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Summary

Time-lapse (4D) traveltime shifts of reflection events
recorded above hydrocarbon reservoirs can be used
to monitor production-related compaction and pore-
pressure changes. Existing methodology, however, is
largely limited to zero-offset rays and cannot be ap-
plied to time shifts measured on prestack seismic data.
Here, we obtain traveltime shifts by employing first-order
perturbation theory that accounts for the stress-induced
anisotropic velocity field, as well as for the deformation
of reflectors. The resulting closed-form expression can
be efficiently used for 3D numerical modeling of travel-
time shifts and, ultimately, for reconstructing the hetero-
geneous stress distribution around compacting reservoirs.

The analytic results are applied to a 2D model that in-
cludes a rectangular resevoir embedded in an initially ho-
mogeneous and isotropic medium. The computed velocity
changes around the reservoir are caused primarily by the
deviatoric stresses and produce an anisotropic medium
with substantial values of the Thomsen parameters e and
0 and variable orientation of the symmetry axis. The
offset dependence of traveltime shifts should play a cru-
cial role in estimating the anisotropy parameters and the
compaction-related deviatoric stress components.

Introduction

Hydrocarbon production induces pore-pressure changes
and compaction inside reservoirs, which causes accumu-
lation of excess stress throughout the section. The excess
stress modifies the elastic properties in and around the
reservoir, and the corresponding velocity changes can be
estimated using reflection traveltimes recorded in time-
lapse surveys. Traveltime shifts estimated on stacked
seismic data above horizontally layered media have been
successfully used to delineate compartments in reservoirs
(e.g., Hatchell et al.,, 2003; Landrg and Stammeijer,
2004). However, the existing theory breaks down in the
presence of dip and cannot be applied to prestack data
(i-e., to nonzero offsets).

Here, we present a 3D analytic description of stress-
related traveltime shifts for rays propagating along ar-
bitrary trajectories in heterogeneous anisotropic media.
Taking heterogeneity and anisotropy into account is nec-
essary for an adequate physical description of offset-
dependent traveltime shifts. Indeed, the excess stress
field created by compaction is anisotropic (in general, it
is triaxial), with the magnitude of the stress components
varying spatially around the reservoir.
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Analytic expressions for traveltime shifts

Assuming that reservoir compaction produces only small
changes in the traveltimes of seismic waves, stress-related
traveltime shifts can be expressed through small pertur-
bations of both the stiffness coefficients and the geome-
try of reflectors. To the first order, these perturbations
can be obtained by applying Hamilton’s principle of least
action and considering rays propagating in an isotropic
background model (Cerveny, 2001):

ft=p-ox

T2 T2
— / AHdr, (1)
T1 T1

where p is the slowness vector of the reference ray traced
in the background medium, dx is the first-order variation
of the position vector of the reference ray in 3D Carte-
sian coordinates, AH is the corresponding variation of
the system’s Hamiltonian and 7 is the integration pa-
rameter along the reference ray. The Hamiltonian H for
P-waves can be expressed by the scaled eikonal equation
(e.g., Cerveny, 2001), in which the integration parameter
7 represents the traveltime along the reference ray:

1
H(X7 p) = 5 [VQ(Xﬂ p) Pk Pk — 1] =0, (2)
where V (x,p) is the phase velocity; summation over re-
peated indices is implied throughout the abstract.

The first term in equation 1 can be used to account for
3D deformation of reflectors in a layered medium. Follow-
ing Farra and Le Bégat (1995), we transform every point
where the reference ray crosses an interface or reflects
from it (i.e., “scattering points”) into a new endpoint. By
applying equation 1 sequentially to all N scattering points
(excluding the source and receiver positions) along the
ray, we find:

N ) o
5t =6t°+ > ot' — / AHdr, (3)
i 71

where -

5t =p-ox| , ot'=(p—p)-ox. (4)

T1

Here, §t° is the contribution of the changes in the source
and receiver positions, while 6t* accounts for the variation
of the interface position and is proportional to the differ-
ence between the slowness vectors of the reference ray on
both sides of the interface.
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Offset-dependent traveltime shifts

As discussed above, reservoir compaction causes the ve-
locity field around the reservoir to become both heteroge-
neous and anisotropic. The corresponding perturbation
of the Hamiltonian for P-waves can be obtained from the
Christoffel equation under the assumption that reference
rays are traced in an isotropic medium (Cerveny, 2001):

_ L Aagjp(x) ninjngn (5)
2 V2(x) ’

AH

where Aa;jr; are the perturbations of the density-
normalized stiffness coefficients, and n; are the compo-
nents of the unit slowness vector.

Relationship between the excess stress and
velocity changes

Equations 3 and 5 provide the basis for describing trav-
eltime shifts in and around compacting reservoirs. To
express the elements Aa;jr; in terms of the strains and
excess stresses caused by reservoir compaction, we use the
nonlinear theory of elasticity (e.g., Thurston and Brug-
ger, 1964). Assuming small compaction-related static
strain changes Aey,,, the stiffness tensor C of the de-
formed medium can be written in the form of a Taylor
series expansion:

C = CO + Aemn ) (6)

6mn
where C° = ¢fj;;; is the stiffness tensor before defor-
mation. The term -2 is represented by the sixth-

Oemn
order tensor C;jkimn, Which measures the sensitivity of

the stiffnesses cj;x; to the deformation Aesny,. By keeping
the medium density p constant and using linear Hooke’s
law to express Aemn, through the compaction-related
stress AS,,n, we obtain the density-normalized stiffnesses
needed in equation 5 (Sarkar et al., 2003):

Aaijr = pilcijklmn (Cfnnpq)_l ASpq . (7)

Traveltime shifts due to compaction

The results by Prioul et al. (2004) indicate that the tensor
Cijkimn can be treated as isotropic for most applications
in exploration and reservoir geophysics. Then, the stress
sensitivity is described by just three independent coeffi-
cients — C111, C112 and Cis5. (We use capital letters to de-
note elements of matrices obtained from tensors by apply-
ing Voigt notation; for example, 0155 = C113131 = C111313,
and Cf; = c5323.) Substituting equations 7 and 5 into
equation 3, we obtain an explicit expression for the trav-
eltime shifts:

5t = ot +;6t _5/T
————

geom.
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(9)

Here, Aegy, is the trace of the excess strain tensor and Ao
is the tensor of deviatoric stress given by

AO‘»;]' = ASU — éASkk&J 5 (10)

where d;; is Kronecker’s symbol. Typically, the main con-
tribution to §t is made by the velocity changes (the last
term in equation 8 labeled “vel”). Indeed, for the geo-
metric changes (label “geom”) to produce a traveltime
shift of at least 1 ms, an unlikely set of conditions have
to take place: the displacements should be on the order
of meters, the slowness contrasts cannot be smaller than
1072 s/km throughout the model, and summation should
include from 10 to 100 scattering points. In most typical
cases, however, the displacements throughout the section
are on the order of centimeters, while there is little room
to increase the number of reflection/transmission points
without reducing the slowness contrasts.

According to equation 8, the traveltime shifts caused
by the velocity changes are given by the average of the
isotropic (Bi1Aexr) and anisotropic (Ba n'Ac n) terms
computed along the raypath. According to our sign con-
vention, negative strains denote contraction, while pos-
itive strains denote extension (the same convention ap-
plies to stress). This means that the coefficient C1i55 and
the combination (C111 4 2C112) should be negative, which
agrees with the experimental results of Sarkar et al. (2003)
and Prioul et al. (2004). Then, according to equation 8,
contraction leads to an increase in velocity, which results
in negative traveltime shifts. In contrast, extension causes
velocity decrease and positive traveltime shifts.

To clarify how equation 8 generalizes existing results, we
note that for zero-offset rays it reduces to the equation of
Hatchell and Bourne (2005):

St(z = 0) = 2/02 {1 + % (R1 + Ra) ‘f(fj) dws, (11)

where the integration is performed over depth, and
AessRi1 = —B1 (Aeir + Aess), (12)
A€33R2 = 7BQAO'33 . (13)

Therefore, our formalism provides an explicit analytic
representation of the ratio R = (Ri + R2)/2 used by
Hatchell and Bourne (2005) to compare the contributions
of the velocity and geometric changes to the traveltime
shifts. Note that the term Aess/V (z3) in equation 11 rep-
resents the contribution of the geometric changes, which
are described by the terms §¢“ and Zivzl §t* in equation 8.

Numerical tests

To illustrate the magnitude and spatial variations of trav-
eltime shifts in prestack data, we applied equation 8 to a
2D model that includes a rectangular reservoir embedded
in a homogeneous isotropic halfspace (Figure 1). Since
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Offset-dependent traveltime shifts

the overburden does not contain medium interfaces, the
traveltime shifts are due primarily to the stress-induced
velocity changes. The pore-pressure drop was confined to
the reservoir, and the resulting excess stress and strain
were computed using analytic expressions adapted from
Hu (1989). The strain was confined to the incidence plane
[z, z], with no deformation in the y-direction (Aeis =
Aegz = A€23 = 0)

For the plane strain problem treated here, the stress ten-
sor is triaxial, so the 3D stress-induced velocity field has
orthorhombic symmetry. The velocity function in the
[z, z]-plane, however, can be described by a heterogeneous
transversely isotropic model with a tilted symmetry axis.
Using the perturbations of the stiffness coefficients, we
computed the stress-related Thomsen parameters and the
rotation angle of the symmetry axis from the vertical (Fig-
ure 2). Because the stress-sensitivity tensor and the back-
ground medium are isotropic, the resulting anisotropy is
elliptical, and € = §. The §-values in and near the reser-
voir reach 0.1, which indicates that the stress-induced
anisotropy is non-negligible even for the relatively small
pressure drop (10 MPa) used in the test. Close to the
corners of the reservoir, accumulation of the shear stress
Aoi3 causes a substantial rotation of the symmetry axis
(up to 45°). Hence, in 3D the stress-induced anisotropy
is described by a tilted orthorhombic model.

Figure 3 helps to compare the contributions of the de-
viatoric stress and volumetric changes to the traveltime
shifts. Clearly, for the homogeneous background model
used in the test, the shifts are caused primarily by the
deviatoric stress, which makes the medium anisotropic.
Since the deviatoric stress changes are symmetric with
respect to the reservoir, so are the traveltime shifts for
the shot in Figure 3, both in offset and depth. The in-
fluence of the shot position relative to the center of the
reservoir on the total traveltime shifts is illustrated by
Figure 4. As the shot moves away from the center of the
reservoir, the traveltime shifts increase at longer offsets
and are confined to the reservoir and deeper horizons.

The traveltime shifts in Figures 3 and 4 are also influenced
by the interplay between the incidence angle 6 (i.e., the
slowness direction n) and the deviatoric stress compo-
nents Ao;;. In particular, for 2D propagation in the [z, 2]
plane, the anisotropic velocity term in equation 8 can be
written as

n'Aon = Aot sin® @ + Aoci3sin 20 4+ Aoss cos? .

For the shot in Figure 3, the shifts are mostly generated at
near offsets (i.e., for small angles ), so the dominant ex-
cess stress component is Aoss. In contrast, for the shots
in Figure 4, the contributions of Ac1; and Aoi3 are more
significant because these stress components are responsi-
ble for the traveltime shifts at moderate and large offsets.

Conclusions

The main result of our analytic developments is equa-
tion 8, which provides a framework for modeling 3D offset-
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Fig. 1: 2D model of a rectangular reservoir embedded in an
isotropic homogeneous medium. The pressure drop inside
the reservoir is 10 MPa. The medium parameters are taken
from the laboratory results of Sarkar et al. (2003) for Berea
sandstone: Vp = 2.3 km/s, Vp/Vg = 1.58, p = 2.14 g/cc,
C111 = —13904 GPa, C112 = 533 GPa and Ci55 = —3609
GPa. To compute the excess stress, we set the Biot-Willis co-
efficient o to 0.85 (the closer « is to unity, the more stress is
generated by reducing the pore pressure in the reservoir). To
simulate the static stiffnesses, Vp was scaled down by 10%,
which represents a typical number for well-consolidated rocks
with low porosity (Yale and Jamieson, 1994).

dependent traveltime shifts associated with the heteroge-
neous, anisotropic velocity field caused by reservoir com-
paction. Stress-induced traveltime shifts are caused by
two independent first-order phenomena: geometric and
velocity changes, with the latter usually being the dom-
inant component. The velocity-related traveltime shifts
can be further separated into the isotropic term controlled
by the hydrostatic stress and the anisotropic term that
depends on the deviatoric stress.

Although our numerical results are obtained for a simple
2D model, they illustrate several important properties of
stress-induced variations in reflection traveltimes. First,
traveltime shifts are associated primarily with stress-
induced anisotropy and, therefore, should be estimated on
prestack data. Second, the magnitude of the anisotropy
parameters may be substantial, and the orientation of the
symmetry axis rapidly varies in space around the reser-
voir corners. Third, the modeling helps to understand the
complex spatial distribution of traveltime shifts caused by
the interplay between the propagation direction and dif-
ferent stress components. On the whole, adding an extra
dimension (offset) to time-lapse analysis should help to
better constrain the geomechanical changes around de-
pleting blocks and improve interpretation of 4D seismic
data.

One of the main practical difficulties in modeling and
interpretation of compaction-related traveltime shifts is
their dependence on the sixth-order stress-sensitivity ten-
sor. Our analytic results, obtained under the simplifying
assumption that this tensor is isotropic, include two inde-
pendent stress-sensitivity elements. Reliable constraints
on these elements should be provided by laboratory mea-
surements of stress sensitivity of reservoir rocks.
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Fig. 2: Reservoir compaction makes the model in Figure 1 heterogeneous and anisotropic. (a) The anisotropy parameter § = ¢;
(b) the angle between the symmetry axis and the vertical (positive angles correspond to counterclockwise rotation).
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Fig. 3: Traveltime shifts for the model from Figure 1 caused by the volumetric changes (a) and deviatoric stress changes (b).
The shot location is marked by the asterisk. The shifts plotted at each (z, z) point would be recorded at the receiver (z,0) for
a ray reflected from an imaginary horizontal interface at depth z.
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Fig. 4: Influence of the shot position (marked by the asterisk) on the total traveltime shifts for the model from Figure 1.
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