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Figure 4: FE P-wave phase velocity as function of Γ2 for fixed
Γ1 = 1.1. The FE results are for the layered sample of variable
layer thickness in Figure 3. Frequency is 100 Hz.
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Figure 5: FE P-wave dissipation factor as function of Γ2 for
fixed Γ1 = 1.1. The FE results are for the layered sample of
variable layer thickness in Figure 3. Frequency is 100 Hz.


