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ABSTRACT

Schoenberg, M. and Protazio, J., 1992. ‘Zoeppritz’ rationalized and generalized to anisotropy.
Journal of Seismic Exploration, 1: 125-144.

'The Zoeppritz equations for isotropic plane wave reflection and transmission coefficients are
Cast in a form from which explicit solutions for the reflectivity and transmissivity matrices, as
functions of slowness parallel to the reflecting plane, are derived in terms of four 2 x 2 submatrices
of the Zoeppritz coefficient matrix. Two depend on the elastic properties of one medium, two on
the properties of the other. These submatrices, called the ‘impedance matrices’ of the medium, are
found for anisotropic media also, subject only to the condition that the medium has a mirror plane
of symmetry parallel to the reflecting plane. Then the explicit solutions found for isotropic media
in terms of the impedance matrices hold as well for anisotropic media. The two impedance matrices
associated with a medium are also the building blocks for a simple construction of the propagator
matrix for plane waves in a layer of that medium. The advantages of this approach to reflectivity
are twofold. First, the solution is expressed in a form where the working of its component elements,
and its commonality over a wide range of material behaviors is more manifest, and secondly, the
programming necessary for the computation of reflection and transmission coefficients, and
Propagator matrices, is reduced to the evaluation of the impedance matrices, leading to highly
modular, and easy to debug, programs.

KEY WORDS: elastic plane waves, reflection and transmission, impedance matrices, monoclinic
anisotropy, propagator matrices.

* Work performed while on leave at Universidade Federal do Para from Schlumberger-Doll
Research, Old Quarry Rd., Ridgefield, CT 06877-4108, U.S.A.
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INTRODUCTION

It has long been an aim of geophysicists to be able to identify lithology
by the nature of the reflection of seismic waves at interfaces and/or layers in the
subsurface. This is the problem of amplitude vs. offset (AVQ) analysis.
Recently, with the advent of long offset surface arrays, walkaway VSP, and
cross-well surveys, the problem has become more complex, since the earth is

not isotropic, and the effects of anisotropy become particularly apparent in data
collected over a wide angular aperture.

Even more significantly, three dimensional surveys now make it possible
to evaluate the reflectivity of an interface as a function of azimuth, (AVA) when
the media involved are no longer azimuthally isotropic. It thus becomes helpful
to have a coherent unifying formulation of the forward problem of findin'g
reflection and transmission coefficients at an interface between two elas‘tlc
half-spaces when one or both of the media are anisotropic. Such a formulation
from which emerges an explicit solution to the plane wave reflection and
transmission problem - a matrix generalization of the scalar reflection and
transmission coefficients - for a very broad range of anisotropic media is derived
here. The solution is in terms of submatrices of the coefficient matrix of t'he
Zoeppritz equations (1919) - which are merely equations expressing continuity
of displacement and stress traction across the interface - extended to anisotropy.
The formulation is valid as long as the media involved exhibit up-down
symmetry relative to the interface between the media. In terms of anisotropy,
this is equivalent to requiring that the media are at least monoclinic with a
mirror plane of symmetry parallel to the reflecting plane.

The two dimensional plane strain case occurs whenever the displacements
lie in the plane of propagation (qP and qS waves), and these wave types are
uncoulpled from the anti-plane SH waves which have their displacements
perpendicular to the plane of propagation (for a detailed discussion of SH wave
reflectivity in anisotropic media, see Schoenberg and Costa, 1991). Such a
plane, called a ‘pure shear’ plane, need not be a plane of symmetry for the
medium (Dellinger, 1992). A medium for which the horizontal x,,x,-plane is 2
mirror plane of symmetry, while the vertical x;,x;-plane is a pure shear plane
is almost but not quite an orthorhombic medium; it may have a non-zero value
of ¢y, in standard condensed notation for the elastic modulus matrix. However,
as this doesn’t affect the discussion of two-dimesional anisotropic reflectivity
and transmissivity, it will be assumed for the two-dimensional anisotropic
discussion, that the vertical plane of propagation as well as the horizontal plane

are actually mirror planes of symmetry of both media, implying the media must
be at least orthorhombic.

First the isotropic-isotropic case is considered, the solution to the
Zoeppritz equations is expressed in terms of two 2x 2 ‘impedance matrices’ for
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each medium, and all reflection and transmission coefficients are expressed
explicitly in terms of these impedance matrices. Then, for the
anisotropic-anisotropic case, the solution for the reflection and transmission
coefficients is seen to be identical, and the anisotropic reflectivity and
transmissivity problem is thus reduced to evaluating the two impedance matrices
for each of the media involved. These impedance matrices depend only on the
density and the elastic moduli of the medium and the common horizontal
slowness (Snell’s law) of all the plane waves in the problem, but they entail
finding the eigenvalues and eigenvectors of the Christoffel equations governing
plane wave propagation in the medium.

The very interesting three dimensional case occurs when the propagation
plane is not a mirror plane of symmetry, in which case the velocities,and ray
directions associated with the plane waves need not lie in the plane of
propagation, i.e., that plane defined by the horizontal slowness along the
interface and the normal to said plane. In this case the impedance matrices are
two 3 X 3 submatrices of the 6 x6 Zoeppritz coefficient matrix generalized to
anisotropic media in three dimensions, but the solution is explicitly expressed
in exactly the same form.

The advantages of this formulation are a) heuristic, in that one can see
what each term in the solution is, and how and why almost all anisotropic cases
have a common solution, and b) it allows a modeler to make more modular the
computer code needed for the computation of reflection coefficients and
propagator matrices in full wave layered media programs (see for example,
Kennett, 1974), or in dynamic ray tracing programs.

PLANE STRAIN WAVES IN ISOTROPIC MEDIA

Consider two isotropic half spaces separated by the horizontal x,,x,-plane,
with the xj-axis positive downward, and allow propagation in the vertical
X1,Xj-plane of waves associated with in-plane motion. For harmonic waves with
radial frequency w and horizontal phase slowness s;, so that all waves
interacting at the interface contain the phase factor exp iw(s; x, —t), which will
be suppressed but must be kept in mind, the possible plane waves are downward
and upward compressional waves, denoted by P, and downward and upward
shear waves (with motion in the vertical plane), denoted by S. The positive
sense of each unit eigenvector, denoted by e, associated with a plane wave is
chosen (in accord with Aki and Richards, 1980) such that its horizontal
component has the same sign as that of the horizontal component of phase
slowness, s,, see Fig. 1.

Let the upper incident isotropic medium occupying x; < 0 be specified
by density o, compressional speed «, and shear speed 3. Every plane of an
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symmetry, so clearly, this medium has

in the incident halfspace due to incident
¢ waves for x; < 0 can be written,

vy as, | as,
= ip exp iws; X3 + Tp exp —iws; X;
V3 aS3P L'_aS3P
=7 - -
/3835 ﬁs35 '
+ ig exp iws; X; + Tg exp —iws; X3 (1)
- s S
l_ ﬁ 1_ B ﬁ 1 B
where
- -2 _ -2
5, = V@™~ st) Sas-\f% - s7) .
The vectors associated with each of these waves are unit vectors, chosen in
accord with the above mentioned sign convention assuming s, is positive.The
coefficients ip and ig are the incident compressional and shear wave amplitudes,

respectively, the only two possible incident plane strain wave

frequency o and horizo

the reflected compressional and shea

is

s at the particular

ntal slowness s,. Of course, one of these being zero
means there is only a single incident wave, P or S. The coefficients rp

and rgare
r wave amplitudes.

#

S3

s
N
I'p
/ 0, a, f3
—a S,
A
tp
o,a, [
ts

Fllg. l: Slowness vectors of thf: waves making up the full wave-field at horizontal slowness s; at
plane interface. Unit polarization vectors are the small arrows; the letters subscripted with P or S

are the wave amplitudes.
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From the assumed motion, the stress may be found from tbe isotr(?p1c
stress-strain law which may be put in the form of a stress-velocity relation.
Velocities have been used instead of displacements to elim.inate any frequency
dependence in the derivation. The plane strain stress traction on a constant X3
plane has components 033 = 03 and 0,3 = 0s. Condensefi notation 18 usefi hfere
even for the isotropic case to better smooth the below discussed ge{lera!lzatlon
to anisotropy. The isotropic stress-velocity law applied to the velocity field 1
gives

o; ] —pall —pal’ _
= ip exp iws; X; + Tp 2 exp —iws; X3
s - 2Qaﬁ28183p 20037883,
i 200%:83 s 29[335133S .
+ i exp iwsy X; + Ts exp —iws; X, (2)
| —oht ol
C=1-28s.

Equations (1) and (2) may be reordered to yield the following matrix form for
velocity and traction components in the incident medium,

v |
b,(x;) = = X [Al)i + A7Mxg)r] L
03
L
X3
o (3}
Os
by(x;) = =Y [Alxy)i — A7 xg)r]
V3
-
where :
ip Cp exp iws; X; 0
i= , b= , Alxy) = s
ig rs 0 exp ia)s3sx3
and -
as, Bs;_ 1 ~200fFs;s;, —efl )
X = , Y= . @
-ofl’ 2@[)’351535 as;, —s,

Matrices X and Y are the impedance matrices of an isotropic elastic medium,
and depend only on g, &, 8 and horizontal slowness s,. Rows of the impedance
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matrices are either dimensionless (rows corresponding to velocity components)

or have dimension impedance (rows corresponding to traction components). The
determinants of the impedance matrices are

1X| = oafss , | Y| = oafs;_ . )

which necessarily also have dimension impedance.

Let the transmitting isotropic medium occupying x; > 0 be specified by
density o', compressional speed a’, and shear speed . Every quantity then
referring to this medium will be a primed quantity. However in the lower
medium, assume there is no upward wave incident on the x; = 0 interface from
below, but only downward transmitted waves. Then the velocities and stresses

may be written, by analogy to (3) and (4) with i replaced by t and r set
identically to Q, as ,

[ ]
Vi
by (x;) = = X'A'(x3)t,
03
-
iy (6)
o |
by.(x;) = = YA(X3)t,
V3
-
where
lp
[ = s
tS

tp and tg being the transmitted compressional and shear wave amplitudes,
respectively. X’ and Y’ are the same matrix functions of parameters as

described in (4) but with the primed parameters of the lower transmitting
medium,

At the ‘welded’ interface x; = 0, the velocity and stress traction
components are continuous and A = A’ = I, the identity matrix, yielding the
Zoeppritz equations in the following matrix form,

XGi + ) = X't,

Yi-r =Yt (7)
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Assuming for now that X and Y are invertible (singularity occurs at a horizontal
slowness for which at least one of the reflected waves is a grazing wave, i.e.,
has a horizontal group velocity), (7) may be written

i+ r) = X1X't,

G-r =YYt (8)

Then addition and substraction give

2i = X'X'+ Y'Y,

2r = X7'X'- Y'Y, ©9)
which can be solved, assuming (X 'X’+ Y~'Y’) is invertible (singularity here
occurs at a horizontal slowness for which an interface wave, e.g., a Stoneley
wave, exists), first for t and then for r, yielding

t="Ti=2X"X+Y'Y)V,

r=Ri=XX-Y'Y)XX+ Y'Y (10)
R and T are the reflection and transmission matrices and this is the explicit
solution of the generalized Zoeppritz equations for all s,, s, when neither X, Y
nor (X~'X'+ Y~'Y’) is singular.

Note that the solution to the Zoeppritz equations, T and R from (10), can

be written without Y-!, in case Y is singular. Straight forward matrix
manipulations yield

T

2Y°'Y(XTIX'Y'C'YY + DY,

R = X'XY"Y + D'X'X'Y''Y - D). (11)

Similarly, T and R from (10), can be written without X~*, in case X is singular.
In the same manner, one finds that

GP2 1122
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T =2 X -IXU + YYX X)),

R=(I+YYX'X'W-Y'YX 'X. (12)

Alternate solutions to (7) may be found assuming that X’ and Y’ are

invertible (singularity corresponds to grazing waves in the transmitting medium),
in which case (7) may be written

X'XGi+r =t

Y-'YG - 1) =t (13)

Then elimination of t from (13), solving for r = Ri, and then solving for
t = Ti from either the first or second of (13) give

R = (Y'Y + X' XY’ 'Y - X'7'X),
T = 2 X 7'X(Y'Y + X' X) 'y ly (14)

= 2Y°'Y(Y'Y + XT'X)TXX

An imaginary value for any of the vertical slownesses implies that the
corresponding wave is inhomogeneous, or evanescent. The downward wave
decays in the +x; direction, s;, = i+/ (s? — a~?) for a P wave and/or

sy, = iV(s} — B9 for a S wave, similarly in the primed medium. The upward
wave decays in the —x; direction. The complex eigenvector merely means the
two components are out of phase for an evanescent wave. A suitable sign
convention for the choice of eigenvectors can then be stated as follows: compute
the eigenvectors algebraically in terms of the real values of s; for the pre-critical
case, and carry the formulation over to the post-critical case by using the
complex values of s; in the same calculation. This yields, for an evanescent P
wave, a positive real 1-component and a positive imaginary 3-component; for
an evanescent S wave, a positive imaginary 1-component and a negative real

3-component. Specifically, the components of R and T as calculated from (10),
(11), (12) or (14), have the meaning

RPP R[’S TF’P TPS
R = , T= : (15)
Re R Ty Ty
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where the first subscript denotes the type of reflected or transmitted wave and
the second subscript denotes the type of incident wave.

Note that a homogeneous (as opposed to evanescent) incident wave at a
critical angle for the incident medium can only occur when's; = 1/ a, i.e.,
when a shear wave is incident at the incident P critical horizontal slowness. In
this special case, s; = 0, Y is singular and the solution (assuming &’ # a so Y’
is not singular) is given by (11). Since, at the P critical horizontal slowness, $3,
=0,Y,; =Y, = 0and it may be seen that R and T are of the form

If there were an incident grazing P wave at grazing incidence, it would be
exactly canceled by the reflected grazing P wave giving a null effect, and
reflected and transmitted waves are due only to the incident S wave at the P
critical horizontal slowness.

Thus it has been shown how reflectivity and transmissivity for isotropic
media can be calculated using the submatrix form of the Zoeppritz equations.
However the real power will be seen to be in the application to anisotropic
media, where the problem reduces to finding the corresponding X and Y
matrices for each anisotropic medium.

PLANE STRAIN WAVES IN ANISOTROPIC MEDIA

For wave propagation to consist only of waves which are associated with
in-plane motion, uncoupled from any motion normal to the vertical plane, the
vertical plane must be at least a mirror plane of symmetry, and as mentioned
above, there must be a horizontal plane of symmetry for up-down symmetry.
If a medium has two such symmetry planes it is at least orthorhombic. Consider
propagation in the vertical x;,x;-plane through orthorhombic media aligned so
that their natural coordinate planes, the planes of mirror symmetry, are parallel
to the coordinate planes. A tetragonal or cubic medium aligned along the
coordinate planes, a hexagonal medium with its symmetry axis along either of
the three coordinate axes, or an isotropic medium is a special case of an aligned
orthorhombic medium, and thus is automatically included in the discussion of

this section.

An orthorhombic medium, in condensed notation, has a 6x6 elastic
modulus matrix of the form
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¢y ©Cz ¢C3 O 0 0 T
€2 C» Cn 0 0 0
¢ = Ca  Co3  Cy 0 0 0
- 0 0 0 cyu 0 0 (16)
0 0 0 0 5 0
L 0 0 0 0 0 ¢ |

The stress-velocity relations prescribed by (16) applied to plane strain velocity,
vi(x,,X;), vi{x;,x;), gives the following equations of motion on the particle
velocity components v, and vs,

CuVin + CssVigs + (Css +Ci3)vays = 0V,

(Css +Cy3)Vins + CssVan + Ca3Vazs = OV, {17
Thus plane strain motion depends on only four of nine elastic moduli, ¢y, €33
Css and ¢,;. Substitution of a harmonic plane wave of unit amplitude

Vi €

exp io(s;x; + S;%3 — t), (18)
V3 €

into (17) gives the plane strain Christoffel equations on the allowable slowness

vectors and their associated eigenvector components e,, €;,

2
C)yS] + CssS3 = 0 {Css + €13)515; € 0 (19

2
(css + Cy3)5:8; Css$i + €385 — O € 0

Given s,, the vanishing of the determinant for the existence of a non-trivial
solution gives a biquadratic equation on s;,

CiCss(s3)? + [fessleny + c) + Efdsi

- oley + c9)lsi + (eysi ~ Oessst ~ @) = 0, (20
where E?, the key anisotropy parameter which determines the deviation of the

qP slowness surface from an ellipse and the gS surface from a circle (see for
example Helbig and Schoenberg, 1987), is given by
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E? = (c;; — Css){cy3 — Cs5) — (C13 + Css P

The biquadratic equation has two solutions, and for real values of s}, let
S§P<S§S. The four roots are denoted by +s;,, —S3,, +5;, and —s3 where +
denotes a downward wave, — an upward wave. A downward wave is
characterized by a downward pointing group velocity vector or the root having
a positive imaginary part if it is non-real. Note that s3_ and sj; may, in some
special circumstances, not be real, in which case, the difference between the two
downward roots are the sign of the real part. Lets arbitrarily specify the
‘negative real part’ root to be the P root, the ‘positive real part’ root, the S root.
Each root has its associated unit eigenvectors ey, €5, eg and eg, respective’]y,
with the 1-component of all eigenvectors taken as positive for s, > 0 which
implies that the 3-component is of opposite sign for corresponding downward
and upward waves.

Corresponding to (1) and (2), we have for the velocity and traction
components in the incident medium

Vi FeP €p,
. 1 R .
= ip exp iws; X3 + Ip exp —iws; X;
V3 €p, Oy
e |_es
] i +r | exp —iws; X3 21)
+ ls exp ]a)S3SX3 S 3S
-e
| 55 | s
and
O3 —{cyssiep, + ‘33353Pel>3) )
= ip | exp iws; X3
03 —C55(S|ep3 + S3Pepl i
— -
..(CBSICPI + C33S3Pep3) .ws .
+ rp eXp —1083.%;
css(siep, + 53,6
- -
— (e85 t+ 033535353) N
+ ig €Xp 1S3 X3
—css(sies, + 5385,
— (c381€5, + €383 85)
1 s 3 .
—iws; X (22)
+ rg €xp —1ws; X3 ,
css(sies, + 535651) i
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with e, and es taken to be positive; the velocity field in the transmitting
medium, X; > 0, consists only of downward propagating waves, with
coefficients t, and tg instead of i, and ig respectively, and, as above for the
isotropic case, it can be written exactly as for the incident medium using primed
parameters sgp, sgs, e; and e, instead of unprimed parameters, with e{,1 and eg,l
taken to be positive. Thus the interface conditions are four continuity equations,
which, when written as the continuity of two ‘vectors’ by and by shown in (3),
give the plane strain generalized Zoeppritz equations, (7), with

€p, €s,
x = »
—(cy35.8p + €338 €p) —(c38,85 + C3353 €5 )
1 P "3 1 s 3
- - (23)
- CSS(Slep3 + S3Pep1 ) - 055(51683 + S3Sesl)
Y —_ ]
L ePJ eSs |

and X’ and Y’ are the same, except with primed parameters replacing unprimed
parameters. Matrices X and Y depend only on density @, the four stiffness
moduli, ¢;, €33, Css, Cy3, and the horizontal slowness s,. The dimensions of the
various terms are the same as the corresponding terms in the isotopic case. The
determinants of the impedance matrices are given by

eP es '_53 ep —53 es
1X] = ¢y 1 1 , Y] = css o S , (24)

~$,8p, —~§. € e
3,5P, 535 s, | P

The solution to (7) from the previous section on isotopic media applies as well

to this case of plane strain waves in anisotropic media when X and Y are given
by (23).

THREE DIMENSIONAL WAVES IN ANISOTROPIC MEDIA

In the general three dimensional case, there are three down and three up
solutions for s, for each value of horizontal slowness specified by s,,s,. Thus,
reflectivity, transmissivity, and impedance matrices are 3x 3. For up-down
symmetry, there must be a horizontal plane of symmetry, i.e., the medium must
be at least monoclinic. In condensed notation the 6x 6 elastic modulus matrix
has the form
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(¢, ¢ ¢3 O 0 Cy
Ciz €2 Cxn 0 0 cx
Ciz €3 C3i 0 0 ¢y , (25)
¢c= 0 0 0 ¢y ¢5 O
0 0 0 C4s Css 0
Ce Cs Cx O 0 Ce ]

Note that the case of an orthorhombic medium whose vertical symmetry plaqes
are at a non-zero azimuthal angle from the vertical coordinates planes (still with
a horizontal symmetry plane) is included in this discussion; the 13 non-zero
stiffnesses of (25) are derivable from the 9 stiffnesses of (16) by rotating the
coordinates the required azimuthal angle. Substitution of a harmonic plane wave
of unit amplitude, now with velocity and slowness not lying in any particular
plane

Vi €
v, | =1 e, | expiolsx, + sx; + 8% —1), (26)
V3 €3

into the equations of motion for a monoclinic medium gives the three
dimensional Christoffel equations on the allowable slowness vectors and their
associated eigenvectors,

[C(s) — olle = 0, 27)

where I'(s) is given by

-C“Sf + CesS5 + CssS3 + 2C,5)5,  CyeSi + 2S5 + Cass3 + ApSIS; ApsiS; + A, |
Cig% + Ca655 + CusS3 + ApSiS,  CeSt + CpSs + CuS3 + 2C2515; Asisy + Ayssss
ApSiS; + Ausss, AuSis; + ApSs; CssSs + CauSh + €335 + 2C455;S,
with

Agy = Cyy + Cy, Ajy = Cs5 + Cp3y App = Cos + Cizs Ags = Cy + Cys.

Given s,,s,, the vanishing of the determinant for the existence of a non-trivial
solution gives a bicubic equation on s; with six solutions denoted by ++/ sﬁP,
+/: s§s, +/ s§T, with associated unit eigenvectors e;, eg, e, respectively, Here
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subscript T denotes the tertiary or third wave and as a convention, specify, for
real s3 , 53, and s,
P S T

2 2 2 (28)
83, < 85 < 83 .

For ‘mildly’ anisotropic media, the P will denote quasi-P, the S, the first
arriving quasi-S, and the T, the last arriving quasi-S.

Now in three dimensions, having found down and up going eigenvalues

and their associated eigenvectors, the velocity components (corresponding to
(21)) in the incident medium are

N I -
v} . ep1 . eP‘ .
Vo |=dp | €p, |€Xpiws3X; + Ip | €p | eXp —iws; X
V3 ep, - ePS‘J
. eslT . [— eSl .
+ 05 | e, | expiws; X3 + 15 | e, | exp —iws;X
eS3 —eS3
. eTl . eTl . (29)
+ i | er,| expiws;X; + fr | er,| exp —iws;X;,
| T Loy

and the components of the traction on a constant X, surface (corresponding 10
(21)) are found from the stress-velocity law for monoclinic media, the elastic
modulus matrix for which is given by (25). The sign convention for the choice
of the sense of the eigenvectors can be generalized to the case when both the
horizontal slowness and the eigenvector no longer lie in the 1,3-plane, by stating
it as follows: the positive sense of the eigenvector is chosen such that e«s; >0,
where s;; = sie; + s,e, is the horizontal part of the phase slowness vector.

The velocity field in the transmitting medium, x; > 0, consists only of
downward propagating waves, with coefficients t;, t5 and t; instead of ip, 15 and
iy, respectively, and, as above, it can be written exactly as for the incident
medium using primed parameters s} , S , Sj., €p, e, and ey, instead of
unprimed parameters. Thus the continuity equations at the interface x; = 0 of
the three components of velocity and the three components of traction may be

expressed as the continuity, across the interface x; = 0, of two three-component
‘vectors’,

v, as
by=|v,| , by =] g , (30)
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which gives the three dimensional generalized Zoeppritz equations, (7), with

e
2]

-:]-n-

and

(Cl3eP + CyCp, )s,
(C23eP T Cylp, )Sz
—C33Cp S3,

—(Cs58; + €455 )eP
(Cssev + CasCp, )33

—{Cy4sS; + CusSy )eP
(C4sep + Calp, )53

L. ePB

-
I
o
w
-
=

—(cpse5, + Ci€s,)S1
- (C23esz + C36esl )52
— C33€s,53

—(Cs58) + CusS2 )es3
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3D

X' and Y’ are the same as above, except with primed parameters replacing
unprimed parameters. Matrices X and Y depend on density g, all thirteen
non-zero stiffness moduli, and the horizontal slowness s,,s,, as can be seen from
the Christoffel equations (27). However, if s, were to equal zero, for example,
the impedance matrices would not depend on c,,, ¢;, Or Cy. As above, terms in
rows corresponding to velocity are dimensionless, while terms in rows
corresponding to stress have dimension impedance. The determinants of the
impedance matrices are given by

€p €s
1 1
1X| = ¢y €p, €s,
- S3Pep3 - SSSes3
, 53 €p,
Y| = (cssca — Cis) S3.8p,
Cp

53 €5,
S3 €5,

S3 €r,
S3 e’l‘z t

(32)
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and note that in three dimensions, |Y| has dimension impedance®. The
coefficients, cy; of |X| and cs5¢y — %5 of | Y|, are invariant with respect to
rotation of the coordinate system about the xj-axis. The discussion of the
solution to (7) for the isotropic case applies as well to this case of monoclinic

media when X and Y are given by (31), although now inversions of 3x3
matrices are required.

LAYER PROPAGATORS FROM IMPEDANCE MATRICES

The propagator matrix for an up-down symmetric anisotropic layer can
also be found in terms of the impedance matrices of the medium. Consider an
anisotropic layer, in general three dimensional, occupying the region
X; <X3<Xy, . At horizontal slowness specified by s,,s,, let the layer have
impedance matrices X and Y.

Let d denote the vector of complex amplitudes of the downward (+X;
propagating) waves and u denote the vector of complex amplitudes of the
upward (-x; propagating) waves, with the vertical phase term of each wave
calculated relative to x; = 0, see Fig. 2. For an up-down symmetric layer, the
velocity components and stress traction components can be written in terms of
d and u in the following matrix form,

v, :
by(x;) = v, | = X[A(x)d + A7'(x)u]
| %
X3 (33)
o; |
by(x;) = g, 1 = Y[Alx)d = A'(x)u] ,
where - X3
exp iws; X; 0 0
Alxy) = 0 exp iws; X; 0
0 0 exp iws; X;

S3,. S3, and s;_ are the three vertical slownesses for downward propagating
waves. Because of up-down symmetry, the vertical slownesses of the upward
propagating waves are just the negatives of these. A P-wave is a primary wave,
an S-wave is a secondary wave and a T-wave denotes a tertiary, or third, wave,
because of the fact that in anisotropic media, the polarization of each wave can
be very different from the longitudinal and shear waves in isotropic media. Of
course, in the two dimensional case, i.e., in a vertical plane of symmetry of the
medium, there will be no third wave and all the matrices of (33) will be 2x2
matrices. The two equations (33) can be combined, yielding
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b [xa xa'][d] [x x[[a o][d d
= = EU(X3) -(34)

b,] |YA =YA'| ju|l |Y -Y| |0 A'| |u " lu
X

X3 X3 3

The vector composed of d and u can be written in terms of the vector composed
of by and by at x; = Xx; , the top of the layer,

d by
= U™l (x,) (35)
u by

3t

and substitution of (35) into (34) at X; = x;,, the bottom of the layer, gives

by by
= Ul )U(x;) | (35)
by by
X3 X3¢
X X |[Atg-x) 0 x' Y || by
= 15
Y -Y 0 A, —xg) | | X7 =Y ] by
J .
bx
= Q(x3b-—x3,) . (36)
b,
-

t

Q is the propagator for the layer, relating the velocity and traction at the bottom
to the velocity and traction at the top.

o, Gijp X(s;5 0, ¢;), Yis;5 0, ¢5) - h e x

X3

Fig. 2. A schematic diagram of the down waves, the heavy arrow d, and the up waves, the heavy
arrow u, in a layer of thickness h.
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Letting the layer thickness X3,—~ X3, = h, and noting that

cos ws; h 0 0
[Ah) + A2 = 0 sinws;h 0 = C(h),
0 0 sin ws; h
- - (37)
sin ws; h 0 0
[Ath) — A”'W))2 =i 0 °  sinws;h 0 = iS(h),
0 0° sin a)s3Th |

one finds the simple to write, simple to program, form of the propagator matrix,

X Ch) X! iX Sth) Y™!
Q) = . (38
iy S(h) X! Y Ch) Y!

Note that if the layer is thin, i.e. for propagation such that whs; < 1 for
all waves in the problem,

I iohX s Y™!
Q) = , (39
iwhY s X! I
where
s;, 0 0
s = 0 s3, 0
0 0 s

This approximate propagator matrix (39) is the order o expansion of the solution
of the system of the first order differential equations on velocity and traction
governing harmonic wave propagation in the medium, which has the form

by 0 XsY'|[ b,
0/0x, = iw : (40)
by YsX' 0 by

Thus, independent calculation of the differential equations (from the equatioris
of motion and the stress-velocity equations) yields for XsY™! and YsX},
respectively, for the two-dimensional (orthorhombic in plane symmetry) case,

"‘1/(:55 —S; "Q+(C“_Cf3/C33 )Sf "SIC13 /C33
XsY' = , YsX™!' = ; (41)

-5 =0 =$,C13 /33 —1/cy,

and for the three-dimensional (monoclinic, up-down symmetric) case
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—c‘“/(c‘“cﬁ - ciS) C45/(044055 - Ci5) -5 T
XSY‘l - 045/(C44C55 - CES) _CSS/(CMCSS —_ cis) -5,
_Sl -3 -0
- V)]
—0+d; ST +2dis 8,5+ des S5 dyp 5P (g +dyp )58+ dyg 53 — (5,134 5, €54 )/Cy
YsX*! = | dyosP+ (dg+d)p)s,8, 4 0y s —0+0g 524205 5,53+ A $2 = 5,05+ 55 €23 )33
L - (SIC]3 + SZ C36 )/C33 - (51036 +52 C23 )/C33 - l/C33
with 2
dij = ¢ — ceyley;, i,j =12,0r6.

For all cases of up-down symmetry, XsY~! and YsX ! are symmetric matrices.
This form gives the approximate propagator matrices without the necessity of
evaluating the components of matrix s or their associated eigenvectors.

Further if this thin layer is itself made up of n layers of width h;,
numbered from 1 to n from the top, so the total thickness is H = Y}, h;, the
propagator of this set of n very thin layers is now given by

I ioH < XsY™! >
QH) = , (43)
ioH < XsY ! > 1

t

where < - > denotes the thickness weighted average.

CONCLUSIONS

This paper has been meant to be a guide through the labyrinth of
reflectivity from anisotropic media. A general and efficient formulation for
reflection and transmission of plane waves at an interface between elastic media
has been derived for anisotropic media, which allows for more straightforward
reflectivity and transmissivity calculations in both two and three dimensions. For
all cases the formulae for reflection and transmission matrices are identical to
those given in (10), or alternatively in (11), (12) or (14). Thus all anisotropic
reflectivity problems when the media have up-down symmetry have the same
explicit solution in terms of the impedance matrices, which can also be used for
the convenient generation of propagator matrices for anisotropic layers. Note
that at a fluid-anisotropic solid interface, the reflection and transmission
coefficients can be calculated merely by letting the impedance matrices for the
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fluid medium be those for an isotropic medium and letting the shear speed
approach zero. Similarly, reflection coefficients from a free surface of an
anisotropic medium can be calculated by letting the impedance matrices of the

transmmmg medium be those of anisotropic medium and letting the density
o' = 0 and/or &’ ,8' = 0.

This note is not meant to imply that everything about the forward problem
is settled, or that reflection and transmission coefficients between anisotropic
media have not been computed previously (see for example Rokhlin et al.,
1989). However, there are still many aspects of the problem that are not clear,
especially in three dimensions. These include 1) the effects of being at or near
the repeated roots of the slowness equation, i.e.,the vanishing of the determinant
of the matrix I' — gl in (27), for the s3, 2) precisely how to treat triplicating
regions, particularly when these regions overlap with those regions of critical
reflection or transmission, and 3) how to categorize the entire range of
post-critical behavior possible in three dimensions. The power of the formalism
is that the entire reflection behavior of an anisotropic medium is encapsulated
in its two impedance matrices taken as functions of horizontal slowness.
Hopefully, it will help in the tremendous work ahead in determining the
information present in amplitude vs. angle and azimuth data, and in extracting
that information.
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