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Anisotropic poroelasticity and mesoscopic loss. I

• Reservoirs rocks consists usually of thinly layered
fluid-saturated poroelastic sediments.

• The traveling P-waves induce fluid-pressure gradients
at mesoscopic-scale heterogeneities, generating
interlayer fluid flow and slow (diffusion) Biot waves
(mesoscopic loss mechanism).

• These finely layered sediments behave like
viscoelastic transversely isotropic (VTI) media at long
wavelengths.
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Anisotropic poroelasticity and mesoscopic loss. II

• For fluid-saturated poroelastic media (Biot’s media),
White et al. (1975) were the first to introduce the
mesoscopic-loss mechanism in the framework of Biot’s
theory.

• Gelinsky and Shapiro (GPY, 62, 1997) obtained the
relaxed and unrelaxed stiffnesses of the equivalent
poro-viscoelastic medium to a finely layered
horizontally homogeneous (FLHH) Biot’s medium.

• For a FLHH Biot’s medium, Krzikalla and Müller
(GPY, 76, 2011) combined the two previous models to
obtain the five complex and frequency-dependent
stiffnesses of the equivalent VTI medium.
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Anisotropic poroelasticity and mesoscopic loss. III

• Krzikalla and Müller assumed fluid-flow direction
perpendicular to the layering plane. Hence, the model
uses only one relaxation function, associated with the
symmetry-axis P-wave stiffness.

• To test the model and provide a more general
modeling tool, we present a numerical upscaling
procedure to obtain the complex stiffnesses of the
effective VTI medium.

• The method uses the Finite Element Method (FEM) to
solve Biot’s equation of motion in the space-frequency
domain with boundary conditions representing
compressibility and shear harmonic experiments.
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Anisotropic poroelasticity and mesoscopic loss. IV
• The methodology is applied to the Utsira aquifer of

the North Sea, where CO2 has been injected during
the last 15 years.

• The example considers a sequence of gas-saturated
sandstone and mudstone layers, representing models
of the reservoir and cap rock of the aquifer system.

• The quality factors and velocities as a function of
frequency and propagation angle are tested against
those provided by the theory for laterally homogeneous
layers.

• Examples for highly heterogeneous Biot’s media are
also presented.
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TIV media and fine layering. I

Let us consider isotropic fluid-saturated poroelastic laye rs.

u
s(x),uf (x) : time Fourier transform of the displacement vector

of the solid and fluid relative to the solid frame, respective ly.

u = (us,uf )

σkl(u),pf (u): Fourier transform of the total stress and the fluid

pressure, respectively

On each plane layer n in a sequence of N layers, the

frequency-domain stress-strain relations are

σkl(u) = 2µ εkl(u
s) + δkl

(

λ
G
∇ · us + αM∇ · uf

)

,

pf (u) = −αM∇ · us −M∇ · uf .
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TIV media and fine layering. II
Biot’s equations of motion:

−ω2ρus(x, ω)− ω2ρfu
f (x, ω)−∇ · σ(u) = 0,

−ω2ρuf (x, ω)− ω2 muf (x, ω) + iω
η

κ
uf (x, ω) +∇pf (u) = 0,

ω = 2πf : angular frequency

m =
T ρf
φ

: mass coupling coefficient T :tortuosity factor

ρ = (1− φ)ρs + φρf ,

ρs and ρf : mass densities of the solid grains and fluid,

respectively

η: fluid viscosity κ: frame permeability
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TIV media and fine layering. III

τij: stress tensor of the equivalent VTI medium

Assuming a closed system( ∇ · uf = 0), the corresponding

stress-strain relations , stated in the space-frequency domain, are

τ11(u) = p11 ǫ11(u
s) + p12 ǫ22(u

s) + p13 ǫ33(u
s),

τ22(u) = p12 ǫ11(u
s) + p11 ǫ22(u

s) + p13 ǫ33(u
s),

τ33(u) = p13 ǫ11(u
s) + p13 ǫ22(u

s) + p33 ǫ33(u
s),

τ23(u) = 2 p55 ǫ23(u
s),

τ13(u) = 2 p55 ǫ13(u
s),

τ12(u) = 2 p66 ǫ12(u
s).

This approach provides the complex velocities of the fast mo des and takes into account interlayer

flow effects .
Analysis of mesoscopic loss effects in anisotropic poroelastic media using harmonic finite element simulations – p. 8



TIV media and fine layering. IV

Krzikalla and Müller (GPY, 76, 2011) proposed a model to det ermine

the stifnees pIJ for a stack of two thin alternating porous layers.

These analytical pIJ ’s will be used to check the results of the FEM

to be used next to determine these coefficients.

Using the pIJ ’s and the thickness weighted average of the bulk

density will in turn allow us to determine the phase velocity and

quality factors for the qP, qS and SH waves.
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The harmonic experiments to determine the stiffness

coefficients. I

To determine the complex stiffness we solve Biot’s equation in the

2D case on a reference square Ω = (0, L)2 with boundary Γ in the

(x1, x3)-plane. Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0}, ΓR = {(x1, x3) ∈ Γ : x1 = L},

ΓB = {(x1, x3) ∈ Γ : x3 = 0}, ΓT = {(x1, x3) ∈ Γ : x3 = L}.

Over the seismic band of frequencies, the acceleration ( ω2) terms

are negligible relative to the viscous resistance and can be

discarded, so that we solve the diffusion Biot’s equation .

ν: the unit outer normal on Γ

χ: a unit tangent on Γ so that {ν, χ} is an orthonormal system on

Γ.
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The harmonic experiments to determine the stiffness

coefficients. II

The poroelastic fluid-saturated sample is subjected to

time-harmonic compressibility and shear tests described by the

following sets of boundary conditions .

p33(ω):

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR,

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR,

us = 0, (x1, x3) ∈ ΓB, uf · ν = 0, (x1, x3) ∈ Γ.

Denote by V the original volume of the sample and by ∆V (ω) its

(complex) oscillatory volume change.
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The harmonic experiments to determine the stiffness

coefficients. III

In the quasistatic case

∆V (ω)

V
= −

∆P

p33(ω)
,

Then after computing the average us,T
3 (ω) of the vertical

displacements on ΓT , we approximate

∆V (ω) ≈ Lus,T
3 (ω)

which enable us to compute p33(ω)

To determine p11(ω) we solve an identical boundary value

problem than for p33 but for a 90 o rotated sample.
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The harmonic experiments to determine the stiffness

coefficients. IV

p55(ω): the boundary conditions are

−σ(u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR,

us = 0, (x1, x3) ∈ ΓB,

uf · ν = 0, (x1, x3) ∈ Γ,

where

g =















(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .
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The harmonic experiments to determine the stiffness

coefficients. V

The change in shape suffered by the sample is

tan[θ(ω)] =
∆G

p55(ω)
. (1)

θ(ω): the angle between the original positions of the lateral

boundaries and the location after applying the shear stress es.

Since

tan[θ(ω)] ≈ us,T
1 (ω)/L, where us,T

1 (ω) is the average horizontal

displacement at ΓT , p55(ω) can be determined from (1)

to determine p66(ω) (shear waves traveling in the (x1, x2)-plane),

we rotate the layered sample 90 o and apply the shear test as

indicated for p55(ω).
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The harmonic experiments to determine the stiffness

coefficients. VI

p13(ω): the boundary conditions are

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ,

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB, uf · ν = 0, (x1, x3) ∈ Γ.

In this experiment ǫ22 = ∇ · uf = 0, so that

τ11 = p11ǫ11 + p13ǫ33, τ33 = p13ǫ11 + p33ǫ33, (2)

ǫ11, ǫ33: the strain components at the right lateral side and top side

of the sample, respectively. Then,

p13(ω) = (p11ǫ11 − p33ǫ33) / (ǫ11 − ǫ33) .
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Schematic representation of the oscillatory compressibility

and shear tests inΩ
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Examples . I

Let us consider the North-Sea Utsira formation located
800 m below the sea bottom, which contains a highly
permeable sandstone , where carbon dioxide (CO2) has
been injected in the Sleipner field.

Within the Utsira aquifer, compacted mudstone layers
have been identified, acting as barriers to the upward
migration of the CO2.
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Examples. II

Properties of the Utsira formation.

Sandstone Mudstone

Grain bulk modulus, Ks (GPa) 40 20

density, ρs (kg/m3) 2600 2600

Frame bulk modulus, Km (GPa) 1.37 7

shear modulus, µm (GPa) 0.82 6

porosity, φ 0.36 0.2

permeability, κ (D) 1.6 0.01

Brine density, ρw (kg/m3) 1030 1030

viscosity, ηw (Pa s) 0.0012 0.0012

bulk modulus, Kw (GPa) 2.6 2.6

CO2 density, ρg ( kg/m3) 505 –

viscosity, ηg (Pa s) 0.00015 –

bulk modulus, Kg (MPa) 25 –
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Examples. III

The upper part of the aquifer (cap rock) is the location where the

proportion of mudstone may be substantial.

The example considers alternating layers of brine-saturated

mudstone and CO2-saturated sandstone of thicknesses 5 cm and

1 cm, respectively, and a period of 6 cm.

It models the case in which the original brine has been replac ed by

CO2 and the sequence may represent possible leakages to the

cap rock .

The figures compares the analytical pIJ with the FE solution for

several periods of the stratification.
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P-wave phase velocities perpendicular (Vp33) and parallel (Vp11) to the layering plane
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The medium is a sequence of brine-saturated mudstone and CO2-saturated sandstone

layers with thicknesses of 5 cm and 1 cm, respectively. Symbols indicate FE values.
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Dissipation factors perpendicular (1000/Q33) and paralle l (1000/Q11) to the layering plane
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The medium is a sequence of brine-saturated mudstone and CO2-saturated sandstone

layers with thicknesses of 5 cm and 1 cm, respectively. Symbols indicate FE values.
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Phase velocities at 50 Hz as function of the propagation angl e
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The medium is a sequence of mudstone and CO2-saturated sandstone layers with

thicknesses of 5 cm and 1 cm, respectively
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Dissipation factors at 50 Hz as function of the propagation a ngle
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The medium is a sequence of mudstone and CO2-saturated sandstone layers with

thicknesses of 5 cm and 1 cm, respectively
Analysis of mesoscopic loss effects in anisotropic poroelastic media using harmonic finite element simulations – p. 23



PATCHY SATURATION. CO2-BRINE DISTRIBUTION
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Yellow zones correspond to CO2 saturation and the black ones to pure brine saturation.

The overall CO2 saturation is 7 percent.
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PATCHY SATURATION. Coefficient λG (Pa)
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PATCHY SATURATION. P-wave phase velocities parallel (Vp11 ) to the layering plane.
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Sequence of 5 cm patchy-saturated Utsira and 1 cm brine-saturated mud . The

Analytical curve corresponds to the same sequence but for CO2-saturated Utsira.
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PATCHY SATURATION. Dissipation factors parallel (1000/Q1 1) to the layering plane.
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Sequence of 5 cm patchy-saturated Utsira and 1 cm brine-saturated mud . The

Analytical curve corresponds to the same sequence but for CO2-saturated Utsira.
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PATCHY SATURATION. P-wave phase velocities perpendicular (Vp33) to the layering plane.
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Sequence of 5 cm patchy-saturated Utsira and 1 cm brine-saturated mud . The

Analytical curve corresponds to the same sequence but for CO2-saturated Utsira.
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PATCHY SATURATION. Dissipation factors perpendicular (10 00/Q33) to the layering plane.
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Sequence of 5 cm patchy-saturated Utsira and 1 cm brine-saturated mud . The

Analytical curve corresponds to the same sequence but for CO2-saturated Utsira.
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CONCLUSIONS. I

• We presented a novel numerical FEM to obtain the
complex and frequency-dependent stiffnesses of a VTI
homogeneous medium equivalent to a finely layered
Biot’s medium.

• The methodology is based on the FE solution Biot’s
equation in the space-frequency domain to simulate
harmonic compressibility and shear tests.

• The FE results were checked againts a theory valid for
laterally homogeneous layers and 1D-fluid-flow
direction.
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CONCLUSIONS. II

• Velocity and attenuation anisotropy can be observed in
the qP and qSV wave modes, with attenuation higher
along the layering plane for the case being analyzed.

• SV-Shear attenuation is much weaker than the qP
attenuation, and SH waves are lossless.

• The FEM was applied to determine a VTI
homogeneous medium equivalent to a finely layered
patchy-saturated Biot’s medium.

• THANKS FOR YOUR ATTENTION.
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