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Abstract We obtain the reflection and transmission coefficient of a fracture in trans-

versely isotropic media, whose symmetry axes are perpendicular to the fracture surface.

We consider dissimilar upper and lower media. The fracture is modeled as boundary

discontinuities in the displacement u and the particle velocity v, of the stresses as

[κu + ηv], where the brackets denote discontinuities across the interface. The specific

stiffness κ introduces frequency-dependence and phase changes in the interface response

and the specific viscosity η is related to the energy loss. We also calculate the energy

balance at the interface and the dissipated energy. The theory is illustrated by comput-

ing the reflection coefficient of a fracture present in the Antarctic ice cap. In this case,

the reflection coefficient decreases with increasing incidence angle and then approaches

1 at grazing angle.

Keywords Fracture · anisotropy · reflection coefficient · boundary condition ·
attenuation.

1 Introduction

The study of fracture scattering (reflection-transmission) plays an important role in

seismology, exploration geophysics and material science: fractures and cracks in the

Earth’s crust may constitute possible sources of earthquakes (Pyrak-Nolte et al., 1990),

and hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks

(Nakagawa and Myer, 2009); moreover, ultrasonic waves are used to detect flaws and

cracks in order to prevent material failure (Nagy and Adler, 1990).

Simulation of fracture scattering requires a suitable interface model for describing

the dynamic response of the crack surface. Theories that consider imperfect contact

were mainly based on the displacement discontinuity model at the interface. Pyrak-

Nolte et al. (1990) proposed a non-welded interface model based on the discontinuity of
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the displacement and the particle velocity across the interface. The stress components

are proportional to the displacement and velocity discontinuities through the specific

stiffnesses and one specific viscosity, respectively. Displacement discontinuities conserve

energy and yield frequency dependent reflection and transmission coefficients. On the

other hand, velocity discontinuities generate an energy loss at the interface. The specific

viscosity accounts for the presence of a liquid under saturated conditions. The liquid

introduces a viscous coupling between the two surfaces of the fracture (Schoenberg,

1980) and enhances energy transmission, but at the same time this is reduced by

viscous losses. The model may account for some slip and dilatancy effects as those

described, for instance, by the interface model proposed by Mroz and Giambianco

(1996).

The scattering problem in isotropic media has been solved by Carcione (1996, 2007)

and Carcione (1998) obtained the normal-incidence reflection and transmission coeffi-

cients of a fracture embedded in a homogeneous transversely isotropic (TI) medium.

In both cases, numerical simulation were performed by using a pseudospectral method.

Elastic wave scattering by a circular crack in a TI solid solid was investigated by Kundu

and Boström (1992). They used an analytical solution method and considered stress-

free boundary conditions at the interface, implying a complete decoupling of the two

surfaces which corresponds to zero stiffnesses and zero specific viscosity. Chiasri and

Krebes (2000) obtained the same expressions of Carcione (1996) in the particular case

when there is no energy loss.

In this work, we obtain the reflection and transmission coefficients for all angles

of incidence by considering displacement and particle-velocity discontinuities at the

interface of the fracture embedded in a TI medium. The imperfect bonding is described

by four parameters: the normal and tangential specific stiffnesses and viscosities. In

order to model a fracture embedded in a finely laminated background, we assume that

this is described by a TI medium whose symmetry axis is perpendicular to the fracture

surface. For instance, composite materials, or geological layers whose stratification

plane is parallel to the Earth’s surface. The equivalence between a laminated medium

and a TI medium holds when the dominant wavelength of the signal is long compared

to the thickness of the layers (Backus, 1962; Carcione, 2007). Moreover, we obtain the

energy balance, giving the energy scattering coefficients and the energy dissipated due

to the interface specific viscosities.

2 Interface model and stress-strain relations

Let us consider a planar fracture separating two elastic and TI media. The non-ideal

characteristics of the interface are modeled through the boundary conditions. The

model proposed here is based on the discontinuity of the displacement and particle

velocity fields across the interface. We consider the (x, z)-plane, and refer to the upper

and lower media with the labels 1 and 2, respectively, with z increasing towards the

lower medium (see Figure 1). Then, the boundary conditions for a wave impinging on

the interface (z = 0) are

κx[ux] + ηx[vx] = σxz,

κz [uz ] + ηz[vz ] = σzz,

[σxz] = 0,

[σzz] = 0,

(1)
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where ux and uz are the displacement components, vx and vz are the particle-velocity

components, σxz and σzz are the stress components, κx and κz are specific stiffnesses

and ηx and ηz are specific viscosities. They have dimensions of stiffness and viscosity

per unit length, respectively. Moreover, the brackets denote discontinuities across the

interface, such that for a field variable φ, it is [φ] = (φ)2 − (φ)1.

The model simulates the fracture by a zero width layer of distributed spring-

dashpots. It can be shown that relaxation-like functions of Maxwell type govern the

tangential and normal coupling properties of the crack. The interface exhibits time

dependent mechanical properties through the relaxation functions, and, as in a vis-

coelastic material, this implies energy dissipation. The boundary conditions (1) are

analized in appendix A by a plane wave analysis for normal incidence. A displacement

discontinuity (κz 6= 0) yields a change of phase, while a discontinuity in the particle

velocity (ηz 6= 0) implies an energy loss at the interface (Carcione, 1996, 1998, 2007);

κi = 0, i = 1(x), 3(z) gives the displacement discontinuity model and ηi = 0 gives the

particle velocity discontinuity model. On the other hand, if ηi → ∞, the model gives

the ideal (welded) interface.

The characteristics of the medium are completed with the constitutive relations

σxx = c11∂xux + c13∂zuz,

σzz = c13∂xux + c33∂zuz ,

σxz = c55(∂xuz + ∂zux)

(2)

(Aki and Richards, 1980; Carcione, 2007), where cIJ are the elastic constants of the

background medium and ∂i indicates partial derivative with respect to the spatial

variable xi.

3 Propagation characteristics in the anisotropic medium

A general plane-wave solution for the displacement field u = (ux, uz) is

u = U exp [iω(t− sxx− szz)], (3)

where sz and sz are the components of the slowness vector, U is a complex vector, t

is the time variable, ω is the angular frequency and i =
√
−1.

The dispersion relation of a TI medium is

(c11s
2
x + c55s

2
z − ρ)(c33s

2
z + c55s

2
x − ρ)− (c13 + c55)

2s2xs
2
z = 0 (4)

(e.g., Carcione, 2007), where ρ is the mass density. Equation (4) has two solutions

corresponding to the quasi-compressional (qP) and quasi-shear (qS) waves.

Let us assume that the positive z-axis points downwards. In order to distinguish

between down and up propagating waves, the slowness relation equation (4) is solved

for s3, given the horizontal slowness s1. This yields

sz = ± 1√
2

√

K1 ∓ pv

√

K2
1
− 4K2K3, (5)

where

K1 = ρ

(

1

c55
+

1

c33

)

+
1

c55

[

c13
c33

(c13 + 2c55)− c11

]

s2x,
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K2 =
1

c33
(c11s

2
x − ρ), K3 = s2x − ρ

c55
,

and “pv” denotes the principal value. The signs in s3 correspond to

(+,−) downward propagating qP wave

(+,+) downward propagating qS wave

(−,−) upward propagating qP wave

(−,+) upward propagating qS wave.

The plane-wave eigenvectors (polarizations) belonging to a particular eigenvalue can

be obtained from the qP-qS Kelvin-Christoffel equation (Carcione, 2007). We obtain

U = U0

(

β

ξ

)

, (6)

where U0 is the plane-wave amplitude and

β = pv

√

c55s
2
x + c33s

2
z − ρ

c11s
2
x + c33s

2
z + c55(s

2
x + s2z)− 2ρ

,

ξ = ±pv

√

c11s
2
x + c55s

2
z − ρ

c11s
2
x + c33s

2
z + c55(s

2
x + s2z)− 2ρ

,

(7)

where the + and − signs correspond to the qP and qS waves, respectively. From

equations (3) and (7), the particle-velocity field can be written as

v = iωu = iωU0

(

β

ξ

)

exp[iω(t− sxx− szz)]. (8)

Substituting the plane wave (8) into the stress-strain relation (2) yields

σxx = −iωU0X,

σzz = −iωU0Z,

σxz = −iωU0W,

(9)

where
X = βc11sx + ξc13sz,

Z = βc13sx + ξc33sz,

W = c55(ξsx + βsz),

(10)

The slowness components are given by

sx =
sin θ

v(θ)
, sz =

cos θ

v(θ)
(11)

where θ is the phase propagation angle, measured with respect to the z-axis, and

v =
1

s
=

1
√

s2x + s2z
(12)

is the phase velocity that can be obtained from the slowness relation (4). Hence, we

have

ρv2 =
1

2
(c55 + c11 sin

2 θ + c33 cos
2 θ ± C), (13)

with

C =

√

[(c33 − c55) cos2 θ − (c11 − c55) sin
2 θ]2 + (c13 + c55)2 sin

2 2θ. (14)

The + sign corresponds to the qP wave, and the − sign to the qS wave.
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4 Reflection and transmission coefficients

The upper layer is denoted by the subscript 1 and the lower layer by the subscript 2.

For clarity, the symbols P and S indicate the qP and qS waves, respectively. Moreover,

the subscripts I , R and T denote the incident, reflected and transmitted waves. Using

symmetry properties to define the polarization of the reflected waves, the displacements

for a qP wave incident from above the interface are given by

u1 = uPI
+ uPR

+ uSR
, (15)

u2 = uPT
+ uST

, (16)

where

uPI
= (βP1

, ξP1
) exp [iω(t− sxx− szP1

z)], (17)

uPR
= RPP(βP1

,−ξP1
) exp [iω(t− sxx+ szP1

z)], (18)

uSR
= RPS(βS1

,−ξS1
) exp [iω(t− sxx+ szS1

z)], (19)

uPT
= TPP(βP2

, ξP2
) exp [iω(t− sxx− szP2

z)], (20)

uST
= TPS(βS2

, ξS2
) exp [iω(t− sxx− szS2

z)]. (21)

Application of Snell’s law implies the continuity of the horizontal slowness sx. The

boundary conditions do not influence the emergence angles of the transmitted and

reflected waves. The vertical slownesses szP and szS , as well as βP , βS , ξP and ξS ,

follow respectively the (+,−) and (+,+) sign sets given in equation (5). The choice

U0 = 1 implies no loss of generality.

The boundary conditions (1) are

[ux] = cxσxz, [uz ] = czσzz, [σxz] = 0, [σzz] = 0, (22)

where the superscripts indicate the medium, and

ci =
1

κi + iωηi
, i = 1(x), 3(z) (23)

is a complex compliance per unit length characterizing the fracture.

Using the equations for the displacements and stresses, the boundary conditions

generate the following matrix equation for the reflection and transmission coefficients:









βP1
+ iωcxWP1

βS1
+ iωcxWS1

−βP2
−βS2

ξP1
+ iωczZP1

ξS1
+ iωczZS1

ξP2
ξS2

ZP1
ZS1

−ZP2
−ZS2

WP1
WS1

WP2
WS2









·









RPP

RPS

TPP

TPS









=









−βP1
+ iωcxWP1

ξP1
− iωczZP1

−ZP1

WP1









,

(24)

where W and Z are given by equations (10).

The steps to compute the reflection and transmission coefficients are the following:

1. The horizontal slowness sx is the independent parameter. It is the same for all the

waves (Snell’s law). For an incident wave, the independent variable becomes the

incidence angle θ, and sx is obtained from equation (11).

2. Compute szP1
, szS1

, szP2
and szS2

from equation (5), where the first sign is posi-

tive. For an incident homogeneous wave, szP1
can be calculated either from equation

(5) or from equation (11).
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3. Compute βP1
, βS1

, βP2
, βS2

, ξP1
, ξS1

, ξP2
and ξS2

from equations (7).

4. Compute WP1
, WS1

, WP2
and WS2

and ZP1
, ZS1

, ZP2
and ZS2

from equations

(10).

5. Compute the reflection and transmission coefficients by numerically solving equa-

tion (24).

Equation (24) gives the results of Carcione (1996) in the isotropic case, i.e., if

c33 = c11 and c13 = c11 − 2c55. Carcione (1996) obtained the potential amplitude

coefficients, which are related to the displacement amplitude coefficients by a conversion

factor. In the case of isotropy and similar upper and lower media, the conversion factor

from one type of coefficient to the other is 1 for PP coefficients and vS/vP for PS

coefficients, where vP and vS denote the P- and S-wave velocities (Aki and Richards,

1980, p. 139).

When cx = cz = 0, equation (24) yield the reflection and transmission coefficients

of a welded interface as in Wright (1987). At normal incidence and similar upper and

lower media, we obtain

RPP =

(

i
ωP
ω

− 2ηz
ZP

− 1

)

−1

=

(

2icz
ωZP

− 1

)

−1

(25)

and

TPP = 1 +RPP , (26)

(Carcione, 1998), where ZP =
√

c33/ρ and ωP = 2κz/ZP is the characteristic fre-

quency that defines the transition from an apparently perfect interface to the appar-

ently decoupled one. If κz = 0, it is ωP = 0 and the particle velocity discontinuity model

is obtained. In this case, the coefficients are frequency independent and there are no

phase changes. On the other hand, when ηz = 0, the theory gives the displacement

discontinuity model. A discontinuity in the particle velocity implies energy dissipation

at the interface (Carcione, 1996, 1998). Moreover, if ηz → 0 and κz → 0, RPP → 1

and TPP → 0, and the free surface condition is obtained; when κz → ∞ or ηz → ∞,

RPP → 0 and TPP → 1, giving the solution for a welded contact.

The coefficients are shown here as a function of the incidence ray angle ψ, which

defines the direction of the energy-flux vector of the incidence wave. The ray angle can

be obtained as

tanψ =
Re(β∗P1

XP1
+ ξ∗P1

WP1
)

Re(β∗
P1

WP1
+ ξ∗

P1

ZP1
)

(27)

(Carcione, 2007), where “Re” takes real part and “∗” denotes complex conjugate.

Equation (27) holds for an incident viscoelastic medium. In this work, the medium is

elastic and the real part and complex conjugate operation can be removed.

5 Energy balance and loss

In a completely welded interface, the normal component of the time-averaged energy

flux is continuous across the plane separating the two media. This is a consequence of

the boundary conditions that impose continuity of normal stress and particle velocity.

The same property is valid if ηx = ηz = 0 (Carcione, 1996; Chiasri and Krebes, 2000).

If the viscosities are non-zero, there is energy dissipation as shown in the following.

Since the media are elastic, the interference fluxes between different waves vanish and
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only the fluxes corresponding to each single beam need be considered (Carcione, 2007).

Denoting by F the vertical component of the energy flux, we have

−2FPI
= Re(σ13PI

v∗xPI
+ σzzPI

v∗zPI
),

−2FPR
= Re(σ13PR

v∗xPR
+ σzzPR

v∗zPR
),

−2FSR
= Re(σ13SR

v∗xSR
+ σzzSR

v∗zSR
),

−2FPT
= Re(σ13PT

v∗xPT
+ σzzPT

v∗zPT
),

−2FST
= Re(σ13ST

v∗xST
+ σzzST

v∗zST
)

(28)

(Carcione, 2007), where vi are the components of the particle-velocity vector. As shown

by Carcione (1997, 2007), further algebra implies that the fluxes given in the preceding

equations are proportional to the real parts of

FPI
∝ β∗P1

WP1
+ ξ∗P1

ZP1
,

FPR
∝ −(β∗P1

WP1
+ ξ∗P1

ZP1
)|RPP|2,

FSR
∝ −(β∗S1

WS1
+ ξ∗S1

ZS1
)|RPS|2,

FPT
∝ (β∗P2

WP2
+ ξ∗P2

ZP2
)|TPP|2,

FST
∝ (β∗S2

WS2
+ ξ∗S2

ZS2
)|TPS|2,

(29)

where the proportionality factor is 1

2
ω2. We define the energy reflection and transmis-

sion coefficients as

ERPP =

√

FPR

FPI

, ERPS =

√

FSR

FPI

, ETPP =

√

FPT

FPI

, ETPS =

√

FST

FPI

(30)

The energy loss at the interface is obtained by subtracting the energies of the reflected

and transmitted waves from the energy of the incident wave. The normalized dissipated

energy is

Eloss = 1− ER2
PP − ER2

PS − ET 2
PP − ET 2

PS. (31)

At normal incidence we have

Eloss = 1− |RPP |2 − |TPP |2. (32)

Substituting equations (25) and (26), the energy loss becomes

Eloss =
4ηz/ZP

(1 + 2ηz/ZP )2 + (ωP /ω)2
. (33)

The maximum loss is obtained for

ηz =
ZP

2

√

1 +
(

ωP
ω

)2

. (34)
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6 Example

Seismic observations made in the vicinity of Dome C in East Antarctica show that the

ice sheet there is TI with a vertical axis of symmetry (Blankenship and Bentley, 1987).

We consider a planar fracture at 2.6 km depth in the ice sheet. The ice sheet at that

depth has the properties

c11 = 16 GPa, c13 = 6.5 GPa, c33 = 14 GPa, c55 = 3 GPa, ρ = 920 kg/m3 (35)

and

c11 = 18 GPa, c13 = 6.5 GPa, c33 = 16 GPa, c55 = 4 GPa, ρ = 940 kg/m3 (36)

above and below the fracture, respectively (e.g., Carcione and Gei, 2003). See Thiel

and Ostenso (1961) and Blankenship and Bentley (1987) for more information about

the elasticity constants of the ice cap.

The fracture has the following parameters: κx = πf0ZS , κz = πf0ZP , ηx = ZS/50

and ηz = ZP /50, where f0 = 100 Hz is a reference frequency and ZP and ZS are

the impedances of the upper medium, related to the elastic constants c33 and c55,

respectively. The compliances values are 1/κx = 1.9 × 10−9 m/Pa and 1/κx = 8.9 ×
10−10 m/Pa which are in agreement with values used in the literature (Chiasri and

Krebes, 2000; Nakagawa and Myer, 2009). The complex compliances (23) represent

viscoelastic Maxwell models (Carcione, 1996, 2007) and a quality factor can be defined

as Qi = κi/(ωηi). In this case, Q = 25f0/f , which can be useful to quantify the

energy loss at the interface. Figure 2 shows the absolute value (a) and phase (b) of

the coefficients as a function of the ray angle for f = ω/(2π) = 100 Hz (Qi = 25),

and Figure 3 shows the energy loss, indicating that 4 % of the energy is lost at the

interface at ψ = 0. The amplitude peaks at nearly 75 degrees is a PP critical-angle

effect, where maximum attenuation occurs. The absolute value of the coefficients (a)

and normalized energy loss (b) for f = 50 Hz are displayed in Figure 4. In this case Qi

= 50, implying less energy dissipation (1.6 %). The reflection coefficient is lower than

in the previous case (f = 100 Hz). Thus, the fracture acts as a low-pass filter for the

transmitted P wave. In the absence of fracture (κi → ∞, ηi → ∞ or cx = cz = 0), the

PP reflection coefficient is small at near and moderate angles (less than 0.04).

Figures 5, 6 and 7 shows the amplitude coefficients, the energy coefficients and the

energy loss, respectively, for f = 50 Hz and an homogeneous medium whose properties

are those of the upper medium. The critical-angle effect has disappeared. The depen-

dence with frequency is displayed in Figure 8, where it can be seen that the reflection

coefficient and dissipated energy decrease with decreasing frequency, confirming the

low-pass filter property mentioned above. If ω → ∞ the energy loss (33) approaches

the limiting value 4(ηz/ZP )/(1 + 2ηz/ZP )2.

7 Conclusions

A general linear model of an imperfect interface (e. g., a fracture) between two elas-

tic media can be obtained by imposing boundary discontinuities to the displacement

and particle velocity fields. The model can be expressed as displacement and particle-

velocity discontinuities equivalent to a viscoelastic model. The P-S wave propagation

problem requires two specific stiffnesses and two specific viscosities, which define the
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properties of the non-ideal contact. Different choices of interface parameters give rise

to the different conditions, from welded contact to stress-free boundary condition. The

proposed model yields the scattering coefficients by a fracture embedded in transversely

isotropic media. The fracture surface dissipates energy due to attenuation mechanisms

present at the interface, as for instance, the interaction between a viscous fluid with

the solid media. The fracture acts as a low-pass filter for the transmitted P wave and

the reflection coefficient decreases at small and moderate ray angles.
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Fig. 1 Planar fracture embedded in transversely isotropic media of dissimilar density and
elastic constants.
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(a)

(b)

Fig. 2 Absolute value (a) and phase (b) of the scattering coefficients as a function of the ray
angle for f = 100 Hz.
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Fig. 3 Normalized energy loss as a function of the ray angle for f = 100 Hz.
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(a)

(b)

Fig. 4 Absolute value of the scattering coefficients (a) and normalized energy loss (b) as a
function of the ray angle for f = 50 Hz.
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(a)

(b)

Fig. 5 Absolute value (a) and phase (b) of the scattering coefficients as a function of the ray
angle for f = 50 Hz. The medium is homogeneous (the upper and lower media are the same).
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Fig. 6 Energy coefficients as a function of the ray angle for f = 50 Hz. The medium is
homogeneous (the upper and lower media are the same).

Fig. 7 Normalized energy loss as a function of the ray angle for f = 50 Hz. The medium is
homogeneous (the upper and lower media are the same).
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(a)

(b)

Fig. 8 Normal incidence reflection coefficient (a) and normalized energy loss (b) as a function
of frequency. The medium is homogeneous (the upper and lower media are the same).


