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A method is presented to determine the elastic constants for an isotropic, porous, elastic solid
saturated by a two-phase fluid. Assuming that the shear modulus of the empty matrix is
known, it is shown that the six additional coefficients in the stress-strain relations can be
uniquely determined by performing two ideal experiments referred to as “generalized jacketed
and partially jacketed compressibility tests,” in analogy with the single-phase theory of Biot.
Under reasonable assumptions on the behavior of the material, the experiments yield
expressions for the coefficients in terms of the material properties of the individual phases and
the capillary pressure function relating the pressures in the two fluid phases. Finally, numerical
results showing properties of the phase velocities and attenuations for the four different types

of body waves are presented and analyzed.
PACS numbers: 43.20.Hq, 43.20.Bi

INTRODUCTION

A linear theory describing deformation and elastic wave
propagation in an elastic porous solid saturated by a two-
phase fluid was presented in Ref. 1. Here we first derive a
method for determining the elastic constants in the stress—
strain relations for such a medium. The procedure yields
values for the coefficients in terms of the properties of the
solid and individual fluid phases and the capillary pressure
function relating the two fluid pressures. Then, the phase
velocities and attenuations for the different types of body
waves propagating in this kind of media are computed and
analyzed. The theory of deformation and elastic wave propa-
gation in an elastic porous solid saturated by a single-phase
fluid was presented by Biot in several classical papers®;
later, Burridge and Keller® rederived the model using ho-
mogenization. Existence, uniqueness, and regularity of the
solution of Biot’s equations of motion were analyzed in Ref.
7. Some numerical procedures for obtaining approximate
solutions were given in Ref. 8.

The organization of the paper is as follows. In Sec. I we
present a brief review of the stress—strain relations for the
single-phase case and give a new method to determine the
elastic constants in these relations. In Sec. 11 we begin by
stating the stress—strain relations for an isotropic elastic po-
rous solid saturated by a two-phase fluid as derived in Ref. 1.
We then extend the method described in Sec. I for determin-
ing the single-phase elastic constants to the two-phase case.
By performing ideal experiments referred to as “generalized
jacketed and partially jacketed compressibility tests,” we
first determine the bulk modulus of the two-phase system
and then obtain a set of equations that yield the desired ex-
pressions for the elastic coefficients. Finally, in Sec. III a
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parameter study of the different types of waves propagating
in a two-phase fluid saturated porous media is given. First,
the elastic coefficients for two different formations saturated
by mixtures of oil and water and gas and water are comput-
ed. Then, the phase velocities and attenuations for the four
different types of body waves propagating in this type of
media are computed for one of the formations, as functions
of both frequency and saturation of the nonwetting phase.

I. REVIEW OF THE STRESS-STRAIN RELATIONS FOR
THE SINGLE-PHASE ISOTROPIC CASE

Let us consider a porous elastic solid saturated by a vis-
cous compressible fluid. Let #* = (uj,uj,uj) and
# = (i,it},i¥;) be the averaged displacement vectors of the
solid and fluid parts of the medium. Here, i/ is defined such
that for any face S of a cube Q of bulk material, fs¢i' v do
represents the amount of fluid displaced through S, where v
is the unit outer normal to S, ¢ is the effective porosity, and
do the surface measure on S. Set

=g — )

E= -V,

e=Vu'

€ () = i(a"7 + 24 ) . 1<i, j<3.
2\dx; Jx;

Next, let 7; =7, + A, and p, = p, + Ap, be the total
stress tensor and the fluid pressure, respectively, with A7;
and Ap, being increments in 7; and p, with respect to the
reference stress 7; and the reference fluid pressure p, asso-
ciated with the initial equilibrium state. For the isotropic
case, the stress—strain relations were given by Biot*:
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A7; =2Ne; + 6;(A.e — BE) (la)
Ap; = — Be + ME. (1b)
The inverse relations for (1) that give us the strains €, and &

as linear functions of the stresses A7, and Ap, can be written
in the form

€; = (1/2N)A7; + 6,;(D At — F Ap,),
§= —FAr+ HAp,

where
Ar= A1, + A1y, + ATy,

Let us analyze the physical significance of the strain
variables e and £. Let ¥, ¥,, and ¥, denote the bulk, solid,
and fluid volumes of a homogeneous part () of bulk material
in the initial equilibrium state. Since #* is the average solid
displacement vector over the whole bulk material, e repre-
sents the change AV, = ¥, — ¥, in bulk volume per unit
volume of bulk material; i.e.,

e=AV,/V,. (3)

Next, let AV 7 be part of the total change AV, =V, — T’, in
fluid volume due to changes in fluid pressure. Then, if K,
denotes the bulk modulus of the fluid,

AVvi;  Ap,
Yy K,

Now we observe that the change in fluid content is the differ-
ence between AV, and AV}. Since for uniform porosity &
represents the change in fluid content per unit volume of
bulk material, it follows that

E=(AV,—AV§)/V, =¢(AV, —AV)/V,,  (5)
where

a = 7f/ T,b'
For the analysis that follows it is convenient to decompose
any tensional change A7 into the form

where 7; is the so-called residual or effective stress of the
material. Following the ideas in Refs. 5 and 8, the elastic
coefficients in the right-hand side of (1) can be determined
as follows. First, since the fluid does not support any shear,
N is identical to the shear modulus of the empty matrix. To
determine the remaining coefficients in (1), it is sufficient to
consider tensional changes A7; such that

(2a)
(2b)

4

A7y = ATy = ATy =JA7= — Ap, Ap>0,

A7y =0, i#j.
Set

AT=AT), = ATy, = ATy = — Ap. (@)
Then the decomposition (6) becomes

—1A7=Ap=Ap, + Ap, (8)
and (1)-(2) reduce to

A7 = — Ap = Ge — B¢, (%9a)

Ap, = — Be + M¢, (9b)
and
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e= (3D + 1/2N)Ar — 3F Ap,, (10a)

§= —FAr+ HAp,, (10b)
where

G=A,+3iN. (11)

Let us consider the special case in which no fluid is al-
lowed to flow in or out of the bulk material (closed system),
and let X, the bulk modulus of the closed system, be defined
by the equation

e= — Ap/K_, (12)

corresponding to a compressibility test in which a sample of
bulk material is enclosed in an impermeable jacket and then
subjected to an additional external pressure Ap. Since for a
closed system £ = 0, it follows from (9a) and (12) that

G=K.. (13)

Now, we shall obtain expressions for the elastic coeffi-
cients G = K_,B, and M in (9) using an argument that can
be generalized to treat the two-phase problem. Let K, and
K, denote the bulk modulus of the solid grains and the emp-
ty matrix, respectively. We shall eventually determine K,
using (10). So, first we shall derive expressions for the coeffi-
cients 3D + 1/2N and F using the jacketed compressibility
test as described in Ref. 5. This test corresponds to a ten-
sional state such that

Ap,=0, e= —Ap/K, = — Ap/K,,; (14)
i.e., the internal fluid pressure is held constant and the exter-
nal applied pressure A%, = A%,, = Ay, = — Ap is sup-
ported by the solid matrix. Note that, ignoring second order
terms, (4)-(5) imply that for this experiment

AV, _A(¢V,) - AV,
=3, =Y, 'y
According to a formula on page 13 of Ref. 9,

A= [1/K, — (1 — §)/K,, | A.

Hence,

+ Ag.

(15)

&= (1/K, — 1/K,, ) Ap. (16)
Now, using (14) and (16) in (10), we see that

3D+ 1/2N=1/3K,,, (17a)

F=1(1/K, — 1/K,,). (17b)

Next, we shall derive an expression for the bulk modulus XK,
of the closed system. Note that (4), (5), and the fact that for
the closed system & = O give us the relation
On the other hand, (15) implies that

AV, 4% + A

Vi Vo &

S L1 $)A~
k. "3\k, K, )"
Thus, using (8) we obtain the following relation between
Ap, and Ap:
\/K, — 1/K,, + ¢(1/K,, — 1/K,)
AP/' =

/K, — /K, +é(1/K,, —1/K,)

Ap. (18)
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Now, using the equation above we see that for the closed
system (10a) yields

L _1., ( 1 _ L)
K. K, \K, K,
/K, — 1/K,, + ¢(1/K,, — 1/K,)
\/K, = 1/K,, + ¢(1/K,, —1/K;)

Thus,

K. =K, [(K,+Q)V/(K,+D], (19)
where

Q=K,(K,—K,)/$(K,—K,), (20)

which coincides with the expression for K, in Ref. 9.

The remaining elastic constants B and M in (9) can be
determined as functions of K, using the jacketed compress-
ibility test described before. For that test (9) yields the rela-
tions

K Lo
1=—<4+B —-—1, 2la
£t (x, Km) (21a)
B 1 1
O0=—+M ——1. 21b
K, (K, Km) (210

Note that B and M may also be determined by performing
the unjacketed compressibility test,” corresponding to a ten-
sional state of the form

Aty =Ary =Ary3= —Ap= —Ap;, Ap=0.
Note that, according to (15), A¢ = 0. Thus,
AV, AV, AV,

— —, 22
2 7z 7, (22)
which in turn implies that
e= — Ap/K,. (23)
Also, it follows from (5) that
E=¢(1/K, — 1/K,)Ap. (24)
Now using (23)-(24) in (9) we obtain
Kc w3 l 1
l=—+ Bj| — — , 25
K, ¢( K, K ) (25)
B -1 1
1= Mo — — —|. 25b
X + ¢( X, X ) (25b)

Either from (21) or (25) the following expressions for Band
M are obtained:

B KK (K, —K,)
K, (K,—K,)+KdK,—K,)’

M= - .
Kf(K: - Km) + Ks¢(Kx - Kf)

(26a)

(26b)

Il. DETERMINATION OF THE ELASTIC COEFFICIENTS
FOR A TWO-PHASE, FLUID-SATURATED POROUS
SOLID

In this section we shall consider the problem of deter-
mining the elastic coefficients in the stress—strain relations
for an elastic, isotropic, homogeneous, porous solid satu-
rated by a mixture of oil and water. The subscripts (or super-
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scripts) “0” and “w” will be used to refer to the oil and water
phases. All the results presented here remain valid for any
wetting—nonwetting system in which the “w” refers to the
wetting phase and “o0” to the nonwetting phase.

LetS, =S,(x) and S, =S, (x) denote the oil and wa-
ter saturations. Since the two fluid phases completely satu-
rate the porous part of the bulk material,

S, +5, =1

Let «°, #°, and %" denote the averaged solid, oil, and water
displacement vectors. The fluid displacement vectors #° and
" are defined such that for any face F of a cube Q of bulk
material, f-4S,#%v do represents the amount of oil dis-
placed through F, and a similar hold for #*. Set
W=¢@ —u), £°= —V-u° 8=o,w.

The physical significance of the variables £” and £ is the
following. Let us consider a volume ¥, of homogeneous bulk
material containing oil and water volumes ¥, and ¥V, at
pressures p, and p,,. Set

T’,=T’,,+T’w, §,=T’,/T’f, 8=ow.

Note that S, £ °and S, £ “ represent the change in oil and
water content per unit volume of bulk material. Thus, if
AV'§ denotes the part of the total change AV, = ¥V, — ¥V, in
volume due to changes Ap, = p, — P, in the corresponding
fluid pressures, we see that

S,E%= (AV, — AV5)/V,
=3[ (AV, —AVE)/V,], 6=ow, 27)

since in equilibrium VS, = 0. Let K, and K, denote the oil
and water bulk modulus, respectively. Then,

AVL/Vy = — Apy/K,, 6 =ow.
Also, neglecting the second-order terms,
AVg =?,'AS8 +:§0AV/, 9=0,w.

Thus,
_(AS, AV, AVS
] a f 2]
g = L T8 g—ouw. 28
§ ¢( 5, 7V, Va) o (28)
Next, set
E*=S,°+S,£" (29)

Then it follows from (27) and (28) that

E* =4[V, —AV)/V],
where

AVE=AVE 4+ AVE,

Thus we see that the variable £ * in (29) plays the role of the
variable £ of the single-phase case [cf. (5)].

Next, let 7, = 7; + A7; be the total stress tensor of the
bulk material, A7; being the change in the total stress with
respect to the reference total stress 7; corresponding to the
initial equilibrium state. Also, let p, =p, + Ap, and
Pw =D. + Ap,, bethe oil and water pressures, Ap, and Ap,,
representing increments in the corresponding pressures with
respect to the reference pressures p, and p,, associated with
theinitial equilibrium state. Recall that p, and p,, are related
through the capillary relation,'®
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P =pc(so) = (ia +Apo) - (ﬁw +pr)
=pc(§o) + Apo - pr' (30)

Let us normalize by assuming that p, =0, so that
P, =p.(S,). Also set

Ap. = Ap, — Ap,, (31)

AS,=S,—75,. (32)
Then, ignoring terms of the second order in AS,,

Ap. =p.(S,)AS,. (33)

Set
B=p.(S,)/p.(S,).

Following Ref. 1, the stress—strain relations can be written in
the form

A7, =2Ne; +8,(A%e — B\£°— ByE™), (34a)

(Ea +B)Ap, —BAp,, = —Be+ME°+ ML,
(34b)

SuBp, = — Bre + Maf° + Mob ™. (34c)
The inverse relations of (34) that give us the generalized

strains €, (S, + B)£°, and S, & © — BE ° as linear functions
of Ar;,Ap,, and Ap,, are given' by

€, = (1/2N)Ar, + 8,(D*Ar — F,Ap, — F,Ap,) ,

(35a)
(S, +B)E°= — F AT+ H,\Ap, + HiAp,,  (35b)
S.£¥—BE°= —FAT+ HAp, + HAp,.  (35)

For the analysis that follows, and in analogy with (6), it
is convenient to decompose any tensional change A7, into a
hydrostatic pressure due to both fluid phases plus an addi-
tional residual stress tensor. For that purpose, set

pf=Sopo +Sw w*

Ignoring terms of the second order and using (31) and (33)
we see that

Ap;=S,Ap, +S,Ap, + AS,p. (5,)
=S,Ap, +S,Ap,, + BAp.
= (5, +B)Ap, + (S, —B)Ap,.
Thus, we shall use the decomposition
Aty = — ApS,; + A%

= — [(S, +B)Ap, + (S, —B)Ap, 15, + A,
(37

Next, we shall obtain an expression for the saturation
change AS, that will be useful in the analysis that follows.
Let us consider a part ) of bulk material having bulk volume
¥, and oil and water volumes ¥, and V,.Let T/f =V, +V,
be the total fluid volume. Let us consider another equilibri-
um state of ) with corresponding volumes ¥, =V, + AV,,
Vo=V,+AV, and V,=V,+AV, and saturations
S, =8, +AS,, S, =S5, + AS,. In all the cases to be con-
sidered in this work this new equilibrium state will be one
attained by the system after the compressibility tests to be
described later have been performed. Note that, neglecting
terms of the second order,

(36)
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AV, AS, AV,

v, 5 7
and

AV, AS, AV,

V., 5, 7
Hence,

AS, =§,,§w(A_” o _ A_Vw) _5, 4% 3 AV

; V., V, V,
(38)

Now we proceed to determine the elastic coefficients in
(34). First, as in the single-phase case, & is identical to the
shear modulus of the porous matrix. To determine the re-
maining coefficients in (34) it is enough to consider ten-
sional changes A7; of the form

AT“ = ATzz = A7'33 = &AT _—— Ap,

Ar; =0, i#).

Thus, for A7 as in (7), the decomposition (37) becomes

Ap>0,

Also, (34) and (35) reduce to
A7=G%e—B\f°— B, (408)
(S, +B)Ap, —BAP, = — Bie + MiE°+ MyE ™,
(40b)
Subp, = —Be+ ME°+ MyE", (40c)

and ‘
e=(3D* + 1/2N)Ar — 3F, Ap, — 3F, Ap,,, (41a)

(S, +B)é°= —F,Ar+ H, Ap, + H, Ap,, (41b)

S.£“—BE°= — F, At + Hy Apy+ H, Ap,,, (41c)
with

G*=A%+3N. (42)

Following the ideas given in Sec. I, first we shall deter-
mine the bulk modulus X ¥ of the closed system consisting of
the saturated rock, where K * is defined by the equation

e= —Ap/K¥. (43)

For this purpose, let us consider a “generalized jacketed
compressibility test,” corresponding to a tensional state such
that

Apo =pr =0’ e= _Ap/Km = _Aﬁ/Km’
A7y, = A7y = ATy3 = — Ap. (44)

This experiment may be performed as follows. A sample of
bulk material is enclosed in an impermeable jacket and then
subjected to an external pressure change Ap = Ap. A pair of
tubes 7, and T, are connected from the inside of the jacket
to corresponding containers filled with oil and water held at
the reference pressures p, and p,,. The tube T, is provided
with a membrane permeable to oil and impermeable to wa-
ter, while the tube T, has a membrane permeable to water
and impermeable to oil. This insures that both fluid pres-
sures p, and p,, inside the sample are held constant; i.e.,
Ap, = Ap,, = 0. Note that in this experiment,
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AS, =0, AVS/Vy= —Ap,/K,=0, 8 =o,w.

Thus, it follows from (15) and (27) that
o ru AV, 1 1y,

s A Vo 0 o
Now, applying (44) in (41), we deduce that

3D*+1/2N=1/3K,,,

F,=1(S, +B(I/K, —1/K,,),

F,=1(S, —B)(1/K, — 1/K,,).

Now we shall use (41a) and the expressions above for
3D* 4 1/2N, F,, and F, to determine the bulk modulus K ¥
of the closed system. First note that, for the closed system,
there is conservation of mass of both fluid phases; thus, there
is no change in oil and water content. Consequently,

AV, AV
—_— _9=—Apa, 6 = o,w. (45)
Ve Ve Ky
Then, according to (27),
§°=£v=5*=0. (46)

Combining (31), (33), (38), and (45), we obtain

Ap, — Ap,, = p.(S,)S,S, (Ap./K., — BAp,/K,),
so that

Ap, =7 Ap,, (47)
with

14 p.(S,)S,S, /K,

P40 G)5,5./K,
Note that 0 < ¥ < 1. Let

a=-1(ES, +8) +1.

Then using (47) we see that for the closed system the decom-
position (39) becomes

Ap = alp, + Ap. (48)
Next, from (29) and the fact that the £ * = 0, we see that
AV, _— AV _ AV - A — A

—I=So —0+Sw _wz_sa po_sw pw.
v, v, v, K, K,
(49)

On the other hand, using (15) and (43),
/A ]

v, vV, ¢

Ap l(L —(1—=2¢ L)A* 50
K* + 7\x ( ¢)K,.. p- (50)
Hence, combining (47), (49), and (50) gives

A %;_M)A =_(r_§o §_)
kT 3\x k)Y K, "x,)
(51)

Set

o /K —V/K, +d(/K, —/K?) -
 a[l/K, — /K, + /K, —1/K})]’

where
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S, S,
_1_=i(7 +_). (53)
K¥ a\K, K,

Then it follows from (48) and (51) that for the closed sys-
tem the following relation between Ap,, and Ap holds:

Ap, = O Ap. (54)
Next, since for the closed system A7, =A7,
= Ary; = — Ap, combining (41a), (43), (47), (52), and
(54) leads to the relation

1 1 1 1
K* K, (K, - E)
/K, — /K, + ¢(1/K,, —1/K*)

= . (55)
/K, —1/K,, + $(1/K,, — 1/K})
Hence,
K*=K,[(K, +Q2%)/(K,+0%], (56)
where

Q*=K*(K, —K,)/$(K*—K.,).

Now we can proceed to determine the elastic coeffi-
cients in the right-hand side of (40). First, note that, since
for the closed system £ = £ = 0, it follows from (43) and
(40) that

G*=K*

Also, from (40b), (40c), (43), (46), (47), and (54) we
deduce that

B, =K*O[(S, +By—B] (57)
and

B,=K*S, 0. (58)

Next, we observe that, for the “generalized jacketed

compressibility test” described above, (40), (44), and (45)
yield the equations

1=G*/K, + (B, + B,)5, (59a)
0=B,/K, + (M, + M,)8, (59b)
0=B,/K,, + (M, + M,)$, (59¢)

where

5§=1/K, - 1/K,,.

A calculation shows that (59a) is compatible with (56)-
(58).

Before deriving the additional relations (with some be-
ing redundant) needed to determine the €lastic coefficients
M,, M,, and M, in (40), we observe that combining (28),
(31), and (33) produces the following relation between the
variables £ and £"':

§O_§w=q(Apo_rpr)' (60)

where

- 1 1
= + —=)

! ¢( K, " p.(5,)5.,5. )

Now we consider what will be called a “‘generalized par-
tially jacketed compressibility test,” which may be described
as follows. A sample of bulk material is enclosed in an imper-
meable jacket and immersed in a chamber filled with a fluid
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held at the same reference pressure 5, as the oil inside the
sample. Then an additional pressure change Ap is applied to
the fluid in the chamber. To insure that the water pressure in
the sample stays at the reference value 5, a tube provided
with a membrane permeable to water and impermeable to oil
is connected from the inside of the sample to a container
filled with water held at the reference pressure p,,. Thus, for
this experiment,

Ap, =0.
Also, since there is a conservation of mass of the oil phase,
£°=0, (61)
while (60) implies that
§“= —qAp,. (62)
Next note that, according to the decomposition (39),
Ap=(S, +B)Ap, + Ap. (63)

Thus, using the principle of superposition, (14), and (23),
we see that

e= — (S, +B8)(Ap,/K,) — Ap/K,,.
Now, using (61), (62), and (64) in (40a) we see that
—~Ap=[Byg— (S, +B)(K*/K,)|Ap, — (K*/K,,) Ap.

(64)

(65)
Hence, if we add (63) and (65), we conclude that
Ap =y Ap,, (66)
where

x=[K,/(K*=K,)][Bg+ (S, +B (1 -K¥/K)].
Set

r= (S, +B)V/K, +y/K,,.
Then it follows from (64) and (66) that

e= —rAp,. (67)
Now we can use (61), (62), and (67) in (40b) and (40c) to
derive the relations

S, +B8=B,r— My, (68a)

0=B,r— M. (68b)
From (59b) and (59c), (68a) and (68b) we obtain a system

of four linear equations in the three unknowns M,, M,, and
M. Thus,

M, = B,(r/q), (69b)

M|= —B./K,,,&—M (69C)
provided the compatibility condition
(B, + By)r+ Byg/K,.6 — (S, + ) =0 (70)

is satisfied. To show the validity of (70), first we note that
after some algebraic manipulations the factor » can be writ-
ten in the more convenient form

r=(K?*—K,) '[Bg— (S, +PK,8] .
Also, it follows from (57) and (58) that

B, + B, =K*Oa.
Thus, Eq. (70) can be written in the equivalent form
[B4/K,.6— (S, +B)]

X[1+K?*6aK, b/(K*—-K,)] =0,
which obviously holds since (55) implies that

1+ K¥*0aK, 6/(K*—K,,)=0.

Thus, the elastic coefficients in the stress—strain rela-
tions (34) are completely determined by the shear modulus
N of the solid matrix and the value provided by equations
(56), (57), (58), and (69). It should be noted that the same
relations for these constants result from interchanging the
roles of the two fluids in the generalized partially jacketed
compressibility test.

lIl. PARAMETER STUDY OF THE DIFFERENT TYPES OF
WAVES

In this section we compute the elastic coefficients for
two different formations saturated by mixtures of oil and
water and gas and water, respectively, for different values of
the saturation of the nonwetting phase (here taken to be oil
or gas). Then the phase velocity and attenuation coefficient
for each of the four types of waves will be computed as func-
tions of the saturation of the nonwetting phase in the purely
elastic case (i.e., ignoring dissipative effects) and frequency
(for given saturations) in the case in which dissipation is
included in the model.

The elastic coefficients in the stress—strain relations
were computed for mixtures of oil and water and gas and
water with the following properties (with pg, Ky, and u,
denoting the density, bulk modulus, and viscosity of the &

M= —B,[1/K,6+1/q] (69a)  fluid, respectively):
]
Oil Gas Water
po = 0.7 g/cm’ p, = 0.1 g/cm’ po = 1.0 g/cm?
K, =0.57x10" dyn/cm? K, =0.022 X 10" dyn/cm* K, =2.25x%10" dyn/cm?
o =0.1P p, = 0.00015 P ft,, =0.01 P

The coefficients were obtained for two different formations
from data given in Ref. 11: (1) Berea sandstone, for which
the porosity is 0.19, the permeability is 200 millidarcies, the
matrix compressional velocity is 3.67 km/s, and the matrix
shear velocity is 2.17 km/s; and (2) Fox Hills sandstone, for
which the corresponding values are 0.074, 32.5 millidarcies,
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4.45 km/s, and 2.515 km/s, respectively. For both forma-
tions, the bulk modulus K and density p, of the solid grains
were taken to be

K, =37.9%x 10" dyn/cm?,
p, = 2.65 g/em’.
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A capillary pressure curve p. (S, ) was obtained by approxi-
mating the capillary pressure curve in Ref. 10 on page 50 by
an exponential function of the form

Pe(S,) =p.e e -1,
where

A=6.029 158, §, =0.519,

p., = 0.000 002 650 9X 10'° dyn/cm®.

This curve was used in the absence of proper data for the
formations being treated and for both the oil and water and
gas and water mixtures.

Tables I and I show values of the elastic coefficients for
the Berea formation saturated by mixtures of oil and water
and gas and water, and for different values of oil (or respec-
tively, gas) saturation. All the coefficients are in units of 10'°
dynes/cm?. The shear modulus of the Berea formation is
10.107 65 (in the same units).

Table I1I gives values of the coefficients for the Fox Hills
formation saturated by a mixture of oil and water. The shear
modulus is 15.52147.

Now we proceed to analyze the behavior of the shear
and compressional waves as functions of both saturation of
the nonwetting phase and temporal frequency. All the re-
sults will be presented for the Berea formation saturated by
mixtures of oil and water and gas and water, but a similar set
of results and conclusions were obtained for the Fox Hills
sandstone and other formations.

Using our straightforward generalization of the argu-
ment used in the single-phase theory,'*'? the mass-coupling
parameters g,, g, and g, in Ref. 1 were chosen to be

2 =§waF:/¢v 8 =0.1V8,.8,

with g, =S,p,F,/¢ for the oil and water mixture and
) =§gp,F,/¢ for the gas and water mixture. The param-
eter F, is known as the structure factor and was selected here
as 2.8 (Refs. 12, 13). The numerical experiments showed
that the phase velocities and attenuations for all types of
waves increased when lower values of F, were employed.
Changes in the choice of g, showed almost no change in the
values of velocites and attenuation coefficients. To compute
the velocities in the dissipative case we needed values for the
relative permeabilities k, and k, . Again in the absence of
proper data for the Berea formation, the values were taken
from the relative permeability curves in Ref. 10 on page 161.
For both the oil and water and gas and water mixtures and a
nonwetting phase saturation of 0.6 (i.e., S, =0.6 or

TABLE . Elastic coefficients for the Berea sandstone saturated by an oil-
water mixture.

TABLE II. Elastic coefficients for the Berea sandstone saturated by a gas—
water mixture.

s, K? B, B, M, M, M,
0.7 154919 006822 0.02925 0.08056 0.01482 0.03453
0.6 155014 0.06805 0.04538 006888 0.03064 0.04592
0.5 155145 0.06780 0.06782 005719 005721 005719
04 155341 006744 0.10117 004551 0.10241 0.06826
0.3 155662 0.06683 0.15596 0.03382 0.18418 007893
001 17.3798 0.03282 324956 0.00055 5.42719 0.05482

S, =0.6) wechosek, =k, =0.4andk, = 0.04, while for
S, =0.01 or S, =0.01 we chose k, = k,. =0.001 and
k, =0.99. Following Ref. 1, for the compressional waves
we first computed the eigenvalue [a@]%,j = I, II, III, of the
generalized eigenvalue problem

gq(a) — aZ[.E’q“" _ ich(a)],
with @ = ¢/a and ¢ = 27, f denoting frequency, and @ = a,
+ ia; the wavenumber.

For the shear waves, we computed the wavenumbers
a® = a'® + ia!” using formula (59) in Ref. 1.

Then the phase velocities for all types of waves were
computed by the formula

v =¢/|al?|, j=LILILs. (71

Next, following Ref. 11, instead of the attenuation coeffi-
cient a” we defined and plotted another attenuation coeffi-
cient, measured in dB/Hz s, related to the a{”’s by the for-

mula
b =20log(e)a!” %ﬁ

=27-8.685 889a(/|a'”|, j=LILILs. (72)

For each frequency £, 5'” measures the attenuation suffered
by the wave after traveling one wavelength.

Figures 1-4 show the phase velocity for each type of
wave in the purely elastic case as a function of the saturation
of the nonwetting phase. In Figs. 1, 2, and 4 we observe that
for low saturations, the phase velocities for compressional
waves of types I and II and the shear waves tend to the corre-
sponding values for a single-phase, water-saturated porous
solid. In Fig. 1, the different behavior of the wave of type I
for each of the mixtures corresponds exactly to a similar
behavior for the reference compressional velocity v, asso-
ciated with this wave, which is defined to be?

TABLE III. Elastic coefficients for the Fox Hills sandstone saturated by an
oil-water mixture.

S, K?* B, B, M, M, M, S, K? B, B, M, M, M,
0.7 16.7389 1.54083 0.66036 1.81957 0.33423 0.779 81 0.7 28.5566 1.7468 0.74864 4.63336 0.85108 1.98571
0.6 16.8718 145520 097015 1.47296 0.654 67 0.98197 0.6 28.6231 1.64834 1.09891 3.74762 1.66566 2.498 40
0.5 17.0348 135017 1.35017 1.13887 1.13888 1.138 86 0.5 28.7044 1.52779 1.52780 2.89461 2.89465 2.894 60
0.4 17.2395 1.21826 1.82740 0.82208 1.84970 1.233 12 0.4 28.8064 1.37676 2.06514 2.08676 4.69524 3.13013
0.3 17.5042 1.047 67 2.44457 0.53023 2.88680 1.23720 0.3 289378 1.182 275802 1.34368 7.3156 3.13525
0.01 19.0357 0.06076 6.01514 0.00102 10.0461 0.101 48 0.01  29.6899 0.06789 6.721 68 0.002 57 25.2155 0.25470
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FIG. 1. Type I wave phase velocity.

v, =\ (K, +4/3N)/p ,
withp = (1 — é)p, + é(p,S, + p,,S,, ) being the density of
the bulk material.

The wave of type 11 in Fig. 2 shows a significant change
in phase velocity values between the two mixtures. The wave
corresponding to the gas and water mixture is slower, since
the relative motion, to which this mode is associated, should
be smaller for lower density fluids.

In Fig. 3 it can be observed that the phase velocity of the
compressional wave of type III is an increasing function of
the saturation of the nonwetting phase and tends to zero for
low saturations. This is an expected result since the wave is
directly associated with the existence of capillary pressure.

Figure 4 shows that the shear wave phase velocity for
both mixtures increases as a function of the saturation of the
nonwetting phase. The higher values of the phase velocity
for the gas—water mixture are explained by the fact that, for a
fixed saturation value, the bulk density is smaller for the gas—
water than for oil-water mixture.

Figures 5, 6, 7, and 8 show the phase velocity v/ in
(71) for compressional waves of types I, II, and III and
shear waves, respectively, in the case in which dissipation is

0.9
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FIG. 2. Type II wave phase velocity.
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FIG. 6. Type II wave phase velocity.

considered in the model, for frequencies in the range 1 Hz—
10 MHz and for fixed values of the nonwetting phase satura-
tion, chosen to be be 0.6 for waves of type 1 and I1I and shear
waves and 0.6 and 0.01 for type II waves. (It is not clear that
the model is correct at very high frequencies. It is clear from
the derivation of the single-phase Biot model given by Bur-
ridge and Keller® that the dissipation related to Darcy’s law
should be frequency-dependent for high frequencies; Biot*
also noted this dependence. Thus, the results in the upper
frequencies presented in the figures are more mathematical
than physical in nature.)

For waves of type I and shear waves (Figs. 5 and 8) very
little dispersion is observed over the whole range of frequen-
cies. For higher frequencies the phase velocities first increase
and then stabilize the corresponding values for the purely
elastic case (Figs. 1 and 4). At zero frequency the phase
velocity of the type I wave tends to the reference value v,
defined above, while the shear wave velocity tends to the
value YN /p.

A completely different behavior is observed for the
waves of types II and III. In Fig. 6 we plotted the phase
velocities for the type II wave for oil and water and gas and
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T T T

0 2 4 6

(H2) ~ LOGARITHMIC SCALE.
D OL-WATER X CAS-WATER

FIG. 7. Type III wave phase velocity.
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water mixtures of saturations 0.01 and 0.6. It can be seen
that there exists noticeable dispersion even in the low-fre-
quency range, and the phase velocities tend to zero for fre-
quencies tending to zero. Note that for low frequencies and
saturation 0.6 the wave associated with the gas and water
mixture shows higher phase velocities than those corre-
sponding to the oil and water mixture, due to the lower vis-
cosity of the gas. At high frequencies, the curves stabilize at
frequencies where the inertial terms are dominant with re-
spect to the viscous terms associated with the dissipative
effects.

The waves of type III (Fig. 7) have almost zero velocity
in the low-frequency range. At approximately 100 Hz they
start to show some dispersion, increasing with increasing
frequencies. As before, for high frequencies, the phase veloc-
ities of the waves of types II and I1I for both mixtures tend to
limits which coincide with the values for the purely elastic
case for the corresponding saturations. In Figs. 9-12 we have
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FIG. 9. Type I wave attenuation.
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plotted the attenuation coefficients 5/ in (72) for the four
types of waves as functions of frequency and for the same
saturation values as in Figs. 5-8. For the wave of type I (Fig.
9) the attenuation coefficient 5" is almost zero in the low-
frequency range and very small for high frequencies, with
peaks of approximately 0.175 dB/Hz s and 0.155 dB/Hz s
for the oil and water and gas and water mixtures, respective-
ly. The attenuation coefficient 5’ for the shear waves shows
almost the same behavior (Fig. 12), although for the oil and
water mixture the attenuation reaches a peak of about 0.283
dB/Hz s, which is about double that for the corresponding
peak for the type [ wave. For the gas and water mixture both
coefficients 5" and b ‘® are quite similar in magnitude and
frequency dependence.

Again, the attenuation coefficients » ' and b ™" show
acompletely different behavior. For the wave of type II (Fig.
10) and saturation 0.01, the attenuation coefficient is practi-
cally the same for both mixtures, being very high (approxi-
mately 54 dB/Hz s) in the range 1-100 Hz. Then it decays
rapidly tending to zero at the 10 MHz frequency. For satura-
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FIG. 11. Type III wave attenuation.
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tion 0.6, the attenuation is again approximately 54 dB/Hz s
in the ranges 1-100 Hz for the gas-water mixture and 1 Hz-
10 kHz for the oil-water mixture, respectively. Above these
limits the coefficients start to decay, reaching almost zero in
the case of the gas—water mixture. Finally, the wave of type
III (Fig. 11) is strongly attenuated in the range 1 Hz-10
kHz. Then the attenuation coefficient b ‘""" decays to ap-
proximately 2 dB/Hz s for both mixtures at a frequency of
10 MHz.

We can conclude that the waves of types I and II and
shear waves behave in general as the corresponding waves in
the single-phase theory (Ref. 11). Also, the waves of type II
and III have similar behavior, being diffusion-type waves.
The low attenuation values and the steady behavior of the
phase velocity curves for all types of waves in both mixtures
at high frequencies indicate that viscous effects are negligible
over the corresponding ranges. Finally, it is obvious from the
behavior of the type II wave shown in Figs. 6 and 10 that an
accurate measurement of the phase velocity in the high-fre-
quency range would allow us to distinguish a single-phase
water saturated from an oil and water or gas and water satu-
rated porous medium.
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