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Abstract

The triaxial nature of the tectonic stress in the earth’s crust favours the appear-

ance of vertical fractures. The resulting rheology is usually effective anisotropy with

orthorhombic and monoclinic symmetries. In addition, the presence of fluids leads to

azimuthally varying attenuation of seismic waves. A dense set of fractures embed-

ded in a background medium enhances anisotropy and rock compliance. Fractures are

modeled as boundary discontinuities in the displacement u and particle velocity v as

[κ · u+ η · v], where the brackets denote discontinuities across the fracture surface, κ

is a fracture stiffness and η is a viscosity related to the energy loss.

We consider a transversely isotropic background medium (e.g., thin horizontal plane

layers), with sets of long vertical fractures. Schoenberg and Muir’s theory combines the

background medium and sets of vertical fractures, to provide the thirteen complex stiff-

nesses of the long-wavelength equivalent monoclinic and viscoelastic medium. The sym-
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metry plane is the horizontal plane. The equations for orthorhombic and transversely-

isotropic media follow as particular cases. We compute the complex velocities of the

medium as a function of frequency and propagation direction, which provide the phase

velocities, energy velocities (wavefronts) and quality factors.

The effective medium ranges from monoclinic symmetry to hexagonal (transversely

isotropic) symmetry from the low- to the high-frequency limits in the case of a particle-

velocity discontinuity (lossy case) and the attenuation shows typical Zener relaxation

peaks as a function of frequency. The attenuation of the coupled waves may show

important differences when computed versus the ray or phase angles, with triplication

appearing in the Q factor of the qS wave. We have performed a full-wave simulation

to compute the field corresponding to the coupled qP-qS waves in the symmetry plane

of an effective monoclinic medium. The simulations agree with the predictions of the

plane-wave analysis.

Keywords Fractures · anisotropy · attenuation · Schoenberg-Muir theory · boundary

conditions

1 Introduction

Wave propagation through fractures, faults and cracks is an important subject in seis-

mology, exploration geophysics and mining. Faults in the Earth’s crust constitute

sources of earthquakes (Pyrak-Nolte et al., 1990), and hydrocarbon and geothermal

reservoirs are mainly composed of fractured rocks (Nakagawa and Myer, 2009). Appli-

cations in geotechnical engineering, such as the analysis of dynamic stability of rock

slopes and tunnels, involve the study of imperfect joints in rock masses (Perino et

al., 2010; Fan et al., 2011). In geophysical prospecting, knowledge of reservoirs fracture

orientations, densities and sizes is essential, since these factors control hydrocarbon pro-
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duction (Hansen, 2002; Hall and Kendall, 2003; Grechka and Tsvankin, 2003; Barton,

2007). The analysis of the data exploits the fact that seismic-velocity and attenua-

tion anisotropy due to the presence of fractures are sensitive to key properties of the

reservoir, such as porosity, permeability and fluid type.

A few frequency-dependent models have been developed to describe anisotropy and

attenuation. Carcione (1992) generalized Backus averaging to the anelastic case, ob-

taining the first model for Q-anisotropy (see Carcione, 2007). Analyses on sequences

of sandstone-limestone and shale-limestone with different degrees of anisotropy indi-

cate that the quality factors (Q) of the shear modes are more anisotropic than the

corresponding phase velocities, cusps of the qSV mode are more pronounced for low

frequencies and midrange proportions, and in general, attenuation is higher in the di-

rection perpendicular to layering or close to it, provided that the material with lower

velocity is the more dissipative. This model has been further analyzed in Picotti et

al. (2010), where it is shown how to obtain the medium properties with quasi-static

numerical experiments. Other alternative models of Q-anisotropy were proposed by

Carcione and Cavallini (1994) and Carcione et al. (1998). A brief description of all

these phenomenological models can be found in Carcione (2007). Zhu and Tsvankin

(2005) analyze in detail the attenuation in orthorhombic media, assuming homoge-

neous viscoelastic waves. They simplify the interpretation for processing purposes by

introducing a set of attenuation-anisotropy parameters. A Backus type model to de-

scribe wave propagation in fractures has been introduced by Carcione (1996a), where

plane layers are separated by thin continuous layers of viscous fluid. A similar model

is considered in Liu et al. (2000), where the fracture is a very thin soft viscous layer.

On the other hand, a recently developed model (Chapman, 2003; Maultzsch, 2005)

is explicitly describing the effects of cracks and fractures on wave propagation, since
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the elastic constants are derived in terms of microstructural parameters and there-

fore the model is predictive. It describes attenuation and velocity dispersion at seismic

frequencies and predicts how these effects are related to fluid type and size of the frac-

tures. An approach to explicitly model cracks and fractures is proposed by Zhang and

Gao (2009). The scheme treats the fractures as non-welded interfaces that satisfy the

linear-slip displacement-discontinuity conditions instead of using equivalent medium

theories. Hence, the algorithm can be used to characterize the seismic response of

fractured media and to test equivalent medium theories. Other poroelasticity models

describing anisotropic attenuation are given in Krzikalla & Müller (2011) and Carcione

et al. (2011), who obtain the five complex and frequency-dependent stiffnesses of an

equivalent medium corresponding to thin poroelastic layers.

Modeling fractures requires a suitable interface model for describing the dynamic

response of the joint. Theories that consider imperfect contact were mainly based on

the displacement discontinuity model at the interface. Pyrak-Nolte et al. (1990) pro-

posed a non-welded interface model based on the discontinuity of the displacement

and the particle velocity across the interface. The stress components are proportional

to the displacement and velocity discontinuities through the specific stiffnesses and

one specific viscosity, respectively. Displacement discontinuities conserve energy and

yield frequency dependent reflection and transmission coefficients. On the other hand,

velocity discontinuities generate energy loss at the interface. The specific viscosity ac-

counts for the presence of a liquid under saturated conditions. The liquid introduces

a viscous coupling between the two surfaces of the fracture (Schoenberg, 1980) and

enhances energy transmission, but at the same time this is reduced by viscous losses.

The model may account for slip and dilatancy effects. Chichinina et al. (2009a,b) de-

scribe anisotropic attenuation in a TI medium using Schoenberg’s linear-slip model
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with complex-valued normal and tangential fracture stiffnesses. The theory and labo-

ratory experiments show that in the vicinity of the symmetry axis, P-wave attenuation

is comparable to S-wave attenuation when the fracture is filled with a fluid. On the

other hand, in the presence of dry fractures, P-wave attenuation is much greater than

S-wave attenuation.

In this work, we generalize the orthorhombic model given in Schoenberg and Helbig

(1997) to the anelastic monoclinic case, by introducing a particle-velocity discontinuity

in the fracture surface, allowing us to describe Q-anisotropy. The medium consists of

sets of vertical fractures embedded in a transversely isotropic (TI) background medium

(generally horizontal fine layering) to form a long-wavelength equivalent monoclinic

medium. Using the theory of Schoenberg and Muir (1989), we obtain the thirteen com-

plex and frequency-dependent stiffnesses of this medium. We then obtain the quality

factors and wave velocities as a function of frequency and propagation angle.

2 Interface model

Let us consider a planar fracture. The non-ideal characteristics of the interface are

modeled by imposing suitable boundary conditions. The model proposed here is based

on the discontinuity of the displacement and particle-velocity fields across the interface.

Then, the boundary conditions at the interface are

κ · [u] + η · [v] = σ · n, (1)

(Pyrak-Nolte et al., 1990; Carcione, 1996b), where u and v are the displacement and

particle-velocity components, respectively, σ is the 3 × 3 stress tensor, n is the unit

normal to the fracture, κ is the specific stiffness matrix, and η is the specific viscosity

matrix (both of dimension 3 × 3). They have dimensions of stiffness and viscosity per
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unit length, respectively. Moreover, the symbol “·” indicates scalar product and the

brackets denote discontinuities across the interface, such that for a field variable φ, it

is [φ] = φ2 − φ1, where 1 and 2 indicate the two sides of the fracture.

The particle velocity is given by

v = u̇, (2)

where a dot above a variable indicates time differentiation. In the Fourier domain,

v = iωu, (3)

where ω is the angular frequency and i =
√
−1. Equation (1) then becomes

[u] = Z · (σ · n), (4)

where

Z = (κ+ iωη)−1 (5)

is a fracture compliance matrix, whose dimension is length/stress. This approach is

equivalent to the linear-slip model introduced by Schoenberg (1980). In fact, equation

(5), with η = 0, is given in Coates and Schoenberg (1995) and Schoenberg and Helbig

(1997). Three models have been studied by Liu et al. (2000) to obtain the expression

of Z for different fracture models. Two of the models only provide the real part of Z.

The third model describes the fracture as a thin and soft viscoelastic layer embedded

in an isotropic elastic background medium, where Z can be obtained in terms of the

thickness, Lamé constants and viscosity of the soft material infill. The resulting equiv-

alent medium has TI symmetry. Similarly, Carcione (1996a) described the infill by a

viscous fluid.
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The compliance matrix Z of the set of fractures is the diagonal non-negative matrix

Z =





Z1 0 0

0 Z2 0

0 0 Z3



 =





(κ1 + iωη1)
−1 0 0

0 (κ2 + iωη2)
−1 0

0 0 (κ3 + iωη3)
−1



 , (6)

where Z1 is the normal compliance, Z2 is the horizontal tangential compliance, and Z3

is the vertical tangential compliance. The fact that Z2 6= Z3 means that the texture

of the fracture surface has different roughnesses vertically and horizontally, while the

fact that there are no off-diagonal components means that, across the fractures, the

normal motion is uncoupled from the tangential motion.

A common situation in the earth’s crust is to have a finely layered medium and

vertical fractures. Figure 1 shows such a case, where q = 2 sets of long vertical fractures

are embedded in a TI medium with a vertical symmetry. This background medium

is the long-wavelength equivalent of the finely layered medium, according to Backus

(1962). The mechanical (viscoelastic) representation of the fracture boundary condition

by a Kelvin-Voigt model is illustrated in the figure, according to the stress-displacement

relation

σ · n = (κ+ iωη) · [u], (7)

where the model simulates the fracture by a zero width layer of distributed spring-

dashpots. The quantity κ+ iωη is the complex modulus per unit length of the Kelvin-

Voigt element (e.g., Carcione, 2007).

A displacement discontinuity yields compliance, while a discontinuity in the particle

velocity implies an energy loss at the interface (Carcione, 1996b, 1998, 2007); κ =

0 gives the particle-velocity discontinuity model and η = 0 gives the displacement

discontinuity model. On the other hand, if κ → ∞ or η → ∞, the model gives a

welded interface.
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THE EQUIVALENT MONOCLINIC MEDIUM

Let us consider a background TI medium. The stress-strain relation is

















σ1
σ2
σ3
σ4
σ5
σ6

















=

















σ11
σ22
σ33
σ23
σ13
σ12

















=

















c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

































e1
e2
e3
e4
e5
e6

















≡ C

















e1
e2
e3
e4
e5
e6

















, (8)

where

2c66 = c11 − c12,

σI denotes stress component and eI denotes strain component in the Voigt notation

(e.g., Carcione, 2007), such that

[e1, e2, e3, e4, e5, e6]
⊤ = [ǫ11, ǫ22, ǫ33, 2ǫ23, 2ǫ13, 2ǫ12]

⊤, (9)

where ǫij are the strain components, cIJ are the elasticity constants, and C is the

elasticity matrix.

The background medium can easily be generalized to a viscoelastic medium by

using one of the three models of anisotropic anelasticity proposed in Chapter 4 of

Carcione (2007). The generalization implies that the elasticity constants cIJ become

complex and frequency dependent. Here the purpose is to analize the attenuation due

to the fracture solely, however in the last example we consider an effective HTI medium

to test the commonly used equation by which the total dissipation factor is equal to

the dissipation factor of the background medium plus the dissipation factor due to the

fractures.

Schoenberg and Muir (1989) showed how to combine arbitrary sets of elastic thin

layers and find their long-wavelength-equivalent medium properties. The method is

applicable also when a set of layers is infinitely thin and compliant, as it is the fracture
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set shown in Figure 1. Nichols et al. (1989) and Hood (1991) simplified the procedure

to include fractures by using compliance matrices instead of stiffness matrices. As

shown below, the compliance matrix of the equivalent medium is found by addition of

expanded 6 × 6 versions of the fracture compliance matrices to the compliance matrix

of the background medium.

Let us consider many sets of vertical fractures, so that the fracture normal of a

given set makes an angle β with the x-axis (see Figure 1). We avoid the fracture index

(q) for simplicity. The expanded fracture compliance matrix of each set is

Sf =

















s11 s12 0 0 0 s16
s12 s22 0 0 0 s26
0 0 0 0 0 0

0 0 0 s44 s45 0

0 0 0 s45 s55 0

s16 s26 0 0 0 s66

















, (10)

where

s11 =
3ZN + ZH

8
+
ZN

2
cos 2β +

ZN − ZH

8
cos 4β,

s12 =
ZN − ZH

8
(1− cos 4β),

s16 =
ZN sin 2β

2
+
ZN − ZH

4
sin 4β,

s22 =
3ZN + ZH

8
− ZN

2
cos 2β +

ZN − ZH

8
cos 4β,

s26 =
ZN sin 2β

2
− ZN − ZH

4
sin 4β,

s44 =
ZV (1− cos 2β)

2
,

s45 =
ZV sin 2β

2
,

s55 =
ZV (1 + cos 2β)

2
,

s66 =
ZN + ZH

2
− ZN − ZH

2
cos 4β

(11)

(Schoenberg et al., 1999). We have introduced

ZN =
Z1

L
, ZH =

Z2

L
, ZV =

Z3

L
, (12)
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where L is a characteristic length, such that these quantities have dimensions of com-

pliance, and

κN = Lκ1, κH = Lκ2, κV = Lκ3,

ηN = Lη1, ηH = Lη2, ηV = Lη3,
(13)

such that these quantities have dimensions of stiffness and viscosity, respectively. It is

ZN =
1

κN + iωηN
, ZH =

1

κH + iωηH
, ZV =

1

κV + iωηV
. (14)

Then, the complex and frequency-dependent stiffness matrix of the equivalent

medium is given by

P(ω) =

[

C
−1 +

∑

q

S
(q)
f (ω)

]−1

, (15)

where the sum is over the q sets of fractures. The equivalent homogeneous anisotropic

medium (in the long wavelength limit) is a monoclinic medium with a horizontal mirror

plane of symmetry. Its complex and frequency dependent stiffness matrix has the form

P =

















p11 p12 p13 0 0 p16
p12 p22 p23 0 0 p26
p13 p23 p33 0 0 p36
0 0 0 p44 p45 0

0 0 0 p45 p55 0

p16 p26 p36 0 0 p66

















. (16)

At zero frequency, we obtain the lossless case, where ZN = 1/κN , ZH = 1/κH and

ZV = 1/κV , and the medium remains monoclinic. At “infinite” frequency the fracture

stiffnesses vanish (S
(q)
f → 0) and we obtain the TI and lossless background medium.

By “infinite” frequency we mean frequencies such that the wavelength is much larger

than the distance between single fractures, i.e., the long-wavelength approximation.

It can be shown that the wave velocities at zero frequency are smaller than the wave

velocities at infinite frequency, i. e., the medium is more compliant.
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2.1 Orthorhombic equivalent media

Assume two fracture sets with β = 0 (fracture strike along the y-direction) and β =

π/2 (fracture strike points along the x-direction). The fracture stiffness matrices are

given by

S
(1)
f =



















Z
(1)
N 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Z
(1)
V 0

0 0 0 0 0 Z
(1)
H



















. (17)

and

S
(2)
f =



















0 0 0 0 0 0

0 Z
(2)
N 0 0 0 0

0 0 0 0 0 0

0 0 0 Z
(2)
V 0 0

0 0 0 0 0 0

0 0 0 0 0 Z
(2)
H



















, (18)

respectively.
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The evaluation of equation (15) requires simple operations with 3 × 3 matrices.

We obtain

p11 =
c11 + Z

(2)
N (c211 − c212)

1 + Z
(1)
N Z

(2)
N (c211 − c212) + c11(Z

(1)
N + Z

(2)
N )

,

p12 =
c12

1 + Z
(1)
N Z

(2)
N (c211 − c212) + c11(Z

(1)
N + Z

(2)
N )

,

p13 =
c13[1 + Z

(2)
N (c11 − c12)]

1 + Z
(1)
N Z

(2)
N (c211 − c212) + c11(Z

(1)
N + Z

(2)
N )

,

p22 =
c11 + Z

(1)
N (c211 − c212)

1 + Z
(1)
N Z

(2)
N (c211 − c212) + c11(Z

(1)
N + Z

(2)
N )

,

p23 =
c13[1 + Z

(1)
N (c11 − c12)]

1 + Z
(1)
N Z

(2)
N (c211 − c212) + c11(Z

(1)
N + Z

(2)
N )

,

p33 =
c33 + (Z

(1)
N + Z

(2)
N )(c11c33 − c213) + Z

(1)
N Z

(2)
N (c11 − c12)[c33(c11 + c12)− 2c213]

1 + Z
(1)
N Z

(2)
N (c211 − c212) + c11(Z

(1)
N + Z

(2)
N )

,

p44 =
c55

1 + c55Z
(2)
V

,

p55 =
c55

1 + c55Z
(1)
V

,

p66 =
c66

1 + c66(Z
(1)
H + Z

(2)
H )

.

(19)

Since the two sets are orthogonal, the equivalent medium has orthorhombic symmetry.

In the case of a single fracture set, e.g., β = 0, equation (19) gives the stiffness matrix

of Schoenberg and Helbig (1997):

P =

















c11(1− δN ) c12(1− δN ) c13(1− δN ) 0 0 0

c12(1− δN ) c11(1− δN c
2
12/c

2
11) c13(1− δN c12/c11) 0 0 0

c13(1− δN ) c13(1− δN c12/c11) c33[1− δN c
2
13/(c11c33)] 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55(1− δV ) 0

0 0 0 0 0 c66(1− δH)

















,

(20)
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where

δN = [1+ 1/(ZN c11)]
−1, δH = [1 + 1/(ZHc66)]

−1, δV = [1 + 1/(ZV c55)]
−1. (21)

2.2 HTI equivalent media

If the background medium is isotropic (c11 = c12 + 2c55, c12 = c13, c55 = c66) and

the fracture set is rotationally invariant, we have ZH = ZV ≡ ZT , and the equivalent

medium is TI with a horizontal symmetry axis (HTI), whose stiffness matrix is

P =

















c11cN c12cN c12cN 0 0 0

c12cN c11 − c212ZN cN c12 − c212ZN cN 0 0 0

c12cN c12 − c212ZN cN c11 − c212ZN cN 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55cT 0

0 0 0 0 0 c55cT

















, (22)

where

cN = (1 + c11ZN )−1 and cT = (1 + c55ZT )
−1. (23)

The stiffness matrix in Coates and Schoenberg (1995) is equivalent to equation (22)

with a rotation of π/2 around the y-axis and considering the lossless case (η = 0). If

η 6= 0, equation (22) is equivalent to the medium studied by Chichinina et al. (2009b).

The fractured medium defined by equation (22) can be obtained from Backus av-

eraging (Backus, 1962) of a periodic medium composed of two isotropic constituents

with proportions pi, and P-wave and S-wave moduli, respectively, given by Ei and µi,

i = 1, 2. Backus’s effective stiffness constants are given by (Carcione, 2007),

p11 = [E1E2 + 4p1p2(µ1 − µ2)(λ1 + µ1 − λ2 − µ2)]D,

p12 = [λ1λ2 + 2(λ1p1 + λ2p2)(µ2p1 + µ1p2)]D,

p13 = (λ1p1E2 + λ2p2E1)D

p33 = E1E2D,

p55 = µ1µ2(p1µ2 + p2µ1)
−1,

p66 = p1µ1 + p2µ2,

D = (p1E2 + p2E1)
−1.

(24)
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Equation (22) is then obtained by taking the limits p1 → 1 and p2 → 0 (or p2 ≪ p1)

and setting E1 = c11 and µ1 = c55 (background medium) and E2 = p2/ZN and

µ2 = p2/ZH (fracture). This is shown in Schoenberg (1983) in the lossless case.

3 Properties of the effective medium

A general plane-wave solution for the displacement field u = (ux, uy, uz)
⊤ = (u1, u2, u3)

⊤

is

u = U exp [iω(t− s1x− s2y − s3z)], (25)

where si are the components of the slowness vector s = (s1, s2, s3), U is a complex

vector and t is the time variable. We consider homogeneous viscoelastic waves, such

that s = s(l1, l2, l3), where s =
√

s21 + s22 + s23, and li are the direction cosines defining

the propagation (and attenuation) directions. The complex velocity is

v =
1

s
. (26)

3.1 Symmetry plane of a monoclinic medium

In the symmetry plane of a monoclinic medium there is a pure shear wave and two

coupled waves. The respective dispersion relations in the (x, y)-plane are

Γ33 − ρv2 = 0,

(Γ11 − ρv2)(Γ22 − ρv2)− Γ 2
12 = 0,

(27)

where ρ is the density of the background medium,

Γ11 = p11l
2
1 + p66l

2
2 + 2p16l1l2,

Γ22 = p66l
2
1 + p22l

2
2 + 2p26l1l2,

Γ33 = p55l
2
1 + p44l

2
2 + 2p45l1l2,

Γ12 = p16l
2
1 + p26l

2
2 + (p12 + p66)l1l2

(28)

(Carcione, 2007), where v is the complex velocity and l1 = sin θ and l2 = cos θ, with θ

the phase propagation angle.
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If we label 1 the pure mode (the SH wave) and 2 and 3 the qS and qP waves, the

corresponding complex velocities are (e.g., Carcione, 2007):

v1 =
√

ρ−1(p55l21 + p44l22 + 2p45l1l2),

v2 = (2ρ)−1/2
√

p11l
2
1 + p22l

2
2 + p66 + 2l1l2(p16 + p26)−A,

v3 = (2ρ)−1/2
√

p11l
2
1 + p22l

2
2 + p66 + 2l1l2(p16 + p26) +A,

A =
√

(Γ11 − Γ22)2 + 4Γ 2
12.

(29)

The phase velocity is given by

vp =
[

Re
(

1

v

)]−1

(30)

and the quality factor is simply

Q =
Re(v2)

Im(v2)
(31)

(e.g., Carcione, 2007). The values of the qP quality factor along orthogonal directions

are

QP (θ = π/2) =
Re(p11)

Im(p11)
and QP (θ = 0) =

Re(p22)

Im(p22)
, (32)

respectively, while those of the shear waves are

QSV (θ = π/2) = QSV (θ = 0) = QSH(θ = 0) =
Re(p44)

Im(p44)
,

and QSH(θ = π/2) =
Re(p55)

Im(p55)
.

(33)

Next, we obtain the energy velocity at zero frequency (the lossless – elastic – limit)

times one unit of time. The SH-wave energy velocity is

ve =
1

ρvp
[(c055l1 + c045l2)ê1 + (c044l2 + c045l1)ê2]. (34)

On the other hand, the qP and qS energy-velocity components ve1 and ve2 are

ρvp(Γ11 + Γ22 − 2ρv2p)ve1
= (Γ22 − ρv2p)(c

0
11l1 + c016l2) + (Γ11 − ρv2p)(c

0
66l1 + c026l2)− Γ12[2c

0
16l1 + (c012 + c066)l2]

(35)

and

ρvp(Γ11 + Γ22 − 2ρv2p)ve2
= (Γ22 − ρv2p)(c

0
66l2 + c016l1) + (Γ11 − ρv2p)(c

0
22l2 + c026l1)− Γ12[2c

0
26l2 + (c012 + c066)l1]

(36)

where c0IJ are the zero-frequency limit of the pIJ (e.g., Carcione, 2007).
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3.2 Orthorhombic media

The dispersion relation has the same form as in the lossless case, but replacing the (real)

elasticity constants by the complex stiffnesses pIJ , i.e., the components of matrix P.

Following Schoenberg and Helbig (1997), we have

v6 − a2v
4 + a1v

2 − a0 = 0, (37)

where

a0 = Γ11Γ22Γ33 − Γ 2
12Γ33 − Γ 2

13Γ22 − Γ 2
23Γ11 + Γ12Γ23Γ13 + Γ13Γ12Γ23,

a1 = Γ22Γ33 + Γ33Γ11 + Γ11Γ22 − Γ 2
23 − Γ 2

13 − Γ 2
12,

a2 = Γ11 + Γ22 + Γ33,

(38)

with

Γ11 = p11l
2
1 + p66l

2
2 + p55l

2
3,

Γ22 = p66l
2
1 + p22l

2
2 + p44l

2
3,

Γ33 = p55l
2
1 + p44l

2
2 + p33l

2
3,

Γ12 = (p12 + p66)l1l2,

Γ13 = (p13 + p55)l3l1,

Γ23 = (p44 + p23)l2l3

(39)

the components of the Kelvin-Christoffel matrix (Carcione, 2007).

In the (three) symmetry planes of an orthorhombic medium, there is a pure shear

wave (labeled 1 below) and two coupled waves. The corresponding complex velocities

are given by a generalization of the lossless case (e.g., Carcione, 2007) to the lossy case:

(x, y)-plane:

v1 =
√

(ρ)−1(p55l
2
1 + p44l

2
2),

v2 = (2ρ)−1/2
√

p11l
2
1 + p22l

2
2 + p66 − A,

v3 = (2ρ)−1/2
√

p11l
2
1 + p22l

2
2 + p66 + A,

A =
√

[(p22 − p66)l
2
2 − (p11 − p66)l

2
1]

2 + 4[(p12 + p66)l1l2]2;

(40)

(x, z)-plane:

v1 =
√

(ρ)−1(p66l21 + p44l23),

v2 = (2ρ)−1/2
√

p11l21 + p33l23 + p55 − A,

v3 = (2ρ)−1/2
√

p11l21 + p33l23 + p55 + A,

A =
√

[(p33 − p55)l23 − (p11 − p55)l21]
2 + 4[(p13 + p55)l1l3]2;

(41)
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(y, z)-plane:

v1 =
√

(ρ)−1(p66l
2
2 + p55l

2
3)

v2 = (2ρ)−1/2
√

p22l
2
2 + p33l

2
3 + p44 − A,

v3 = (2ρ)−1/2
√

p22l
2
2 + p33l

2
3 + p44 + A,

A =
√

[(p33 − p44)l
2
3 − (p22 − p44)l

2
2]

2 + 4[(p23 + p44)l2l3]2.

(42)

In terms of angles, l1 = sin θ and l2 = cos θ in the (x, y)-plane, l1 = sin θ and

l3 = cos θ in the (x, z)-plane, and l2 = sin θ and l3 = cos θ in the (y, z)-plane.

The complex velocities along the principal axes are:

(x, y)-plane:

v1(0
o) = vS(0

o) =
√

p44/ρ

v1(90
o) = vS(90

o) =
√

p55/ρ

v2(0
o) = vqS(0

o) =
√

p66/ρ

v2(90
o) = vqS(90

o) =
√

p66/ρ

v3(0
o) = vqP(0

o) =
√

p22/ρ

v3(90
o) = vqP(90

o) =
√

p11/ρ;

(43)

(x, z)-plane:

v1(0
o) = vS(0

o) =
√

p44/ρ

v1(90
o) = vS(90

o) =
√

p66/ρ

v2(0
o) = vqS(0

o) =
√

p55/ρ

v2(90
o) = vqS(90

o) =
√

p55/ρ

v3(0
o) = vqP(0

o) =
√

p33/ρ

v3(90
o) = vqP(90

o) =
√

p11/ρ;

(44)

(y, z)-plane:

v1(0
o) = vS(0

o) =
√

p66/ρ

v1(90
o) = vS(90

o) =
√

p55/ρ

v2(0
o) = vqS(0

o) =
√

p44/ρ

v2(90
o) = vqS(90

o) =
√

p44/ρ

v3(0
o) = vqP(0

o) =
√

p33/ρ

v3(90
o) = vqP(90

o) =
√

p22/ρ.

(45)

The energy velocity can be computed for each frequency component, with the

wavefront corresponding to the energy velocity at “infinite” frequency. Let us consider

the (x, z)-plane of symmetry. The energy-velocity vector of the qP and qS waves is

given by

ve

vp
= (l1 + l3 cotψ)

−1
ê1 + (l1 tanψ + l3)

−1
ê3. (46)
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(Carcione 2007; eq. 6.158), where

tanψ =
Re(γ∗X + ξ∗W )

Re(γ∗W + ξ∗Z)
, (47)

defines the angle between the energy-velocity vector and the z-axis,

γ =
√
A±B,

ξ = ±pv
√
A∓B,

B = p11l
2
1 − p33l

2
3 + p55 cos 2θ,

(48)

where the upper and lower signs correspond to the qP and qS waves, respectively.

Moreover,

W = p55(ξl1 + γl3),

X = γp11l1 + ξp13l3,

Z = γp13l1 + ξp33l3

(49)

(Carcione 2007; eqs. 6.121-6.123), where “pv” denotes the principal value, which has

to be chosen according to established criteria.

On the other hand, the energy velocity of the SH wave is

ve =
vp

ρRe(v)

[

l1Re
(

p66
v

)

ê1 + l3Re
(

p44
v

)

ê3

]

(50)

and

tanψ =
Re(p66/v)

Re(p44/v)
tan θ (51)

(Carcione 2007; eq. 4.115).

In general, we have the property

vp = ve cos(ψ − θ), (52)

where ve = |ve|.

The quality factor expressions for each symmetry plane are similar to the equa-

tions obtained for the symmetry plane of the monoclinic medium. Along pure mode

directions, we have

QII =
Re(pII)

Im(pII)
, I = 1, . . . , 6. (53)
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The attenuation has a maximum for a given value of the specific viscosity. Let us

consider, for instance, the P-wave and equation (19). A calculation yields

Q−1
11 =

c11ωηN
kN (kN + c11) + ω2η2N

. (54)

This function has a maximum at

ωηN =
√

kN (kN + c11) ≈ kN (55)

if kN ≫ c11. On the other hand,

Q−1
JJ =

(c21J/cJJ )ωηN
(kN + c11)(kN + c11 − c21J/cJJ ) + ω2η2N

, J = 2, 3, (56)

with a maximum at

ωηN =
√

(kN + c11)(kN + c11 − c21J/cJJ ). (57)

The attenuation of the shear waves (the 44, 55 and 66 components) have similar ex-

pressions. Two different values of the viscosity may give the same value of the quality

factor, although the phase velocities differ.

3.3 Transversely isotropic media

The analysis for the HTI medium follows as a particular case of one of the symmetry

planes of the orthorhombic medium. One can use the exact velocity expressions or the

following approximations:

v21 = (c55/ρ)(1− δH sin2 θ),

v22 = (c55/ρ)(1− δH cos2 2θ − (c55/c11)δN sin2 2θ),

v23 = (c11/ρ)[1− (c55/c11)δH sin2 2θ − (1− 2(c55/c11)δN cos2 θ)2],

(58)

where θ is the angle between the wavenumber vector and the vertical direction. Similar

approximations have been obtained by Schoenberg and Douma (1988) (their equations

(26)) for VTI media (horizontal fractures). Schoenberg and Douma (1988) have written
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those expressions in terms of the coefficients δN/(1− δN ) and δH/(1− δH), instead of

δN and δH , respectively, assuming δN ≪ 1 and δH ≪ 1. Without imposing these con-

ditions, more accurate expressions are obtained by using δN and δH , as in Chichinina

et al. (2009a,b).

4 Examples

We consider the TI background medium studied by Schoenberg and Helbig (1997),

representing a typical shale,

C = ρ

















10 4 2.5 0 0 0

4 10 2.5 0 0 0

2.5 2.5 6 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 3

















(59)

(in MPa), where ρ = 2300 kg/m3, e.g., c11 = 23 GPa . We assume a frequency f =

ω/(2π) = 50 Hz and the low- and high-frequency limits for comparison.

First, we consider two orthogonal sets of fractures with β1 = 0o and β2 = 90o.

The fracture stiffnesses of the first set are given by k
(1)
N = 9c11, k

(1)
H = 8

3c66 and

k
(1)
V = 4c55. In the lossless case, we obtain δ

(1)
N = 0.1, δ

(1)
H = 3/11, and δ

(1)
V = 1/5,

i.e., the values used by Schoenberg and Helbig (1997). Moreover, we set k
(2)
N = bk

(1)
N ,

k
(2)
H = bk

(1)
H and k

(2)
V = bk

(1)
V , with b = 0.5. The fracture viscosities are assumed to be

η
(q)
N = ak

(q)
N , η

(q)
H = ak

(q)
H and η

(q)
V = ak

(q)
V , where a = 10−3 s, for both fracture sets.

The stiffness-matrix components, given by equation (19), are

p11 = (20.34, 0.70), p12 = (6.93, 0.56), p13 = (4.87, 0.22), p22 = (18.83, 1.05),

p23 = (4.60, 0.29), p33 = (13.44, 0.09), p44 = (3.13, 0.31), p55 = (3.73, 0.22),

p66 = (3.32, 0.53),

(60)

in GPa. Figure 2 shows the dissipation factors as a function of frequency along pure

mode directions. The attenuation behaves as relaxation peaks, similar to the Zener

model. Figure 3 shows the energy velocity at the (x, z)-plane for 0 Hz (a), 50 Hz (b)
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and “infinite” frequency (c). The high-frequency limit corresponds to the unfractured

TI case. The dissipation factors versus phase and ray angle are represented in Figure

4, where the pure mode (the SH wave) shows more attenuation. The attenuation of

the coupled waves have a different behaviour versus the ray angle, corresponding to

the propagation of wave packets, compared to the representation versus the phase

(propagation) angle, corresponding to the propagation of plane waves. In particular,

the triplication appears also in the Q factor of the qS wave. Experimental setups should

consider these facts.

Next, we consider two sets of fractures with β1 = 20o and β2 = 65o and perform

the analysis in the symmetry axis of the effective monoclinic medium. The fracture

parameters corresponding to the first example are considered. The stiffness-matrix

components, given by equation (15), are

p11 = (18.05, 1.1), p12 = (8.98, 0.29), p13 = (4.83, 0.23), p16 = (−1.07, 0.13),

p22 = (17.27, 1.26), p23 = (4.69, 0.26), p26 = (−0.15, 0.05), p33 = (13.44, 0.09),

p36 = (−0.22, 0.03), p44 = (3.37, 0.25), p45 = (−0.67, 0.11), p55 = (3.70, 0.19),

p66 = (4.53, 0.46),
(61)

in GPa. Figure 5 shows the low-frequency limit energy velocities (a) and dissipation

factors (b) in the (x, y) symmetry plane as a function of the phase (propagation) angle.

The frequency in Figure 5b is f = 50 Hz. In this case, the qS wave shows the maximum

attenuation.

In order to verify the shape of the wave fronts shown in Figure 5, we perform a 2D

full-wave numerical simulation of qP-qS propagation in the symmetry plane, where the

effective medium is defined by the low-frequency elasticity constants: c011 = 17.8 GPa,

c022 = 17 GPa, c012 = 8.9 GPa, c016 = − 1.08 GPa, c026 = − 0.16 GPa, and c066 = 4.44

GPa. The density is ρ = 2300 kg/m3. The algorithm solves the particle-velocity/stress

formulation based on the Fourier pseudospectral method for computing the spatial
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derivatives and a 4th-order Runge-Kutta technique for calculating the wavefield re-

cursively in time (e.g., Carcione, 2007). The source is a vertical force with a Ricker

time history, located at the center of the mesh. The simulation use a 455 × 455 mesh

with 1 m grid spacing and the central frequency of the source is 80 Hz. The algorithm

has a time step of 0.1 ms and a snapshot of the vertical-particle velocity is computed

at 80 ms (see Figure 6). It is verified that the results of the modeling algorithm and

plane-wave analysis are in agreement.

Finally, we test the approximation

Q−1(θ) ≈ Q−1
b (θ) +Q−1

f (θ), (62)

where Qb and Qf are the quality factors of the background medium and fracture

set in the same lossless background medium. Equation (62) is commonly used in the

literature to obtain the total quality factor due to different attenuation mechanisms

(e.g., Chichinina et al. 2009a,b). We assume for simplicity an isotropic background

medium, and therefore Qb is independent of θ. The effective medium has HTI symmetry

and the stiffness matrix is given by equation (22), with cIJ complex. Let us consider

the simplest model, i.e., c11 → c11(QP + i) and c55 → c55(QS + i), where QP and

QS are the P-wave and S-wave quality factors of the background medium. (Note that

c12 = c11 − 2c55.). Let us assume QP = 20 and QS = 15. Figure 7 compares the exact

dissipation factors to the approximate dissipation factors, corresponding to the qP and

qS waves, respectively. As can be appreciated, equation (62) is a rough approximation

and should be used with caution. The approximation improves if Q increases.
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5 Conclusions

We have presented a theory to obtain the wave velocities and attenuation of many

sets of vertical fractures embedded in a transversely isotropic medium. The anisotropic

effective medium has monoclinic symmetry. Fractures are modeled as boundary dis-

continuities in the displacement and particle velocity fields. The theory generalizes an

existing model describing the acoustic properties of a single set of fractures embedded

in an isotropic background medium. The expressions of the complex and frequency-

dependent stiffness constants corresponding to two orthogonal sets of fractures are ob-

tained explicitly, where the effective medium has orthorhombic symmetry. The phase,

energy and quality factors as a function of the propagation and ray (energy) angle

are obtained for homogeneous viscoelastic plane waves (wavenumber and attenuation

directions coincide). We consider the symmetry plane of a monoclinic medium and

the three symmetry planes of an orthorhombic medium. The examples show that the

effective media have high anisotropy and show relaxation attenuation peaks, similar to

Zener viscoelastic models. Finally, we tested the commonly used equation stating that

the dissipation factor of the effective medium is equal to the sum of the dissipation

factors of the background medium and fractured background (lossless) medium. The

results indicated that this equation is not a good approximation for realistic Q values

of the background medium.

The novel model can be important in determining the orientation of fractures in the

reservoir and the overlying cap rock. This plays an important role during production,

and other applications, such as CO2 injection and monitoring.
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Fig. 1 Two sets of vertical fractures embedded in a TI medium. In this case, transverse
isotropy is due to fine layering. If the two sets are orthogonal, the equivalent medium is or-
thorhombic, otherwise the symmetry is monoclinic with a horizontal single plane of symmetry.
The boundary condition at the fracture describes an imperfect bonding in terms of the specific
stiffness κ and specific viscosity η. Angle β is measured from the y-axis towards the strike
direction.
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Fig. 2 Dissipation factors (53) as a function of frequency, where (a) corresponds to the P
wave and (b) corresponds to the S waves.
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Fig. 3 Energy velocities in the (x, z) symmetry plane of the equivalent orthorhombic medium,
where (a) f = 0 Hz, (b) f = 50 Hz and (c) f = ∞ Hz.
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Fig. 4 Quality factors in the (x, z) symmetry plane as a function of the phase (propagation)
angle (a) and ray (energy) angle (b). The equivalent medium has orthorhombic symmetry and
the frequency is f = 50 Hz.
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Fig. 5 Low-frequency limit energy velocities (a) and dissipation factors (b) in the (x, y) sym-
metry plane as a function of the phase (propagation) angle. The equivalent medium has mon-
oclinic symmetry and the frequency in (b) is f = 50 Hz.
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Fig. 6 Snapshot in the (x, y) symmetry plane of the monoclinic effective medium. The elas-
ticity constants are those of the low-frequency limit.
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Fig. 7 Exact (solid line) and approximate (dashed line) dissipation factors of the qP and qS
waves as a function of the propagation angle. The frequency is 50 Hz.


