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Approxiamtion of Scalar Waves in the Space—Frequency Domain

JiM DougLas, Jr.*

JUAN E. SANTOS**
' AND

DONGWOO SHEEN*

§1. Introduction.

§2. The Problem in the Time Domain.
Let © be an open unit cube in R3, and set J = [0, 0c0). We shall investigate the following
model problem: find v = u(z, t) such that '

. 0%u
(211) W - czAu = f, Q x J,
~ .. Ou. Ou
(2.1.ii) s + By = 0, T xJ,
0
(2.1.1i1) Ult=0 = —8-% =0, Q,

where the constant ¢ denotes the wave speed, ¥ the unit outward normal on I' = 9Q.
The boundary condition (2.1.ii) is a standard first—order absorbing boundary condition, so
that waves arriving normally at the boundary are absorbed completely. Indeed, by setting
f = 0 and taking the L2~inner product of the differential equation (2.1.i) with %‘t‘—, we can
obtain the following energy equation:

(2.2) i-l-/ [; |2+c2|Vu[2] dQ+c/| 24T = 0.
@z ),

One of the physical implications of the non—negative boundary integral term in (2.2) would
be that the sum of kinetic energy and potential energy will be absorbed on the bound-
ary when the wave hits the boundary. For descriptions of various absorbing boundary
conditions, see [.ce77.], [.emT77.], [hig86.], [.th86.].

Assume that the source function f € Lz(J L?(Q)) satisfies the following decay rate in
time: for a positive constant S,

(2.4) sup |f(z,t)| < Boe P, teJ.
z€eQ
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APPROXIMATION OF SCALAR WAVES IN THE SPACE-FREQUENCY DOMAIN

where H(t) and 6(z) denote the Heaviside and the Dirac § distributions. In (8.1)
wo = 27 f,, rad /msec Wlt the main flequency fm which will be fixed as 10 K Hz, and

a=0.79 wo/x. The f1eqncy spectrum fo(z,w) is given ([13]) by

8awo(a — 1w)
[(r = 6w)? + wi]?

Pe,) = 5(z).

The wave simulation time is 2 Ynsec. Denote by A the wave length. Then A = ¢/ fm =
0.2m. Suppose that there are 25 grid points per wave length so that the mesh size
h = A/25 = 0.008m. In order to olve (2.1) using the finite difference method in ¢, the
time step should satisfy At < h/¢ by the Courant-Friedrichs—-Lewy stability condition.
The largest such At equals 0.004\ mssec and the number Ny, of time steps for the
simulation time 2 msec will be 500, Now let the domain size be 40 in wavelength unit,
Then, = (—4m,4m). The numbéy of grid points in  would then be 1001,

Let L be the smallest integer thaf is a power of 2 not less than Ni; .. In our case
L = 512. Let m* be a multiplicatign factor to increase the frequency resolution in
solving the problem in the frequency ¥ i

Set L* :‘Zm*L. The frequency step\size Af is chosen as

Af = 1/(At- IN) & 0.488/m* K Hz.

Also Aw = 27Af = 3.068 KHz. (fuy, / (2At) is called the Nyquist frequency so
that f(fnyq +w) = f(fnyq w).)

Given a continuous function ¢ : R — C, 0031de1 {p(nAt)}2 __ and

n=-—00o

G =3 pnAad 52)
The Fourier transform of (8.2) is given by
F)= 3 pnageiom, (53)

n=-—o0

For finite samples {p(nAt)}L 5! assume that the spect1 Mn @(w) is represented by

{B(kAW S
Motlvated by (8.2) and (8.3), the discrete Fou11e1 tranorm of the sequence
{e(nA)}ELG! is defined as a sequence {B(kAw)}E 5! with ‘

L*-1

Plkaw) = 3 p(nAt) (i)™

L*—I

= Y p(nAl) (e—z’AwAt>nk,
n=0

(8.4)
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Denote the Fourier transform of v(z, t) with respect to ¢ by

(3.1) v(z,w) = /00 o(z, t)e Wit

—00

The Fourier inversion formula gives

1 [ :
(3.2) v(z,t) = 5—7;/_00 Wz, w)e™ dw.
If v(z,t) is a real function, the Fourier transform o(z,w) of v(z,t) satisfies
(3.1%) (g, —w) = (g, w), for all w € R.

Analogously, if 5(z, —w) = (2, w) holds for all w, the Fourier inversion formula (3.2) takes
the form

(3.2%) v(z,t) = j—;Re/ Bz, w)e™ dw.
0

Assume that f = v = 0 for ¢ < 0. By taking the Fourier transform of equations (2.1),
the following set of elliptic problems is obtained: for each w, find u(z,w) such that

~

(3.3.1) —T-EAT =f, Q,
(3.3.11) —C%Z— =wu, I.

Since the source f(z,t) is a real function, an application of (3.1*) to the equations (3.3)
leads to u(z, —w) = @(z,w). Therefore, after finding solutions @(z,w) of Problem (3.3)
for all w > 0, we can compute the solution u(g,?) in the time domain using the Fourier
inversion formula (3.2%). Below in this section are given investigations of Problem (3.3)
for each frequency w.

If w = 0, Problem (3.3) becomes a Neumann boundary value problem and therefore a
solution exists and is unique up to an additive constant so long as

(3.4) /Q Flz,0)dQ = 0.

It then follows from (3.1) that the mean value of the source should vanish; i.e.,

(3.5) /Q /0 ~ fa, £)dt A9 = 0.

Since we want to take the inverse Fourier transform of solutions u(-,w) back into the time
domain, we need to specify the solution u(:,w) for each frequency, in particular, for w = 0.
Therefore the restriction (3.5) on the source is necessary. Let the indication of picking up
a good additive constant for u(-,0) be deferred to the end of this section.
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REMARK 3.1. For instance, if
0
- — t
fla,t) = z79(2, 1),

with g(z,t) = 0 for t < 0 and t > T, then the condition (3.5) is evidently satisfied. Also,
the source function

flz,t) = Z gz( » 1),

i=1

with g; € C§(Y) for each t € (0,T) and g; = 0 for t < 0 and t > T satisfies the condition
(3.5). These two cases cover most cases. In particular, if f(z,t) = F(z)g'(t), with g =0
fort <0 andt > T, f(:z: 0) = 0 on Q. Similarly, f(:v t) = G(t)V . F(z), with G = 0 for
t<0andt>T and F € [C§(Q)]® leads again to [ Flz,0)dQ = 0.

Now consider the case when w # 0. Define a sesquilinear form A(:, ) : H1(Q) x H}(Q) —
C by

(3.6) Alv,w) = —w?(v,w) + #(Vv, Vw) + iwe(v, w)r,

for v,w € HY(Q). A weak formulation of Problem (3.3) is then given as follows: find
u(-,w) € H(Q) such that

(3.7) A(@,v) = (f,v), ve HY(Q).

The uniqueness of Problem (3.3) can be established:

THEOREM 3.1. Suppose that Q) is an open bounded set with piecewise smooth boundary
I' = 8. Then, the solution of Problem (3.3) is unique for each frequency w # 0.

PRrOOF: Let w # 0 be fixed. It is enough to show that % = 0 is the only solution of (3.3)
for f = 0. Therefore set f=0. The choice of v = @ in (3.7) yields

—w?|[@l§ + | Vall§ + iwelafg r = 0.

Hence 7 =0 on I'. Again from (8.3.ii) it follows that

(3.8) U= —=0onT.

Problem (3.3.i), (3.8) can be regarded as a Cauchy problem. By the Cauchy-Kovalevski
theorem and the Holmgrem theorem, there exists a unique solution, which is analytic, in a
subdomain ¢ C Q with an analytic portion Q¢ NT of I'. The analytic solution is 7 = 0
on {2o. Now, unique continuation ([* *]) shows % = 0 on 2, which completes the proof. I
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In order to establish the existence of the solution of Problem (3.3), consider the dual

problem of (3.3) for w # 0; i.e, find z fulfilling
(8.9.1) ~w?z — ?Az =0, Q,

(3.9.11) = Wz, I

Z
C—-
ov.

The adjoint boundary condition (3.9.ii) to the boundary condition (3.3.ii) relative to the
operator —w? — c?A is obtained by integrations by parts twice and by using (3.3.ii):

(—w?l — ? AT, 2) = (U, —w?z — 2 A2) + (U, —iwz + c-a—z)

v

By replacing w by —w in (3.9), the uniqueness of Problem (3.9) follows from Theorem 3.1.
Therefore, if © is smooth and bounded, the existence and uniqueness of Problem (3.3)
is obtained by the argument in Chapter 10 of [. schechter77.]. Now assume that § is
a domain with piecewise analytic boundary I' so that the imbedding H*(Q2) — L?(Q) is
compact. Due to the continuity of the trace operator

HY(Q) = H3(T) : v — vr,
the sesquilinear form A(:,-) is continuous, that is,
(3.10) Ao, 0)| < Cllollllwlh,  v,w e BX(Q).
Also, the following Garding’s inequality holds:

w+c

(8.11) |A(v,v)| 2> \/—”””1 \/5

——oll,  veHY(Q).

Indeed, for v € H*(Q),

V2|A(v,v)| > |Re A(v,v)| + | Im A(v,v)]
> Re A(v,v)
= —w’[lv[|§ + [ Vv[[5
= ol = (@* + )lllG.

Introduce the sesquilinear form

w? 4 2

A'(v,w) = A(v,w) + —= 7 ——(v,w).



ﬂ

Then (3.7) takes the form

(3.12) A%(@,v) = (f + “’2\;“;2 iZ,v) . ve HY(Q).

Owing to (3.10) and (8.11), A%(-,.) is continuous and H'-coercive. Therefore the Lax—
Milgram’s theorem applies to Problem (3.12): there exists a solution operator

T° : L*(Q) —» HY(Q)
such that for every F' € L%(2)
(3.13) AYT°F,v) = (F,v), wveHY Q).

By the H'—coercivity of A%, the choice of v = TF in (3.13) shows

2
fﬁnT"Fn% < |A%(T°F,T°F)| = |(F, T°F)|
< ||F)|o | T°F1,

which yields

V2
1T N ez @ysm@n < 7

Hence T° : L*(Q) — H'(Q) — L%(Q) is compact. Recall that we seek @& € H(£) such
that

or

(3.14) a—

By the R1esz—Schauder theory of the Fredholm alternatlve, either Problem (3. 14) has a
solution for every T° f € L*(Q) or Problem (3.14) has a nonzero solution for T° f = 0.

Since f € L2(£), the solution @ of (3.14) belongs to H'(Q). But the uniqueness theorem
for (3.3) implies (3.14) does not have a nonzero solution @ for the case of T°f = 0. This

means that for every f € L?(Q) there exists a solution @ € H(Q) of (3.14) and hence of
(3.12). Thus we have proved:



THEOREM 3.2. Suppose {2 is a smooth domain or a domain with piecewise analytic bound-
ary I so that the imbedding H*()) — L%(Q) is compact. Then there exists a solution
4 € HY() of Problem (3.7), for w # 0.

As a corollary of Theorems 3.1 and 3.2,

COROLLARY 3.3. If(Q) is a unit cube, then there exists a unique solution u(:,w) of Problem
(3.3) for w # 0.

REMARK 3.2. For piecewise polygonal or piecewise analytical boundaries, the following
trace theorem holds:

1/2 1/2
lglo,r < Clgllaallglli/a-

Therefore, (3.10) follows without introducing the space H*(T'). It is also trivial(directly)
that, for our domain Q, H'(Q) — L?(Q) is compact; only elementary Fourier analysis is
needed.

Consider the solution operator T(w) : L%(2) — HZ%(Q) given by T(w)f = U(-,w) for
Problem (3.3). Let C(w) = [|T(w)|lc(z2();H2(0)). Assume that for each w # 0, 0 <
C(w) < o0o. Then we prove that C(w) is a continuous function of w.

THEOREM 3.4. The elliptic regularity coefficient C(w) of Problem ((3.3) is a continuous
function of w for w # 0.

Proor: Consider Problem (3.3) for w; # 0, wg # 0, wy # wa. Set d= U1(yw1) — (v w2)
and take the differences of equations in (8.3) for w = w; and for w = w,. Then,

[~w? — Al d = (Wi - wd)a(,ws), ©Q,

a9 . ~ . ~
{E/- + zwl] d =i(wg —wy)u(:,wq), T.

Hence, by the elliptic regularity,

ldllz < C(eor) (13 = Bl (s wa)lo + oz = wil - @, w2) . r]
< C(w1)C(w2) (Jwr + we| +1) - lwz — wi | flo-

In particular,

G, w2)ll2 < [J@(e wi)llz + Cwi)Cwz) (Jwr + wa| + 1) - [wz — wi] || fllo
< [C(w1) + C(w1)C(w2) (lwr + wa| + 1) - |wg — wi]] | o

By the definition of C(w), we have
C(UJQ) < C’(wl) + C(wl)C(wz) (le + (.4.)2] + 1) . Iwz — Wwil.
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Similarly,
C(w1) £ C(wz) + C(w1)C(w2) (Jwr + w2| + 1)+ w2 — wi]

which implies

1 1
- < (jwig +wo|+1) [wy — wy].
C(wl) C(wz) (l 1 Zl )l 2 1[
Therefore, C(w) is a continuous function of w. ]

REMARK 3.3. The elliptic regularity coefficient C(w) may blow up near w = 0. This
might restrict the choice of the source function f(z,t) in Problem 2.1 so that the Fourier
transform f(_:g ,w) vanishes near w = 0. However, this restriction seems to be not necessarily
as our numerical example in §6 shows.

Now let us indicate on the choice of the additive constant for u(z,0) for every z € Q. Due
to the Fourier inversion formula (3.2), the initial condition (3.1.iii) yields to the condition

oo
(3.15) / Az, w)dw = 0.
Since there is a unique solution @(-,w) for each w # 0, the value u(z,0) for every z € Q
should be uniquely determined such that (3.15) is satisfied. Indeed, the initial condition
(8.1.4¢%) requires more than (3.15);

(3.16) /00 wit(g,w)dw = 0,

-
although how it should contribute to finding the values %(z,w) is open.

84. Finite Element Procedures.

Let 0 < h £ 1 be a parameter and 7, be a quasiregular partitions of  into simplicies
or 3-rectangles with diameter bounded by h. Choose a standard finite element subspace
Vi of HY(Q) associated with 7}, such that, for integers 1 < k < k < m < 7, for any
v e H™(Q),

k
(41) 28, 1=l < Ol
Here C is a constant independent of h and v.
Fix a sufficiently high frequency w* > 0. Recalling the formula (3.2), we shall first
approximate the solution %(w) by @n(w) in Vh for lw| < w*, and by 0 for |w| > w*. Let a

positive integer N be a parameter and Aw = T\r’-T-T a frequency step. Then, for w = +jAw,

Jj =1,---,N, a Galerkin approximation @s(w) to U(w) of Problem (8.7) is defined as an
element € Vh such that

(4.2) A@(w),v) = (F,v), v € V.

9



Motivated by (3.15), Ux(0) is calculated by

N
Un(0) = =2 Reilp(jAw).

j=1
The time domain solution u of Problem (2.1) will then be approximated by
N

D (jAw)e A Aw,
j==N

1

Wffv(t)=§;

A natural question is then: what is the convergence rate of
(4.3) |lu(z,t) — Wi (z,t)]|| = 0, as h — 0, N -

with an appropriate norm ||| - |||? In order to answer this question we begin by looking at
the spatial discretization:

THEOREM 4.1. For each frequency w # 0, the approximate solution uy(w) of (4.2) to the
solution tU(w) of Problem (3.7) satisfies the optimal order error estimate

(44) [2(w) ~ Tl < CERIF)lo
PRrROOF: First, an error equation is obtained from (3.7) and (4.2):
(4.4) AU — uy,v) =0, v € V.

By the Garding’s inequality (3.11) and the inequality (3.10), the above error equation (4.4)
yields the following: for every v € Vj,

Cyll = Al — Calld — T2 < A@— By, @ — )
(4.5) = A(@ — T, T~ v)

< Gl — w1 f|@ — o)1
Dividing (4.5) by ||& — @x|j1 and taking the infimum of ||& — v||1 over v € V}j, we get
(4.6) @ — @nlls < Cal|— wnllo + Cshl|all2
as an application of (4.1) with £ = 1 and m = 2. In order to bound the term ||@ — Uy||o

in terms of || — ||y we shall use the duality argument ([.bo73.], [.nit70.], [.sch74.]) as
follows.
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Consider the dual problem

(4.7.1) —wip —cFAp=u—1u, 1,
(4.7.1i) cg—z =iwp, TI.

Define a sesquilinear form A*(-,+) : H}(Q) x H}(Q) — C by
A*(v,w) = —w?(v,w) + (Vv, Vw) — iwe(v, w)r.
Then a weak formulation of Problem (4.7) is given by
A (p,v) = (T — up,v), v € Vs,
which is equivalent to
(4.8) A(v,p) = (v, T —Tp), v € Vp.
According to (4.4), (3.10) the choice v = U — U}, in (4.8) shows that

1% — @]} < |A(B = Tn, 0 — )|
(4.9) < Csl|@ — U |1]lp — w1,

for arbitrary w € Vj,. By taking the infimum on the last term in (4.9) over w € V;, another
application of (4.1) and an elliptic regularity for Problem (4.7) imply

1@~ @nll§ < Cohl|a—anllallel2
< Crhl|@ — Gl ][@ — Gallo,

or
(4.10) |& — Grllo < C7h||T — Tnll1.
1
Combining (4.6) and (4.10) with a sufficiently small & so that 5 <1-Cy4Crh, we have

(4.11) @ — @allo < Csh?||ll2.

By an elliptic regularity for Problem (3.3), we get (4.4). This completes our proof. |

Now, we turn to the question (4.3) about the convergence rate of the approximate
solution W} to u(-, 1) for a fixed time t.
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THEOREM 4.2. Assume that (2.4) and (2.6) hold for sufficiently large k. Then, fort € J,
the following error estimate holds

ak
otk

Ju(:,2) = WY (., ﬂHL%nKﬂ‘<C7!

1 b3
L2(J,L2(Q)) ((Zk - 1)(w*)2k-1)
#\ 2
w
(4.12) + <—J_\T_> {”TZUHN(LB(Q)) + tl|Tul|z2 (g 2(0) + t2“u||L2(J,L2(Q))}
+ h?w* ”ﬂ|Lg°(—oo,oo,L2(9))] :

PROOF: Set w; = jAw = jﬁ_— and é(z,w;) = Un(z,w;) — U(z,w;). Then,

u(, ) — Wi (z,t) = u(t) - N(t)
1 o0

— _2_7;_ A(w)ewtdw it Z A(w )ezw,tAw

]"‘—N
N

+ [—51%- Z E(wj)ei“’ftAw

=N
L / (w)etduw
27I' IWISW*

1 L
Rl Bk Z E(wj)e’™* Aw

j=—N

L

A(w)e“tdw +
271" ]w|>w* ( )

1 N

2 Py’

= El(:v, t) + Ez(il),t) + E3(.’1?, t).

Ww;)e it Aw

By the Cauchy-Schwarz’s inequality and Parseval’s identity, it follow that

[iEerae= [ | [ awea
Q q|2m jw|>w*

1 1
< . 2k~ 2 -
< /Q 7 |:»/lw|>w* w*¥|u(w)| dw/lw|>w* w%dw} dQ

2
/ pr) / 3 a A o Dy
Oy ||
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Therefore,

[N ol

O*u 1
4.13 F 72 < “ [
(413) 120 llza@) < | 5 Leana(q) L2722k — 1)(w*)2F1
By Corollary 2.2,
l OFu <
—_— 00.
Ot |l pa(a,z2 ()
Next,
1 wt . N . ’
||E2(',t)||%z(9) =17 / t(w)e“dw — Z B(wj)e™*Aw| dQ
Q —w* j=—N
27 iwt] ||2
< C(Aw)? / Flaw)e™] a0
Q Ow L2(—w* w*)

dQ

= 0w [ |[{=Fute) + 2(-uce) 1) + e (2 |

L2 (—w* w*)

< C(Aw)? fQ #2673 (—oo,00) + IEU(BIT2 (—00,00)t" + Ilu(t)IIZLg(_oo,oo)t“] ds

= C(Aw)* {”t2u“%2(JL2(Q)) + ¢ [tul|Z2 5,2y + t4”“”%2(n2(9))]
where L2 (—o0,0) denotes the L?—space in the frequency domain and the last equality is
again due to the Parseval’s identity.
Recall that [|t7u|2(s12(0)) < oo by Theorem 2.1. Hence,
1B2( O)l|Z2(0y < C(AW)? [IIT2ullL2sz2c0)) + tlTullL2(sze ()

(4.14) +8|ull 2 gz2 ()] -
Finally, by Theorem 4.1,

N
1 =~ i
1B, )22y = | 5= D Ewj)eitAw
=N L2(@)
1 & 5
e
=N
1 & o
<o 3 Ol fwlisaye
=N
(4.15) <C-_ swp _C(w) - W% | Fll s (~o0,00, 1201
Combining (4.13), (4.14), (4.15) , we obtain the estimate (4.12). ]
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§5. The Proof of Theorem 2.1.

In this section we shall prove Theorem 2.1 using the concepts of geometric optics. It is
enough to prove the theorem for m = 0 since if Theorem 2.1 holds for m = 0, then, for
m > 0, the constant C,, and a smaller constant o can be chosen accordingly.

PROOF: Given an incident wave with the incident angle ¢, let Ry be the reflection coeffi-
cient at I' so that
U(SB, ‘t) = ei(“’t_ﬁ‘?) + R¢6i(Wt—£1'£)

is a local solution of (2.1.i) and (2.1.i1) at I". Here, w denotes the frequency, £ the incident
wave vector such that £ - v = |g| - [v|cos ¢ = |k|cos ¢, and k' the reflected wave vector of
& at I'. Ry is then explicitly given by

1—cos¢

i s

Since the wave speed is constant, the orthogonal trajectories of a set of wave fronts
are locally straight lines with the direction k, the constant incident wave vector at the
boundary I', until the wave fronts hit the boundary. Such orthogonal trajectories still
remain as straight lines with the direction &', the reflected wave vector of g at T', after
the wave fronts are reflected at I' and before they hit I again. We shall call each such
such trajectory as a ray originated at z, at time ¢y if it is generated by a point source
6z — 29)6(t — o).

Let II(z, t; 8), 0 < s < t, be the set of all possible rays toward z originated at some point
y € §) at time s whose arc lengths along the rays from time s to time ¢ are equal to ¢(t—s).

Regard R?® as the periodic array of unit cube. Then II(z,t; s) can be interpreted as the
set of centripetal rays toward the point £ whose origins are points y* on the sphere

S(zie(t—s)) = {y* € R®|ly* —g| = c(t - 5)} .

If two rays in II(z, t; s) agrees for (¢t — ¢, t), then they are identical. Therefore, there is a
1 — 1 correspondence between rays in II(z, t;s) and the set of all centripetal rays toward
z with arc length ¢(t — s). The mapping sending the starting point y* on S(z, c(t — s))
of a centripetal ray to the starting point y € Q of the corresponding ray in II(z, ¢;s) is
surjective, but not necessarily injective.

For |z—y*| = ¢(t—s), define N(z, t; y*,s) = N(z;y*) to be the number of the intersection
of the centripetal ray from y* toward z with the lattice of the periodic extension of T'. It
is obvious that the number N (z,t;y*,s) is the same as the number of reflections at T' of
the ray arriving at ¢ at time ¢ which is originated at y €  at time s.

Next consider the characteristic traveling time, TX,—for a domain with the velocity ¢ to
be the infemum time required for all rays starting from any fixed point in § to hit the
boundary I' at least once. Then T}, = diam Q/c. Since { is a unit cube, T}, = v/3/c.

Now let us reformulate Problem (2.1) as follows. Since Boundary Condition (2.1.ii)
is not perfectly absorbing, the reflected waves generated at (y,s) € supp f will affect

14



on the behavior of the waves at a given observation point as a parasite source with a
characteristic traveling time T,. Conveniently, such a parasite source can be thought as
a function f*(y*,s) where y* € S(z,c(t — s)). The effect at (z,t) by the parasite source
f*(y*,s) is then given by

(5.1) (Y, s) = R(z, t;y", 8) f(y, )

where R(z,t;y*,s) is the reduction factor due to the absorption at I, or equivalently, at
the lattice of the walls in the periodic extension of the unit cube. From (2.3),

1, if N(z,ty*,s) =0,

N(z,t;y*,9) 1— ; .
e (-lpst), Nty >0,

(5.2) R(z,t;y*,s) = {

where ¢; = ¢;(z,t;y%,8), 1 <j < N(z,t;y*,s) is the jth incident angle at I' of the wave
from y to x along a ray inside (2.

Finally let an integer A be a geometric factor such that for any ray hitting I"' A times
must hit T’ at least once with the incident angle > 7 /4. Then

t—s

~1.
N

N(z,t;y*,s) 2

Therefore

. Vio 1)
(5.3) IR(:'Eat)_y_ ,8)| < (\/5_*_1)

< Ce_x'-}';(t—s).

Now we interpret Problem (2.1) as follows: find u*(z,?), (z,t) € R® x J, such that

2, %
(5.4.0) aa;; —PAu* = f*,  R®xJ,
ou*
(5.4.ii) w| =-—| =0, R®
t=0 6t =0

where f* is given by (5.1).
The solution u* of (5.4) has the following representation ([.john81.]), for f* € C%(R® x J),

1 [t dt
5.5 u*(z,t) = / / fy*,8)d Sys.
(55) 0= [ 125 oy TS
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Ifz € Q, then
’U,*(C_I}_, t) = u(&a t)a teJ.

Due to (5.1), (5.3), (5.5), and integrations by parts twice,
|u(z, )] = |u*(z, )]

1 /t dt / — A (t—9)
< Ce 7| f(y", s)ld Sy
4rc® Jo jy* —al=c(t—s) B

t—s

¢ — e (t—3)
SC/ (t—s)e” Xx TV emPegs,
0

el o () o]

S Ce—a’t,

where « is a positive number strictly less than min{ﬁ;—, B}. This completes the proof of
Theorem 2.1.

§6. A Numerical Example.

As a numerical example of frequency domain treatment consider {2 as an open interval
centered at origin and fix ¢ = 2m/msec. The size of the domain  will be determined
later. The source function will be slightly modified from the following rapidly decaying
sinusoidal function

(6.1) fo(z,t) = date™* sinwot H(t)6(z),

where H(t) and §(z) denote the Heaviside and the Dirac § distributions. In (6.1) wy =
2% fm rad/msec with the main frequency f,, which will be fixed as 10 KHz, and o =

0.79 wy/m. The frequency spectrum ﬁ;(w,w) is given ([.tr79.]) by

Bawp (o — iw)
o= ) + 8

ﬁ(waw) = ]26(3})

The wave simulation time is 2 msec. Denote by A the wave length. Then A = ¢/ f, = 0.2m.
Suppose that there are 25 grid points per wave length so that the mesh size h = \/25 =
0.008m. In order to solve (2.1) using the finite difference method in ¢, the time step should
satisfy At < h/c by the Courant — Friedrichs — Lewy stability condition. The largest such
At equals 0.004 mssec and the number Nijpye of time steps for the simulation time 2 msec
will be 500. Now let the domain size be 40 in wavelength unit. Then, @ = (—4m,4m).
The number of grid points in  would then be 1001.

Let L be the smallest integer that is a power of 2 not less than Nyme. In our case
L = 512. Let m* be a multiplication factor to increase the frequency resolution in solving
the problem in the frequency domain.
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Set L* = 2™" [, The frequency step size Af is chosen as
Af=1/(At-L*)=0.488/m* KHz.

Also Aw = 2rAf = 3.068 KHz. (fayq = 1/(2At) is called the Nyquist frequency so that
f(fryg +w) = f(fayg —w).) -

Given a continuous function ¢ : R — C, consider {p(nAt)}se _  and

oo

(6.2) ()= Y @(nAt)é(t — nAt).

n=—oo

The Fourier transform of (6.2) is given by

oo

(6.3) Pw)= Y p(nAt)emrAL,

n=—oo

For finite samples {@(nA#)}E_5! assume that the spectrum @(w) is represented by
{@(kAwW) 5" .

Motivated by (6.2) and (6.3), the discrete Fourier transform of the sequence {p(nAt)} =5t
is defined as a sequence {g’o\(kAw)}f;al with

L*—1 n
(6.4) P(kAw) = Z w(nAt) (e—i%g,’-) ‘
L*-1
= Y p(nAt) (emiawan™,

where Aw = 27 /AtL*. In the same spirit, the inverse discrete Fourier transform of a
sequence {P(kAw)}r_=* can be defined by

1 L= s 2W kn
(6.5) p(nAt) = v z e*(kAw) (e’W‘)
k=0

L*—1
1

= = Z o*(kAw) (e_iA‘”At)kn .

k=0

A fast Fourier transform (FFT) is an algorithm to compute a sequence {(ﬁ(kAw)}ff__;l in
the frequency domain from a given sequence {(p(kAt)}f;gl in the time domain and re-

versely. Conventional Fourier transform algorithms require 0(L*?) flops, but FFTs require
only 0(L* log L*) flops ([.ct65.], [.gr69.]).
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We modify the source function (6.1) so that (3.5) is satisfied and then normalize the
resulting function:
J 1(33 ’t)

maxost_<_2 msec fl (.’C, t) ’

flz,t) =

where

2 msec
e, D) = fo(a, ) — s— / folz, D)t

2 msec J

Using (6.4), (6.5), we solve Problem (2.1) both in the time domain and in the frequency
domain. Various modifications of frequency spectrum and multiplication factor m* for the
source function f(z,t) are also attempted.

A simple band—-pass filter with limit [f, f2, fs, fa](KX Hz2) is used to modify the spectrum
F(z,w) such that

i) f1 = fa=0and f3s = fi = fayq, no modification is made for f(a:,w), ie., f(:v,w) =

(o) )
ii) if fi = fa=0and f3 < fi < fayg, f(z,w) is unchanged for w < f3,

flaw) = h@w) s 222 ficw<fi,

fa— 13’

f(m,w)=0, f4<wanyq-

In the case 0 < f; < f,, similar modifications by amplitude linearization for w € (fy, f2)
are investigated.
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