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SUMMARY

Wave induced fluid flow (WIFF) in fluid-saturated poroelas-
tic media occurs due to conversion of fast to slow diffusion
P-waves at mesoscopic scales, which are much larger than the
average pore size and much smaller than the traveling fast P-
wave wavelengths. In this works we show than in hydrocarbon
reservoirs, where the pore space is saturated by two-phase flu-
ids, capillary pressure and interference between the two fluid
phases as they flow induce additional velocity attenuation and
dispersion of seismic waves. We present a Finite Element (FE)
procedure to determine the phase velocities and dissipation
factors in a three-periodic fine layered poroelastic medium sat-
urated by two-phase fluids. The results are first compared with
those of single-phase effective fluids and then cases of patchy
saturation are analyzed. The results show that residual sat-
urations and wettability influence the effective P-wave phase
velocities and dissipation factors.

INTRODUCTION

Wave induced fluid flow (WIFF) occurs by mode conversion at
mesoscopic scale heterogeneities in the petrophysical and fluid
properties. WIFF is responsible for the high levels of attenua-
tion of seismic waves observed in rocks with partial saturation.
Wave propagation in poroelastic materials saturated by single-
phase fluids was presented by Biot in seminal papers (Biot,
1956, 1962), where is predicted the existence of two P-waves,
one fast and slow, and one shear wave. To analyze the effects
of capillary pressure and fluid-flow interferences as they flow
within the pore space, we use an extension of Biot’s theory
presented in several papers Santos et al. (1990b,a); Ravazzoli
et al. (2003); Carcione et al. (2004).

This extension of Biot’s theory predicts the existence of three
compressional waves (P1, fast, P2 and P3, slow) and one shear
wave). Capillary pressure and relative flow between the two
fluid phases induce additional energy losses that can not be
represented using effective single-phase fluids. The model for
capillary pressure and relative permeabilities used in this work
is that of Scheidegger (1974), where is possible that simul-
taneous flow of both phases occurs along what must be very
tortuous funicular paths (funicular regime).

White and coauthors White et al. (1975) were the first to study
the WIFF mechanism. They considered the seismic response
of plane thin layers alternately saturated with gas and water.
Later, Norris (1993) implicitly extended the results for many
layers and Cavallini et al. (2017) found the explicit analytical

solution for three layers.

In this work we analyze the mesoscopic effect on three-periodic
sequences of thin layers much smaller then the average wave-
lengths. Hence, Biot’s equations are be solved in the diffusive
range of frequencies, as presented in Santos et al. (2009). In
this approach we apply compressibility tests to a representative
sample of the layered material and measure the resulting stress
and strains, which quotient yields the desire P-wave modulus.
First the results are compared with those of single-phase flu-
ids. Then several cases of three-periodic samples with patchy
gas-oil, gas-brine and brine-oil are presented.

THE MODEL EQUATIONS

In the three-periodic poroelastic sample saturated by a two-
phase fluids we have a solid phase and wetting and non-wetting
phases, indicated by the subindexes or superindexes s,w,n. Let
Sw,Sn. Let Sw,Sn denote the wetting and non-wetting satura-
tions, with Srw and Srn being the associated residual satura-
tions. It is assumed that the two-phase fluid completely satu-
rates the pore space, so that Sw +Sn = 1, with immobile wet-
ting fluid in [0,Srw] and immobile non-wetting fluid in [0,Srn],
and Srw > 0.

Furthermore, we assume a funicular regime of flow, so that
each fluid phase occupies continuous paths, where both fluids
simultaneously flow. Then, we have

Srw < Sw < 1−Sro, Sro < So < 1−Srw. (1)

The diffusion equations for a poroelastic medium saturated by
a two-phase fluid are Santos et al. (1990b); Ravazzoli et al.
(2003):

∇ · τ(u) = 0, (2)

iω dn un − iω dnw uw +∇Tn(u) = 0, (3)

iω dw uw − iω dnw un +∇Tw(u) = 0. (4)

The constitutive equations, with εi j denoting the strain tensor,
are

τi j(u) = 2µ εi j +δi j(λu es −F1 ξ
n −F2 ξ

w), (5)

Tn(u) = (Sn +β )Pn −βPw =−F1 es +N1 ξ
n +N3 ξ

w,(6)

Tw(u) = Sw Pw =−F2 es +N3 ξ
n +N2 ξ

w. (7)

The coefficients in the constitutive equations 5 - 7, defining the
generalized forces τi j, Tn and Tw, are computed as indicated
in (Santos et al., 1990b; Ravazzoli et al., 2003).
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THE FE HARMONIC EXPERIMENTS

Equations (2)-(4) will be solved for representative sample con-
sisting of a three-periodic sequence of fine layered square sam-
ple Ω = (0,L)2 with boundary Γ in the (x,z)-plane. The com-
plex P modulus characterizing the long-wave behavior to our
sample Ω is determined by applying compressibility time-harmonic
tests in the normal direction to the layering. This test is associ-
ated with a boundary value problem for equations (2)-(4) that
is solved using the FE method. For detailed formulations on
the definition of harmonic tests and their FE computer imple-
mentation for the case poroelastic materials we refer to Santos
and Gauzellino (2017).

NUMERICAL RESULTS

We consider a square sample and six periods, each consisting
of three 20 cm layers, referred to as layers1, 2 and 3, satu-
rated by a two-phase fluid. The sample is discretized using a
90×90 uniform mesh. The relative permeability and capillary
pressure functions are defined as (Douglas et al., 1997; Ravaz-
zoli et al., 2003):

Krn(Sn) = (1− (1−Sn)/(1−Srn))
2 , (8)

Krw(Sn) = ([1−Sn −Srw]/(1−Srw))
2 , (9)

Pca(Sn) = A
(

1/(Sn +Srw −1)2 −S2
rn/[Sn(1−Srn −Srw)]

2
)
,(10)

where A is the capillary pressure amplitude. In all examples
A = 30 kPa, Srn = 0 and the matrix and fluid properties are
given in Tables 1 and 2, respectively.

Table 1. Properties of the sandstone

Grain bulk modulus, Ks 33.4 GPa
density, ρs 2650 kg/m3

Dry-matrix bulk modulus, Km 1.3 GPa
shear modulus, µ 1.4 GPa
porosity, φ 0.3

permeability, κ 10−12 m2

Table 2. Properties of the saturant fluids

Brine bulk modulus, Kw 2.2 GPa
density, ρw 975 kg/cm3

viscosity, ηw 0.001 Pa · s
Oil bulk modulus, Ko 2 GPa

density, ρo 870 kg/cm3

viscosity, ηo 0.3 Pa · s
Gas bulk modulus, Kg 0.0044515 GPa

density, ρg 42.316 kg/m3

viscosity, ηg 1.1186 ×10−5 Pa · s

Comparison with effective single-phase fluids

We consider the first experiment, (referred to as Experiment 1
in the text and Figures), where brine is the wetting phase in
the three layers, Srw = 1% and on each three-periodic layering

layer 1 has gas-brine saturation, 0.12 % gas, layer 2: gas-brine
saturation, 98 % gas and layer 3: oil-brine saturation, 98 %
oil. The theory of Cavallini et al. (2017) for layered three-
periodic poroelastic media holds for single-phase fluids. Thus
we compare our FE results with those of an effective single-
phase fluid using a Reuss average of the fluid bulk modulus
and an arithmetic average of the densities and viscosities of
each fluid phase . The corresponding results in the next fig-
ures are labeled single-phase model. For single-phase fluids,
the approximate location of the relaxation peak is (Carcione,
2014)

fr =
8κMEm

πηL2Ec
(11)

where M =
[
(α −φ)/Ks +φ/K∗

f

]−1
, α = 1−Km/Ks, Em =

Km + 4/3µ , Ec = Kc + 4µ/3, Kc = Km +α2M, and L is the
spatial period. Hence, as viscosity increases or permeability
decreases, the attenuation peak moves to lower frequencies.

Figures 1 and 2 show the effective P-wave phase velocities and
dissipation factors (1000/Q) as a function of frequency for Ex-
periment 1. P-wave velocities are quite close for both models,
and two attenuation peaks are seen in Figure 2, as predicted
by the theory for single-phase fluids in Cavallini et al. (2017).
The higher peak for the two-phase model is shifted to higher
frequencies as compared with that of the single-phase model.
According to equation 11, the lower and higher frequency at-
tenuation peaks correspond to the presence of oil and gas, re-
spectively.

Patchy saturation

Fractal variations of gas, oil or brine saturation (patchy satu-
ration) are obtained by using the von Karman autocorrelation
function with 2D wave number-domain power spectrum given
by (Frankel and Clayton, 1986; Santos et al., 2009; Santos and
Gauzellino, 2017)

P(kx,kz) = (1+ k2a2)−(H+Ne/2) (12)

where k =
√

k2
x + k2

z is the wave-number, Ne is the Euclidean
dimension, a is the correlation length and H is the Hurst ex-
ponent, 0 < H < 1). Equation 12 defines a fractal process of
dimension D = Ne + 1−H at scales smaller than a. In the
following examples Ne = 2, D = 2.2 and a approximately 0.5
% of the domain size.

The next example, (Experiment 2), considers brine as the wet-
ting phase in the three layers, with Srw = 10% and layer 1 with
gas-brine saturation, 0.12 % gas, layer 2 with patchy gas-brine
saturation, overall gas saturation 10 % or 30 % and layer 3 with
oil-brine saturation, 89 % oil.

Figures 3 and 4 display the phase velocity and dissipation fac-
tor for Experiment 2 and overall patchy gas-brine saturations
of 10 % and 30 % in layer 2. Figure 3 shows higher velocities
for non-patchy than for patchy saturation in layer 2 (about
17 % higher) and quite similar velocities for both values of
the overall gas saturation, except at higher frequencies, with
values for 30% and 10 % patchy saturation below and above
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that of non-patchy saturation, respectively. Figure 4 shows two
attenuation peaks for both overall saturations, which at lower
frequencies are associated with the oil phase and at higher fre-
quencies correspond to the gas phase. The peaks for non-
patchy saturation are close each other, and located at lower
frequencies compared to those of Experiment 1 in Figure 2.
the difference between these two curves is due to the different
values of saturations and residual oil and gas saturations.

Figure 5 display plot of the fluid pressure at 20 Hz for 10 %
overall gas saturation in Layer 2 fo Experiment 2. The fluid
pressure is computed as T = Tn +Tw, with Tn,Tw defined
in equations 6-7. The gradients of fluid pressure illustrate the
mesoscopic loss mechanism.

In the last experiment (Experiment 3) with Srw = 10% consid-
ers the case in which layer 1 has gas-brine saturation, 0.12 %
gas, brine is the wetting phase, layer 2 has patchy gas-oil satu-
ration, oil is the wetting phase and layer 3 has patchy brine-oil
saturation, with oil being the wetting phase. Overall gas/brine
saturations are 10 % and 40 %. Residual wetting saturation Srw
is 10 %. The results for this Experiment are shown in Figure
6 where dissipation factors for the two-phase and single-phase
models are displayed. The two-phase model exhibits two at-
tenuation peaks, much higher at low frequencies for the lowest
overall patchy saturation. On the other hand, the single-phase
model exhibits a single peak. These differences in attenuation
between the two models are associated with the fact that for the
two-phase model oil is taken to be the wetting phase in layers 2
and 3. This wettability hypothesis generates flow interactions
between the two fluids represented by the relative permeability
functions in a way that induces a second peak. This attenuation
effects can not predicted when using single-phase fluids.
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Figure 1: P-wave phase velocity as a function of frequency for
the two-phase and single-phase fluid models. Experiment 1

CONCLUSIONS
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It is observed that the presence of capillary forces and the rel-
ative flow between the two fluids induce noticeable changes in
phase velocity and attenuation of the P-wave when compared
with single-phase fluids. Besides, the velocities predicted for
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Figure 2: P-wave dissipation factor as a function of frequency
for the two-phase and single-phase fluid models. Experiment
1

0,01 0,1 1 10 100

Frequency (Hz) - Logarithmic Scale

1200

1400

1600

1800

P
-w

av
e 

p
h

as
e 

v
el

o
ci

ty
 (

m
/s

)

Experiment 2, non-patchy saturation

Experiment 2, patchy gas-brine, overall Sg = 10 %

Experiment 2, patchy gas-brine, overall Sg = 30 %

Srg = 0, Srw = 10 %

Figure 3: P-wave phase velocity as a function of frequency for
the two-phase model. Experiment 2. Overall gas saturations in
Layer 2 are 10 % and 30 %
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Figure 5: Fluid pressure at 20 Hz for Case 3. Overall gas
saturation in Layer 2 is 10 %. Experiment 2.
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non-patchy saturation are generally higher than those obtained
for patchy saturation.

One additional and important factor in reservoir rocks satu-
rated by two-phase fluids is wettability, i.e., the role of each
fluid as wetting or non-wetting phase. In the numerical simu-
lations, interchanging the roles of the wetting and non-wetting
fluids, either two or one attenuation peaks are obtained, a result
that cannot be predicted by the Biot theory, valid for single-
phase fluids. In summary, the simulations predict dispersion
and attenuation effects in hydrocarbon reservoir rocks that can-
not be described if single-phase fluids are used.
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