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Abstract. A similarity may be found between various approaches for determining 
the effects of parallel fractures or aligned cracks on seismic wave propagation at 
wavelengths that are long compared with the scale length of the cracks. Fractures 
can be modeled using an empirical linear slip condition; however, natural fracture 
surfaces can also be simulated directly as planar distributions of small isolated 
areas of slip (cracks) (model 1) or, conversely, as planar distributions of imperfect 
interfacial contacts (model 2). An alternative is plane surfaces separated by 
thin continuous layers of viscous fluid or a soft material (model 3). We present 
analytic expressions for the fracture compliances for these three models and, using 
these analytic results, compute the effective compliances and stiffnesses of the 
fractured material. As a result, it is possible to relate the measured compliances or 
stillnesses directly to the statistics of the microstructural details of a fracture, given 
appropriate a priori information on the fracture surfaces. The results for model 1 
are equivalent to a volume distribution of cracks as studied by Hudson [1980, 1981] 
for small crack density; the results for model 2 are basically the same as those given 
by White [1983] for a packing of spheres; and finally, the results for model 3 are in 
agreement with those given by Backus [1962] for combinations of two constituent 
layers. These results can be extended to the case of nonaligned fractures and to 
allow for fluid flow between cracks and into a porous matrix rock. Finally, it is 
shown that the ratio of the normal to shear fracture compliance is a good indicator 
of the properties of the fracture infill. 

1. Introduction 

Fractures and faults are common in the subsurface of 

the Earth's crust, and they control much of the mechan- 
ical strength and transport properties of the solid struc- 
ture. Fractures and fracture systems are also crucial 
for hydrocarbon production, control and manipulation 
of water supplies, and dispersal of pollutants. Much 
of our knowledge about the Earth's crust is obtained 
from seismic waves. One of the most successful methods 

for the detection and characterization of fractures and 

the prediction of fluid flow directions is the use of seis- 
mic shear waves [Queen and Rizer, 1990]. Queen et al. 
[1992] argue that fractures may be common in the crust 
but that only a few open fractures may control the fluid 
flow; they also emphasize that stress controls fracture 
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distributions and thus fluid flow pathways. Figure 1 
shows the relationship between fracture patterns and 
associated stress fields [after Cosgrove, 1998]. Crampin 
and Atkinson [1985] suggest that the fracture patterns 
of the type in Figure la may be common in the crust 
except in near-surface structures where fractures may 
have more complex patterns. 

There have been many theories in the literature that 
attempt to predict effective properties of a rock mass 
containing distributed cracks (reviewed by Hudson and 
Knopoff [1989]). Recently, Sayers and Kachanov [1995], 
and Schoenberg and Sayers [1995] have presented a new 
formalism for calculating the effective elastic constants 
for cracked and fractured media. Both models are based 

on Hill's [1963] concept of average stress and strain 
[Hudson and Knopoff, 1989] and assume a linear re- 
lationship governed by the fracture compliance Z, be- 
tween displacement discontinuity across fractures and 
the applied tractions. Sayers and Kachanov [1995] de- 
fine two tensors (a second-rank tensor and a fourth-rank 
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(C•l-C•3)<4T I t (C•l-C•3) >4T 
i 

(o•-o3)<4T t (o,-o3)>4T 
Figure 1. Three-dimensional patterns of fractures' (a) 
when 0-1 -0-3 < 4T and the two horizontal principal 
stresses are unequal; (b) when 0-1 -0-3 > 4T and the 
two horizontal principal stresses are unequal; (c) when 
0-1 --0'3 < 4T and 0'2 = 0'3; and (d) when 0'1 --0'3 > 4T 
and 0'2 = 0'3- T is the tensile strength of the rock [after 
Cosgrove, 1998]. 

tensor) to calculate the overall wave properties; both are 
related to the fracture compliance. $choenberg and Say- 
ers [1995] use laboratory measurements and Hudson's 
[1981] results to estimate the fracture compliance pa- 
rameters. On the basis of this work they conclude that 
it is not possible to distinguish between microcracks and 
macrofractures. 

In this paper we shall present a model in which Hud- 
son et al.'s [1996b, 1997] boundary conditions are used 
to compute the fracture compliance Z directly, and 
these are then used to calculate the effective elastic com- 

pliance of fractured rock using formulae similar to those 
in $ayers and Kachanov [1995], and $choenberg and 
Sayers [1995]. The purposes of this paper are twofold: 
first, to show that several different fracture models can 
be cast into a unified form, and second, to show that 
the fracture compliance tensor Z, can be related to the 
microstructure of the fractures. We consider fractures 

modeled as (1) a planar distribution of small, isolated 
areas of slip (cracks); (2) a planar distribution of iso- 
lated interfacial contacts (welds); and (3) an idealized 
open fracture with weak infill material. Models I and 
2 are derived from the belief that natural fracture sur- 

faces may be simulated by groups of small crack-like 
features. Contact between two nonconforming surfaces 
goes through several phases as the driving pressure in- 
creases [Nagy, 1992]. In the earlier stages, when the 

pressure driving the surfaces is low, contact consists 
of isolated areas (kissing contact) with the remaining 
surface areas being separated. This is represented by 
model 2. As the pressure increases, the contact areas 
grow and join up until, in the later stages, only some 
isolated areas remain out of contact. This is represented 
by model 1. This process is idealized by representing 
the areas of contact in model 2 and the separated ar- 
eas in model I as circular. Such simplification is not 
absolutely necessary since whatever the shape of crack 
or weld, a numerical solution can be constructed for its 
elastic response. However, the result would not be as 
simple or transparent as the analytic expressions ob- 
tained for circular cracks or welds. In the end, however, 
it is impossible to create a model with exactly the same 
geometry as a real fracture. Nor does anyone want or 
need such details. What is looked for are the statistics 

of the fracture surface - number density of cracks or 
welds, their average diameter, and so forth. The basic 
assumption of models of this kind is that the mechani- 
cal response of a fracture with a complex structure will 
be approximately the same as a fracture with circular 
cracks or welds with the same crack statistics. If this 

is so, the values of the crack statistics inferred from 
data using an idealized theory based on circular cracks 
will be a quantitative measure of the statistics of the 
actual fracture. Models I and 2 are, of course, quite 
different in character, and there will be fractures with a 
microstructure which is not realistically represented by 
either. Model 3 is one that has been around for a long 
time and provides a format into which the results for 
models I and 2 fit. It represents the state of a fracture 
before the driving pressure induces areas of contact be- 
tween the fracture faces. At this point, model 2 takes 
over. 

The smoothed boundary conditions for models I and 
2 were obtained recently by Hudson et al. [1996b, 1997] 
and are similar in form to the empirical formulae of 
Murty [1976] and Pyrak-Nolte et al. [1990]. The main 
advantage of the method presented in this paper is that 
unlike the earlier empirical models of fractures, all pa- 
rameters involved have physical meaning (subject to the 
assumptions referred to above), and fracture compli- 
ances are shown to be directly related to the details of 
the microstructure of the fracture planes. 

In this paper we shall refer to a crack as the small 
compact area of cohesion loss on a fracture surface, 
whose size is very much smaller than a wavelength, and 
to a fracture as the larger-scale fluid flow system, whose 
size is still much smaller than the seismic wavelength. 
A fault is made up of many fractures, and we model 
the fault region as a random distribution of fractures. 
Whereas cracked material has, in general, been mod- 
eled as a random distribution of cracks, the fault region 
studied here under model I has the cracks confined to 

the fracture surfaces. In this way the cracks appear 
as clusters, and the difference in the formulae for the 
two cases can be interpreted as the effect of one form 
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of clustering. Under model 3 we are back to a random 
distribution of cracks (we call them fractures here to 
differentiate between these and the microcracks on a 

fracture surface in model 1) but with the possibility of 
any kind of infill. Model 2 is similar to model 3 ex- 
cept that the fracture stiffness is increased by areas of 
contact (welds). It is novel in the sense that the open 
region on the fracture is extensive and complex. 

(a) Plane distribution of small cracks 

(b) Plane distribution of contacts 

2. Fracture Models 

In modeling the seismic response of natural and in- 
duced fractures it is essential to understand the micro- 

scopic details of fractures as fluid flow is controlled by 
microstructures of fracture or fault planes [Jones and 
Knipe, 1996]. Intensive studies have addressed this 
problem because of its conceptual and practical impor- 
tance. The general understanding is that a fracture is 
a cluster of small cracks, and a fault is a cluster of frac- 
tures. Cracks often exist as clusters at different scales, 
as schematically shown in Figure 2. Several fracture 
models have been proposed in geophysics, acoustics, 
and nondestructive testing in studies of the mechanical, 
transport, and seismic properties of fractures. Newmark 

APERTURE DISTRIBUTION 

1000m (Faults) 

10m (Fractures) 

Grain size 

(Intergranular cracks) 

Figure 2. Schematic illustration of the distribution 
of cracks at different scales. (Courtesy of Bill Rizer, 
formerly at Conoco Inc.). 

(c) Thin layer of weak material infills 

Figure 3. Schematic illustration of three fracture mod- 
els. (a) A plane distribution of small cracks; (b) a plane 
distribution of contacts, and (c) a thin layer of weak 
solid material with a constant aperture. 

et al. [1951] and Jones and Whittier [1967] were among 
the earliest attempts to study an "incomplete" interface 
(fracture), for which averaged boundary conditions re- 
lating tractions and displacements were derived. (Such 
a model is also called unbonded, loosely bonded, un- 
welded, nonwelded, imperfect, unperfect, or a slip inter- 
face by various authors in the literature.) Murty [1976] 
considered a vanishingly thin layer of viscous fluid which 
leads to boundary conditions similar to those of New- 
mark et al. [1951]; he also gave numerical results for 
the reflected and transmitted energy for incident plane 
waves. The transmission and reflection properties of 
seismic waves across a thin layer of viscous fluid were 
studied by Fehler [1982] specifically to interpret acous- 
tic events induced by hydraulic fracturing. The effect of 
a thin weak elastic layer was more recently investigated 
by Rokhlin and Wang [1991]. Schoenberg [1980], Myer 
et al. [1990], Pyrak-Nolte et al. [1990], and Nihei et al. 
[1994] extended Murty's [1976] model and assumed that 
the discontinuity in each component of displacement is 
proportional to the corresponding component of trac- 
tion. Further generality was introduced by Tleukenov 
[1991], who considered thin layers filled with anisotropic 
elastic or linearly viscoelastic material and also derived 
a nonlinear relationship between displacement disconti- 
nuity and traction. Angel and Achenbach [1985] stud- 
ied the problem of elastic wave diffraction by interface 
imperfections due to periodic arrays of cracks. The dis- 
placement discontinuity and traction relationship for a 
random planar distribution of microcracks and for a 
similar distribution of welded areas in an otherwise un- 

bonded interface were derived by Hudson et al. [1996b, 
1997] and discussed by Liu et al. [1996]; the former 
is similar to the rough surface fracture model of Gangi 
[1981]. Note that Kozlov [1997] uses the results pub- 
lished by Liu et al. [1996] to study the effective elastic 
properties and transmission and reflection characteris- 
tics of fractured rock. 
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In summary, published fracture models can be 
broadly classified into three groups, which are schemat- 
ically shown in Figure 3. Model 1 (Figure 3a) por- 
trays a plane distribution of small cracks and model 2 
(Figure 3b) portrays a plane distribution of contacts. 
Both models can be replaced with an equivalent frac- 
ture of constant aperture with appropriate material in- 
fill (model 3, Figure 3c) as demonstrated by Hudson 
and Liu [1999]. 

3. Effective Compliance of a Solid 
Containing Parallel Fractures 

We begin by considering a system of parallel plane 
fractures. Each fracture has a structure in accordance 

with one of models 1, 2, or 3. In the presence of frac- 
tures the average strain e in an elastic homogeneous 
solid with volume V containing N t fractures with sur- 
faces $r (r = 1, 2, ..., Nt) can be written as 

0 t )akt, (1) eij -- (Sij kl q- 8ij kl 
where er is the average stress tensor, s o is the matrix 
compliance tensor in the absence of the fractures, and 
s t is the extra compliance tensor resulting from the 
fractures. The additional strain is given by [Hill, 1963 
and Hudson and Knopoff, 1989] 

8 ifj kl •kl • Nf • (ZipWpk Tt!TtJ q- ZjpWpk Tt!Tti 4V 

q- ZipTplnknj q- ZjpTplnkni)rYkl, (6) 

where $ is the mean area of a fracture; so the fracture- 
induced excess compliance t is $ijkl 

8 ifj k l __ Dt (ZipWpkTt!Tt j q- ZjpWpkTt!Tti __ 

4 

+ + (7) 

where we have defined D t to be 

(8) Dr- V 
If the fracture set is statistically invariant under rota- 
tions about n, only two terms in Z are required (Schoen- 
berg and Sayers [1995]): a normal fracture compliance 
ZN and a tangential compliance ZT. Thus 

Zij -- ZNninj q- ZT(Sij --ninj) 
= ZTSij q- (ZN -- ZT)ninj, (9) 

where 5ij is the Kroneker delta. Furthermore, T is also 
diagonal' 

where [ui] is the ith component of the displacement dis- 
continuity on $r and ni is the ith component of the 
fracture normal. If all fractures are aligned with fixed 
normal n, we may replace each fracture in V by an av- 
erage fracture having a surface area $ and a smoothed 
linear slip boundary condition given by 

[•i]- Ziptp, (3) 

Tij - TNninj + TT(Sij -- ninj). 

where (see Appendix A) 

T/v-1+ • (A+2/•! ' 
and 

(10) 

(11a) 

[ 37r•ZT (3A + 4•)] -1' T•, - I + 16at A + 2•u ' (11b) 
where t is the traction on the fracture, [•i] is the av- 
erage displacement discontinuity on the fracture, and 
the quantities {Zij} depend on the interior conditions 
and infill of the fracture (Schoenberg and Sayers [1995], 
Sayers and Kachanov [1995]). The traction tp is lin- 
early related to the imposed mean stress a or, more 
precisely, to the traction •pq•tq which would exist on 
the crack face if the displacements were constrained to 
be zero. We use a model of a simple fracture in an 
unbounded medium (Appendix A) and write 

tp -- Tpq•Yqslgs, (4) 

where the elements {Tpq} depend on the {Zij}. Equa- 
tion (3) becomes 

[•i]- ZipTpqfYqslgs . (5) 

Inserting (5) into (2), we obtain, after some tensor al- 
gebra, 

A, /• are the Lam• constants of the uncracked matrix 
material and a t is the average radius of a fracture. By 
inserting (9) and (11) into (7), we have 

__ Dt [Z½(•ikTt!Tt j q- •jkTt!Tti q- •ilTtkTtj 4 

+ + 4(z - (12) 

where Z•v - ZNTN and Z• - ZTTT. This equation 
is equivalent to equation (9) of $ayers and Kachanov 
[1995] and also equation (9) of $choenberg and Say- 
ers [1995]. To determine the stiffness cijkt, it is con- 
venient to transform the $ijkl tO the conventional (two- 
subscript) condensed 6 x 6 matrix notation, 11 -• 1, 22 
-• 2, 33 -• 3, 23 -• 4, 13 -• 5, 12 -• 6, with factors 
2 and 4 introduced as follows: $ijkl --• $pq when both 
of p, q are 1, 2, or 3; 2$ijkl --• $pq when one of p, q is 
4, 5, or 6; and 4$ijkl --• $pq when both of p, q are 4, 
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5, or 6. The inverse of the compliance matrix $pq gives 
the effective elastic constants or stiffness matrix ½pq in 
terms of the two fracture parameters Z•v and Z•,. (See 
Auld [1990] or Nye [1985] for details). 

In order to use (12) to compute effective elastic com- 
pliance, $ayers and Kachanov [1995] define two tensors, 
one proportional to Z•, and the other to Z•v - Z•. (a 
second-rank tensor and a fourth-rank tensor, respec- 
tively). $choenberg and $ayers [1995] and $ayers and 
Kachanov [1995] point out that the results are particu- 
larly simple if ZJv - Z•,, in which case the fourth-rank 
tensor vanishes. In the following sections, we shall con- 
sider three fracture models that have been studied by 
Hudson et al. [1996b, 1997] and Hudson and Liu [1999], 
who give explicit expressions for ZN and ZT in terms 
of physical parameters. 

4. Model 1: Fracture Modeled as a 

Planar Distribution of Small Isolated 

Areas of Slip or Cracks 

Following Hudson et al. [1996b], where a fracture is 
modeled as a planar distribution of small isolated areas 
of slip (cracks) with an average circular shape of radius 
ac, the two fracture parameters ZN and ZT are given 
by 

ZT -- "/ca•c AT, ZN -- "/ca•c AN, (13) 
where ?c is the number of elementary cracks per unit 
area,/• is the shear modulus of the uncracked rock (ma- 
trix), and AT and AN are given as 

• s/• •r ] AT -- Ull I q-(%ac) Ul1•(3- 2/•2/c• 2) , (14a) 
and 

AN - U• [1 q- ("/ca2c)3/•Us,7r(1 -/•/c•)], (14b) 

where c• - [(A q- 2]t)/p] 1/2 and /• -- (]t/p) 1/2 are the 
P and $ wave velocities, respectively, of the uncracked 
solid, and p is the density of the uncracked solid. The 
parameters Ull and Uss correspond to the response of a 
single crack to shear traction and tension, respectively. 
Expressions for U11 and Uss for a range of crack models 
are available in the literature; for example, dry cracks, 
cracks filled with fluids or weak materials [Hudson, 
1981], partial saturation [Hudson, 1988], and fluid flow 
between interconnected cracks in porous media [Hudson 
et al., 1996a; T. Pointer et al., Seismic wave propaga- 
tion in cracked porous media, submitted to Geophysical 
Journal International, 1999, hereinafter referred to as 
Pointer et al., submitted manuscript, 1999]. Note that 
in the result given above, dynamic interactions between 
cracks on the same fracture plane are taken into account 
through the second terms in the brackets in (14), but 

interactions between different fractures are neglected. 
Note also that equations (14a) and (14b) are valid only 
for wavelengths that are long compared with the size of 
the fractures. 

Inserting (11), (13), and (14)into (12), we obtain the 
following for fracture-induced excess compliance: 

$ ifj k l 

where 

_ e [A% (Siknlnj + 5jknlni + 5iln•nj 
4t• 

q- •jlnkni) q- 4(A•v - A•)ninjnknl] , (15) 

and 

A N - AN 1 q 4 af A + 2t•/ ' 

, 3•' %a c AT • •_ • ! , (16b) AT--AT lq 16 af 
and we have written 

3 _ Nac • s NfS 
e-Df"/ca c- V $ - V ' (17) 

which is called the crack density; by definition, % = 
Nc/S is the average number of cracks Nc on a fracture 
surface of area $, and the total number of elementary 
cracks Nin the volume V is N = NfNc. (Nf is the 
number of fractures defined in (2).) The parameter Df 
(=Nf$/V) has the dimensions of inverse length; if the 
fractures were infinite parallel planes, Df would corre- 
spond to H• -1, where Hf is the mean spacing between 
the fracture planes. The quantity V/N is the average 
volume per unit crack. If we write V/N - l*,/is roughly 
the average spacing between cracks. Similarly, by writ- 
ing $/Nc - (•/c) -1 - lc 2, lc is approximately a mean 
distance between cracks on a fracture. We characterize 
the fractures as a clustering of cracks, so we expect that 
lc < 1. From (17) we see that D; 1 - Hf - 13/lc 2, and so 
we expect Hf > 1 in general; Hf is, in fact, a measure 
of the clustering of cracks onto fractures. 

To the first order in the number densities e and 

ec -Teac 2, (16)become A•r - Ull and A•v - U33, 
respectively. By inverting (15), we obtain the following 
expressions for the elastic stiffnesses written in conven- 
tional (two-subscript) condensed 6 x 6 matrix notations 
and assuming n = (1, 0, 0): 

A + 2p )--1 ½11 - (A q- 2p) 1 + eU33 , (18a) 

C22 ---- 

( )_1 1 + eU33 , (18b) 
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½12 -- ½13 -- ½21 -- ½31 -- A(1 + -1 • + 2PeU33 , (18c) 

c•s - cs2 - A(1 + 2eUss)(1 + )• + 2Pea33) -1, (18d) 

( )-1 ½55 -- ½66 -- • 1 + CUll , (18e) 

and ½44 -- (½22 --½23)/2 -- •; all other terms are zero. If 
we define 

•+ E•- - eU11, EN -- 2p eUa3, (19) 
equation (18) is equivalent to those given by $choen- 
berg and Douma [1988]. For comparison, Hudson's 
[1981] first-order expressions for a volume distribution 
of cracks whose normals point in the n - (1, 0, 0) di- 
rection may be written as 

Cll- ()• -]- 2•_/)(1 A + 2p eU33), (20a) 
C22 -- 

1 (20b) 

½12 -- ½13 -- ½21 -- ½31 -- X(1 A + 2PeU33), (2oc) 

½23 -- ½32 -- )•(1 + 25U33)(1 A + 2PeU33), (20d) 

c55 - c66 - p(1 - 5Ull), (20e) 

and c44 - (c22 -c23)/2 - /z; all other terms are zero. 
We can immediately find that (18) reduce to (20) if e is 
sufficiently small; that is, if 

--1 (1 •+2p ) ( • + 2PeU33 (21) eU33 "'• 1+ , 

and if 

(1- 5Ull)"'" (1-+- 5Ull) -1. (22) 
These approximations will be reasonable if the following 
inequalities are satisfied: 

)• + 2/'ZeU33 • 1, eU11 << 1. (23) 
If we assume that the matrix is a Poisson solid and 

use expressions for U11 and U33 for dry cracks (given 
f 

below), this requirement becomes • << • • 0.17. In 

these circumstances, (18) or (20) constitute the stan- 
dard first-order result for a distribution of cracks. The 

clustering of cracks on the faults is nowhere reflected 
in these formulae. To assess the effect of clustering, we 
need to go to higher-order terms. 

If we include the higher-order terms in crack density, 
the terms U11 and U33 in (18) should be replaced with 
A• and A•v given in (14) and (16). 

For dry cracks, Hudson [1981] gives 

Ull - Fid1: 16 X + 2p 
3 3A + 4p 

161-• 

32-u' (24a) 

and 

Uaa - U•3 = 4 )• + 2p _ 8(1 _ •), (24b) 
3 A+p 3 

where u is Poisson's ratio for the uncracked solid: u - 

A/[2(A + •)]. It follows that by inserting (24) into (13) 
and (14) we have 

A•v Z•v = 13)• + 4___• = I u (25) 
A•c - Zr 4 • + p 2 

to first-order in the number density. This result was 
used by $choenberg and $ayers [1995] and $ayers and 
Kachanov [1995] to justify dropping the last term in 
the brackets in (15) for s • (as u is usually small and 
typically in the range 0.1 _• y _• 0.25). Note that for 
water-filled cracks, Hudson [1981] obtained U• • 0 and 
all - aid1 provided aspect ratio of cracks is very small, 
and in this case, we have A•v/A•, - ZN/ZT --O. 

Figure 4 compares the variation of elastic parameters 
½11 and c6• (normalized by the equivalent parameters 
of the uncracked solid) with crack density e, using Hud- 
son's [1980, 1981] theory up to second-order in crack 
density and the theory for model I above (also includ- 
ing higher-order terms). The variations are calculated 
for a solid with background wave speeds a - 3300 m/s, 
fi - 1800 m/s, and density p - 2.2 g/cm • (the material 
properties are appropriate for sandstone [see Batzle and 
Wang, 1992]) and the cracks are filled with water with 
acoustic velocity of a• - 1500 m/s and density of p• 
= 1.0 g/cm • (Figure 4a) and air (gas or dry) (Figure 
4b). The cracks have an average aspect ratio of 0.01 and 
ac/H• - 0.5 and ac/a• - 0.1. Hudson's [1981] results 
as indicated by solid lines are very close to the results 
of this paper for crack densities of up to 0.1 for cracks 
filled with both water and air (Figure 4a) and with air 
(Figure 4b). Beyond the limit of 0.15 for the air-filled 
cracks, the normalized stiffness continues to decrease 
for the new model, but the results from Hudson [1981] 
show a systematic and unphysical increase. We would 
not expect complete correspondence between the two 
theories even though they both include crack-crack in- 
teractions. The results given in this paper correspond 
to a concentration of cracks onto fractures so that while 
interactions between cracks on the same fracture are in- 

cluded, those between different fractures are ignored. 
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Figure 4. Variations of normalized elastic constants 
Cll and c66 against crack density •. Two theories which 
include crack-crack interactions are compared' Hu•- 
son's [1981] volume distribution of small cracks and a 
distribution of fractures with each surface modeled as a 
planar distribution of small cracks (s•u&ed •n •h•s pa- 
per)' (a) water-filled cracks and (b) dry cracks. For the 
solid matrix, a - 3300 m/s, •- 1800 m/s, and p - 
2.2 g/cm 3, and for the water, a/- 1500 m/s and pf - 
1.0 g/cm 3. The cracks have an average aspect ratio of 
0.01, •/•/- 0.1 and •/H/- 0.5. 

Figure 5 compares the variation with crack density 
of the two normalized stiffnesses cll and c06 computed 
from various theories: the differential effective medium 

(DEM) theory of Nishizawa [1982], Hudson's [1980, 
1981] first-order and second-order models, and the re- 
suits of the present study. Again the variations are cal- 
culated for both water (Figures 5a and 5b) and gas- 

filled cracks (Figures 5c and 5d). All parameters are 
the same as those used in Figure 4. We see that the 
results from this study are close to the DEM results for 
crack densities up to 0.5. This demonstrates another 
feature of current theory; by working in terms of com- 
pliances rather than stiffnesses, we have results which 
appear physically reasonable at crack densities much 
greater than the expected range of validity of the the- 
ory. This is in contrast to Hudson's [1980, 1981] earlier 
result, which, when e grows beyond the range in which 
the approximations are strictly valid, gives results which 
are not physically realistic, as can be seen in Figure 4. 
The question as to whether the current results (or the 
DEM values) are correct for the idealized models that 
we have used at relatively high values of e can only be 
resolved by numerical experiment. 

Figures 6a and 6b show the variations of the normal- 
ized elastic constants cll and coo with crack density for 
four different values of Dfac (= ac/Hf) as indicated in 
Figures 6a and 6b. The cracks are filled with water with 
all parameters are the same as those used in Figure 4 
except ac/af - 0.0001. The quantity ac/Hf is equal to 
e/ec, or aclc2/13, where lc is the spacing of cracks on a 
fracture and 1 is the mean overall spacing of the cracks. 
It follows that decreasing values of ac/Hf correspond to 
increasing in level of clustering of cracks on a fault. The 
variations of elastic stiffnesses with crack density show 
a strong dependence on the value of ac/Hf. This shows 
clearly the effect of clustering of cracks onto faults. 

5. Model 2: Fracture Modeled as a 
Planar Distribution of Imperfect Facial 
Contacts or Rough Surface 

In contrast to the fracture model described above, a 
fracture can also be simulated as a planar distribution of 
imperfect interfacial contacts (partial bond, known also 
as a kissing bond). This model has been studied in the 
past by several authors [e.g., $toll, 1989, White, 1983, 
Yoshioka, 1994, Xu and King, 1992]. Similar interface 
conditions to (3) have been obtained for a dry (empty) 
fracture [Hudson et al., 1997], and to second-order in 
number density of contacts, we have 

1 1 
ZT = •BT, ZN = •BN, (26) 

7w l•b 7w l•b 
where 

3• + 4•u [1 + 2(•/wb2)•/2] -• = 8(x + (27a) 

and 

A + 2•u [1 + 2("/wb2) 1/2] -1 BN = 4(,X +/•) (27b) 

where •w is the number density of contacts (i.e., the 
ratio of the number of contacts Nw on a surface to its 



2988 LIU ET AL.' EFFECTIVE ELASTIC PROPERTIES OF FRACTURED ROCK 

1.0 

0.8 

0.6 

N 0.4 ........................................................... 

0.2 

.... J• This study ................... ........ 2nd order (Hudson 1981 ) 
1 st order (Hudson 1981 ) 
DEM (Nishizawa 1982) 

, . . 

.... i .... I .... I ........ 
0 0.1 0.2 0.3 0.4 0.5 

Crack density s 

1.0 

0.6 
.--. 

N 0.4 

E 
o 
z 

0.2 

: .... • .',.•,• ,..•, ,.., : ........... ! ......... •;...'.%•. ! ........... ! ........... 

.\ 

: \ 

........ 2rid order (Hudson 1981) 
1 st order (Hudson 1981 ) 

.... DEM (Nishizawa 1982) \ 
ß \ 

.... • .... , .... • .... I .... 

0 0.1 0.2 0.3 0.4 0.5 

Crack density s 

1.0 

0.8 

0.6 

.N_ 0.4 

E 
o 

z 
0.2 

' - - "' This stuOy 
\ •, ........ 2nd order (Hudson 1981) 
\ •k ......... 1 st order (Hudson 1981 ) 
\ X,•,, ........ DEM (Nishizawa 1982) 

:\ . : : 

........... :..\ ........ : ............ • ...... i ........... 

, , '0 ! 0 ' .1' ' '0:2' '0'.3' 0.4 0.5 
Crack density s 

1.0 

0.8 ..... 

0.6 .............. ..'>-•.i ........... !.. 

i i ',"-,.. ...... 
! ..... ! ...... .,, .... ! ......... !...•..>..,,.. ...... ! ........... ! ..... ::.,::': 

\ 
\ . 

0.2 .... This study ...\ ................ 
........ 2nd order (Hudson 1981] \ ' 

1st order (Hudson 1981) 
.... DEM (Nishizawa 1982) ß \ 

ß \ 

0 0.1 0.2 0.3 0.4 0.5 
Crack density 

Figure 5. Comparison of normalized elastic constants calculated using various theories for crack 
density up to 0.5 (water-filled cracks only)' (a) and (b) for water-filled cracks and (c) and (d) for 
dry or gas-filled cracks. Elastic parameters are as for Figure 4. 

area $; '7w - Nw/$); b is the average radius of welded 
regions (contacts). These equations are valid if '7wb 2 is 
small. Inserting (26) and (27) into (12), we obtain 

q- •jlTtkTti) q- 4(Z•v - S½)TtiTtjTtkTt,], (28) 
where 

, 4 "/wa, b(A-F 2p)] -x (29a) BN-U•3[ 1+ 3•r B•v A+p ' 

and 

3•- Br 3A + 4p 
(29b) 

and we have written 

Oiai _ Ni$ ai _ Ni a• (30) el- •r - V •r - V ' 

which may be called the fracture density (note that S = 

For a vanishingly small density of contacts (ew - 
'7wb 2 << 1) we have 
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Figure 4 except •/• - 0.0001. 

B•v - U3d3, B• - U'•, (31a) 

and the fractures become like dry cracks of radius a f 
as expected. This may be contrasted with Section 4, 
where we saw that for low crack density on the fractures 
(?ca•c << 1) the material responds as with a random 
distribution of noninteracting cracks of radius ac. If 
b/af is very small, we obtain 

B•v - BN, B•.- BT. (3lb) 

The elastic stiffness in 2-index notation can be de- 

rived as before (assuming n - (1, 0, 0))' 

A+ 2•e.f )-• c• - (A + 2/•) 1 + B•v , (32a) 

C22 -- ½aa - [(,X + 2/•)+ 4(,X + 
2• e )--1 A+ , 1 + j,B i , (32b) 

C12 --C13 --C21 --C31 -- • A+ 2•e.f )-• 1 + B•v , (32c) 

c23 - c32 - A(1 + 2e/B•) (1 + • • + 21UeiB•v) 
-1 

,(32d) 

c55 - c66 -1u(l +•fB•,) -• (32e) 

and C44 -- (C22 --c23)/2 -- p; all other terms are zero. 
Note that from (29) we have 

where 

B•v: (13,X + 4•U)M • (33a) 

•6_. _ •.8(x+u)(x+2u)• ..... 2 1 + X--d•.•,wU.t,o•-7X•4•-•--[x -e Zt?wO )•/2] 

which for a Poisson solid is approximately 7/8, once 
again leading to the conclusion that the last term on 
the right of (28) may be regarded as small. 

If b/ay is small, we have B•v - BN and B• - By. In 
this case, B•v and B•r in (32) can be replaced with B•v 
and By, respectively. If ?Wb2 is also small, the second 
terms in the brackets in (27) may be ignored, and we 
have 

B k B:v 2(A + 2/•) 1 - v = (33b) 
B•, - BT -- 3,• + 41u 1 - v/2' 

which agrees with the result of White [1983], and equa- 
tion (33b) is cited by $ayers and Kachanov [1995] to 
justify their assumption of Z• = ZT. 

Figures 7a and 7b show the variations of normalized 
elastic constants c• and c66 for parallel dry fractures 
with a plane distribution of small contacts. The vari- 
ations are plotted against fracture density • and for 
five different values of the parameter, r - i -?wzrb •, 
and r can be regarded as the proportion of the fault 
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Figure ?. Variation of (a) normalized Cll and (b) c66 
with fracture density ei computed for various values of 
the parameter r - 1- 7w•rb2; 7w is the number den- 
sity of welded regions on unit area of fracture surface, 
and b is the averaged radius of a welded area. Other 
parameters are as for Figure 4 except b/a i - 0.01. 

Unfortunately, the theory formulated above does not 
allow for the cracked regions in this model to be filled 
with any material other than air (dry cracks) or an in- 
viscid incompressible fluid. One way of avoiding this 
difficulty is discussed by Hudson and Liu [1999]. 

6. Model 3: Fracture Modeled as a 

Thin, Continuous Layer Filled 
With a Weak Solid 

The third fracture model is a continuous, parallel- 
walled layer filled with a weak solid. This model is 
often used to represent hydraulic fractures [e.g., Feblet, 
1982, Groenenboom and Fokkema, 1998, Meadows and 
Winterstein, 1994, Liu et al., 1997]. Using the method 
presented in Appendix B, it is possible to derive the 
following expressions: 

d d 
ZT -- --CT , Z•v - -C•v , (34) 

where CT and C'N are given by (from equation (B9)) 

•f + i•0f' (35a) 

4 ' (35b) 

respectively; Ay and /U are the Lam• constants, OJ' is 
the viscosity of the fracture infill material, d is the aver- 
age fracture aperture (assumed to be much smaller than 
a wavelength), and 0: is frequency. Inserting (34) and 
(35) into (12), the fracture-induced excess compliance 
can be obtained: 

where 

q- (•jlnkni) q- 4(C.•g - C½)ninjnknl], (36) 

[ 4 af (• q- 2•)] -1 (37a) C•v - U•3 l q 3•' dCN ,k+/• ' 
face that consists of open cracks. The results are only 
valid for small 7w•'b 2 so we assume 0.5 < r < I All 
other parameters are the same as those used in Figure 
4 except b/ay - 0.01. The values of normalized ½11 and 
c6• decrease as ey increases and are strongly dependent 
on the value r - I- 7w•'b •. 

Note that (26) and (27) are valid for dry fractures, 
and for liquid-filled fractures, BT remains unchanged, 
and B• - 0 [Hudson and Liu, 1999], so we have B•v/B • 
•0. 

16 af A + 2/• -1 
C•, - Ui•i [lq 3•r dCT (3A + 4•u)] ' (37b) 

and • is defined as before (equation (30)). The effective 
elastic stiffness can once again be obtained by inversion 
of effective elastic compliance and in condensed matrix 
form, and we have, exactly, the same equations as (32) 
except that B•v and B•. are replaced by C•v and C•,, 
respectively. Alternatively, we may write 
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$ijkl -- q• [C• (e•iknlnj q- e•jknlni q- e•ilnknj __ 

4p 

) ( ) ] .... q- 5jtnkni q- 4 C•v - Cz ninjnknt , (38) 

and 

C55 --C66 -- I-½q_ ½ P Pf q- iwr U 

-1 

(41e') 

where 

and 

,, 3•rd A+p] -• (39a) 

,, [ 3•rd C•(3A + 4p)]-x (39b) CT-CT 1+ 16af A+2p ' 
and we have defined 

c) - dD I = Nf Sd V ' (40) 
as the porosity of the fractured material. 

If we neglect the second terms in the brackets in (39) 
(assuming (d/a•) is small), we have C N - CN and 
C T - CT. In this case, the stiffnesses are given by 

A+2p ) cx• - (•+2p) 1+ 
-1 

i A + 2// A• + 2p• + •iwr U 

-1 

, (41a) 

C22 -- 

1 + ••bCN , (41b) 

C12 -- C13 -- C21 -- C31 -- A(1 + A + 2p ½CN) -x , (41c) 

C23 -- C32 -- A(1 + 2½CN) (1 + • + "t• ½CN) -• , (41d) 

C55 --C66 

p • + iw• 
(41e) 

and c44 = (c22 -c23)/2 = •; all other terms are zero. 
The expressions for c• and c55 - c66 can be compared 
with those given by Backus [1962] and Schoenberg and 
Muir [1989] for combinations of two constituent layers 

Cll -- 1-½ + ½ ]-• A + 2p • + 2pf + •iwrli , (41a') 

The expressions for other terms are less obvious but can 
be made similar to Backus' [1962] average by system- 
atically ignoring the higher-order terms in porosity ½ 
(noting that A• and p• are usually much smaller than 
% and p). When qb is small, (41a •) and (41e •) are ex- 
pected to give results very similar to (41a) and (41e). 

If fracture is dry, both ZN and ZT tend to infinity as 
Af and py go to zero, and in this case, the compliances 
are as for dry cracks, the same result as for model 2 
when the number of density of contacts goes to zero. On 
the other hand, if the fracture is filled with liquid, ZN 
is usually much smaller than ZT, as nf (= Ay + 2/3p•) 
is much larger than py, which can usually be assumed 
to be zero. In general, if the fracture is filled with a 
weak solid, we have from (37) 

where 

tt 

ZN C N _ C•v _ _1 (3A + 4P)M2 ' (42a) ZT - C•j - C½ - 4 A+p 

which reduces to (25) when fractures are dry (Xi = 
- 0)' 

t! 

If d/af is small, we have from (39) C N - CN and 
t! 

C T - CT (assuming wrU/p is also small) 

tt 

C• : CT - Xi + 2/U • , (42b) 

where a• and • are the P and $ wave velocities of 
the fracture infill. Clearly, for water-filled fracture, 
C•v /CT -- O. 

Figures 8a and 8b show the variations of normalized 
elastic constants c• and C66 for model 3. The variations 
are plotted against fracture density s f and for five dif- 
ferent values of the parameter d/ai. The results are 
only valid for small d/ai, so we assume _< d/ai <_ 0.1. 
The values of normalized c•x and C66 decrease as • in- 
creases and are strongly dependent on the value d/af. 

It is worth pointing out that the boundary conditions 
for models 1 and 2 can be put into a form similar to 
(34) and (35), so that these two models can be replaced 
with equivalent layers with appropriate thickness and 
bulk and shear moduli for the crack infill [see Hudson 
et al., 1996b, 1997, Hudson and Liu, 1999]. 
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Figure 8. Variation of (a) normalized c• and (b) c66 
with fracture density cy computed for various values of 
the parameter d/ay; d is the aperture (thickness) of the 
fracture (model 3) and ay is the fracture length. Note 
that the fractures are filled with a weak solid with c•y 
= 1500 m/s,/• - 200 m/s, and py - 1.0 g/cm 3. 

7. Discussion 

In this paper we have introduced three types of frac- 
ture models that are basically simple physical represen- 
tations of more complicated natural fracture surfaces. 
As in all effective medium theories of the type used here, 
the assumption is made that the results will be approx- 
imately the same as for a naturally occurring system of 
the same type (e.g., aligned fractures) if the values of 
the statistical parameters of the model are taken to be 
those of the more complex natural fracture system. The 
boundary conditions derived by Hudson et al. [1996b, 

1997] for fracture surfaces with relatively small (model 
1) and large (model 2) areas of slip have been used to 
compute effective elastic compliances of cracks and frac- 
tures in the framework of Hill [1963], $choenberg and 
Sayers [1995], and Sayers and Kachanov [1995]. Both 
these two fracture models can be equivalently replaced 
by model 3 that is a continuous thin layer filled with 
a weak solid. Although we have assumed that our the- 
ory in model I is valid only for a small concentration 
of cracks, a comparison of the results that it produces 
with one claimed to be valid for large crack concen- 
trations, i.e., the differential effective medium theory of 
Nishizawa [1982], indicates that our theory may be valid 
for crack density up to 0.5. However, for fractures with 
roughly equal areas of slip and welded contact, the case 
midway between those of models I and 2, the theory is 
more speculative. The formulae for model 2 are con- 
sistent with results from modeling the fracture surface 
as an array of spheres [White, 1983; see also Hudson 
and Liu, 1999], and the effective elastic constants for 
model 3 are in agreement with Backus' [1962] model. 
We suggest that the fracture models presented in this 
paper are general in the sense that many applications 
can be handled in a straightforward way. Some of these 
are discussed here. 

Although (15) and (28) derived for the fracture com- 
pliance s f under models I and 2, respectively, are of 
the same form, the parameters which appear in these 
expressions are different. For model I they are c, the 
overall crack number density; ec, the number density 
of cracks on the fracture surface; and ac/af, the ratio 
of crack size to fracture size. For model 2 they are eI, 
the fracture number density; ew, the number density of 
contacts on the fracture surface; and b/aI, the ratio of 
contact size to fracture size. If we write r as the relative 

area of slip on the fracture surface, then 

r - •rec - 1 - •rcw. (43) 

Thus ec and e• are related, although model 1 is correct 
only for small ec (r small) and model 2 is correct only 
for small e• (r near 1). In the region around r = 0.5, 
there is no satisfactory theory. Extrapolation from both 
ends will give different results, depending on the val- 
ues assigned to the parameters, and in any case neither 
model I nor model 2 is very convincing when there is 
equal area of slip and contact on a fracture. 

For a given set of observations it is very likely that 
both models I and 2 will provide reasonable interpreta- 
tions with appropriate values of the parameters; that is, 
we may expect that a small number of heavily cracked 
fractures will give the same result as a large number 
of lightly cracked fractures. Other information will be 
needed to come to the correct conclusions. As we have 

shown above, it is also possible to replace either model 
I or model 2 by model 3, although, once again, this 
may well be excluded on the basis of prior knowledge; 
e.g., the properties of the inferred material infilling the 
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fractures may not correspond to any material likely to 
be there. 

The fracture models presented here are idealized in 
more than one aspects. Some of the restrictions we 
have placed on them can be relaxed in a fairly straight- 
forward way. We consider two ways here of generalizing 
the models. 

7.1. Nonaligned Fractures 

The fractures on any fault are never completely 
aligned, and the effects of this nonalignment can be 
calculated by separating the fractures into sets, each 
set containing fractures of a given alignment. Multiple 
fracture sets can be added easily in the compliance do- 
main as described by Schoenberg and his coauthors in 
several papers [e.g., $choenberg and $ayers, 1995]. This 
is simply done by adding additional compliances of each 
fracture set using (12). When two fracture sets are com- 
bined, by definition the total fracture density etotal is 
simply the sum of fracture densities of each individual 
set denoted by e• and e2 

etotal -- el -•- e2, (44) 

and the average polarization •average of the fast split 
shear waves for near vertical propagation is approxi- 
mately the fracture density weighted average of each 
individual fracture orientation (•bx and •b2) and is given 
by 

E1 
•average • ß (45) 

This means that in terms of shear wave propagation, 
multiple fracture sets may be effectively represented by 
a single set with the effective fracture density and frac- 
ture strike being replaced by (44) and (45), respectively. 
Equation (45) was first given by Liu ½t al. [1992] as 
an empirical expression, and it has been subsequently 
proven to be generally valid for a wide range of appli- 
cations 
[1998] have also provided theoretical studies of the ef- 
fects of multiple fracture sets. 

7.2. Effects of Matrix Permeability and 
Porosity 

The application of seismic anisotropy has been very 
successful in many geophysical applications [Crampin, 
1994; MacBeth, 1995]. One of the main contributions 
has been its ability to estimate stress orientations and 
hence fluid flow anisotropy. Several studies have at- 
tempted to relate field measured seismic anisotropy to 
fluid flow in the rock-mass. Queen and Rizer [1990] 
show that seismic anisotropy can provide direct in- 
formation about fracture orientations that are consis- 
tent with independent measurements and stress orien- 
tations. Heifer et al. [1995] and Heifer and Koutsabe- 
loulis [1996] argue that fluid flow in many reservoirs 

is strongly dependent on stress. Horne and MacBeth 
[1996] have shown a strong correlation between shear 
wave anisotropy measured in vertical seismic profiles 
(VSPs) and permeability measured in cores. Lynn et 
al. [1996], Lynn and Beckham [1998], and He and Zhang 
[1996], in a series of papers, attempted to use seismic 
anisotropy to infer fluid flow direction and horizontal 
permeability anisotropy. 

Hudson et al. [1996a] and Pointer et al. (submitted 
manuscript, 1999) have extended Hudson's [1980, 1981] 
theory to allow fluid flow between cracks and fluid flow 
between cracks and porous rock, and the theory can 
be easily incorporated in the fracture models developed 
in this paper by replacing U• and U33 in (14) with 
appropriate forms as explicitly given by Pointer et al. 
(submitted manuscript, 1999). 

There have been several other theoretical studies 

aimed at relating permeability and/or porosity to the 
properties of seismic waves, and here we just mention 
a few. Thomsen [1995] studied the effects of matrix 
(equant) porosity on seismic anisotropy. Recently, Zat- 
sepin and Crampin [1997] and Crampin and Zatsepin 
[1997] have developed an anisotropic poroelastic model, 
which predicts stress-dependent velocity and permeabil- 
ity anisotropy. Xu [1998] has also developed theory to 
model porous media containing a combination of pores 
of various aspect ratios (cracks and pores). He has also 
applied his theory to model the laboratory results of 
Rathore et al. [1995]. Mention must also be made of 
the squirt flow model [Dvorkin and Nut, 1993] and the 
Biot flow model [Gelinsky and Shapiro, 1995]. It is sug- 
gested that attenuation anisotropy may also be used to 
infer fluid flow anisotropy [Pointer et al., 1996; Lynn 
and Beckham, 1998]. 

7.3. Fluid Content of Fractures 

An indicator of fluid content in fractures proposed 
by $choenberg [1998] is the normal to shear compli- 
ance ratio (Z•v/ZT). For example, if fractures are dry, 
then Z•v/ZT -- 1, and if fractures are filled with liquid, 
Z•v/ZT •- O. In general, if the fracture is filled with 
a fluid (assuming Af • 0,/•f = 0 and •/f = 0) and, 
for simplicity, if we assume the matrix rock is a Pois- 
son medium (i.e., A = /•), we have for model I (from 
equation (14)), 

Z•v • A•v _ 7 1+ , (46) 
where we have used the expressions for U• and U33 for 
cracks filled with a weak material as given by Hudson 
[1981]; ac and Cc are the long and short axes of the 
elemental cracks on the fracture planes (Cc/ac is called 
the aspect ratio). Similarly, for model 3 we have (from 
equation (42a)) 

I! 

ZN Cs--7 1+ 
ZT - C T 8 •' -•- A+2/• 

-1 

(47) 
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Figure 9. Variations of ZN/ZT ratios with normalized 
bulk modulus of the fracture infill (Af/(A + 2/•)) for 
different aspect ratios of element cracks as indicated on 
the curves (computed using equation (46) for model 1). 
The matrix is a Poisson's solid (A =/•). 

Figures 9 and 10 show the variations of the fracture 
compliance ratio (Z•v/ZT) with normalized bulk mod- 
ulus of the fracture infill (Af/(A + 2/•)). The variations 
were computed for different crack aspect ratios (Co/at) 
for model I (Figure 9) and different ratios of d/ay for 
model 3 (Figure 10). Both Figures 9 and 10 show that 
ZN/ZT decreases as bulk modulus of the fracture in- 
fill increases with the rapid change occurring when the 
fracture infill bulk modulus approaches zero (i.e., gas- 
filled fractures). This shows the sensitivity of ZN/ZT 
to the fracture infill. 

We mentioned earlier that the theory formulated for 
model 2 does not allow for the cracked regions to be 
filled with any material other than air (dry cracks) or 
an inviscid incompressible fluid. Hudson and Liu [1999] 
have shown that it is plausible to extend model 2 such 
that the region outside the welded contacts filled with 
material with arbitrary bulk and shear moduli n• (- 
Ai + (2/3)/•), /•f. A model fracture of this kind is 
equivalent to a model 3 fracture with a layer of thickness 
rdw and elastic constants 

8dwp( A+p ) /•* - /• + •rb 3A +•/• R, (48a) 

4dw• (A + •)(4•- A) 
n* - ni 3•b (3A + 4•)(A + 2•) R, (48b) 

where we have written 

R-r(1-r)[1 + 2( 1 - r)-}]. 

In the above equations r = 1-%,•rb 2 and d,, is the mean 
aperture (thickness) of the region outside the contacts. 
It is essential for the validity of the theory that d,,/b be 
small. Put (48) into (34) and (35) and assume that the 
matrix is a Poisson solid (i.e., A = •), and we have 

ZN _ 16 R(-•) [ "•' 8---R(-•)]-1 ZT - 21• X+2/• +9•r , (49) 
We expect ffw•'b 2 to be small, say 0 _< ffw•'b 2 _< 0.5 
and therefore 0.5 <_ r _< 1, so we have 0 _< R _< 0.45. 
Figure 11 shows the variation of the fracture compli- 
ance ratio (ZN/ZT) with normalized bulk modulus of 
fracture infill (Ai/(A + 2/•)). The variations were com- 
puted using (49) for different ratios of dw/b (assuming 
R - 0.3) as indicated in the figure, and the results show 
similar variations as for models I and 3 (Figures 9 and 
10) with the rapid change occurring when the fracture 
infill bulk modulus approaches zero (i.e., gas-filled frac- 
tures). However, the decrease in ZN/ZT as the infill 
stiffness increases for model 2 (Figure 11) is much more 
dramatic than for models I and 3. Figure 11 together 
with Figures 9 and 10 indicate that the ratios of ZN/ZT 
are very sensitive to the properties of the fracture infill 
and can be effectively used as a measure of fluid content 
in fractures. 

7.4. Scale Length, Fracture Criticality, and 
Limitation of Effective Medium Theories 

Although estimates of fracture density and orien- 
tation of microcracks can be found from equivalent 
medium theories as studied in this paper, the appli- 
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Normalized fracture stiffness 

Figure 10. Variations of Z2v/ZT ratios with normal- 
ized bulk modulus of the fracture infill (,X I/(,X + 2/•)) for 
different ratios of d/a I as indicated on the curves (com- 
puted using equation (47) for model 3). The matrix is 
a Poisson's solid (,X =/•). 
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Figure 11. Variations of ZN/ZT ratios with normal- 
ized bulk modulus of the fracture infill (Ai/(A+2/•)) for 
different ratios of dw/b as indicated on the curves (com- 
puted using equation (49) for model 2). The matrix is 
a Poisson's solid (A =/•). 

cation to seismic anisotropy is limited by the neces- 
sary theoretical constraints of dilute concentrations and 
very small scale size to wavelength ratios. This limita- 
tion has not yet been satisfactorily addressed in the use 
of seismic anisotropy for fracture characterization. It 
is believed that to some degree, natural fracture sys- 
tems may not be consistent with conventional equiva- 
lent medium theory. They do not appear as dilute, ran- 
domly spaced, disconnected ideal shapes, nor are they 
weak scatterers. In contrast, they appear with spatial 
clustering and a distribution of scale lengths and reg- 
ularity. They possess a degree of connectivity between 
different scales and discontinuous clustering or fragmen- 
tation reflecting past historical conditions, local geo- 
logical weakness, and composite lithology [e.g., Barton, 
1995]. These restrictions should be borne in mind when 
applying the above theories and considering future ex- 
tensions to this work. Model I is valid for small crack 

density (e •< I and ec <• 1), and model 2 is valid for 
small density of welded contacts (ei • I and ew •< 1). 
As for model 3 (a thin layer filled with a weak mate- 
rial), it is valid for small porosity of fractures (• • 1 
and ½ • 1), and the assumption of noninteracting frac- 
ture systems in the formulae of $ayers and Kachanov 
[1995] and $choenberg and $ayers [1995] once again im- 
plies that multiples between fracture planes are not con- 
sidered. The weak assumption is generally believed to 
hold for crack densities up to about 0.1 [Crampin, 1984]. 
This is critical to all dilute concentration theories and 

is related to the onset of significant multiple scattering. 
One of the criticisms of Hudson's [1980, 1981] second- 

order theory is that it is "unphysical" for large crack 

density because elastic stiffness increases rather than 
decreases with an increase in crack density (solid lines 
in Figure 4) [Cheng, 1993, Sayers and Kachanov, 1995]. 
This unphysical behavior disappears in the theory as 
presented in this paper, and we show by comparison 
with the DEM of Nishizawa [1982], which is claimed to 
be valid for any crack density, that the theory developed 
in this paper based on Hudson's model is equally plausi- 
ble at high-order crack density. The question is, do we 
need a theory which allows crack density larger than 
0.17 If the concept of fracture criticality [Crampin, 
1994] holds within the crust, the occurrence of multiple 
scattering at the microstructural level is limited. 

If we do need to allow for high crack densities, then 
numerical experiments can be used to test whether a 
plausible theory fits the model it is based on. (Whether 
or not it is applicable to crustal rocks is another ques- 
tion which can only be answered by observations.) 
Davis and Knopoff [1995] used a two-dimensional (2- 
D) static boundary element method to study the ef- 
fective response of randomly distributed cracks under 
antiplane strain and showed that the single scattering 
or first-order approximation provided accurate results 
even in a strongly interacting regime; i.e., for crack den- 
sity ?7ra 2 up to 2, where ? is the number of cracks per 
unit area and a is the mean half length of the cracks. 
However, a similar study by Dahrn and Becker [1998] for 
cracks under in-plane strain suggests that crack-crack 
interactions cannot be simply ignored for high crack 
densities. Liu et al. (submitted to Geophysical Journal 
International, 1999) have used a 2-D dynamic bound- 
ary element method to simulate wave propagation in 
media with spatially distributed cracks. Scale length 
distributions (such as power law or fractal) can be eas- 
ily considered with numerical methods, and it has been 
demonstrated that both spatial and scale length distri- 
butions have significant effects on wave fields. Numeri- 
cal methods such as the boundary element method have 
the advantage that there is no restriction in the ratio of 
crack size to wavelength, and multiple crack-crack inter- 
actions between fractures can easily be handled without 
additional difficulty; they can be used to tackle a range 
of problems, such as to study short-wavelength scatter- 
ing and to investigate the effects of fracture spacing, 
spatial distributions, scale length distributions, etc., on 
seismic wave fields. Its main drawback, however, is com- 
puting cost. 

8. Conclusions 

We have presented analytic expressions for the frac- 
ture compliance Z for three styles of fracture surface 
conditions. These fracture compliances may be re- 
garded as macroscopic parameters to be determined 
by experiments. The main contribution of this paper 
is that given enough a priori information to select the 
more appropriate model for the fracture surfaces, it is 
then possible to infer some statistical details of its mi- 
crostructure. From (25), (33) and (42) we find that for 
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all three fracture models the assumption of ZN/ZT • 1 
generally holds for dry fractures as Poisson's ratio v 
is small (in the range 0.1 _• v _• 0.25); the resultant 
fractured medium is called a scalar-fracture system by 
Schoenberg and Sayers [1995]. However, for liquid-filled 
fractures, ZN/ZT • O. So the ZN/ZT ratio can there- 
fore be used as an effective indicator of fluid content in 

fractures. It is noted, however, that we have not con- 
sidered stress-dependent fracture compliances [Hillis, 
1998], and this is a subject of future studies. Our main 
results are summarized as follows: 

1. A wide range of fractures can be modeled in one of 
the three ways' (1) a plane distribution of small cracks; 
(2) as a plane distribution of small isolated contacts; or 
(3) as thin layer with a weak infill. 

2. Using the models, it is possible to relate the frac- 
ture compliance Z to details of the microscopic struc- 
ture of the fracture surface. Thus, given enough a priori 
information to choose the correct model, it is possible to 
obtain the microstructural properties of fractured rock 
from measured seismic properties. In particular, the 
ZN/ZT ratio may be used as an indicator of fluid con- 
tent in fractures. 

3. Using the concept of average stress and strain and 
the linear slip assumption, most theories can be cast 
in a unified form and, to first-order in crack density, 
theories, such as those of Schoenberg and Sayers [1995], 
$ayers and Kachanov [1995], White [1982], and Backus 
[1962], can be shown to be consistent. 

4. First-order theories contain information on first- 

order statistics only of the crack distribution; i.e., the 
number density of cracks. If information on second- 
order statistics (e.g., the extent of clustering of cracks) 
is required, second-order terms must be included in the 
theory. 

5. Our results show that although all boundary con- 
ditions were derived for dilute concentrations of cracks 

(model 1) and contacts (model 2), plausible values at 
high crack concentrations are given. However, the no- 
tion of fracture criticality [Crampin, 1994] should be 
borne in mind when interpretation of field data is made. 

Appendix A' Response of a Single 
Fracture to an Imposed Stress Field 

On each of models 1, 2, and 3 of a fracture the con- 
ditions on the fracture surface (averaged over the mi- 
crostructure in models l and 2) are 

[Ul] -- •Ntx, [U2] -- (Tt2, [Ua]- (Tta, (A1) 

where [u] is the discontinuity in displacement across 
the fracture, wbich is oriented with normal in the one- 
direction, and • is the traction on the face of the frac- 
ture. We now wish to calculate the average displace- 
ment discontinuity over an isolated fracture lying in an 
unbounded matrix due to a uniform stress field • im- 

posed at infinity. 

In the usual way we approximate the fracture by a 
spheroid of small aspect ratio cf/af, where cf is the 
semiminor axis and a• is the semimajor axis of the 
spheroid. Under a homogeneous imposed stress field 
the strain within a homogeneous spheroidal inclusion is 
uniform [Eshelby, 1957], which means that 

Jul • (1- r21a•) 1/2, (A2) 
where r is the distance from the axis of the spheroid 
and [u] is the difference in displacements at equivalent 
points on the upper and lower faces of the ellipsoid. In 
order to accommodate this with a fracture condition 

such as (A1), we need to assume that •N and (T vary 
with r according to 

3 

(N -- •ZN(1 - r21a•) 1/2 (A3a) 

3 1/2 (T -- •ZT(1 -- r2la•) , (A3b) 
where ZN and ZT are the mean values of (N and (T, 
respectively, over the fracture so that (3) holds. 

If the faces of the ellipsoid were stress free, the impo- 
sition of a stress field a0 would result in discontinuities 
in displacement given by [Hudson, 1980] 

2a• 
[Ul]- •ff101-• ( A + 2P)(1_ r21a•)1/2 A+p ' 

8af A + 2p 1/2 [u•]- alø2-•p ( 4p)(1- r•/a}) 31+ 
(A4) 

8ai l + 2p 
[u•]- al%-•p ( 4p)( 1 -r•/a}) 1/•' 31+ 

We now superimpose a uniform stress and strain field 
corresponding to homogeneous matrix material and 
with 

fill- ifll • 4ff•la/ (A+ 2•) 3•pZN l + p ' 

16alø2a• A+ 2p 
( 3A+ ' (A5) 

16a1øaaf A+ 2p 
(713--ffi3---- 3•rlaZ T ( 4/•)' 31+ 

This superimposed field does not significantly change 
the displacement discontinuity on the fracture since the 
aspect ratio is small. So, with the combined stress field 
er ø + er I we have the displacement discontinuities given 
by (A4) and tractions on the fracture surface given by 

tj - alXj, j - 1,2,3. 
As a result, (A1) are satisfied on the fracture surface. 
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The relevant components of the combined stress field 
at infinity are 

O'11 -- 0'101 q-0'•1 -- 0'71 [1 + 3•'ftZN A + ft 

0'•2 - 0.1% + 0'112 - 0.1% [1 + 3•'ftZT + ' 
(A6) 

0.13 -- 0.?3 q- 0.13 -- 0'103 [1 + 3•'ftZT + ' 

and the integrated displacement discontinuities are 

$4a I A + 2p) 
4a I A+2p)] [1+ 37rpZN ( A + p 

-1 

Appendix B' Boundary Conditions for a 
Thin Layer With a Weak Solid Infill 

Fehler [1982] studied the reflection and transmission 
response of a viscous fluid layer. Recently, Groenen- 
boom et al. [1995], Groenenboom and Fokkema [1998], 
and Rokhlin and Wang [1991] have derived boundary 
conditions for a fracture modeled as a thin layer. They 
also studied the reflection and transmission properties 
of seismic waves across such fractures. However, all 
their derivations are very complicated. Here we give an 
alternative, but much simpler, derivation. 

If the ratio of fracture thickness d to the wavelength 
of a seismic wave is very small (model 3, Figure 3c), 
then we may approximate the conditions on the fracture 
by taking the stress components 0'i3, where the three- 
component is normal to the fracture plane (i.e., n - 
(0, 0, 1)), to be constant through the layer. Writing 
traction 

ti -- 0.i3, (B1) 

u•]•$ c16af A + 2p 0.12•37rp (3A+4 p) 
16a•, A + 2•u 

3A+ 

-1 

, (A7) 

s[u3]dS _ 0.13o•16a• A + 2p 
16af A q- 2p -1 

3A+ ' 

where $ is the area of the fault. 

Alternatively, we may write the averaged displace- 
ment discontinuity [u] on the fracture as 

1 
[u•] g$ = [•] = T•Z••, 

we have 

(B2) 

where p/, is the rigidity and r U is the viscosity of the 
material within the layer, since we expect quantities 
other than ti to vary more rapidly through the weak 
layer than in other directions. It follows that 

d 
[ux] -- tx, (B3) 

p/, + ia•r U 

(letting Oux/Ox• = [ul]/d) and, similarly, 

1 fs , (A8) • [ua] ds- [•a]- 
d 

[u2] = t2. (B4) 
ft•, + ia•r U 

where 

and 

1 
[u•] ds = [•] = •zzz•, 

3•'ftZN A q- ft -• 
TN- [1+ 4a I ( )] (A9a) A+2p ' 

3•'ftZT 3A + 4p --1 

TT-- [1+ 16a• (•'•-fi)] ' (A9b) 
This is the same as saying the traction t on the fault is 
given by 

tl : TN0'11, t2: TT0'12, t3: TT0'13. (A10) 

Finally, 

4 Ou3 

t3 "• (• + 2ft• + •iv:,f ) Ox3 (B5) 

where h i is the second Lam• constant of the material 
infill, and so 

d 
- t•. (B6) 

4 i•ru [u•] A•+2•+• 
Equations (B3), (B4), and (B6) show that the shear 
compliance is 
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and the normal compliance is 

d d 
- = (B8) 

4 iwqf p ZN -- )•f + 2pf + • 
where CT and Cs are given as •)/c 

C¾ = P (B9a) Df 
Lt f + icaqf ' 

CN = lu (B9b) a f 
•f --• 2Lt f + •iw•]f' ac 

cc/ac 
These results are the generalisation of the boundary N 
conditions given by Murty [1976] and Yanovskaya and 
Dimtriyeva [ 1991]. 

In order to test the accuracy of (B7) and (B8) in 
approximating a thin layer we have compared the re- 

5c 
fiection/transmission coefficients calculated using exact 
solutions with those using the above boundary condi- 
tions. The exact solutions were given by Fehler [1982] e f 
(with several typographic errors corrected), and the re- 
flection and transmission coefficients for the slip bound- 
ary conditions were calculated using the equations given 
by Pyrak-Nolte et al. [1990]. The results were given in 
our earlier paper [Liu et al., 1995], where a very good 
agreement was shown between the slip boundary condi- lc 
tions and the exact solutions obtained by Fehler [1982]. 

Notation 

8, Sijkl 

AN, AT 
Ak, 
l 

U11, U33 

•w 

s o o dw , 8ijkl 

$f, 8ifjkl r 

Z, Zij 

eij components of strain. 
Gij components of stress. Es, Er 
[ui] displacement jump (discontinuity) on cij 

fracture. 

[•i] mean jump in displacement on fracture. 
t, ti traction tensor on a fracture. BN, BT 
n, rli normal to fracture surface. B•v , B•. 
A, p Lam• constants of unfractured rock. Nw 
p density of unfractured rock. 7w 
• Poisson's ratio of unfractured rock, equal to 

•/[•(• + •)]. 
P and $ wave velocities in unfractured rock. 

compliance tensor of fractured rock 
(inverse of stiffness tensor). 
compliance tensor of unfractured rock. 

additional compliance tensor due to 
fractures. 

fracture compliance tensor (from definition 
= 

normal and transverse compliances of a 
fracture. 

Kroneker delta; 5ij = 0 if i • j and 5ij = 1 
ifi =j. 
tensor relating traction t on the fracture to 
the imposed stress a. 
diagonal values of the tensor {Tij} 
orientated with the fracture. 

Z•V - ZNTN and Z• - ZTTT. 
total volume of fractured region. 

ZN, ZT 

T•j 

zk, zk 
v 

•f, ]_Lf 

Pf 
d 

C•, C• 
ck, 

ii ii 

C•, C T 

mean area of fracture. 

number of fractures within V. 

mean number of cracks on a fracture 

(model 1). 
number of cracks per unit area of fracture, 
equal to Nc/$ (model 1). 
number of fractures per unit length, 

equal to NfS/V - H• -• - lc•/13 - e/(acec). 
mean spacing between fractures, equal to D; •. 
mean fracture radius. 

mean crack radius (model 1). 
aspect ratio of cracks (model 1). 
total number oœ small cracks, equal to NfNc 
(model 1). 
overall number density of cracks (model 1), 
equal to Nac•/V. 
number density of cracks on a fracture 
(model 1), equal to 7cac •. 
number density of fractures, equal to 

see equations (14a) and (14b) (model 1). 
see equations (16a) and (16b) (model 1). 
overall mean spacing between cracks 
(13 - V/N) (model 1). 
mean distance between cracks on a 

fracture (lc • - SIN - 7• -• ) (model 1). 
response of a single crack to shear and 
tension. 

response of a single dry crack to shear and 
tension. 

see equation (19). 
elements of elastic stiffness matrix for 

fractured rock in the Voigt (6x6) notation 
(inverse of elastic compliance). 
see equations (27a) and (27b) (model 2). 
see equations (29a) and (27b) (model 2). 
number of contacts on a fracture (model 2). 
number of contacts per unit area of 
fracture, equal to Nw/$ (model 2). 
mean radius of contact (welded) regions 
(model 2). 
number density of contacts on a fracture 
(model 2), equal to 7wb 2. 
mean aperture of slip region (model 2). 
relative area of slip on a fracture, 
equal to "/c•rac • for model I and I -"/w•rb • 
for model 2. 

Lam• constants of fracture infill. 

viscosity of fracture infill. 
P and $ wave velocities of fracture infill. 

density of fractured infill. 
mean fracture aperture (model 3). 
see equations (35a) and (35b) (model 3). 
see equations (37a) and (37b) (model 3). 
see equations (39a) and (39b) (model 3). 
porosity of fractured material (or called 
fracture porosity, equal to dDf = NfSd/V) 
(model 3). 
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C1 • C2 number density of fractures in differently 
orientated fracture sets. 
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