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Abstract The Schoenberg-Muir theory states that an equivalent, homogeneous and

anisotropic medium can be constructed from a layered medium composed of several

thin layers, each anisotropic, under the assumption of stationarity. To test the theory we

consider single transversely isotropic layers with different orientations of the symmetry

axis and perform numerical simulations of wave propagation with a full-wave solver.

The equivalent media have orthorhombic and monoclinic symmetries. It is shown that

the theory performs very well from the kinematical and dynamical points of view, even

for strong anisotropy

Keywords Schoenberg-Muir theory · thin layers · fractures · cracks · anisotropy ·

numerical modeling.

1 Introduction

Thin transversely isotropic layers (with a vertical symmetry axis) (VTI media) be-

have as a homogeneous transversely isotropic medium when the wavelength is much

longer than the ticknesses. To our knowledge, the first to study the problem using

isotropic layers was Bruggeman (1937). Other investigators analyzed the problem us-

ing different approaches, e.g., Riznichenko (1949) and Postma (1955), who considered

a two-constituent periodically layered medium. Later, Backus (1962) showed that peri-

odicity is not necessary and also obtained the average elasticity constants in the more

general case when the single layers are transversely isotropic with the symmetry axis

perpendicular to the layering plane. He assumed stationarity, i.e., in a given length of

composite medium much smaller than the wavelength, the proportion of each material

is constant.

1

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante
42c, 34010 Sgonico, Trieste, Italy.
E-mail: jcarcione@inogs.it 1

Departamento de Geof́ısica Aplicada, Fac. Ciencias Astronómicas y Geof́ısicas, UNLP, Paseo
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Schoenberg and Muir (1989) extended Backus approach to single layers of arbitrary

anisotropic layers using a matrix formalism. However, this generalization has been

questioned by Hudson and Crampin (1991), who argue that the theory cannot be

applied to oblique sets of layers or cracks (even for weak anisotropy), since the structure

is no longer one-dimensional and Backus’s assumptions are invalidated.

Backus averaging has been verified numerically by Carcione et al. (1991), who

found that the minimum ratio between the P-wave dominant pulse wavelength and

the spatial period of the layering depends on the contrast between the constituents.

For instance, for a periodic sequence of epoxy-glass it is around 8, and for sandstone-

limestone (which has a lower reflection coefficient) it is between 5 and 6. In any case, an

optimal ratio can be found for which the equivalence between a finely layered medium

and a homogeneous transversely isotropic medium is valid. In this work, we consider

a periodic sequence of VTI-ψTI layers, where ψTI is the VTI medium rotated by an

angle ψ. In particular, we consider ψ = π/2 and π/4. The resulting equivalent media

have orthorhombic and monoclinic symmetries, respectively.

We compute the wave field with a modeling method used by Carcione et al. (1991),

generalized to the anisotropic case. Details of this space-time domain direct method

can be found in Carcione et al. (1988, 1992).

2 Schoenberg-Muir theory

Let us consider a finely layered medium composed of N layers of arbitrary anisotropy

(Figure 1), with the z-axis perpendicular to the layering plane. Each layer is defined

by the density ρ, the proportion pn and the elastic constants cIJ . The stress-strain

relation of each layer can written as
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, (1)

where σI denotes stress component and eI denotes strain component in the Voigt

notation (e.g., Carcione, 2007). The stiffness matrix involved in equation (1) can be

rewritten in terms of four submatrices as





CTT CTN

C⊤

TN CNN



 . (2)

According to Schoenberg and Muir (1989), the equivalent homogeneous medium is

defined by the following matrix:





C̄TT C̄TN

C̄⊤

TN C̄NN



 , (3)
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where
C̄NN = 〈C−1

NN
〉−1,

C̄TN = 〈CTNC
−1

NN
〉C̄NN ,

C̄TT = 〈CTT 〉 − 〈CTNC
−1

NN
CNT 〉+ C̄TN 〈C−1

NN
CNT 〉,

(4)

where the thickness weighted average of a quantity C is defined as

〈C〉 =

N
∑

n=1

pn Cn. (5)

In this work, we consider periodic systems of equal composition whose single layers

have transversely isotropic symmetry (VTI) or rotated versions of this medium, ψTI,

where ψ is the rotation angle. Specifically, we consider VTI = 0TI, 90TI = HTI and

45TI media as shown in Figure 1. The new elasticity matrix after rotation of a medium

is given in Appendix A.

The equivalent elasticity matrices for VTI-HTI and VTI-45TI periodic systems are

given in Appendix B, where p1 = p2 = 1/2 and HTI and 45VTI indicate the same

VTI medium whose symmetry axis is rotated by the angles ψ = π/2 and ψ = π/4,

respectively.

3 Time-domain modeling in monoclinic media

We consider the symmetry plane of a monoclinic medium, say, the (x, z)-plane, and

recast the equation of motion in the particle-velocity/stress formulation (Carcione,

2007). In this plane, we identify two sets of uncoupled differential equations

v̇1 = ρ−1 (∂1σ11 + ∂3σ13 + f1)

v̇3 = ρ−1 (∂1σ13 + ∂3σ33 + f3)

σ̇11 = c11∂1v1 + c13∂3v3 + c15(∂1v3 + ∂3v1)

σ̇33 = c13∂1v1 + c33∂3v3 + c35(∂1v3 + ∂3v1)

σ̇13 = c15∂1v1 + c35∂3v3 + c55(∂1v3 + ∂3v1)

(6)

and
v̇2 = ρ−1 (∂1σ12 + ∂3σ23 + f2)

σ̇23 = c44∂3v2 + c46∂1v2
σ̇12 = c46∂3v2 + c66∂1v2,

(7)

where vi are the particle-velocity components, ρ is the density, fi are external forces,

a dot above a variable denotes time differentiation and ∂i indicates the spatial partial

derivative with respect to the variable xi. The strain vector and the particle-velocity

components are related as
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




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
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. (8)

The first set of equations (6) describes in-plane particle motion while the second set (7)

describes cross-plane particle motion, that is, the propagation of a pure shear wave. The
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uncoupling implies that a cross-plane shear wave exists at a plane of mirror symmetry.

The plan-wave analysis, including the calculation of the phase group velocities, is given

in Appendix C.

The numerical algorithm used to solve the equation of motion is based on the

Fourier pseudospectral method for computing the spatial derivatives and a 4th-order

Runge-Kutta technique for calculating the wavefield recursively in time (e.g., Carcione,

2007).

4 Simulations

We consider the qP-qS case and





c11 c13 c15
c13 c33 c35
c15 c35 c55



 =





46 18 0

18 30 0

0 0 7



 , (9)

in GPa. In this case, c12 need not to be specified, since it has not influence on the

results. The anisotropy coefficient of the medium defined by the elasticity matrix (9)

is 50 (c11 − c33)/c33 = 26 %.

According to equations (18) and (22), rotations of π/2 and π/4 yield





30 18 0

18 46 0

0 0 7



 and





35 21 −4

21 35 −4

−4 −4 10



 , (10)

respectively. From equations (21) and (23), the effective VTI-HTI and VTI-45TI media

have the following elasticity matrices:





38 18 0

18 36.3 0

0 0 7



 and





40 19 −1.6

19 31.9 −1.5

−1.6 −1.5 8.1



 , (11)

respectively. We take ρ = 2600 kg/m3. Figure 2 shows the group (energy) velocity

curves corresponding to the orthorhombic (a) and monoclinic (b) effective media. The

VTI medium is rotated to obtain the HTI (45TI) medium and then the VTI and HTI

(45TI) are averaged to obtain the effective orthorhombic (VTI-HTI) and monoclinic

(VTI-47TI) media.

The source used in the simulations is a vertical force (f1) with the following time

history:

h(t) =
(

u−
1

2

)

exp(−u), u =

[

π(t− ts)

tp

]2

, (12)

where tp is the period of the wave, fp = 1/tp is the central frequency and we take

ts = 1.4tp.

The simulations use a 455 × 455 mesh with 1 m grid spacing and the central

frequency of the source is fp = 80 Hz. The force is located at the center of the mesh.

The Runge-Kutta algorithm has a time step of 0.1 ms and the solution is obtained at

a maximum time of 70 ms. The snapshots corresponding to the group-velocity curves

shown in Figure 1 are displayed in Figure 3, where it is verified that the modeling

code reproduces correctly the predictions of the plane-wave analysis. Figure 4 shows
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the snapshots in the orthorhombic (a) and monoclinic (b) effective (Schoenberg-Muir)

media (upper pictures). The lower pictures display the simulations in the finely-layered

media. As can be seen, the snapshots are indistinguible, indicating that the Schoenberg-

Muir theory provides a good approximation to fine layering at long wavelengths.

Figure 5 shows the time history at (x, z) = (57, 57) m from the source location

for the VTI-HTI orthorhombic (a) and VTI-45TI monoclinic (b) media. The solid line

corresponds to the effective (Schoenberg-Muir) monoclinic medium and the dots to the

simulations in the finely-layered medium. As can be seen, the agreement is excellent.

We have also considered a VTI medium defined by





c11 c13 c15
c13 c33 c35
c15 c35 c55



 =





60 3 0

3 30 0

0 0 7



 , (13)

which has an anisotropy coefficient of 50 % (see wavefront in Figure 6) and obtained

an excellent match between the results of the theory and the simulations in layered

media, as can be appreciated in Figure 7, where the time history at (x, z) = (51, 51)

m from the source location VTI-45TI monoclinic medium is shown.

The theory performs equally well for amplitudes, going beyond the expectancy of

the authors also, since they state: “The real limitation is the long-wavelength one,

which says, in effect, that it is concerned with kinematics arrival times-alone. It does

not address the important dynamical question of how high-frequency energy is lost

from the coherent to the scattered field.” It is evident in Figures 5 and 7 that at long

wavelengths, the theory performs equally well for amplitudes.

5 Conclusions

We performed numerical simulations (snapshots and time histories) of wave propa-

gation in a layered medium whose layers are anisotropic and thin compared to the

wavelength, and compared the results to similar simulations in an equivalent medium

obtained from the Schoenberg-Muir theory. The assumptions of the theory (Backus’s

assumptions) state that the model works for small crack aspect ratio, very long flat

parallel fractures and fracture spacings spacings and layer thicknesses small compared

to the wavelength. Under these conditions, the Schoenberg-Muir theory is valid from

the kinematic (traveltimes) and dynamic (amplitudes) point of view, no matter how

anisotropic are the single constituent layers. In the case of obliquely aligned cracks (the

monoclinic case), the theory performs equally well.
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A Elasticity matrix of a rotated medium

A VTI medium with symmetry axis along the z-axis has the following the stiffness matrix:
given by

C =















c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c55 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66















, 2c66 = c11 − c12. (14)

A clockwise rotation of the vertical symmetry axis through an angle ψ about the y-axis has
the orthogonal transformation matrix





cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ



 . (15)

The corresponding Bond transformation matrix is (Carcione, 2007),

M =















cos2 ψ 0 sin2 ψ 0 sin(2ψ) 0
0 1 0 0 0 0

sin2 ψ 0 cos2 ψ 0 − sin(2ψ) 0
0 0 0 cosψ 0 − sinψ

−
1
2
sin(2ψ) 0 1

2
sin(2ψ) 0 cos(2ψ) 0

0 0 0 0 0 cosψ















. (16)

Then, the stiffness matrix with the rotated symmetry axis is given by (Carcione, 2007),

C′ = M ·C ·M⊤. (17)

B Effective elasticity matrices for VTI-HTI and VTI-45TI media.

First, we consider a periodic system of VTI and HTI layers, where the HTI medium, labeled 2,
is the same VTI medium, labeled 1. Using (17), an angle ψ = π/2 transforms a VTI medium
into an HTI medium,















c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c55 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66















→















c33 c13 c13 0 0 0
c13 c11 c12 0 0 0
c13 c12 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c55 0
0 0 0 0 0 c55















. (18)

According to equations (1), (3) and (18),

C
(1)
TT

=





c11 c12 0
c12 c11 0
0 0 c66



 , C
(1)
TN

=





c13 0 0
c13 0 0
0 0 0



 , C
(1)
NN

=





c33 0 0
0 c55 0
0 0 c55



 , (19)

and

C
(2)
TT

=





c33 c13 0
c13 c11 0
0 0 c55



 , C
(2)
TN

=





c13 0 0
c12 0 0
0 0 0



 , C
(2)
NN

=





c11 0 0
0 c66 0
0 0 c55



 , (20)

with c66 = 1
2
(c11 − c12).
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Using equation (3), the effective medium composed of VTI-HTI layers has orthorhombic
symmetry and is given by the following symmetric elasticity matrix:





















































c11 + c33

2

c12 + c13

2
c13 0 0 0

∗ c11 −

(c12 − c13)2

2(c11 + c33)

c11c13 + c12c33

c11 + c33
0 0 0

∗ ∗

2c11c33

c11 + c33
0 0 0

∗ ∗ ∗

2(c11 − c12)c55

c11 − c12 + 2c55
0 0

∗ ∗ ∗ ∗ c55 0

∗ ∗ ∗ ∗ ∗

1

4
(c11 − c12 + 2c55)





















































.

(21)

Now, we consider a periodic system of VTI and 45TI layers, where the 45TI medium,
labeled 2, is the same VTI medium, but rotated by 45o. An angle ψ = π/4 transforms a VTI
medium into an 45TI medium, whose (symmetric) elasticity matrix is





































a+ c55
1
2
(c12 + c13) a− c55 0 1

4
(c33 − c11) 0

∗ c11
1
2
(c12 + c13) 0 1

2
(c13 − c12) 0

∗ ∗ a+ c55 0 1
4
(c33 − c11) 0

∗ ∗ ∗ b 0 1
4
(−c11 + c12 + 2c55)

∗ ∗ ∗ ∗
1
4
(c11 − 2c13 + c33) 0

∗ ∗ ∗ ∗ ∗ b





































(22)

with

4a = c11 + 2c13 + c33,
4b = c11 − c12 + 2c55.

Combining the 45TI and VTI media, the effective medium has monoclinic symmetry and is
given by the following symmetric elasticity matrix:















c̄11 c̄12 c̄13 0 c̄15 0
∗ c̄22 c̄23 0 c̄25 0
∗ ∗ c̄33 0 c̄35 0
∗ ∗ ∗ c̄44 0 c̄46
∗ ∗ ∗ ∗ c̄55 0
∗ ∗ ∗ ∗ ∗ c̄66















, (23)
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where

Dc̄11 = c211(c33 + c55) + c11C + c33[−c213 + c55(c33 + 4c55)],
Dc̄12 = c13[c33(−c13 + c55) + c11(c33 + c55)] + c12[C + c33(c11 − c13) + c55(c11 − c33)],
−Dc̄13 = (c13 + c33)(c213 − c11c33) + 2c55[−c13(c11 + 3c33) + 2c55(c33 − c13)],
Dc̄15 = c55(−c11 + c33)(c13 + c33 + 2c55),
c̄22 = c11 − (c12 − c13)2(c33 + c55)D−1,

c̄23 = c13 − c33(c12 − c13)(c13 − c33 − 2c55)D−1,

−Dc̄25 = c55(c12 − c13)(c13 + 3c33 + 2c55),
Dc̄33 = 2c33[−c213 + (c11 + 2c55)(c33 + 2c55)],
Dc̄35 = 2c33c55(−c11 + c33),
F c̄44 = 2c55(c11 − c12 + 2c55),
Dc̄46 = c55(−c11 + c12 + 2c55),
Dc̄55 = 2c55[−c213 + (c33 + c55)(c33 − 2c13) + c11(2c33 + c55)],
4F c̄66 = (c11 − c12)2 + 4c55[3(c11 − c12) + c55],
C = −c213 + c233 + 6c33c55 + 4c255,
D = C − 2c13c33 + 2c11(c33 + c55),
F = c11 − c12 + 6c55.

(24)

C Phase and group velocities of the effective anisotropic medium.

In the symmetry plane of a monoclinic medium there is a pure shear wave and two coupled
waves. The respective phase velocity surfaces in the (x, z)-plane are

Γ22 − ρv2p = 0,
(Γ11 − ρv2p)(Γ33 − ρv2p)− Γ 2

13 = 0
(25)

and
Γ11 = c11l

2
1 + c55l

2
3 + 2c15l1l3,

Γ22 = c66l
2
1 + c44l

2
3 + 2c46l1l3,

Γ33 = c33l
2
3 + c55l

2
1 + 2c35l1l3,

Γ13 = c15l
2
1 + c35l

2
3 + (c13 + c55)l1l3

(26)

(Carcione, 2007), where vp is the phase velocity and l1 = sin θ and l3 = cos θ, with θ the phase
propagation angle. The SH-wave group velocity is

vg =
1

ρvp
[(c66l1 + c46l3)ê1 + (c44l3 + c46l1)ê3]. (27)

On the other hand, the qP and qS group-velocity components are

vg1 =

(

1

vp

)

(Γ33 − ρv2p)(c11l1 + c15l3) + (Γ11 − ρv2p)(c55l1 + c35l3)− Γ13[2c15l1 + (c13 + c55)l3]

ρ(Γ11 + Γ33 − 2ρv2p)

(28)
and

vg3 =

(

1

vp

)

(Γ33 − ρv2p)(c55l3 + c15l1) + (Γ11 − ρv2p)(c33l3 + c35l1)− Γ13[2c35l3 + (c13 + c55)l1]

ρ(Γ11 + Γ33 − 2ρv2p)
.

(29)
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(a)

(b)

Fig. 1 A stack of thin strata (compared to the wavelength) composed of HTI and VTI layers
(a) and 45TI and VTI layers (b). The percentage of each constituent is assumed to be stationary
with respect to the vertical coordinate.
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Fig. 2 Group (energy) velocity curves corresponding to the orthorhombic (a) and monoclinic
(b) effective media. The VTI medium is rotated to obtain the HTI (45TI) medium and then
the VTI and HTI (45TI) are averaged to obtain the effective orthorhombic (VTI-HTI) and
monoclinic (VTI-47TI) media.
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Fig. 3 Snapshots corresponding to the group velocities curves shown in Figure 2. The lower
ones refer to the equivalent (Schoenberg-Muir) media.
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Fig. 4 Snapshots in the orthorhombic (a) and monoclinic (b) effective (Schoenberg-Muir)
media (upper panels). The lower panels display the simulations in the finely-layered media.
The outer and inner wavefronts correspond to the qP and qS waves, respectively.
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Fig. 5 Time history at (x, z) = (57, 57) m from the source location. The solid line corresponds
to the effective (Schoenberg-Muir) monoclinic medium and the dots to the simulations in the
finely-layered medium. (a) Orthorhombic medium; (b) Monoclinic medium. The VTI thin layer
has 26 % anisotropy.
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Fig. 6 Group velocity curve corresponding to a strongly anisotropic VTI medium.
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Fig. 7 Time history at (x, z) = (52, 52) m from the source location. The solid line corresponds
to the effective (Schoenberg-Muir) monoclinic medium and the dots to the simulations in the
finely-layered medium. The VTI thin layer has 50 % anisotropy.


