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Summary

Estimating subsurface stress or pore pressure from seis-
mic velocities typically relies on specific petrophysical
relationships. Most of the commonly used velocity-stress
equations are designed for isotropic media and describe
single (P- or S-wave) velocity versus confining stress
or depth. Applying such relationships to anisotropic
formations under non-hydrostatic stress state produces
significant errors, especially if the relationships were
calibrated from log data along deviated wells. Here,
we discuss a different way of modeling and calibration
of stress-dependent velocities which uniformly applies
to both P- and S-wave velocities and accounts for
anisotropy and a non-hydrostatic stress state.

We use non-linear elasticity theory which provides
straightforward relationships between the full tensor of
?effective” elastic stiffnesses and an arbitrary stress state.
To describe stress-dependent velocities in isotropic mate-
rial, two unstressed moduli and three non-linear elastic
constants are needed. More realistic model for reservoir
rock is represented by transversely isotropic media with
a vertical symmetry axis (VTI) which requires five un-
stressed elastic moduli. Analysis of available experimen-
tal data on VTI samples suggests that stress-dependent
stiffness tensor and any derived velocity are well-described
by the same three ”isotropic” non-linear constants, thus
greatly simplifying the modeling.

We apply our technique to two different VTI sam-
ples: Jurassic North Sea shale and Colton sandstone
and demonstrate good applicability of a simple three-
parameter model. As non-linear coefficients can be de-
rived directly from modern multi-mode acoustic measure-
ments in the wells, the proposed model represents a pow-
erful tool for predicting stress-dependent anisotropic ve-
locities and for their inversion to stress and pore pressure.

Introduction

The relationship between seismic velocities and effective
stress is a critically important element in the seismic char-
acterization and monitoring of the subsurface stress field,
either in the overburden or in the reservoir. The growing
popularity of multicomponent data means that the S-
velocity field may be jointly used with the P-velocity to
accomplish these tasks. Utilizing multicomponent data
requires a unified model which links all velocities to stress
and accounts for seismic anisotropy. Here we propose a
simple three-parameter model which gives such a concise
and unified description to anisotropic P and S velocities
under arbitrary stress. The model accounts for VTI
anisotropy of unstressed rocks which can be present in

most sedimentary basins. The parameters of this model
can be estimated from either lab measurements or directly
from borehole multi-mode acoustics (Sinha, 1996, 2001).

Theory

The Hooke’s law for VT unstressed rock is given by
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where T;; and FE;; are corresponding stresses and

strains, ¢;; represents unstressed (or reference state)

ij
stiffnesses with ¥y = ¥, — 2¢2s.  ”Effective elastic
stiffnesses” ¢;j, defining acoustic velocities under stress,
can be obtained by considering the propagation of small
amplitude waves in the presence of initial stresses in
the medium (Sinha and Kostek, 1996; Bakulin et al.,
2000). If one of the principal stresses is vertical, then
T23 = T13 = T12 = E23 = E13 = E12 = 0 and equations
take a particularly simple form:

c11 = 11 (14 2B11) + T11 4 c111E11 + ci12(EBo2 + Es3),
o2 = 11 (1 4 2F22) + To2 + c111E22 + c112(E11 + Es3),
cas = c33(1 4 2Fs3) + Ts3 + c111 B33 + c112(E11 + E22),
Ccio ™ 0?2(1 + FEi1 + E22) + 0112(E11 + E22) + c123FE33,
c13 ~ 13(1 4 Ei1 + Es3) 4 c112(E11 + Es3) + c123Foo,
Caz ~ 0?3(1 + FEao + E33) + c112 (E22 + E33) + c123F11,
Co6 ™ cge(l + 2E22) + Ti1 + c144Ess + c155(E11 + Ea2),
Cs5 ~ 624(1 + 2E33) + Ti1 + c144 B2 + c155(E11 + Es3),
34(1 + 2E33) + Toa + 14411 + c155( B2z + Ess),

(2)

where c111, c112 and cigs are third-order (nonlin-
ear) elastic constants describing stress-sensitivity and
C144 = (C112*C123)/2 and ci55 = (C11170112)/4. We adopt
the convention that compressive stress is with a negative
sign while tensile is positive (Sinha and Kostek, 1996).

Key assumption in equations (2) is that although the
second-order elastic tensor is described by VTI media,
the third-order elastic tensor is approximated by an
isotropic form requiring only three third-order constants.
Such a description was previously utilized for construc-
tion materials (Guz et al., 1977) and rocks (Bakulin and
Protosenya, 1982; Bakulin et al., 2000), however they all
used an ”isotropic” approximation to convert strain into
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Fig. 1: Effective elastic stiffnesses c11 and c3s in two intervals

of effective pressure (5-20 and 40-100 MPa) for North Sea shale
(Hornby, 1995). Measured data are points and predicted data
by equations (2) are lines. For 5-20 MPa, the reference state
(grey/green point) was taken at 10 MPa (Thomsen parameters
Vpo = 3.11 km/s, Vso = 1.53 km/s, e = 0.24, § = 0.13, y = 0.41).
For 40-100 MPa, it was taken at 40 MPa (Vpo = 3.44 km/s,
Vso = 1.77 km /s, e = 0.23, § = 0.11, v = 0.36.)

stress in equations (2). In contrast, we propose to employ
VTI Hooke’s law (1) exactly. This makes it possible to
use confining stress experiments for estimating all three
non-linear constants. In fact, even for confining stress
(Th1 = T22 = Ts3), VTI Hooke’s law (1) predicts that
FE11 = Eop # Es3 which leaves five linearly independent
equations in (2). If the amount of anisotropy is sufficient
then any three out of the five (independent) equations (2)
can be inverted for three non-linear coefficients ci11,
c112 and ci23. Two remaining equations (stiffnesses) can
then be predicted and compared with the measured ones
to verify the validity of the original assumption on the
three independent parameters. In contrast, the isotropic
Hooke’s law (¢ = 33, cha = s, s = cJ5) predicts
for confining stress that Fi1 = Fa2 = F33 which leaves
only two linearly independent equations in formulas (2).
From these two equations one can only estimate two
combinations of three unknown non-linear coefficients,
c111, ¢112 and ci123. To determine all three of them, a
non-hydrostatic stress state is required.

Clearly, in the general case of triaxial stress
(Th1 # Te2 # Tss), equations (2) describe an or-
thorhombic medium in which stiffnesses are linearly
dependent on principal stresses.

Jurassic North Sea shale

As our first example, we take data from compressional
and shear wave velocities measured on a shale sample
(Hornby, 1995) under control of both confining (P.) and
pore (P,) pressure (P, between 5 and 110 MPa, P,=0
or 20 MPa). The samples of Jurassic age were drag
samples from North Sea (p=2540 kg/m?®). This shale
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Fig. 2: Effective elastic stiffnesses cas = pVy3 (@), caa = pVi%

(m) and c44 = pV;1 (®) in two intervals of effective pressure 5-20
and 40-100 MPa for North Sea shale. Measured data are points
and predicted data by equations (2) are lines. The reference states
for each stress interval are grey/green points (10 and 40 MPa).

exhibits transversely isotropic behavior with a symmetry
axis (z3) orthogonal to fine bedding planes. This set of
measurements includes velocities V;; propagating along
the z;-axis with a polarization along the xj-axis (Vas,
Va1, Vaa, Vi1, Viz, Vi2) and velocities propagating at
an angle (45°) to the symmetry axis (Vgpas, Visvas,
Vs H45). All the measurements have been interpreted as
phase velocities with an estimated error of £0.5% and
inverted for second-order VTI elastic constants c?] for
each confining pressure (Figures 1, 2 and 3). As the data
clearly exhibits a distinctly different behavior at low
and high effective stresses (defined here as the difference
between confining and pore pressures), we have divided
the stress range into two intervals, 5-20 and 40-100 MPa.
For each interval, along-axes quantities (c11 = pVE,
€33 = PV323a Ce6 — PV1227 and cs4 = PV123 = PV321 = 9%22)
have been inverted for three third-order constants cii1,
€112, c123 (Table 1) by minimizing the least-squares misfit
function (x?) between measured stiffnesses and those
predicted by equations (2). Figures 1 and 2 prove that
three ”isotropic” third-order coefficients provide a good
description for four VTI stiffnesses in each stress interval.
The error bounds on the derived non-linear constants
(Table 1) were estimated using quantitative confidence
limits derived from a Monte-Carlo simulation and using
the x? function as a statistical measure of goodness-of-fit.

Table 1: Third-order elastic constants obtained from confining
stress experiment on a North Sea shale (Hornby, 1995).

Conﬁning C111 + Aclu C112 + Acng C123 + A0123
(MPa) (GPa) (GPa) (GPa)

5-20 -11300£2900 -4800+£2500  5800£4000
40-100 -3100+600 -800£500 401800
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Fig. 3: Measured (points) and predicted (lines) effective elastic
stiffness €13 in two intervals of effective pressure (5-20 and 40-100
MPa) for North Sea shale (Hornby, 1995). The prediction is done
with equations (2) where parameters ci11, c112, c123 were inverted
from C11, €33, C44 and C66 -

The standard deviations on the measured stiffnesses have
been estimated to be + 2 %. As an independent check
of our model, we can predict the remaining stiffness 25’
which was not involved in the inversion for non-linear con-
stants and compare it with c75°*® estimated from off-axes
velocities V,pas and Vysvas. Such a comparison is plotted

on Figure 3 and confirms a good a posteriori prediction.

Colton sandstone

As our second example, we take ultrasonic measurements
on a dry Colton sandstone placed in a triaxial pressure
machine (Dillen et al., 1999). The Colton sandstone
formation is an Eocene fluvial deposit located in north-
central Utah in the United States (p=2380 kg/m®, poros-
ity ¢ = 13%).

At zero stress, the Colton sandstone also exhibits trans-
versely isotropic behavior with the symmetry axis aligned
with one of the directions of the triaxial machine (7T33).
Equal compressive stresses were applied in the directions
z1 and z2 to preserve the VTI anisotropy of the sample
(Th1 = T22). The block was subjected to a load cycle,
a—b—c—d—e— f—g—h—1i, as a function of time
(Figure 4). The stress path contains both hydrostatic or
confining (Th1 = The = T33) intervals (e.g. h—i) as well as
non-hydrostatic ones (e.g. b— h), so we can compare the
non-linear coefficients retrieved at different stress states
and estimate the stability of the inversion.

The complete data set includes only velocities of compres-
sional and shear wave propagating along the coordinate
axes. This allows us to compute four VTI stiffnesses:
ci1 = pVii = pVis, sz = pVaa, ces = pVai = pVid,
and cay = pVi3 = pVi = pVi = pVia. Measured
velocities defining the same stiffness (Figure 5 and 6)
are approximatively equal (Vi1 ~ Vaa, Vo1 ~ Viz and
Viz ~ Vag ~ Vaa ~ V31), so we have used all of them
simultaneously in the least-squares inversion.
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Fig. 4: Loading cycle of the triaxial pressure cell with Colton
sandstone (Dillen et al., 1999). Principal stresses Th1 and Tha
were maintained equally to preserve the transverse isotropy of the
sample.

Third-order elastic constants for Colton sandstone were
estimated following the same procedure as for the shale.
The reference state was taken at zero time (Tn = Th =
T33=-0.7 MPa) and Thomsen parameters were estimated
as Vpo = 2.77 km/s, Vso = 1.89 km/s, e = 0.05, v = 0.03.
Thomsen parameter § was not constrained by the mea-
sured velocities along axes and was taken as 0.05 in this
study. Estimation of the non-linear coefficients at confin-
ing (h—1) and arbitrary (a—i) stress states led to the same
coefficients although confidence limits in the latter were
approximately three times smaller (Table 2). Increased
uncertainty for the confining stress is easily understood
from equations (2) when these are viewed as a set of lin-
ear equations with respect to unknowns ci11, c112 and
c123. If an isotropic sample is subjected to confining stress
then it stays isotropic and the matrix of coefficients in (2)
is singular, because Fi1 = F2 = FEs3. With only two
equations being linearly independent, one can constrain
only two combinations out of three non-linear constants.
Intrinsic anisotropy and/or non-hydrostatic stress makes
FE11, Eas, Ess different and removes the singularity.

Table 2: Third-order elastic constants for Colton sandstone
under confining and arbitrary stress between 0-11 MPa.

Stress C111 + Acul C112 + Acng C123 + A6123
(MPa) (GPa) (GPa) (GPa)
(h — ) confining -7100£2000 -1300+1200  700+2000
(@ — 1) arbitrary -7400£800  -14001500 600£800

However, due to the weak anisotropy of the Colton sand-
stone, confining stress makes Fi1(= FE22) and FEsz only
slightly different. Therefore the condition number of the
matrix of coefficients from (2) is still high because coef-
ficients are close to those of a singular case of isotropy.
In contrast, the deviatoric stress state (T11 = T2 # T33)
moves F11(= E32) and FEjssz further apart, thus decreas-
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Fig. 5: Measured (points) and predicted (lines) effective elastic
stiffnesses c11 = pV3 (@), c11 = pVih (O) and c3z = pViy (#)
for the Colton sandstone. Error bars on measured stiffnesses cor-
respond to +2 %. Only three parameters, ¢111, €112, €123, have
been used to predict all stiffnesses under the entire loading cycle.
The reference state (grey/green points) has been taken at zero time
(Th1 = Tao = Ty3 = —0.7 MPa).
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Fig. 6: Measured and predicted effective elastic stiffnesses for
Colton sandstone: (a) ces = pVip (®) and ces = pVyy (M); (b)
cas = pVsy (0), cas = pVay (O), caa = pVi3 (#), caa = pViy
(m). Error bars on measured stiffnesses correspond to +2 %.
Only three parameters, ci111, c112, c123, have been used to pre-
dict all stiffnesses under the entire loading cycle. The reference
state (grey/green point) for stiffnesses cgg and ¢}, has been taken
at zero time (T11 = Tos = T33 = —0.7 MPa).

ing the condition number of the matrix of coefficients and
decreasing the confidence limits in the solution. Figures
5 and 6 demonstrate that overall measured stiffnesses are
well described by a solid curve representing the predic-
tions based on equations (2) and third-order elastic con-
stants derived from the second row of Table 2.

Discussion and conclusions

We have proposed a concise and comprehensive way of
velocity-stress modeling based on simplified non-linear
elasticity theory.  The advantages of the suggested
modeling scheme are:

e Both P and S (S1 and S2) velocities are treated using
the same physical framework. As a result any velocity in
any direction can be predicted as a function of stress.

o Intrinsic anisotropy of unstressed formations is auto-
matically included.

e The model allows an arbitrary triaxial stress state
(T11 # Ta2 # T33) and therefore predicts any velocity for
general non-hydrostatic stress.

e Only three (stress-independent) constants are required
to describe stress variation of any velocity.

e Well calibration of the model may be performed directly
in-situ using multi-mode borehole acoustic measurements
(Sinha, 1996, 2001).

The minor disadvantage of the model is that it operates
within a limited stress interval; this may not be a
problem if a window of anticipated effective stress is not
too large for selected depth interval.
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