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Abstract The triaxial nature of the tectonic stress in the

earth’s crust favors the appearance of vertical fractures.

The resulting rheology is usually effective anisotropy with

orthorhombic and monoclinic symmetries. In addition, the

presence of fluids leads to azimuthally varying attenuation

of seismic waves. A dense set of fractures embedded in a

background medium enhances anisotropy and rock com-

pliance. Fractures are modeled as boundary discontinuities

in the displacement u and particle velocity v as ½j � uþ
g � v�; where the brackets denote discontinuities across the

fracture surface, j is a fracture stiffness, and g is a vis-

cosity related to the energy loss. We consider a trans-

versely isotropic background medium (e.g., thin horizontal

plane layers), with sets of long vertical fractures.

Schoenberg and Muir’s theory combines the background

medium and sets of vertical fractures to provide the 13

complex stiffnesses of the long-wavelength equivalent

monoclinic and viscoelastic medium. Long-wavelength

equivalent means that the dominant wavelength of the

signal is much longer than the fracture spacing. The

symmetry plane is the horizontal plane. The equations for

orthorhombic and transversely isotropic media follow as

particular cases. We compute the complex velocities of the

medium as a function of frequency and propagation

direction, which provide the phase velocities, energy

velocities (wavefronts), and quality factors. The effective

medium ranges from monoclinic symmetry to hexagonal

(transversely isotropic) symmetry from the low- to the

high-frequency limits in the case of a particle–velocity

discontinuity (lossy case) and the attenuation shows typi-

cal Zener relaxation peaks as a function of frequency. The

attenuation of the coupled waves may show important

differences when computed versus the ray or phase angles,

with triplication appearing in the Q factor of the qS wave.

We have performed a full-wave simulation to compute the

field corresponding to the coupled qP–qS waves in the

symmetry plane of an effective monoclinic medium. The

simulations agree with the predictions of the plane-wave

analysis.

Keywords Fractures � Anisotropy � Attenuation �
Schoenberg–Muir theory � Boundary conditions

List of Symbols

v Particle-velocity vector

u Displacement vector

x Angular frequency

Z = ðjþ ixgÞ�1 Fracture compliance matrix

r Stress tensor

eI, eij, I = 1,…, 6,

i, j = 1,…, 3

Strain components

cIJ, I, J = 1,…, 6 Elasticity components
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sIJ, I, J = 1,…, 6 Compliance components

b Angle between the fracture plane and

the y-axis

P Stiffness tensor

q Mass density

k, l, E = k ? 2l Lamé constants

C Kelvin–Christoffel matrix

vp Phase velocity

Q Quality factor

ve Energy velocity

h Phase velocity angle

w Energy-velocity angle

1 Introduction

Wave propagation through fractures, faults, and cracks is

an important subject in seismology, exploration geophys-

ics, and mining. Faults in the earth’s crust constitute

sources of earthquakes (Pyrak-Nolte et al. 1990) and

hydrocarbon and geothermal reservoirs are mainly com-

posed of fractured rocks (Nakagawa and Myer 2009).

Applications in geotechnical engineering, such as analysis

of the dynamic stability of rock slopes and tunnels, involve

the study of imperfect joints in rock masses (Perino et al.

2010; Fan et al. 2011). In geophysical prospecting,

knowledge of reservoirs’ fracture orientations, densities,

and sizes is essential, since these factors control hydro-

carbon production (Hansen 2002; Hall and Kendall 2003;

Grechka and Tsvankin 2003; Barton 2007). The analysis of

the data exploits the fact that seismic velocity and attenu-

ation anisotropy due to the presence of fractures are sen-

sitive to key properties of the reservoir, such as porosity,

permeability, and fluid type.

A few frequency-dependent models have been devel-

oped to describe anisotropy and attenuation. Carcione

(1992) generalized Backus averaging to the anelastic case,

obtaining the first model for Q-anisotropy (see Carcione

2007). Analyses on sequences of sandstone–limestone and

shale–limestone with different degrees of anisotropy indi-

cate that the quality factors (Q) of the shear modes are

more anisotropic than the corresponding phase velocities,

cusps of the qSV mode are more pronounced for low fre-

quencies and midrange proportions, and, in general,

attenuation is higher in the direction perpendicular to lay-

ering or close to it, provided that the material with lower

velocity is the more dissipative. This model has been fur-

ther analyzed by Picotti et al. (2010), who shown how to

obtain the medium properties with quasi-static numerical

experiments. Other alternative models of Q-anisotropy

were proposed by Carcione and Cavallini (1994) and

Carcione et al. (1998). A brief description of all these

phenomenological models can be found in Carcione

(2007). Zhu and Tsvankin (2007) analyze in detail the

attenuation in orthorhombic media, assuming homoge-

neous viscoelastic waves. They simplify the interpretation

for processing purposes by introducing a set of attenuation

anisotropy parameters. A Backus type model to describe

wave propagation in fractures has been introduced by

Carcione (1996a), where plane layers are separated by thin

continuous layers of viscous fluid. A similar model is

considered by Liu et al. (2000), where the fracture is a very

thin soft viscous layer.

On the other hand, a recently developed model (Chap-

man 2003; Maultzsch 2005) explicitly describes the effects

of cracks and fractures on wave propagation, since the

elastic constants are derived in terms of microstructural

parameters and, therefore, the model is predictive. It

describes attenuation and velocity dispersion at seismic

frequencies and predicts how these effects are related to the

fluid type and size of the fractures. An approach to

explicitly model cracks and fractures is proposed by Zhang

and Gao (2009). Their scheme treats the fractures as non-

welded interfaces that satisfy the linear-slip displacement

discontinuity conditions instead of using equivalent med-

ium theories. Hence, the algorithm can be used to charac-

terize the seismic response of fractured media and to test

equivalent medium theories. Other poroelasticity models

describing anisotropic attenuation are given by Krzikalla

and Müller (2011) and Carcione et al. (2011), who obtain

the five complex and frequency-dependent stiffnesses of an

equivalent medium corresponding to thin poroelastic

layers.

Modeling fractures requires a suitable interface model

for describing the dynamic response of the joint. Theories

that consider imperfect contact were mainly based on the

displacement discontinuity model at the interface. Pyrak-

Nolte et al. (1990) proposed a non-welded interface model

based on the discontinuity of the displacement and the

particle velocity across the interface. The stress compo-

nents are proportional to the displacement and velocity

discontinuities through the specific stiffnesses and one

specific viscosity, respectively. Displacement discontinu-

ities conserve energy and yield frequency-dependent

reflection and transmission coefficients. On the other hand,

velocity discontinuities generate energy loss at the inter-

face. The specific viscosity accounts for the presence of a

liquid under saturated conditions. The liquid introduces a

viscous coupling between the two surfaces of the fracture

(Schoenberg 1980) and enhances energy transmission, but,

at the same time, this is reduced by viscous losses. The

model may account for slip and dilatancy effects. Chi-

chinina et al. (2009a, b) describe anisotropic attenuation in

a transversely isotropic (TI) medium using Schoenberg’s
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linear-slip model with complex-valued normal and tan-

gential fracture stiffnesses. The theory and laboratory

experiments show that, in the vicinity of the symmetry

axis, P-wave attenuation is comparable to S-wave attenu-

ation when the fracture is filled with a fluid. On the other

hand, in the presence of dry fractures, P-wave attenuation

is much greater than S-wave attenuation.

In this work, we generalize the orthorhombic model

given by Schoenberg and Helbig (1997) to the anelastic

monoclinic case, by introducing a particle-velocity dis-

continuity in the fracture surface, allowing us to describe

Q-anisotropy. The medium consists of sets of vertical

fractures embedded in a TI background medium (generally,

horizontal fine layering) to form a long-wavelength

equivalent monoclinic medium. Using the theory of

Schoenberg and Muir (1989), we obtain the 13 complex

and frequency-dependent stiffnesses of this medium. We

then obtain the quality factors and wave velocities as a

function of frequency and propagation angle.

2 Interface Model

Let us consider a planar fracture. The non-ideal charac-

teristics of the interface are modeled by imposing suitable

boundary conditions. The model proposed here is based on

the discontinuity of the displacement and particle-velocity

fields across the interface. Then, the boundary conditions at

the interface are

j � ½u� þ g � ½v� ¼ r � n; ð1Þ

(Pyrak-Nolte et al. 1990; Carcione 1996b), where u and v

are the displacement and particle-velocity components,

respectively, r is the 3 9 3 stress tensor, n is the unit

normal to the fracture, j is the specific stiffness matrix, and

g is the specific viscosity matrix (both of dimensions

3 9 3). They have dimensions of stiffness and viscosity

per unit length, respectively. Moreover, the symbol ‘‘�’’
indicates scalar product and the brackets denote disconti-

nuities across the interface, such that for a field variable /, it

is ½/� ¼ /2 � /1;where 1 and 2 indicate the two sides of the

fracture.

The particle velocity is given by

v ¼ _u; ð2Þ

where a dot above a variable indicates time differentiation.

In the Fourier domain,

v ¼ ixu; ð3Þ

where x is the angular frequency and i ¼
ffiffiffiffiffiffiffi

�1
p

: Equation

(1) then becomes

½u� ¼ Z � ðr � nÞ; ð4Þ

where

Z ¼ ðjþ ixgÞ�1 ð5Þ

is a fracture compliance matrix, whose dimension is length/

stress. This approach is equivalent to the linear-slip model

introduced by Schoenberg (1980). In fact, Eq. (5), with g ¼ 0;

is given in Coates and Schoenberg (1995) and Schoenberg and

Helbig (1997). Three models have been studied by Liu et al.

(2000) to obtain the expression of Z for different fracture

models. Two of the models only provide the real part of Z. The

third model describes the fracture as a thin and soft visco-

elastic layer embedded in an isotropic elastic background

medium, where Z can be obtained in terms of the thickness,

Lamé constants, and viscosity of the soft material infill. The

resulting equivalent medium has TI symmetry. Similarly,

Carcione (1996a) described the infill by a viscous fluid.

The compliance matrix Z of the set of fractures is the

diagonal non-negative matrix

Z ¼
Z1 0 0

0 Z2 0

0 0 Z3

0

@

1

A

¼
ðj1 þ ixg1Þ

�1
0 0

0 ðj2 þ ixg2Þ
�1

0

0 0 ðj3 þ ixg3Þ�1

0

@

1

A;

ð6Þ

where Z1 is the normal compliance, Z2 is the horizontal

tangential compliance, and Z3 is the vertical tangential

compliance. The fact that Z2 6¼ Z3 means that the texture of

the fracture surface has different roughnesses vertically and

horizontally, while the fact that there are no off-diagonal

components means that, across the fractures, the normal

motion is uncoupled from the tangential motion.

A common situation in the earth’s crust is to have a finely

layered medium and vertical fractures. Figure 1 shows such a

case, where q = 2 sets of long vertical fractures are embedded

in a TI medium with a vertical symmetry. This background

medium is the long-wavelength equivalent of the finely lay-

ered medium, according to Backus (1962). The mechanical

(viscoelastic) representation of the fracture boundary condi-

tion by a Kelvin–Voigt model is illustrated in the figure,

according to the stress-displacement relation

r � n ¼ ðjþ ixgÞ � ½u�; ð7Þ

where the model simulates the fracture by a zero-width

layer of distributed springs and dashpots. The quantity jþ
ixg is the complex modulus per unit length of the Kelvin–

Voigt element (e.g., Carcione 2007).

A displacement discontinuity yields compliance, while a

discontinuity in the particle velocity implies an energy loss at
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the interface (Carcione et al. 1996b, 1998, 2007); j ¼ 0 gives

the particle-velocity discontinuity model and g ¼ 0 gives

the displacement discontinuity model. On the other hand, if

j!1 or g!1; the model gives a welded interface.

2.1 The Equivalent Monoclinic Medium

Let us consider a background TI medium. The stress–strain

relation is

r1

r2

r3

r4

r5

r6

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

¼

r11

r22

r33

r23

r13

r12

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66
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@

1

C

C

C

C

C
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C

A

; ð8Þ

where

2c66 ¼ c11 � c12;

rI denotes the stress component and eI denotes the strain

component in the Voigt notation (e.g., Carcione 2007),

such that

½e1; e2; e3; e4; e5; e6�> ¼ ½�11; �22; �33; 2�23; 2�13; 2�12�>;
ð9Þ

where �ij are the strain components, cIJ are the elasticity

constants, and C is the elasticity matrix.

The background medium can easily be generalized to a

viscoelastic medium by using one of the three models of

anisotropic anelasticity proposed in Chapter 4 of Carcione

(2007). The generalization implies that the elasticity con-

stants cIJ become complex and frequency dependent. Here,

the purpose is to analyze the attenuation due to the fracture

solely; however, in the last example, we consider an

effective HTI (TI with a horizontal symmetry axis) med-

ium to test the commonly used equation by which the total

dissipation factor is equal to the dissipation factor of the

background medium plus the dissipation factor due to the

fractures.

Schoenberg and Muir (1989) showed how to combine

arbitrary sets of elastic thin layers and find their long-

wavelength equivalent medium properties. The method is

applicable also when a set of layers is infinitely thin and

compliant, as it is the fracture set shown in Fig. 1. Nichols

et al. (1989) and Hood (1991) simplified the procedure to

include fractures by using compliance matrices instead of

stiffness matrices. As shown below, the compliance matrix

of the equivalent medium is found by the addition of

expanded 6 9 6 versions of the fracture compliance

matrices to the compliance matrix of the background

medium.

Let us consider many sets of vertical fractures, so that

the fracture normal of a given set makes an angle b with

the x-axis (see Fig. 1). We avoid the fracture index (q) for

simplicity. The expanded fracture compliance matrix of

each set is

Sf ¼

s11 s12 0 0 0 s16

s12 s22 0 0 0 s26

0 0 0 0 0 0

0 0 0 s44 s45 0

0 0 0 s45 s55 0

s16 s26 0 0 0 s66

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; ð10Þ

where

κ η
Fracture

Rock

y

z

x

Rockc11 c33 c13 c55ρ c66

n

y
β

Fig. 1 Two sets of vertical fractures embedded in a transversely

isotropic (TI) medium. In this case, transverse isotropy is due to fine

layering. If the two sets are orthogonal, the equivalent medium is

orthorhombic; otherwise, the symmetry is monoclinic with a

horizontal single plane of symmetry. The boundary condition at the

fracture describes an imperfect bonding in terms of the specific

stiffness j and specific viscosity g: Angle b is measured from the

y-axis towards the strike direction
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s11 ¼
3ZN þ ZH

8
þ ZN

2
cos 2bþ ZN � ZH

8
cos 4b;

s12 ¼
ZN � ZH

8
ð1� cos 4bÞ;

s16 ¼
ZN sin 2b

2
þ ZN � ZH

4
sin 4b;

s22 ¼
3ZN þ ZH

8
� ZN

2
cos 2bþ ZN � ZH

8
cos 4b;

s26 ¼
ZN sin 2b

2
� ZN � ZH

4
sin 4b;

s44 ¼
ZVð1� cos 2bÞ

2
;

s45 ¼
ZV sin 2b

2
;

s55 ¼
ZVð1þ cos 2bÞ

2
;

s66 ¼
ZN þ ZH

2
� ZN � ZH

2
cos 4b

ð11Þ

(Schoenberg et al. 1999). The computation of the compli-

ance matrix in Eq. (10) can be derived by carrying out the

matrix multiplication given by Nichols et al. (1989) or

directly using 4th-rank tensor notation.

We have introduced

ZN ¼
Z1

L
; ZH ¼

Z2

L
; ZV ¼

Z3

L
; ð12Þ

where L is a characteristic length, such that these quantities

have dimensions of compliance, and

jN ¼ Lj1; jH ¼ Lj2; jV ¼ Lj3;
gN ¼ Lg1; gH ¼ Lg2; gV ¼ Lg3;

ð13Þ

such that these quantities have dimensions of stiffness and

viscosity, respectively. The quantity L, called h in Grechka

et al. (2003) (see their Eq. 3), is the average fracture

spacing, which has to be much smaller than the dominant

wavelength of the pulse.

It is

ZN ¼
1

jN þ ixgN

; ZH ¼
1

jH þ ixgH

; ZV ¼
1

jV þ ixgV

:

ð14Þ

Then, the complex and frequency-dependent stiffness

matrix of the equivalent medium is given by

PðxÞ ¼ C�1 þ
X

q

S
ðqÞ
f ðxÞ

" #�1

; ð15Þ

where the sum is over the q sets of fractures. The

equivalent homogeneous anisotropic medium (in the long

wavelength limit) is a monoclinic medium with a

horizontal mirror plane of symmetry. Its complex and

frequency-dependent stiffness matrix has the form

P ¼

p11 p12 p13 0 0 p16

p12 p22 p23 0 0 p26

p13 p23 p33 0 0 p36

0 0 0 p44 p45 0

0 0 0 p45 p55 0

p16 p26 p36 0 0 p66

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: ð16Þ

At zero frequency, we obtain the lossless case, where

ZN ¼ 1=jN ; ZH ¼ 1=jH ; and ZV ¼ 1=jV ; and the medium

remains monoclinic. At ‘‘infinite’’ frequency, the fracture

stiffnesses vanish ðSðqÞf ! 0Þ and we obtain the TI and

lossless background medium. By ‘‘infinite’’ frequency, we

mean frequencies such that the wavelength is much larger

than the distance between single fractures, i.e., the long-

wavelength approximation. It can be shown that the wave

velocities at zero frequency are smaller than the wave

velocities at infinite frequency, i.e., the medium is more

compliant.

2.2 Orthorhombic Equivalent Media

Assume two fracture sets with b = 0 (fracture strike along

the y-direction) and b = p/2 (fracture strike points along the

x-direction). The fracture stiffness matrices are given by

S
ð1Þ
f ¼

Z
ð1Þ
N 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Z
ð1Þ
V 0

0 0 0 0 0 Z
ð1Þ
H

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

ð17Þ

and

S
ð2Þ
f ¼

0 0 0 0 0 0

0 Z
ð2Þ
N 0 0 0 0

0 0 0 0 0 0

0 0 0 Z
ð2Þ
V 0 0

0 0 0 0 0 0

0 0 0 0 0 Z
ð2Þ
H

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; ð18Þ

respectively.

The evaluation of Eq. (15) requires simple operations

with 3 9 3 matrices. We obtain
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Since the two sets are orthogonal, the equivalent med-

ium has orthorhombic symmetry. In the case of a single

fracture set, e.g., b = 0, Eq. (19) gives the stiffness matrix

of Schoenberg and Helbig (1997):

where

dN ¼ ½1þ 1=ðZNc11Þ��1; dH ¼ ½1þ 1=ðZHc66Þ��1;

dV ¼ ½1þ 1=ðZVc55Þ��1: ð21Þ

2.3 HTI Equivalent Media

If the background medium is isotropic ðc11 ¼ c12 þ
2c55; c12 ¼ c13; c55 ¼ c66Þ and the fracture set is rotation-

ally invariant, we have ZH ¼ ZV � ZT ; and the equivalent

medium is TI with a horizontal symmetry axis (HTI),

whose stiffness matrix is

p11 ¼
c11 þ Z

ð2Þ
N ðc2

11 � c2
12Þ

1þ Z
ð1Þ
N Z

ð2Þ
N ðc2

11 � c2
12Þ þ c11ðZð1ÞN þ Z

ð2Þ
N Þ

;

p12 ¼
c12

1þ Z
ð1Þ
N Z

ð2Þ
N ðc2

11 � c2
12Þ þ c11ðZð1ÞN þ Z

ð2Þ
N Þ

;

p13 ¼
c13½1þ Z

ð2Þ
N ðc11 � c12Þ�

1þ Z
ð1Þ
N Z

ð2Þ
N ðc2

11 � c2
12Þ þ c11ðZð1ÞN þ Z

ð2Þ
N Þ

;

p22 ¼
c11 þ Z

ð1Þ
N ðc2

11 � c2
12Þ

1þ Z
ð1Þ
N Z

ð2Þ
N ðc2

11 � c2
12Þ þ c11ðZð1ÞN þ Z

ð2Þ
N Þ

;

p23 ¼
c13½1þ Z

ð1Þ
N ðc11 � c12Þ�

1þ Z
ð1Þ
N Z

ð2Þ
N ðc2

11 � c2
12Þ þ c11ðZð1ÞN þ Z

ð2Þ
N Þ

;

p33 ¼
c33 þ ðZð1ÞN þ Z

ð2Þ
N Þðc11c33 � c2

13Þ þ Z
ð1Þ
N Z

ð2Þ
N ðc11 � c12Þ½c33ðc11 þ c12Þ � 2c2

13�
1þ Z

ð1Þ
N Z

ð2Þ
N ðc2

11 � c2
12Þ þ c11ðZð1ÞN þ Z

ð2Þ
N Þ

;

p44 ¼
c55

1þ c55Z
ð2Þ
V

;

p55 ¼
c55

1þ c55Z
ð1Þ
V

;

p66 ¼
c66

1þ c66ðZð1ÞH þ Z
ð2Þ
H Þ

:

ð19Þ

P ¼

c11ð1� dNÞ c12ð1� dNÞ c13ð1� dNÞ 0 0 0

c12ð1� dNÞ c11ð1� dNc2
12=c2

11Þ c13ð1� dNc12=c11Þ 0 0 0

c13ð1� dNÞ c13ð1� dNc12=c11Þ c33½1� dNc2
13=ðc11c33Þ� 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55ð1� dVÞ 0

0 0 0 0 0 c66ð1� dHÞ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; ð20Þ

P ¼

c11cN c12cN c12cN 0 0 0

c12cN c11 � c2
12ZNcN c12 � c2

12ZNcN 0 0 0

c12cN c12 � c2
12ZNcN c11 � c2

12ZNcN 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55cT 0

0 0 0 0 0 c55cT

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; ð22Þ
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where

cN ¼ ð1þ c11ZNÞ�1
and cT ¼ ð1þ c55ZTÞ�1: ð23Þ

The stiffness matrix in Coates and Schoenberg (1995) is

equivalent to Eq. (22) with a rotation of p/2 around the

y-axis and considering the lossless case ðg ¼ 0Þ: If g 6¼ 0;

Eq. (22) is equivalent to the medium studied by Chichinina

et al. (2009b).

The fractured medium defined by Eq. (22) can be

obtained from Backus averaging (Backus 1962) of a peri-

odic medium composed of two isotropic constituents with

proportions pi; and P-wave and S-wave moduli, respec-

tively, given by Ei and li; i ¼ 1; 2: Backus’ effective

stiffness constants are given by (Carcione 2007)

p11 ¼ ½E1E2 þ 4p1p2ðl1 � l2Þðk1 þ l1 � k2 � l2Þ�D;
p12 ¼ ½k1k2 þ 2ðk1p1 þ k2p2Þðl2p1 þ l1p2Þ�D;
p13 ¼ ðk1p1E2 þ k2p2E1ÞD
p33 ¼ E1E2D;

p55 ¼ l1l2ðp1l2 þ p2l1Þ�1;

p66 ¼ p1l1 þ p2l2;

D ¼ ðp1E2 þ p2E1Þ�1:

ð24Þ

Equation (22) is then obtained by taking the limits p1 ! 1

and p2 ! 0 (or p2 � p1Þ and setting E1 ¼ c11 and l1 ¼ c55

(background medium) and E2 ¼ p2=ZN and l2 ¼ p2=ZH

(fracture). This is shown by Schoenberg (1983) in the

lossless case.

3 Properties of the Effective Medium

A general plane-wave solution for the displacement field

u ¼ ðux; uy; uzÞ> ¼ ðu1; u2; u3Þ> is

u ¼ U exp ½ixðt � s1x� s2y� s3zÞ�; ð25Þ

where si are the components of the slowness vector s ¼
ðs1; s2; s3Þ;U is a complex vector, and t is the time variable.

We consider homogeneous viscoelastic waves, such that

s ¼ sðl1; l2; l3Þ; where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1 þ s2

2 þ s2
3

p

; and li are the

direction cosines defining the propagation (and attenuation)

directions. The complex velocity is

v ¼ 1

s
: ð26Þ

3.1 Symmetry Plane of a Monoclinic Medium

In the symmetry plane of a monoclinic medium, there is a

pure shear wave and two coupled waves. The respective

dispersion relations in the (x, y)-plane are

C33 � qv2 ¼ 0;

ðC11 � qv2ÞðC22 � qv2Þ � C2
12 ¼ 0;

ð27Þ

where q is the density of the background medium,

C11 ¼ p11l2
1 þ p66l22 þ 2p16l1l2;

C22 ¼ p66l2
1 þ p22l22 þ 2p26l1l2;

C33 ¼ p55l2
1 þ p44l22 þ 2p45l1l2;

C12 ¼ p16l2
1 þ p26l22 þ ðp12 þ p66Þl1l2;

ð28Þ

(Carcione 2007), where v is the complex velocity and l1 ¼
sin h and l2 ¼ cos h; with h being the phase propagation

angle.

If we label 1 the pure mode (the SH wave) and 2 and 3

the qS and qP waves, the corresponding complex velocities

are (e.g., Carcione 2007)

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q�1ðp55l2
1 þ p44l2

2 þ 2p45l1l2Þ
q

;

v2 ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l21 þ p22l2
2 þ p66 þ 2l1l2ðp16 þ p26Þ � A

q

;

v3 ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l21 þ p22l2
2 þ p66 þ 2l1l2ðp16 þ p26Þ þ A

q

;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðC11 � C22Þ2 þ 4C2
12

q

:

ð29Þ

The phase velocity is given by

vp ¼ Re
1

v

� �� ��1

ð30Þ

and the quality factor is simply

Q ¼ Reðv2Þ
Imðv2Þ ð31Þ

(e.g., Carcione 2007). The values of the qP quality factor

along orthogonal directions are

QPðh ¼ p=2Þ ¼ Reðp11Þ
Imðp11Þ

and QPðh ¼ 0Þ ¼ Reðp22Þ
Imðp22Þ

; ð32Þ

respectively, while those of the shear waves are

QSVðh ¼ p=2Þ ¼ QSVðh ¼ 0Þ ¼ QSHðh ¼ 0Þ ¼ Reðp44Þ
Imðp44Þ

;

and QSHðh ¼ p=2Þ ¼ Reðp55Þ
Imðp55Þ

: ð33Þ

Next, we obtain the energy velocity at zero frequency

(the lossless elastic limit) times one unit of time. The SH

wave energy velocity is

ve ¼
1

qvp

½ðc0
55l1 þ c0

45l2Þê1 þ ðc0
44l2 þ c0

45l1Þê2�: ð34Þ

On the other hand, the qP and qS energy-velocity

components ve1 and ve2 are
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qvpðC11 þ C22 � 2qv2
pÞve1

¼ðC22 � qv2
pÞðc0

11l1 þ c0
16l2Þ

þ ðC11 � qv2
pÞðc0

66l1 þ c0
26l2Þ

� C12½2c0
16l1 þ ðc0

12 þ c0
66Þl2�

ð35Þ

and

qvpðC11 þ C22 � 2qv2
pÞve2

¼ðC22 � qv2
pÞðc0

66l2 þ c0
16l1Þ

þ ðC11 � qv2
pÞðc0

22l2 þ c0
26l1Þ

� C12½2c0
26l2 þ ðc0

12 þ c0
66Þl1�;

ð36Þ

where c0
IJ are the zero-frequency limits of the pIJ (e.g.,

Carcione 2007).

3.2 Orthorhombic Media

The dispersion relation has the same form as in the lossless

case, but replacing the (real) elasticity constants by the

complex stiffnesses pIJ ; i.e., the components of matrix P.

Following Schoenberg and Helbig (1997), we have

v6 � a2v4 þ a1v2 � a0 ¼ 0; ð37Þ

where

a0 ¼ C11C22C33 � C2
12C33 � C2

13C22 � C2
23C11

þ C12C23C13 þ C13C12C23;

a1 ¼ C22C33 þ C33C11 þ C11C22 � C2
23 � C2

13 � C2
12;

a2 ¼ C11 þ C22 þ C33;

ð38Þ

with

C11 ¼ p11l2
1 þ p66l22 þ p55l23;

C22 ¼ p66l2
1 þ p22l22 þ p44l23;

C33 ¼ p55l2
1 þ p44l22 þ p33l23;

C12 ¼ ðp12 þ p66Þl1l2;

C13 ¼ ðp13 þ p55Þl3l1;

C23 ¼ ðp44 þ p23Þl2l3

ð39Þ

being the components of the Kelvin–Christoffel matrix

(Carcione 2007).

In the (three) symmetry planes of an orthorhombic

medium, there is a pure shear wave (labeled 1 below) and

two coupled waves. The corresponding complex velocities

are given by a generalization of the lossless case (e.g.,

Carcione 2007) to the lossy case: (x, y)-plane:

v1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqÞ�1ðp55l2
1þp44l22Þ

q

;

v2¼ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l21þp22l2
2þp66�A

q

;

v3¼ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l21þp22l2
2þp66þA

q

;

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðp22�p66Þl2
2�ðp11�p66Þl21�

2þ4½ðp12þp66Þl1l2�2
q

;

ð40Þ

(x, z)-plane:

v1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqÞ�1ðp66l2
1þp44l23Þ

q

;

v2¼ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l21þp33l2
3þp55�A

q

;

v3¼ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l21þp33l2
3þp55þA

q

;

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðp33�p55Þl2
3�ðp11�p55Þl21�

2þ4½ðp13þp55Þl1l3�2
q

;

ð41Þ

(y, z)-plane:

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqÞ�1ðp66l2
2 þ p55l2

3Þ
q

v2 ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p22l22 þ p33l2
3 þ p44 � A

q

;

v3 ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p22l22 þ p33l2
3 þ p44 þ A

q

;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðp33 � p44Þl2
3 � ðp22 � p44Þl22�

2 þ 4½ðp23 þ p44Þl2l3�2
q

:

ð42Þ

In terms of angles, l1 ¼ sin h and l2 ¼ cos h in the (x, y)-

plane, l1 ¼ sin h and l3 ¼ cos h in the (x, z)-plane, and l2 ¼
sin h and l3 ¼ cos h in the (y, z)-plane.

The complex velocities along the principal axes are:

(x, y)-plane:

v1ð0�Þ ¼ vSð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p44=q
p

v1ð90�Þ ¼ vSð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p55=q
p

v2ð0�Þ ¼ vqSð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p66=q
p

v2ð90�Þ ¼ vqSð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p66=q
p

v3ð0�Þ ¼ vqPð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p22=q
p

v3ð90�Þ ¼ vqPð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p11=q
p

;

ð43Þ

(x, z)-plane:

v1ð0�Þ ¼ vSð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p44=q
p

v1ð90�Þ ¼ vSð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p66=q
p

v2ð0�Þ ¼ vqSð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p55=q
p

v2ð90�Þ ¼ vqSð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p55=q
p

v3ð0�Þ ¼ vqPð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p33=q
p

v3ð90�Þ ¼ vqPð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p11=q
p

;

ð44Þ

(y, z)-plane:
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v1ð0�Þ ¼ vSð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p66=q
p

v1ð90�Þ ¼ vSð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p55=q
p

v2ð0�Þ ¼ vqSð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p44=q
p

v2ð90�Þ ¼ vqSð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p44=q
p

v3ð0�Þ ¼ vqPð0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p33=q
p

v3ð90�Þ ¼ vqPð90�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

p22=q
p

:

ð45Þ

The energy velocity can be computed for each frequency

component, with the wavefront corresponding to the

energy velocity at ‘‘infinite’’ frequency. Let us consider

the (x, z)-plane of symmetry. The energy-velocity vector of

the qP and qS waves is given by

ve

vp

¼ ðl1 þ l3 cot wÞ�1ê1 þ ðl1 tan wþ l3Þ�1ê3 ð46Þ

(Carcione 2007; eq. 6.158), where

tan w ¼ Reðc�X þ n�WÞ
Reðc�W þ n�ZÞ ð47Þ

defines the angle between the energy-velocity vector and

the z-axis,

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

A	 B
p

;

n ¼ 	pv
ffiffiffiffiffiffiffiffiffiffiffiffi

A
 B
p

;

B ¼ p11l21 � p33l23 þ p55 cos 2h;

ð48Þ

where the upper and lower signs correspond to the qP and

qS waves, respectively. Moreover,

W ¼ p55ðnl1 þ cl3Þ;
X ¼ cp11l1 þ np13l3;

Z ¼ cp13l1 þ np33l3

ð49Þ

(Carcione 2007; Eqs. 6.121–6.123), where ‘‘pv’’ denotes

the principal value, which has to be chosen according to

established criteria.

On the other hand, the energy velocity of the SH wave is

ve ¼
vp

qReðvÞ l1Re
p66

v

� �

ê1 þ l3Re
p44

v

� �

ê3

h i

ð50Þ

and

tan w ¼ Reðp66=vÞ
Reðp44=vÞ tan h ð51Þ

(Carcione 2007; eq. 4.115).

In general, we have the property

vp ¼ ve cosðw� hÞ; ð52Þ

where ve ¼ jvej:
The quality factor expressions for each symmetry plane

are similar to the equations obtained for the symmetry

plane of the monoclinic medium. Along pure mode direc-

tions, we have

QII ¼
ReðpIIÞ
ImðpIIÞ

; I ¼ 1; . . .; 6: ð53Þ

The attenuation has a maximum for a given value of the

specific viscosity. Let us consider, for instance, the P-wave

and Eq. (19). A calculation yields

Q�1
11 ¼

c11xgN

jNðjN þ c11Þ þ x2g2
N

: ð54Þ

This function has a maximum at

xgN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jNðjN þ c11Þ
p

� jN ð55Þ

if jN � c11: On the other hand,

Q�1
JJ ¼

ðc2
1J=cJJÞxgN

ðjN þ c11ÞðjN þ c11 � c2
1J=cJJÞ þ x2g2

N

; J ¼ 2; 3;

ð56Þ

with a maximum at

xgN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjN þ c11ÞðjN þ c11 � c2
1J=cJJÞ

q

: ð57Þ

The attenuation of the shear waves (the 44, 55, and 66

components) have similar expressions. Two different

values of the viscosity may give the same value of the

quality factor, although the phase velocities differ.

3.3 Transversely Isotropic Media

The analysis for the HTI medium follows as a particular

case of one of the symmetry planes of the orthorhombic

medium. One can use the exact velocity expressions or the

following approximations:

v2
1 ¼ ðc55=qÞð1� dH sin2 hÞ;

v2
2 ¼ ðc55=qÞð1� dH cos2 2h� ðc55=c11ÞdN sin2 2hÞ;

v2
3 ¼ ðc11=qÞ
½1� ðc55=c11ÞdH sin2 2h� ð1� 2ðc55=c11ÞdN cos2 hÞ2�;

ð58Þ

where h is the angle between the wavenumber vector and

the vertical direction. Similar approximations have been

obtained by Schoenberg and Douma (1988) (their Eq. 26)

for VTI media (horizontal fractures). Schoenberg and

Douma (1988) have written those expressions in terms of

the coefficients dN=ð1� dNÞ and dH=ð1� dHÞ; instead of

dN and dH ; respectively, assuming dN � 1 and dH � 1:

Without imposing these conditions, more accurate

expressions are obtained by using dN and dH ; as in Chi-

chinina et al. (2009a, b).
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4 Examples

We consider the TI background medium studied by

Schoenberg and Helbig (1997), representing a typical

shale,

C ¼ q

10 4 2:5 0 0 0

4 10 2:5 0 0 0

2:5 2:5 6 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 3

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð59Þ

(in MPa), where q = 2,300 kg/m3, e.g., c11 = 23 GPa . We

assume a frequency f ¼ x=ð2pÞ ¼ 50 Hz and the low- and

high-frequency limits for comparison.

First, we consider two orthogonal sets of fractures with

b1 ¼ 0� and b2 ¼ 90�:The fracture stiffnesses of the first set

are given by jð1ÞN ¼ 9c11; j
ð1Þ
H ¼ 8

3
c66; and k

ð1Þ
V ¼ 4c55: In the

lossless case, we obtain dð1ÞN ¼ 0:1; dð1ÞH ¼ 3=11; and dð1ÞV ¼
1=5; i.e., the values used by Schoenberg and Helbig (1997).

Moreover, we set jð2ÞN ¼ bjð1ÞN ; jð2ÞH ¼ bjð1ÞH and k
ð2Þ
V ¼

bk
ð1Þ
V ;with b = 0.5. The fracture viscosities are assumed to be

gðqÞN ¼ ajðqÞN ; gðqÞH ¼ ajðqÞH ; and gðqÞV ¼ ak
ðqÞ
V ; where a = 10-3

s, for both fracture sets. The stiffness-matrix components,

given by Eq. (19), are

p11 ¼ ð20:34; 0:70Þ; p12 ¼ ð6:93; 0:56Þ;
p13 ¼ ð4:87; 0:22Þ; p22 ¼ ð18:83; 1:05Þ;
p23 ¼ ð4:60; 0:29Þ; p33 ¼ ð13:44; 0:09Þ;
p44 ¼ ð3:13; 0:31Þ; p55 ¼ ð3:73; 0:22Þ;
p66 ¼ ð3:32; 0:53Þ;

ð60Þ

in GPa. Figure 2 shows the dissipation factors as a

function of frequency along pure mode directions. The

attenuation behaves as relaxation peaks, similar to the

Zener model. Figure 3 shows the energy velocity at the

(x, z)-plane for 0 Hz (a), 50 Hz (b), and ‘‘infinite’’ fre-

quency (c). The high-frequency limit corresponds to the

unfractured TI case. The dissipation factors versus phase

and ray angle are represented in Figure 4, where the pure

mode (the SH wave) shows more attenuation. The atten-

uation of the coupled waves have a different behavior

versus the ray angle, corresponding to the propagation of

wave packets, compared to the representation versus the

phase (propagation) angle, corresponding to the propa-

gation of plane waves. In particular, the triplication

appears also in the Q factor of the qS wave. Experimental

setups should consider these facts.

Next, we consider two sets of fractures with b1 = 20� and

b2 = 65� and perform the analysis in the symmetry axis of

the effective monoclinic medium. The fracture parameters

corresponding to the first example are considered. The

stiffness-matrix components, given by Eq. (15), are

p11 ¼ ð18:05; 1:1Þ; p12 ¼ ð8:98; 0:29Þ;
p13 ¼ ð4:83; 0:23Þ; p16 ¼ ð�1:07; 0:13Þ;
p22 ¼ ð17:27; 1:26Þ; p23 ¼ ð4:69; 0:26Þ;
p26 ¼ ð�0:15; 0:05Þ; p33 ¼ ð13:44; 0:09Þ;
p36 ¼ ð�0:22; 0:03Þ; p44 ¼ ð3:37; 0:25Þ;
p45 ¼ ð�0:67; 0:11Þ; p55 ¼ ð3:70; 0:19Þ;
p66 ¼ ð4:53; 0:46Þ;

ð61Þ

in GPa. Figure 5 shows the low-frequency limit energy

velocities (a) and dissipation factors (b) in the (x, y) sym-

metry plane as a function of the phase (propagation) angle.

The frequency in Fig. 5b is f = 50 Hz. In this case, the qS

wave shows the maximum attenuation.

In order to verify the shape of the wavefronts shown in

Fig. 5, we perform a 2D full-wave numerical simulation of

qP–qS propagation in the symmetry plane, where the

effective medium is defined by the low-frequency elasticity

(a)

(b)

Fig. 2 Dissipation factors (53) as a function of frequency, where

(a) corresponds to the P waves and (b) corresponds to the S waves
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constants: c11
0 = 17.8 GPa, c22

0 = 17 GPa, c12
0 = 8.9 GPa, c16

0

= -1.08 GPa, c26
0 = -0.16 GPa, and c66

0 = 4.44 GPa. The

density is q = 2,300 kg/m3. The algorithm solves the par-

ticle-velocity/stress formulation based on the Fourier

pseudospectral method for computing the spatial

derivatives and a 4th-order Runge–Kutta technique for

calculating the wavefield recursively over time (e.g., Car-

cione 2007). The source is a vertical force with a Ricker

time history, located at the center of the mesh. The simu-

lation uses a 455 9 455 mesh with 1-m grid spacing and

the central frequency of the source is 80 Hz. The algorithm

has a time step of 0.1 ms and a snapshot of the vertical-

particle velocity is computed at 80 ms (see Fig. 6). It is

verified that the results of the modeling algorithm and

plane-wave analysis are in agreement.

Finally, we test the approximation

Q�1ðhÞ � Q�1
b ðhÞ þ Q�1

f ðhÞ; ð62Þ

where Qb and Qf are the quality factors of the background

medium and fracture set in the same lossless background

medium, respectively. Equation (62) is commonly used in

the literature to obtain the total quality factor due to dif-

ferent attenuation mechanisms (e.g., Chichinina et al.

2009a, b). We assume for simplicity an isotropic

(a)

(b)

(c)

Fig. 3 Energy velocities in the (x, z) symmetry plane of the

equivalent orthorhombic medium, where (a) f = 0 Hz, (b) f =

50 Hz, and (c) f = 1 Hz

(a)

(b)

Fig. 4 Quality factors in the (x, z) symmetry plane as a function of

the phase (propagation) angle (a) and ray (energy) angle (b). The

equivalent medium has orthorhombic symmetry and the frequency is

f = 50 Hz
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background medium, and, therefore, Qb is independent of

h. The effective medium has HTI symmetry and the stiff-

ness matrix is given by Eq. (22), with cIJ complex. Let us

consider the simplest model, i.e., c11 ! c11ðQP þ iÞ and

c55 ! c55ðQS þ iÞ; where QP and QS are the P-wave and

S-wave quality factors of the background medium. (Note

that c12 ¼ c11 � 2c55:Þ Let us assume that QP = 20 and QS

= 15. Figure 7 compares the exact dissipation factors to the

approximate dissipation factors, corresponding to the qP

and qS waves, respectively. As can be appreciated, Eq. (62)

is a rough approximation and should be used with caution.

The approximation improves if Q increases.

In order to verify that the equivalent-medium theory of

fractures is correct, we consider an isotropic background

medium defined by c12 = 10 GPa, c55 = 3.9 GPa, and q =

2,300 kg/m3 containing a horizontal and plane fracture set

defined by j1 = 15,500 GPa/m and g1 = 36 GPa s/m

(tangential stiffnesses per unit length), and j3 = 34,000

GPa/m and g3 = 80 GPa s/m (normal stiffnesses per unit

length). The fracture planes are parallel to the (x, y)-plane

and perpendicular to the z-axis. The novel methodology

consists of applying time-harmonic oscillatory tests at a

finite number of frequencies. Each test is based on the

wave equation of motion expressed in the space–frequency

domain, implementing explicitly the fracture boundary

conditions, and solved with a finite-element method. A

similar algorithm considering multiple thin layers is given

by Santos et al. (2011). Figure 8 shows the phase velocity

vp (a) and dissipation factor 1,000 Q-1 along the horizontal

direction (component 11, circles) and vertical direction

(a)

(b)

Fig. 5 Low-frequency limit energy velocities (a) and dissipation

factors (b) in the (x, y) symmetry plane as a function of the phase

(propagation) angle. The equivalent medium has monoclinic symme-

try and the frequency in b is f = 50 Hz

Fig. 6 Snapshot in the (x, y) symmetry plane of the monoclinic

effective medium. The elasticity constants are those of the low-

frequency limit

Fig. 7 Exact (solid lines) and approximate (dashed lines) dissipation

factors of the qP and qS waves as a function of the propagation angle.

The frequency is 50 Hz
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(component 33, triangles). The match between the theory

(solid lines) and numerical results is very good.

5 Conclusions

We have presented a theory to obtain the wave velocities and

attenuation of many sets of vertical fractures embedded in a

transversely isotropic medium. The anisotropic effective

medium has monoclinic symmetry. Fractures are modeled as

boundary discontinuities in the displacement and particle

velocity fields. The theory generalizes an existing model

describing the acoustic properties of a single set of fractures

embedded in an isotropic background medium. The

expressions of the complex and frequency-dependent stiff-

ness constants corresponding to two orthogonal sets of

fractures are obtained explicitly, where the effective med-

ium has orthorhombic symmetry. The phase, energy, and

quality factors as a function of the propagation and ray

(energy) angle are obtained for homogeneous viscoelastic

plane waves (wavenumber and attenuation directions coin-

cide). We consider the symmetry plane of a monoclinic

medium and the three symmetry planes of an orthorhombic

medium. The examples show that the effective media have

high anisotropy and show relaxation attenuation peaks,

similar to Zener viscoelastic models. Moreover, we have

tested the commonly used equation stating that the dissipa-

tion factor of the effective medium is equal to the sum of the

dissipation factors of the background medium and fractured

background (lossless) medium. The results indicated that

this equation is not a good approximation for realistic

Q values of the background medium. Finally, we performed

a cross-check of the theory with the computations of a finite-

element algorithm, showing that both phase velocity and

dissipation factors agree with the numerical results.

The novel model can be important in determining the

orientation of fractures in the reservoir and the overlying cap

rock. This plays an important role during production and

other applications, such as CO2 injection and monitoring.
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