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Abstract Shale source rocks are complex systems whose frame is composed of various

minerals, mainly smectite and illite, depending on the burial depth. The “pore space”

may contain kerogen, water, oil and gas determined by the in-situ conditions of temper-

ature and pressure. From the rheological point of view, source rocks can be described

as transversely isotropic media. To obtain a petro-elastical description of shales with
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these characteristics, we follow several steps. Smectite to illite transformation is taken

into account as a function of depth by means of a 5th-order kinetic reaction. Backus

averaging to “mix” isotropic smectite and anisotropic illite is then used to obtain the

elasticity constants of the mineral composing the shale frame. Porosity is obtained

from densities, and water is assumed to saturate the composite mineral, whose elastic-

ity constants are obtained from Gassmann equations based on an anisotropic frame.

Oil and gas generated from kerogen are assumed to saturate the kerogen phase. The

bulk modulus of the oil-gas mixture is calculated by using a mesoscopic-loss model

of patchy saturation, and the bulk and shear moduli of the kerogen/fluid mixture are

obtained with the Kuster and Toksöz model, assuming that the fluid is the inclusion

in a kerogen matrix. Two different models are considered to obtain the seismic veloci-

ties of the shale, namely, Backus averaging and Gassmann equation generalized to the

anisotropic case with a solid pore infill. The latter model requires the dry-rock or frame

elasticity constants, which are obtained with a generalization of Krief equations to the

anisotropic case or the inverse Gassmann equation if data is available.

We build different types of rock-physics templates for shales containing only kero-

gen (immature) and kerogen plus hydrocarbons (mature). Pore pressure effects are also

taken into account and shown as templates. We consider an specify example where the

Kimmerigde shale (Spekk formation) appears at different depths. To model kerogen-oil

and oil-gas conversions, starting at depths determined by temperature, we assume a

simple basin-evolution model with constant sedimentation rate and geothermal gra-

dient and a first-order kinetic reaction, with a reaction rate satisfying the Arrhenius

equation. In particular, the possibility of detecting the presence of the hydrocarbons is

investigated from rock physics templates built with wave velocities, impedances, Lamé

constants, density, Poisson ratio, Young modulus and anisotropy parameters for vary-



3

ing kerogen content, fluid saturations and pore pressure. Moreover, AVO intercept and

gradients are computed, corresponding to the seismic response of a source rock layer

for varying kerogen content and fluid saturation.

Keywords source rock, kerogen, oil, gas, Backus, Gassmann, smectite/illite, AVO,

rock-physics templates

1 Introduction

Rock-physics templates (RPT) establish a link between the elastic properties (e.g.,

velocity, density, impedance, wet-rock stiffness moduli) and the reservoir properties

such as porosity, fluid saturation and clay content in sandstones or kerogen content and

hydrocarbon saturation in source rocks. Specific examples can be found in Ødegaard

and Avseth (2004), Avseth et al. (2005) and Chi and Han (2009). Building a template

requires calibration with well-log data. There are several steps to calibrate and use

the templates: i) Obtain the effective properties of the grain minerals and pore-infill

material; ii) Determine the properties of the dry rock; iii) Obtain the wet-rock velocities

and mass density with a suitable model (Backus averaging and Gassmann equation are

used here) ; iv) Perform pore-infill substitution to determine the location of each specific

pore-infill component in the RPT; v) Report the seismic properties on the templates

to create TOC (total organic content) and fluid saturation maps of the studied area.

In the case of source rocks the analysis with RPT is scarse. Zhu et al. (2012) use

the Gassmann-type model developed by Carcione et al. (2011) to incorporate TOC

effects, mineralogy, porosity, and fluid content, and describe the seismic properties of

shale gas. Their modeling indicates that an increase in TOC generally reduces the

P-wave impedance and the vP /vS ratio, increasing the velocity anisotropy, as already

shown by Carcione (2000), where vP and vS denote the P- and S-wave velocities.
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Cerón et al. (2013) analyse a number of shale cores of the Cretaceous Colombian basin

showing the presence of organic content. Density cross-plots and permeability-porosity

templates are shown. Yenugu and Han (2013) use Carcione’s approach (Carcione, 2000)

to model the degree of maturity of the shale and obtain its elastic properties and related

AVO effects. Bakken shale has class IV AVO and its amplitude is affected by kerogen

maturity.

Oil and gas can be generated in kerogen rich shales at the oil and gas windows,

where the amount of conversion depends on temperature. Carcione (2000) and Pinna

et al. (2011) have quantified the conversion as a function of the sedimentation rate and

geothermal gradient using the Arrhenius equation. The model assumes one reaction rate

and a closed system; here we assume that the kerogen to gas conversion is negligible

(gas is generated from oil). As Pepper and Corvi (1995) state: “gas yields directly

from kerogen are not the prime causes of gas-proneness in source rocks”. On the other

hand, the conversion from smectite to illite (clay diagenesis) with increasing depth

occurs in all shales (Scotchman, 1987) and can be described by the widely accepted

model proposed by Pytte and Reynolds (1989) based on a 5th-order kinetic reaction of

the Arrhenius type. The result of the conversion is that the stiffnesses of the mineral

composing the shale increase with depth. Backus averaging is then used to obtain the

properties of the smectite-illite mixture.

Research conducted by Vernik on petroleum source rocks (Vernik and Nur, 1992;

Vernik, 1994, 1995; Vernik and Landis, 1996) indicates that strong velocity anisotropy

is associated with the presence of organic matter and the layered nature of the single

components. Vernik (1995) and Carcione (2000) use Backus averaging to describe the

elastic properties. Carcione et al. (2011) have used Ciz-Shapiro (Gassmann) equation

for an anisotropic frame and an isotropic solid pore infill (kerogen-oil) (Ciz and Shapiro,
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2007). The dry-rock elasticity constants involved in Gassmann equation are obtained by

a generalization of Krief equations to the anisotropic case (see the isotropic version in

Krief et al. (1990)). In this case, by “dry rock” we mean the rock excluding the pore-fill

(kerogen, water oil and gas), while “wet rock” refers to the rock including the pore-fill.

Bound water is part of the rock frame. Figure 1 shows a scheme where porosity is

defined according to the elastic model used. The effect of partial saturation on velocity

depends on the location of the so-called mesoscopic-loss peak in the frequency axis

(e.g., Carcione, 2007; Carcione and Picotti, 2006). When oil and gas are generated

in a kerogen matrix, the gas bubbles embedded in oil cause a wave-induced fluid-

flow attenuation mechanism which yields velocity dispersion. The location of the peak

depend mainly on the size of the gas pockets, and the bulk modulus of the fluid mixture

differs from Wood (or Reuss) modulus. The model used to compute the modulus is

based on White theory (e.g., Carcione, 2007). On the other hand, the PP reflection

coefficients of a source-rock layer as a function of the layer thickness and organic content

has been obtained by Carcione (2001b). Here we analyse the AVO class of a thin source-

rock layer from AVO crossplotting based on Shuey’s two-term approximation. Details of

the algorithms to compute the scattering coefficients can be found in Carcione (2001a,b)

2 Kerogen/oil/gas and smectite/illite conversions

To obtain the fraction of oil and gas at a given depth, we assume: i) no loss of fluid

from the source-rock pore volume (a closed system with negligible permeability); ii) the

initial pore volume contains only convertible kerogen, since water content is relatively

small and is part of the matrix (smectite/illite); iii) Kerogen/oil and oil/gas conversion

are two independent processes (Berg and Gangi, 1999). The model is given in Appendix
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A and consider two separate kinetic reactions describing the kerogen/oil and oil/gas

conversions.

Moreover, it is important to evaluate the amount of smectite/illite ratio forming the

shale matrix, since this ratio affects the stiffness moduli and wave velocities of the rock.

Shale mineralogy may include kaolinite, montmorillonite-smectite, illite and chlorite, so

the term smectite-illite as used in this study may be representative for a mixture of clay

minerals (Mondol et al., 2008). In the Kimmeridge clay there is also some percentage

of silty quartz (Williams et al., 2001). Moreover, the smectite-illite layers represent an

assembly of platelets, subject to internal hydration, so its mechanical properties such

as the stiffnesses can vary depending on the source rock.

The conversion smectite/illite occurs in all shales with a general release of bound

water into the pore space (Scotchman, 1987). Smectite dehydration implies a stiffer

matrix due to the presence of more illite and therefore higher velocities. The conversion

depends on temperature and sedimentation rate. A solution to this problem has been

provided by Pytte and Reynolds (1989) (see Appendix A). Smectite and illite are

then “mixed” by using Backus averaging (66) to obtain the elasticity constants of the

mineral composing the frame.

3 Effective-media models

We consider two models to obtain the stiffness moduli and wave velocities of the source

rock, namely Backus averaging (Schoenberg and Muir, 1989; Vernik, 1994; Carcione,

2000, Carcione et al., 2011, Pinna et al., 2011) and Gassmann equation for a solid pore

infill (Ciz and Shapiro, 2007; Carcione et al., 2011). The rock geometry corresponding

to these models is shown schematically in Figure 2, where a) depicts the model used

by Backus to represent a system of plane layers whose thicknesses are much smaller
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compared to the wavelength of the signal, b) shows a modification of Backus model

taking into account the discontinuity of the illite layers in the shale fabric, and (c) is

a representation of the shale based on Gassmann’s assumptions to represent a porous

medium. Regarding model b), SEM observations have shown that the illite fabric has a

lenticular pattern along the bedding plane rather a continuous-layer structure (Vernik

and Nur, 1992). A reasonable way to model this effect is to substitute the bedding-plane

elastic stiffnesses by a weighted average that takes into account the local proportion

of illite and kerogen. In the Gassmann model, the liquid phase is continuous and the

pore space can have any shape as shown in Figure 2c.

We report in the appendices the equations to obtain the fluid properties (B, C and

D). We assume that the kerogen-oil-gas mixture consists of oil-gas bubbles embedded

in a kerogen matrix (Appendix E). Calculation of the Gassmann moduli requires to

know the dry-rock elasticity constants. These are obtained by a simple generalization of

the Krief model (Krief at al., 1990) (see Appendix F). Backus averaging and Gassmann

equations are given in some detail in Appendix G. The quantities K, µ, and ρ indicate

bulk modulus, shear modulus and density, respectively, vP and vS denote P-wave

and S-wave velocities, and the indices m, s, w, o, g, f , k and if denote dry matrix

(frame or skeleton), solid grain (clay minerals), water (brine), oil, gas, fluid (oil-gas

mixture), kerogen and pore infill (oil-gas-kerogen mixture), respectively. Moreover, cIJ

denotes the two-index notation for stiffnesses (Helbig, 1994) and φ denotes porosity or

proportion of a given material.

The quantities to build the templates are given in the following. The compressional-

wave and shear-wave impedances

IP = ρv2P , IS = ρv2S , (1)
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respectively, the Lamé constants

λ = ρ(v2P − 2v2S), µ = ρv2S ; (2)

three dynamic Poisson’s ratios, corresponding to different directions

ν1 =
c̄12c̄33 − c̄213
c̄11c̄33 − c̄2

13

, ν2 =
c̄13(c̄11 − c̄12)

c̄11c̄33 − c̄2
13

, ν3 =
c̄13

c̄11 + c̄12
(3)

(Carcione and Cavallini, 2002); the anisotropy parameters

ǫ =
c̄11 − c̄33

2c̄33
, γ =

c6̄6 − c̄55
2c̄55

, δ =
(c̄13 + c̄55)

2
− (c̄33 − c̄55)

2

2c̄33(c̄33 − c̄55)
(4)

(Thomsen, 1986); and the Young modulus, defined as

Y = 2c̄55(1 + νi), i = 1, 2, 3. (5)

See Appendix I to obtain the AVO intercept and gradient and identify the AVO classes

of a source-rock layer.

4 Model calibration

We consider the Spekk formation (a Kimmerigde shale in the North Sea). This forma-

tion is an Upper Jurassic to Lower Cretaceous black shale located on the mid-Norwegian

shelf (Langrock, 2004). We have wireline logs from three wells, with average depths of

1.7, 2.4 and 2.6 km (wells 1, 2 and 3, respectively). Wells 1 and 3 are used for the

calibration. First, we quantify the oil and gas saturations as a function of depth due

to kerogen and oil conversions, respectively. As Berg and Gangi (1999), we consider

a single activation energy. The “J70 Upper Jurassic Kimmeridge Clay Formation” is

indicated as organofacies B in Pepper and Corvi (1995). The geothermal gradient in

the studied area is G = 37 oC/km (well reports), the sedimentation rate is S = 0.04
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mm/y (Ebukanson and Kinghorn, 1990) and the surface temperature is 15 oC. The as-

sumed activation energies are E = 28000 cal/mol (kerogen/oil) and E =30000 cal/mol

(oil/gas), while the infinite-temperature rate is A = 1013/m.y. for oil and gas. Values

of these parameters can be found in Pepper and Corvi (1995) and Berg and Gangi

(1999) for instance. Figure 3a shows the fraction of kerogen converted to oil and the

fraction of oil converted to gas. With these values of the kinetic parameters, the shale

in well 1 has kerogen, while the shale in well 3 is partially saturated with oil. Assuming

the properties of kerogen, oil and water shown in Table 1 (at 3 km) and Sw = 10

%, Figure 3b displays the pore pressure generated due to the kerogen/oil conversion

(φ′ = 0.3 in equation (22) is assumed). The hydrostatic and lithostatic pressures are

obtained as pH = ρ̄wgz and pc = ρ̄gz, respectively, where ρ̄w = 1.04 g/cm3, ρ̄ = 2.4

g/cm3, z is depth and g = 9.81 m/s2. Since oil cannot escape from the pore space (zero

permeability), the pore pressure rapidly reaches the lithostatic pressure where failure

occurs. This happens at 3.3 km depth where 10 % of the kerogen has been converted to

oil. However, this is uncertain due to the lack of data. Regarding the following model

calibration, we assume that the shale is fully saturated with kerogen at wells 1 and 3.

The kinetic reaction corresponding to smectite/illite conversion assumes E = 39000

cal/mol and A = 1.217 × 1023/ m.y. (Pytte and Reynolds, 1989). We consider that

at 1.8 km depth the smectite/illite ratio is r0 = 0.99. The kinetic-reaction parameters

have been obtained by matching the log bulk density with the theoretical expression of

the bulk density (see Figure 7b below). The conversion ratio is shown in Figure 4. As

can be seen, smectite and illite are the main components at wells 1 and 3, respectively.

The elastic properties of smectite and illite are given in Table 1 (Carcione, 2000; Totten

et al., 2002; Carcione et al., 2011; Pinna et al., 2011). Due to compaction effects, we

assume that the density of kerogen is 1.2 g/cm3 at well 1 and 1.3 g/cm3 at well 3.
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The density of illite is an upper limit at very large confining pressures and can also

be due the presence of pyrite and carbonates. Smectite is assumed isotropic and its

values have been taken from Wang et al. (2001). On the basis of the smectite and

illite fractions given in Figure 4, we have computed the P- and S-wave bedding-normal

phase velocities and density ρs = ρsmr+ρi(1−r) of the mineral composing the frame,

where ρsm and ρi are the densities of smectite and illite, respectively (Figure 5).

From well reports, we have precise values of TOC of the Spekk formation at given

depths. In the following, we perform comparisons between the well-log data and model

calculations at these depths. This first step constitutes the model calibration assuming

that no liquid or gaseous hydrocarbons are present in the source rock. The volumetric

kerogen content can be calculated in terms of the total organic carbon (TOC, in weight

percentage between 0 and 100) from

K =
(ρ− φρw)TOC

Ckρk(1− φ)
, (6)

where φ is the porosity (water fraction in this case), ρ is the density of the source rock,

ρk and ρw are the densities of kerogen and water, respectively, and Ck depends on the

maturity level ranging from 0.7 to 0.85 (Vernik and Nur, 1992; Carcione, 2000; Vernik

and Milovac, 2011). An alternative, simplified equation is given in Sondergeld et al.

(2010, eq. 12).

On the other hand, the bulk porosity in the absence of hydrocarbons is

ρ = φρw + φkρk + (1− φ− φk)ρs, (7)

where φk = K/100. Combining equations (6) and (7), we solve for porosity from

Aφ2 +Bφ+ C = 0,

A = ρs − ρw,

B = ρ+ ρw(1− aρk + aρs)− 2ρs,

C = ρs + ρ(aρk − aρs − 1),

a =
TOC

Ckρk

(8)
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and for kerogen content from equation (6). The bulk density ρ is obtained from the

density logs. We assume Ck = 0.75, ρw = 1.04 g/cm3 (well 1) and ρw = 1.02 g/cm3

(well 3) (see Figure 15 below). TOC and K are represented in Figure 6 as a function

of depth, where the average values of K are approximately 14 % and 26 % in wells 1

and 3, respectively.

The density of the shale mineral, shown in Figure 5b, and the porosity from equa-

tion (8) are used to calculate the bulk density of the shale (7), where the kerogen

content values are obtained from equation (6). Figure 7 shows the porosity derived

from equation (8) (a) and the bulk density calculated from equation (7) (open circles)

compared to the log bulk density (solid line) (b). As can be appreciated, the comparison

is satisfactory.

Alternatively, total organic carbon has been expressed as a function of rock density

by an empirical relations in Vernik and Landis (1996) and Carcione (2000) as

TOC(wt%) = 67
ρk(ρs − ρ)

ρ(ρs − ρk)
, (9)

where TOC accounts for approximately 67 % of the bulk kerogen. A comparison to the

TOC values given in the well reports is shown in Figure 8, showing a relatively good

agreement.

Next, we compute the bedding-normal P-wave velocities v33 of the shale using

Backus averaging (66) and Gassmann equation (69). We assume that water is saturating

the mineral material composed of smectite and illite and use Gassmann equation (69)

to obtain the elasticity constants of the mineral/water composite medium. In this case,

the pore infill is water (its shear modulus is set to a small value in order for the

equation to work). The equations to obtain the elasticity constants of this composite

medium require the dry-rock elasticity constants, which are obtained from equations
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(56) with A = 1.5 and B = 4. Likewise, the same parameters are used to obtain the

dry-rock elasticity constants required by Gassmann equation to compute the elasticity

constants of the shale saturated with kerogen. Figure 9 shows the bedding-normal P-

wave velocities as a function of depth. The solid lines and open circles correspond to

the sonic-log data and model calculations, respectively. The agreement is very good,

with Backus averaging and Gassmann equations giving similar results for well 3. There

is S-wave velocity data only in well 3. Figure 10 compares data and model calculations

of the bedding-normal S-wave velocity v55. The agreement in the depth range where

the TOC values are known is acceptable. The anisotropy parameters (4) are shown in

Figure 11, where strong anisotropy can be observed. Parameter δ is negative in all the

cases (the P-wave velocity increases away from the vertical if δ is positive and decreases

if δ is negative). The Backus model predict more anisotropy than the Gassmann model.

For comparison, we show in Figure 12 the sonic, density and gamma ray logs.

Higher velocities in well 2 indicate that the amount of kerogen in this well can be much

lower than those of well 3 in the studied range (2.9 to 3.05 km depth). This fact is

also reflected in the bulk density and gamma ray logs, with lower and higher values in

well 3, respectively. High kerogen content in well 2 can be hypothesised in the range

2.6 to 2.8 km depth, where P-wave velocity and bulk density show low values and the

gamma ray have high values. The previous analysis and these results support the fact

that at the calibration wells mainly kerogen is present, since the models match the

data without including fluids other than water.

Figures 13 and 14 show the fit of the Spekk formation in well 3, where the symbols

correspond to the model predictions (Backus averaging). Gassmann equations provide

a similar agreement.
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5 Rock-physics templates

The properties of the fluids depend on depth, temperature and pore pressure. Using

the equations given in Appendices B and C, an hydrostatic pore pressure pH = ρ̄wgz,

where ρ̄w = 1.04 g/cm3, sc =100000 ppm, API gravity = 50 and G = 37 oC/km,

we obtain the densities and bulk moduli shown in Figure 15. To build the templates,

we assume similar conditions as those given in well 3, where it is more probable the

presence of oil and gas. We then consider a depth of 3 km, that the mineral forming

the frame of the shale (smectite-illite-water) has 5 % water (φw = 0.05) and that the

kerogen fraction can reach a maximum value of 30 % (φk = 0.3). The kerogen properties

are defined by Kk = 6.6 GPa, µk = 2.7 GPa and ρk = 1.4 g/cm3 (Carcione, 2000;

Carcione et al., 2011; Pinna et al., 2011).

We assume the the pore pressure has been released and remains hydrostatic, other-

wise the pressure effect on the rock frame has to be considered (this effect is modeled

below). Under these conditions, the mineral properties (including water) and the fluid

properties are given in Table 1. To obtain the bulk modulus of the oil-gas mixture, we

consider the mesoscopic-loss theory developed in Appendix D. This attenuation mech-

anism affects the seismic velocity depending in the size of the gas patches. Figure 16

shows the bulk modulus as a function of frequency for different values of the gas-pocket

radius, r0 (ϕ = 0.3 is assumed). Wood average, which is normally used, is also shown.

We consider r0 = 1 cm in the following calculations.

The proportion of the kerogen-oil-gas mixture is φk + φf = φk + φo + φg and the

proportion of solid-water is φs +φw, where solid stands for the smectite-illite mixture.

The porosity is φ = φw + φo + φg and we have φs + φw + φk + φo + φg =1. Backus

averaging “mixes” the kerogen-oil-gas and the solid-water phases with the respective
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proportion indicated above. We define the oil and gas saturation as So = φo/φ and

Sg = φg/φ, respectively, and the kerogen content is K = 100φk . In what follows, we fix

the amount of organic content, defined by φOC = φk + φo + φg and vary the kerogen,

oil and gas proportions. It is φOC + φw + φs = 1. Summarizing, we have the set of

relations

φOC = φk + φo + φg,

φ = φw + φo + φg ,

Sw = φw/φ,

So = φo/φ,

Sg = φg/φ,

φOC + φw + φs = 1,

φo = So(φOC + φw − φk),

φg = Sg(φOC + φw − φk)

(10)

and all the quantities greater than zero. The correction to the bedding-parallel stiffness

constants of the mixture solid-water when using Backus averaging is not applied here,

since it is unstable in the presence of fluids (it gives negative stiffness constants). The

density of the kerogen-oil-gas mixture is ρOC = (φkρk + φoρo + φgρg)/φOC and the

bulk density is ρ = (1− φOC)ρ̄s + φOCρOC, where ρ̄s = (φsρs + φwρw)/(φs + φw) is

the density of the smectite-illite-water mixture.

Figures 17 and 18 show the bedding-normal (a) and bedding-parallel (b) P-wave

velocities as a function of gas saturation for various values of the kerogen content and

oil saturation. The models are Backus averaging and Gassmann equation, respectively,

and the frequency is 50 Hz. Both models behave similarly at full kerogen saturation

as we have previously seen, but predict different behaviours in the presence of fluids,

mainly the velocities along the bedding plane. The velocities decrease with decreasing

kerogen content, but may increase or decrease as a function of oil and gas saturations

due to the density effect. Backus averaging predicts very low normal-bedding velocity

at K = 0 %, and high bedding parallel velocities, indicating that this model provides

lower and upper limits (Carcione et al., 2011).
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The energy velocities for a shale with full kerogen content (immature) (a) and a

shale saturated with oil and gas (mature) (b) are shown in Figure 19. Depth is 3 km,

φw = 0.05, the model is Gassmann equation and the frequency is 50 Hz. In the first

case, K = 0.3, So = Sg = 0, c̄11 = 37.3 GPa, c̄13 = 6.21 GPa, c̄33 = 22.33 GPa, c̄55

= 7.70 GPa, c̄66 = 14.04 GPa and ρ̄ = 2347 kg/m3; in the second case it is K = 0, So

= 0.7, Sg = 0.15, c̄11 = 29 GPa, c̄13 = 1.64 GPa, c̄33 = 6 GPa, c̄55 = 2 GPa, c̄66 =

11 GPa and ρ̄ = 2113 kg/m3. The presence of fluids has decreased substantially the

velocities and induced considerable shear-wave splitting.

In the following templates (Figures 20-22), we maintain constant the water and or-

ganic matter fractions, φw = 0.05 and φOC = 0.2, respectively. Figure 20 and 21 respec-

tively show vP /vS as a function of the acoustic impedance (AI) and λ-µ-ρ templates for

various values of the gas and oil saturation (solid and dashed lines, respectively). The

models are Backus averaging (a) and Gassmann equation (b), the minimum amount of

kerogen is 5 % and the frequency is 50 Hz. Wood average to obtain the bulk modulus

of the fluid mixture has been used here since the results are similar to those of the

White model. Given the values of Sg and So, the kerogen content is

K = 100 φk = 100
φOC − (So + Sg)(φOC + φw)

1− So − Sg
. (11)

In both cases, the main variations occur at low gas saturations and high oil saturations,

with the Gassmann equation predicting lower vP /vS values, while the λ-µ-ρ templates

are very similar. Y -ν (Young modulus-Poisson ratio) templates are shown in Figure 22

for the three Poisson ratios defined in equation (3). The Young modulus is defined in

equation (5) and the rock-physics model is Backus averaging.

In order to build templates of the elastic properties at different pore pressures we

have to establish a proper model in agreement with experimental data. Pressure effects
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are modeled with the equations reported in Appendix F, where we assume that the dry-

rock elasticity constants of the smectite-illite frame (without the water) are affected

by the confining and pore pressures. Invoking the effective pressure law (Carcione,

2000a,b; Gei and Carcione, 2003) and assuming that the effective pressure is equal

to the differential pressure pd = pc − p, where p is the pore pressure, the confining

pressure can be replaced by the differential pressure and equation (59) is obtained.

Vernik (1995, Tables A-1 and A-4) provides experimental data for the Kimmeridge

shale useful to evaluate the parameter c. The velocities, corresponding to a shale at

2146 m depth, TOC (wt %) = 1.64 and kerogen content K = 4.37 %, are reported in

Table 3. He considers a grain density ρs = 2.71 g/cm3 and a kerogen density ρk = 1.2

g/cm3. Using equation (9), the shale density is ρ = 2.63 g/cm3. From the data of well

3, we consider a depth of 2880 m, with TOC (wt %) = 5.01, K = 12.32 % and ρ = 2.5

g/cm3. Figure 23 shows the velocities as a function of pressure corresponding to the

experimental data (a) and to the present model (b), where c = 1.1 in equation (59).

This simple model describes properly the pressure behaviour of the shale.

Another approach considers the inverse Gassmann equation (70), which can be

implemented if detailed laboratory data is available (see Appendix F). This approach

can also be used to perform fluid substitution. To illustrate the method, we consider a

sample of Kimmeridge shale fully saturated with kerogen, taken from a depth of 2768

m, whose velocities are given in Table 4 (see Tables A-1 and A-4 in Vernik (1995)). This

sample is strongly anisotropic, with ǫ = 0.35 and γ = 0.33. Based on a grain density ρ̄s

= 2.17 g/cm3 and kerogen properties vP = 2.6 m/s, vS = 1.2 m/s, ρk = 1.4 g/cm3, the

wet-rock elasticity constants obtained with equations (71) are given in Table 4. The

kerogen content is K = 40 % and the bulk density is ρ = 1.862 g/cm3 (Vernik, 1995).

The inversion using equation (70) yields the dry-rock elasticity constants reported
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in Table 4. The elasticity constants of the smectite-illite-water composite (assumed

isotropic) used for the inversion are cs33 = 16.5 GPa and cs55 = 5.5 GPa, corresponding

to a Poisson medium with vP = 2.76 km/s, vS = 1.593 km/s and ρ̄s = 2.17 g/cm3.

This choice satisfies the stability conditions. As can be seen in Table 4, the elasticity

constants cm33 and cm55, related to the direction perpendicular to layering, are more

affected by changes in the confining pressure, particularly cm33, whose value is much

lower than the wet-rock value. This is due to the high kerogen content as shown by

Carcione et al. (2011), who obtained dry-rock elasticity constants for various samples

of the Bakken shale.

Using equations (62), (63) and (64), we obtain

ĉ11 = 19.72 GPa, č11 = −0.67 GPa, p∗11 = 17.73 MPa,

ĉ13 = 5.54 GPa č13 = −0.88 GPa, p∗13 = 22.10 MPa,

ĉ33 = 15.98 GPa, č33 = −18.81 GPa, p∗33 = 15.72 MPa,

ĉ55 = 4.40 GPa, č55 = −1.24 GPa, p∗55 = 27.64 MPa,

ĉ66 = 6.87 GPa, č66 = −0.52 GPa, p∗66 = 19.43 MPa.

(12)

One could consider the smectite/illite conversion and kerogen/oil/gas generation and

the induced pore pressure affecting the rock properties but the objective is to analyse

the elastic properties of the shale for varying pore pressure and fixed values of the

kerogen content and oil and gas saturations. We then assume that a rock at a given

depth is subject to pore pressure changes. In this case, the stiff porosity is constant

and pressure affects mainly the dry-rock moduli by closure of microcracks, whose (soft)

porosity is negligible compared to the stiff porosity. In a lesser degree, pressure also

affects the bulk density, mainly through the gas density. We consider the dry-rock

elasticity constants (61) and the parameterization (12), representing the rock frame

made of the smectite-illite-water composite “mineral”. The depth of this shale is 2768 m

and the hydrostatic and confining pressures are pH = 28 and pc = 68 MPa, respectively.

Based on the density of the smectite-illite-water composite (2.17 g/cm3) and assuming
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a proportion of illite of 76 % (according to Figure 4), the smectite-illite density is 2.74

g/cm3, giving a water proportion φw = 0.2. We assume So = 0.3 and Sg = 0.1 and

since φOC = 0.4 and using equations (10) and (11), we have φk = 0.27 (K = 27 %),

φo = 0.1 and φg = 0.033. Figure 24 shows the dry-rock and wet-rock velocities as a

function of the differential pressure (pd = pc − p) for full kerogen content (a) and So

= 0.3 and Sg = 0.1 (b). The bedding-normal P-wave velocity is highly affected by the

pore pressure and the presence of fluids. The dry-rock velocities are generally higher

due to the density effect.

It is clear that the replacement of kerogen by a lower density material (oil or

gas) greatly affects the bedding-normal P-wave modulus. Next, we build templates

for different pore pressures and varying oil saturation, assuming no gas. For a given

oil saturation So, the kerogen content is K = 100 [φOC − So(φOC + φw)]/(1 − So),

which has to be greater than zero. This happens for So ≤ φOC/(φOC + φw) = 0.66

in this case. We have K = 40 % at So = 0 and K = 10 % at So = 0.6. Figure 25

shows vP /vS (v33/v55) as a function of the acoustic impedance (AI) (a) and the λ-

µ-ρ template for different values of the pore pressure and varying oil saturation. The

model is Gassmann equation and the frequency is 50 Hz. Unlike the case of varying

gas saturation (see Figures 20 and 21), the λ-µ-ρ template seems to discriminate the

different pore pressures better than vP /vS versus acoustic impedance.

Finally, we consider a transversely isotropic shale layer of thickness h at 2 km and

3 km containing kerogen and gas embedded in a homogeneous isotropic shale without

organic matter (see Figure 26). The elastic properties of the homogeneous medium

(smectite-illite-water composite with φw = 0.05) at 2 km depth are cs33 = 20.5 GPa, cs55

= 6.2 GPa and ρ̄s = 2.398 g/cm3, according to the smectite/illite conversion considered

above. It is vP = 2.92 km/s and vS = 1.61 km/s. We assume h = 25 m, smaller than
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the dominant wavelengths of the P and S waves, which are approximately 97 m and 53

m, respectively, for a frequency of 30 Hz. The elastic properties of the smectite-illite-

water composite (φw = 0.05) of the source rock are cs11 = 35 GPa, cs13 = 7.4 GPa, cs33

= 20.5 GPa, cs55 = 6.2 GPa, cs66 = 11.9 GPa and ρ̄s = 2.398 g/cm3. According to Krief

equations (56) and an organic matter content φOC = 0.25 (maximum value in Figure

6), the elastic properties of the frame are cm11 = 24.6 GPa, cm13 = 2.9 GPa, cm33 = 8.1

GPa, cm55 = 2.5 GPa and cm66 = 8.4 GPa.

The elastic properties of the homogeneous medium (smectite-illite-water composite

with φw = 0.05) at 3 km depth are cs33 = 35 GPa, cs55 = 11 GPa and ρ̄s = 2.691 g/cm3,

according to the smectite/illite conversion considered above. It is vP = 4.6 km/s and

vS = 3.6 km/s. The dominant wavelengths of the P and S waves are approximately 153

m and 120 m, respectively. The elastic properties of the smectite-illite-water composite

(φw = 0.05) of the source rock are cs11 = 57.3 GPa, cs13 = 12.6 GPa, cs33 = 35 GPa, cs55

= 11 GPa, cs66 = 19.5 GPa and ρ̄s = 2.691 g/cm3. According to Krief equations (56)

and an organic matter content φOC = 0.25 (maximum value in Figure 6), the elastic

properties of the frame are cm11 = 40.1 GPa, cm13 = 4.8 GPa, cm33 = 13. GPa, cm55 = 4.2

GPa and cm66 = 13.6 GPa.

Regarding the pore infill material, the kerogen and gas properties are those given

in Table 1 at 3 km depth. For a given gas saturation So, the kerogen content is K =

100 [φOC − Sg(φOC + φw)]/(1− Sg), which has to be greater than zero. This happens

for Sg ≤ φOC/(φOC + φw) = 0.83 in this case. Gas saturation can be defined as

Sg = φg/(φg + φw) (the definition so far) or S′

g = φg/(φg + φk) if we consider the

organic pore infill. They are related as S′

g = φwSg/[φOC(1 − Sg)] < 0.97. Figure 27

shows the real part of the reflection and transmission coefficients at 2 km (a) and 3 km

(b) for a frequency of 30 Hz and a saturation Sg = 0.2 (for this saturation S′

g = Sg).
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The intercept and gradient for various values of the gas saturation and kerogen content

are given in Table 5 and the data is represented in Figure 28, where it is clear that in

all the cases the AVO is class IV (Castagna and Swan, 1997). Yenugu and Han (2013)

have also obtained a class IV AVO, but they compute the seismic response of a single

interface consisting of Bakken shale overlain by a high velocity limestone. Also, the

reflection coefficient (intercept) is increasing with maturity.

6 Conclusions

We propose a modeling methodology to build different rock-physics templates for source

rocks containing organic matter, specifically, kerogen, oil and gas. The fundamental as-

pects of shale oil and shale gas evolution from shales fully saturated with kerogen are

considered by modeling the hydrocarbon generation and mineral diagenesis as a func-

tion of pressure, temperature and burial depth. The rock-physics models are based on

two dissimilar approaches, namely, Backus averaging and Gassmann equation, which

yield similar results in general, indicating the robustness of the methodology. Rock-

physics templates are built which are useful to evaluate kerogen content, hydrocar-

bon saturations and in-situ pore pressure. Mesoscopic-loss effects due to partial fluid

saturations affecting wave velocities are considered, but the Wood average is almost

equivalent at seismic frequencies .

The creation of rock-physics templates for an specific site requires calibration with

well logs and information from related reports. This is performed for the Spekk for-

mation at the North Sea, where the Kimmeridge shale is the main unit. Basically, the

analysis is based on TOC values as a function of depth, which allows us to evaluate

the kerogen content, and sonic and density logs to quantify the elastic properties of

the minerals and shale frame. In the calibration process, at full kerogen saturation,
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Backus averaging and Gassmann equation give practically the same results. Differ-

ences can be observed in the presence of hydrocarbon fluids, with Backus averaging

predicting lower normal-bedding velocity at zero kerogen content, indicating that this

model provides lower and upper limits. The main variations in the templates occur at

low gas saturations and high oil saturations, with the Gassmann equation predicting

lower vP /vS values, while the λ-µ-ρ templates are very similar. Wavefront representa-

tions indicate that the presence of fluids has decreased substantially the velocities and

induce considerable shear-wave splitting.

Pore pressure affects mainly the elasticity constants of the shale frame and in

a lesser degree the bulk density through the gas density, whose changes with pore

pressure are more remarkable than those of water and oil. We consider an specific

sample of Kimmeridge shale to investigate the pressure effects. The bedding-normal

P-wave velocity is highly affected by the pore pressure and the presence of fluids and

the dry-rock velocities are generally higher due to the density effect. Unlike the case

of varying gas saturation, the λ-µ-ρ template seems to discriminate the different pore

pressures better than vP /vS versus acoustic impedance, mainly when pore pressure

approaches the fracture pressure (or the confining pressure). Finally, we have computed

the reflection coefficient of a thin shale layer at a given depth saturated with kerogen

and gas. The calculations indicate that the AVO behavior is class IV for any value of

the gas saturation.
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A Oil/gas generation and shale diagenesis

Let us assume a source rock at depth z. The lithostatic pressure for an average sediment
density ρ̄ is pc = ρ̄gz, where g is the acceleration of gravity. On the other hand, the hydrostatic
pore pressure is approximately pH = ρ̄wgz, where ρ̄w is the density of water. For a constant
sediment burial rate, S, and a constant geothermal gradient, G, the temperature variation of
a particular sediment volume is

T = T0 +Gz = T0 +Ht, z = St, H = GS (13)

with a surface temperature T0 at time t = 0, where t is deposition time. Typical values of G
range from 20 to 40 oC/km, while S may range between 0.02 and 0.5 km/m.y. (m.y. = million
years).

A.1 Kerogen/oil/gas conversion and overpressure

Assume that at time t = 0, corresponding to the surface, the shale contains kerogen at tem-
perature T0 and that the volume is “closed”. The mass of convertible kerogen changes with
deposition time t at a rate proportional to the mass present. Assuming a first-order kinetic
reaction with the reaction rate given by the Arrhenius equation (Pepper and Corvi, 1995;
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Carcione, 2000; Pinna et al, 2011), the fraction of kerogen converted to oil (or fluid saturation,
s) satisfies the following equation

∂s

∂t
= −sA exp([−E/RT (t)], (14)

where E is the activation energy, R = 1.986 cal/( mol oK ) is the gas constant, A is the reaction
rate at infinite temperature and T (t) is the absolute temperature. The solution is given below.

Let us obtain now the geopressure generated by the conversion of kerogen to oil in the
presence of water (brine) in the pore space. We define the excess pore pressure by ∆p = p−pi,
where pi is the initial pore pressure and p is the pore pressure when a fraction s of kerogen
mass has been converted to oil. Assume that the initial volumes of kerogen, water and pore
space are Vki, Vwi and Vpi, respectively. The definition of the respective bulk moduli are

Ko = −Vo
dp

dVo
, Kk = −Vk

dp

dVk
, Kw = −Vw

dp

dVw
, Kp = +Vp

dp

dVp
, (15)

where Vo is the oil volume equivalent to the amount of converted kerogen. The + sign means
that the pore volume increases with increasing pore pressure, since Kp is the bulk modulus at
constant confining pressure. Integration of equations (15) yields

Vo(p) = Voi exp(−∆p/Ko), Vk(p) = Vki exp(−∆p/Kk),
Vw(p) = Vwi exp(−∆p/Kw), Vp(p) = Vki exp(+∆p/Kp).

(16)

Since the mass balance is independent of pressure, the amount of converted oil can be expressed
as

ρoVoi = sρkVki, (17)

where ρo is the oil density, and Voi and Vki are the oil and kerogen volumes at pi.
The pore volume at the initial pore pressure is Vpi = Vki + Vwi and the initial water

saturation is Sw = Vwi/Vpi. Using (17), the oil volume becomes

Vo(p) = sDVki exp(−∆p/Ko), (18)

where D = ρk/ρo. Since at pressure p the pore space volume is

Vp = (1 − s)Vk + Vo + Vw, (19)

we obtain

s =
Sw exp(−∆p/Kw) + (1− Sw) exp(−∆p/Kk)− exp(∆p/Kp)

(1− Sw)[exp(−∆p/Kk)−D exp(−∆p/Ko)]
. (20)

This equation is equivalent to (A13) in Carcione (2000), which has a typographical error, since
the coefficient in the third exponential of the numerator is ck instead of cp.

The shale studied here is located at 3 km depth. The lithostatic pressure at this depth, for
an average density of ρ̄ = 2.4 g/cm−3 is equal to ρ̄gz ≃ 70 MPa, where g is the acceleration
of gravity. On the other hand, the hydrostatic pore pressure is approximately 30 MPa. Thus,
the maximum possible pore pressure change ∆p will be from hydrostatic to lithostatic, i.e.,
nearly 40 MPa (at this excess pressure, the rock may reach the fracturing stage). Since, under
these conditions, the arguments in the exponential functions in equation (20) are much less
than one, these functions can be approximated by exp(x) ≃ 1 + x, x ≪ 1, giving

∆p =
s(1− Sw)(D − 1)

K−1
p +K−1

k
+ s(1− Sw)(K−1

o D −K−1
k

)− Sw(K−1
k

−K−1
w )

. (21)

Neglecting the mineral compressibility, the pore space bulk modulus is given by Kp =
φKm, where Km is the bulk modulus of the frame (see equation (7.76) in Carcione (2007)).
Here, we consider that the pore-space bulk modulus depends linearly with the porosity as

Kp[MPa] = 2400 − 5400φ′ (22)

(Carcione, 2000), where φ′ = φk + φw is the initial kerogen plus water proportion. Pore-space
incompressibilities range from 240 to 2400 MPa, which correspond to compliant and rigid
rocks, respectively.
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A.2 Smectite/illite conversion

Pytte and Reynolds (1989) propose a model for the smectite/illite ratio r based on the nth-
order Arrhenius-type reaction

∂r

∂t
= −rnA exp(−E/RT (t)), (23)

where r is the smectite/illite ratio. The illite/smectite ratio in percent is 100 (1 − r). The
solution of equation (23) is given in the next section.

Smectite is assumed isotropic and it is mixed with illite by using Backus averaging (66) to
obtain the elasticity constants of the mineral composing the frame.

A.3 Solutions

Equations (14) and (23) are of the form

∂y

∂t
= −ynA exp(−E/RT (t)), (24)

which has the solution

y(t) = m−1/m

{

y−m
0

m
+

A

H

[

E

R
[Ei(x)− Ei(x0)] + T exp(x)− T0 exp(x0)

]

}−1/m

, (25)

where m = n− 1, Ei (x) is the exponential integral,

x = −
E

RT
, x0 = −

E

RT0
. (26)

where the dependence on the deposition time is given in the absolute temperature (see equation
(13)).

The solution of equation (14) (n = 1, s0 =1) simplifies to

s = 1− exp

{

−
A

H
[TE2(−x)− T0E2(−x0)]

}

, (27)

where

Ej(x) =

∫

∞

1

exp(−xq)
dq

qj
. (28)

Equation (25) can also be evaluated with E1 using the relation Ei(x) = −E1(−x). Approxi-
mations to equation (27) can be found in Berg and Gangi (1999), Carcione (2000) and Pinna
et al. (2011).

B Properties of hydrocarbon gas

In-situ reservoir gas behaves as a real gas, which satisfies approximately the van der Waals
equation (Friedman, 1963):

(p + aρ2g)(1 − bρg) = ρgR(T + 273), (29)

where p is the gas pressure and ρg is the gas density. For CH4, a = 0.225 Pa (m3/mole)2

= 879.9 Pa (m3/kg)2 and b = 42.7 cm3/mole = 2.675 × 10−3 m3/kg (one mole of methane
corresponds to a mass of 16 g). The critical pressure and temperature are pcr = 4.6 MPa and
Tcr = −82.7 oC, respectively. Equation (29) gives the gas density as a function of pressure
and temperature, which can be related to depth, if we assume that the gas pressure is equal
to the expected formation pressure.
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The isothermal gas compressibility cT depends on pressure. It can be calculated from the
van der Waals equation using

cT =
1

ρg

∂ρg

∂p
, (30)

which gives

cT =

[

ρgR(T + 273)

(1− bρg)2
− 2aρ2g

]−1

. (31)

For sound waves below 1 GHz or so, it is a better approximation to assume that the compression
is adiabatic, i.e., that the entropy content of the gas remains nearly constant during the
compression (Morse and Ingard, 1986). Adiabatic compressibility cS is related to isothermal
compressibility cT by cS = cT /γ, where γ is the heat capacity ratio at constant pressure,
which depends on measurable quantities (Morse and Ingard, 1986). Batzle and Wang (1992)
provide an empirical equation

γ = 0.85 +
5.6

pr + 2
+

27.1

(pr + 3.5)2
− 8.7 exp [−0.65 (pr + 1)], (32)

where pr = p/pcr is the reduced pressure. In this case, the gas bulk modulus can expressed as

Kg =
1

cS
=

γ

cT
. (33)

C Properties of oil and brine

The liquid properties depend on temperature and pressure and on API number and salinity, if
the fluid is oil or water, respectively. Batzle and Wang (1992) and Mavko et al. (2009) provide
a series of useful empirical relations between the state variables and velocity and density. For
completeness we give these relations here. The equations are limited to the pressures and
temperatures of the experiments made by Batzle and Wang (1992) (around 60 MPa and 100
oC).

Oil density (in g/cm3) versus temperature T (in oC) and pressure p (in MPa) can be
expressed as

ρo =
ρ0 + (0.00277p − 1.71 × 10−7p3)(ρ0 − 1.15)2 + 3.49× 10−4p

0.972 + 3.81× 10−4(T + 17.78)1.175
, (34)

where ρ0 is the density at 15.6 oC and atmospheric pressure. This density is related to API
gravity by

API =
141.5

ρ0
− 131.5. (35)

The expression relating wave velocity of dead oil (oil with no dissolved gas) to pressure, tem-
perature and API gravity is

Vo = 15450 (77.1 + API)−1/2 − 3.7T + 4.64p + 0.0115 (0.36 API1/2 − 1)Tp, (36)

where Vo is given in m/s and p in MPa. Using these relationships, we get the oil bulk modulus
as Ko = ρoV 2

o .
The density of brine in g/cm3 is given by

ρw = ρ′w + sc{0.668 + 0.44sc + 10−6[300p− 2400psc

+T (80 + 3T − 3300sc − 13p+ 47psc)]}, (37)

with
ρ′w = 1 + 10−6(−80T − 3.3T 2 + 0.00175T 3 + 489p − 2Tp + 0.016T 2p

−1.3× 10−5T 3p− 0.333p2 − 0.002Tp2), (38)
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where sc is the weight fraction (ppm/1000000) of sodium chloride. Finally, the velocity function
for brine is

Vw = V ′

w + sc(1170 − 9.6T + 0.055T 2 − 8.5× 10−5T 3 + 2.6p− 0.0029Tp

−0.0476p2) + s1.5c (780 − 10p + 0.16p2)− 1820s2c , (39)

where V ′
w is the velocity of pure water given by

V ′

w =

4
∑

i=0

3
∑

j=0

wijT
ipj , (40)

with constants wij given in Table 2. Using these relationships, we get the brine bulk modulus
as Kw = ρwV 2

w .

D Effective fluid model for partial gas saturation

The mixture oil-gas behaves as a composite fluid with properties depending on the constants
of the constituents and their relative concentrations. The simplest solution to obtain its bulk
modulus is to assume the Wood average:

Kf =

(

sg

Kg
+

so

Ko

)−1

, (41)

where sg = φg/(φg + φo) denotes the gas saturation and so = 1 − sg is the oil saturation.
Equation (41) corresponds to the low-frequency limit. The density is

ρf = sgρg + soρo. (42)

When the fluids are not mixed in the pore volume, but distributed in patches, the effective bulk
modulus of the composite fluid is higher than that predicted by Wood equation. We assume a
simplified model where the frame is the kerogen and the fluids are oil and gas. White (1975)
assumed spherical patches much larger than the grains but much smaller than the wavelength.
He developed the theory for a gas-filled sphere of porous medium of radius r0 located inside a
water-filled sphere of porous medium of outer radius r1 (r0 < r1). The saturation of gas is

sg =
r30
r31

, so = 1− sg. (43)

For simplicity, let us redefine the saturation and density of gas and oil by S1 and S2 and ρf1
and ρf2, respectively.

The permeability, κ, of the kerogen frame depends on the fluid content. We assume a
Kozeny-Carman form

κ =
2κ0ϕ3

(1 − ϕ)2
(44)

(Mavko et al. 2009), where ϕ = φf/(φf + φk), where κ0 is a reference value at 50 % fluid
saturation (ϕ = 0.5); in this work we assume κ0 = 2.5 D.

The bulk modulus of the kerogen-oil-gas mixture is then given by

KW ≃ Re(K∗) (45)

(Carcione, 2007), where “Re” denotes de real part and

K∗ =
K∞

1−K∞W
, (46)
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where

W =
3ir0κ(R1 − R2)

r31ω(η1Z1 − η2Z2)

(

KA1

K1
−

KA2

K2

)

,

R1 =
(K1 −Km)(3K2 + 4µm)

K2(3K1 + 4µm) + 4µm(K1 −K2)S1
,

R2 =
(K2 −Km)(3K1 + 4µm)

K2(3K1 + 4µm) + 4µm(K1 −K2)S1
,

Z1 =
1− exp(−2γ1r0)

(γ1r0 − 1) + (γ1r0 + 1) exp(−2γ1r0)
,

Z2 =
(γ2r1 + 1) + (γ2r1 − 1) exp[2γ2(r1 − r0)]

(γ2r1 + 1)(γ2r0 − 1)− (γ2r1 − 1)(γ2r0 + 1) exp[2γ2(r1 − r0)]
,

γj =
√

iωηj/(κKEj),

KEj =

[

1−
αKfj(1 −Kj/Ks)

ϕKj(1 −Kfj/Ks)

]

KAj ,

KAj =

[

ϕ

Kfj
+

1

Ks
(α− ϕ)

]−1

, j = 1, 2,

α = 1−
Km

Ks
,

(47)

Ks is the bulk modulus of the kerogen (see below), Kfj are the bulk moduli of the fluids, ηj
are the fluid viscosities, Km and µm are given by Krief equations

Km = Kk(1− ϕ)3/(1−ϕ) and µm = Kmµk/Kk (48)

(Krief et al., 1990). Moreover,

K∞ =
K2(3K1 + 4µm) + 4µm(K1 −K2)S1

(3K1 + 4µm)− 3(K1 −K2)S1
(49)

is the – high frequency – bulk modulus when there is no fluid flow between the patches. K1

and K2 are the – low frequency – Gassmann moduli, which are obtained as

Kj =
Ks −Km + ϕKm

(

Ks/Kfj − 1
)

1− ϕ−Km/Ks + ϕKs/Kfj
, j = 1, 2. (50)

For values of the gas saturation higher than 52 %, or values of the oil saturation between 0
and 48 %, the theory is not rigorously valid. Another limitation to consider is that the size of
gas pockets should be much smaller than the wavelength.

To obtain the effective fluid modulus Kf due to mesoscopic anelastic effects we consider
Gassmann equation

KW =
Ks −Km + ϕKm

(

Ks/Kf − 1
)

1− ϕ−Km/Ks + ϕKs/Kf
. (51)

and solve for Kf :

Kf =
ϕKs(KW −Km)

Ks − (1 + ϕ)Km −KW (1 − ϕ−Km/Ks)
. (52)

If ϕ exceeds a critical porosity value, say 0.5, Kf is the Wood modulus, since the iso-stress
condition holds.

E Properties of the kerogen/fluid mixture

The stiffnesses of the kerogen/fluid mixture can be calculated by using the model developed
by Kuster and Toksöz (1974). If sf = φf/(φf + φk) is the fluid saturation, the stiffnesses are

cif13 + 2
3
cif55

Kk
=

1 + [4µk(Kf −Kk)/(3Kf + 4µk)Kk]sf

1− [3(Kf −Kk)/(3Kf + 4µk)]sf
(53)
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and
cif55
µk

=
(1 − sf )(9Kf + 8µk)

9Kk + 8µk + S(6Kk + 12µk)
. (54)

The density of the mixture is simply ρif = (φkρk + φfρf )/(φk + φf ).

F Dry-rock elasticity constants

Gassmann equation requires the knowledge of the dry-rock elasticity constants. Krief et al.
(1990) propose a simple heuristic equation:

Km = Ks(1 − φ)A/(1−φ) and µm = Kmµs/Ks, (55)

where A is a constant which depends on the type of rock (the second expression in equation (55)
is assumed here). The porosity dependence is consistent with the concept of critical porosity,
since the moduli should be small above a certain value of the porosity (usually between 0.4
and 0.6) (Mavko and Mukerji, 1998).

The properties of the frame can be described by an anisotropic version of the Krief model:

cm11 = cs11g(A),
cm66 = cs66g(A),
cm13 = cs13g(B),
cm33 = cs33g(B),
cm55 = cs55g(B),

(56)

where
g(x) = (1− φ)x/(1−φ) (57)

and A and B are constants. The use of two constants is somehow equivalent to vary the
Krief exponent as a function of the propagation (phase) angle, since cm11 and cm66 describe the
velocities along the stratification, and cm33 and cm55 along the perpendicular direction. As we
shall see in the example, A < B, indicating that the critical porosity value is larger for the
elastic constants describing the properties along the layering, i.e., the skeleton is mainly defined
by these constants at high porosity. Equations (56) reduce to equation (55) for A = B in the
isotropic case. Another possibility is to obtain the dry-rock elasticity constants from wet-rock
data by using the inverse Gassmann relation (70) (see Carcione et al., 2011).

F.1 Pressure effect. Model 1

A suitable model of the elasticity constants of the smectite-illite frame as a function of the
pore and confining pressure can be expressed as

cm11 = cs11g(A)h(p),
cm66 = cs66g(A)h(p),
cm13 = cs13g(B)h(p),
cm33 = cs33g(B)h(p),
cm55 = cs55g(B)h(p),

(58)

where p is the pore pressure,

h(p) = c [1− exp[−(pc − p)/p∗] , (59)

pc is the confining pressure,

p∗ = −
pH − pc

ln(1 − 1/c)
, (60)

pH is the hydrostatic pressure and c > 1 is a parameter obtained by fitting experimental data.
Function h has the following properties: h(p = 0) = c[1 − exp(−pc/p∗)], h(p = pH ) = 1 and
h(p = pc) = 0, where the last property means that the rock is completely unconsolidated in
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the absence of a confining pressure. Before this happens, at pfr < pc, fracture occurs, where
pfr is the fracture pressure. For simplicity the pressure effects are “isotropic”. The pressure
dependence (59) is theoretically justified by Kaselow and Shapiro (2004) and experimental
results (Carcione and Gangi, 2000a,b).

This model is the simplest possible since it is based in a single parameter (c) which can
easily be estimated from experimental data.

F.2 Pressure effect. Model 2

A model completely based on data can be obtained by using equation (70) below. We use
this equation to obtain the dry-rock stiffness constants from experimental data with 100 %
kerogen occupying the pore space, and assuming an exponential dependence on the differential
pressure pd (Kaselow and Shapiro, 2004),

cmIJ = ĉIJ + čIJ exp(−pd/p
∗

IJ ), (61)

where pd = pc − pH . The parameters ĉIJ , čIJ and p∗IJ are obtained from the data using the
stiffnesses at three different confining pressures and assuming an effective pressure law, i.e.,
replacing pd by pc (with pH = 0), equation (61) should give the same value of the elasticity
constants (e.g., Gei and Carcione, 2003). If from the experimental data (e.g., Vernik, 1995),

we have the sets c
(1)
IJ , c

(2)
IJ and c

(3)
IJ , at pc1, pc2 and pc3, we obtain the unknown parameters

from

čIJ =
c
(3)
IJ

− c
(1)
IJ

exp(−pc3/p∗IJ)− exp(−pc1/p∗IJ )
, (62)

ĉIJ = c
(1)
IJ

− čIJ exp(−pc1/p
∗

IJ), (63)

and
(c

(3)
IJ − c

(1)
IJ ) exp[(pc1 + pc3)/p

∗

IJ ] + (c
(1)
IJ − c

(2)
IJ ) exp[(pc1 + pc2)/p

∗

IJ ]

+(c
(2)
IJ

− c
(3)
IJ

) exp[(pc2 + pc3)/p
∗

IJ ] = 0. (64)

The dry-rock elasticity constants should satisfy the conditions of physical stability. For a
transversely isotropic medium these are

cm11 > |cm12|, (cm11 + cm12)c
m
33 > 2(cm13)

2, cm55 > 0 (65)

(e.g., Carcione, 2007). The elasticity constants of the mineral grains, csIJ (smectite-illite-water
in this case), are constrained by these conditions We assume isotropy (cs11 = cs33, c

s
66 = cs55,

cs12 = cs13 = cs11 − 2cs66) and a Poisson medium (cs13 = cs55) and then choose the medium with
maximum stiffness satisfying equation (70).

G Petro-elastical models

G.1 Wet-rock Backus velocities

Following Vernik and Nur (1992) and Carcione (2000), we assume that the rock is a multi-
layer composite made of smectite-illite-water and kerogen-hydrocarbon fluid (see Figures 1a
and 1b). Backus averaging gives a transversely isotropic equivalent medium described by five
stiffness constants c̄IJ , where

c̄11 = 〈c11 − c213c
−1
33 〉+ 〈c−1

33 〉−1〈c−1
33 c13〉2

c̄33 = 〈c−1
33 〉−1

c̄13 = 〈c−1
33 〉−1〈c−1

33 c13〉

c̄55 = 〈c−1
55 〉−1

c̄66 = 〈c66〉,

(66)



31

(Schoenberg and Muir, 1989; Carcione, 2007), with cIJ the complex stifnesses corresponding
to the single constituents and 〈 · 〉 indicating the weighted average. The proportion of the
kerogen-oil-gas mixture is φk + φf = φk + φo + φg and the proportion of smectite-illite-water
is φs + φw. Porosity is φ = φw + φo + φg .

Since Backus averaging overestimates the experimental velocities at the layering plane, we
modify the elasticity constants of smectite-illite-water, which has a lenticular textural pattern
(Vernik and Nur, 1992; Carcione, 2000). We assume that only the stiffnesses “parallel to bed-
ding” are affected, with the elasticity constants obtained as 〈c11〉 and 〈c66〉, which incorporate
the respective local constants of both smectite-illite-water and kerogen.

The wave velocites of the shale are

v33 = vP (0) =
√

c̄33/ρ,

v11 = vP (90) =
√

c̄11/ρ,

v55 = vS(0) =
√

c̄55/ρ,

v66 = vS(90) =
√

c̄66/ρ.

(67)

where P and S denote P and S waves, respectively, and 0 and 90 correspond to propagation
perpendicular to and along the layering.

The bulk density is given by

ρ = φsρs + φwρw + φkρk + φfρf . (68)

G.2 Wet-rock Gassmann velocities

Ciz and Shapiro (2007) obtained the undrained compliance tensor when the pore infill and
solid grains are anisotropic materials,

s̄ijkl = smijkl − (smijmn − ssijmn)[φ(s
if − sφ) + sm − ss]−1

mnqp(s
m
qpkl − ssqpkl), (69)

where the s’s are the components of the compliance tensor, and the Einstein summation is
assumed over 1, 2 and 3. Tensor and matrices are denoted with a bold font (see Carcione et
al. (2001a,b) for corrections to equation (69)). The compliance tensor sφ is explicitly defined
in Ciz and Shapiro (2007). In the case that the skeleton is made of a homogeneous material,
sφ = ss. For transverse isotropy, we use the following relations between the Voigt stiffnesses
and compliances: c11+c12 = s33/s, c11−c12 = 1/(s11−s12), c13 = −s13/s, c33 = (s11+s12)/s,
c55 = 1/s55, where s = s33(s11 + s12) − 2s213. The equations for the inversion are obtained
by interchanging all c’s and s’s. Note the following relations: s66 = 4s1212 and s55 = 4s1313,
valid for all the compliance tensors, while c66 = c1212 and c55 = c1313. The components of the
corresponding matrices in the undrained case transform in the same way. Moreover, the usual
symmetry relations by interchanging the indices hold (e.g., Carcione, 2007).

Equation (69) can be inverted to obtain the dry-rock compliance tensor as a function of
the undrained compliance tensor. We have

smijkl = ssijkl + φ(s̄ijmn − ssijmn)[φ(s
if − sφ) − s̄+ ss]−1

mnqp(s
if
qpkl

− sφ
qpkl

). (70)

This equation can be used to obtain the drained compliance tensor by using calibration data
(seismic, well or laboratory data).

The wet-rock elasticity constants are related to the phase velocities at 0, 90 and 45 degrees
as

c̄33 = ρv2P (0),
c̄11 = ρv2P (90),
c̄55 = ρv2S(0),
c̄66 = ρv2S(90),
c̄12 = 2c̄66 − c̄11,

c̄13 = −c̄55 +
√

4ρ2v4
P
(45) − 2ρv2

P
(45)(c̄11 + c̄33 + 2c̄55) + (c̄11 + c̄55)(c̄33 + c̄55)

(71)

(e.g., Carcione, 2007).
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H Energy velocity and wavefront

Let us consider the (x, z)-plane of a transversely isotropic medium and define the direction
cosines l1 = sin θ and l3 = cos θ, where θ is the phase angle between the symmetry axis and
the propagation direction. The expression of the energy velocities of the wave modes can be
found for instance in Carcione (2007). The energy velocity vector of the SH wave is

ve(SH) =
1

ρvp
(c66l1ê1 + c55l3ê3), (72)

where
vp(SH) =

√

(ρ)−1(c66l21 + c55l23) (73)

is the phase velocity.
The energy velocity components of the qP and qSV waves are

ve1 =

(

l1

vp

)

(Γ33 − ρv2p)c11 + (Γ11 − ρv2p)c55 − (c13 + c55)2l23
ρ(Γ11 + Γ33 − 2ρv2p)

(74)

and

ve3 =

(

l3

vp

)

(Γ33 − ρv2p)c55 + (Γ11 − ρv2p)c33 − (c13 + c55)2l21
ρ(Γ11 + Γ33 − 2ρv2p)

, (75)

where
vp(qSV) = (2ρ)−1/2

√

c11l21 + c33l23 + c55 − C

vp(qP) = (2ρ)−1/2
√

c11l21 + c33l23 + c55 + C

C =
√

[(c11 − c55)l21 + (c55 − c33)l23]
2 + 4[(c13 + c55)l1l3]2

(76)

are the phase velocities and
Γ11 = c11l21 + c55l23
Γ33 = c55l21 + c33l23

(77)

are components of the Kelvin-Christoffel matrix. We have omitted the bars over the elasticity
constants for simplicity. The wavefront is equal to the energy velocities multiplied by one unit
of propagation time.

I AVO classes of a source-rock layer

The scattering coefficients for a layer can be found in Carcione (2001a,b; 2007). For an incidence
wave with subscript W = P or W=S, where P and S denote compressional and shear waves,
the reflection-transmission coefficient vector is

[RWP , RWS , TWP , TWS ]
⊤ = (BA2 −A1)

−1 iW , (78)

where A1 and A2 are the propagator matrices related to the upper and lower media, B is the
propagator matrix of the layer, and iW is the incidence vector. The explicit expressions can
be found in Carcione (2007) (Chapter 6).

The AVO intercept A is obtained as Re(RPP ) at θ = 0, where where θ is the angle
of incidence. We compute the AVO gradient B based on Shuey’s two-term approximation
R(θ) = A + B sin2 θ (e.g., Carcione, 2001a). The AVO classes are identified in a crossplot of
gradient and intercept.
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J List of symbols

sub- and super-scripts sm, i, m, w, k: smectite, illite, matrix, water, kerogen
sub- and super-scripts o, g, s, f, if, p: oil, gas, solid, fluid, pore-infill, pore
E activation energy
A infinite-temperature rate
R gas constant
a, b van der Waals parameters
API oil API gravity
sc weight fraction of sodium chloride
S sedimentation rate
G geothermal gradient
T temperature
t deposition time
z depth
g acceleration of gravity
s kerogen/oil or oil/gas fraction
r smectite/illite fraction
r0 initial smectite fraction or gas patch radius
pc confining pressure
pH hydrostatic pressure
p pore pressure
pd = pc − p differential (effective) pressure
∆p excess pore pressure
V volume
A, B Krief parameters (or intercept and gradient)
K. bulk modulus
µ. shear modulus
λ, µ Lamé constants
ρ shale density
Y Young modulus
ν Poisson ratio
ρs smectite-illite density
ρ̄s smectite-illite-water density
vP , vS P- and S-wave velocities
θ phase angle (propagation direction) or incidence plane-wave angle
vp, ve phase and energy velocities
cIJ elasticity constants of the single constituents
c̄IJ elasticity constants of the shale
ǫ, δ, γ anisotropy parameters
vIJ wave velocities
IP , IS P- and S-wave impedances
φ. proportions
φOC = φk + φo + φg organic content
φ = φw + φo + φg porosity
K = 100 φk kerogen content (volume percent)
TOC Total organic content (weight percent)
S. S′

. , s. saturations
RWX , TWX reflection and transmission coefficients
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K Tables

Table 1. Material Properties.

Medium Depth v11 v33 v55 v66 v13 ρ
(km) (km/s) (km/s) (km/s) (km/s) (km/s) (g/cm3)

smectite - 2.8 2.8 1.7 1.7 1.43 2.2
illite - 5 4.5 2.9 3.15 1.96 2.9

kerogen∗ 2 2.327 2.327 1.5 1.5 0.96 1.2
” 3 2.236 2.236 1.44 1.44 0.92 1.3

water 2 1.66 1.66 0 0 1.66 1.04
” 3 1.65 1.65 0 0 1.65 1.02

smectite-illite-water 2 3.84 2.88 1.68 2.38 1.48 2.38
smectite-illite-water 3 4.73 3.80 2.37 2.97 1.72 2.75

oil 3 1.11 1.11 0 0 1.11 0.73
gas 3 0.82 0.82 0 0 0.82 0.14

(∗) Kk = 2.9 GPa and µk = 2.7 GPa (Mavko et al., 2009).

Table 2. Coefficients for water-properties calculation.

w00 = 1402.85 w02 = 3.437 × 10−3

w10 = 4.871 w12 = 1.739 × 10−4

w20 = − 0.04783 w22 = − 2.135 × 10−6

w30 = 1.487 × 10−4 w32 = − 1.455 × 10−8

w40 = − 2.197 × 10−7 w42 = 5.230 × 10−11

w01 = 1.524 w03 = − 1.197 × 10−5

w11 = − 0.0111 w13 = − 1.628 × 10−6

w21 = 2.747 × 10−4 w23 = 1.237 × 10−8

w31 = − 6.503 × 10−7 w33 = 1.327 × 10−10

w41 = 7.987 × 10−10 w43 = − 4.614 × 10−13

Table 3. Kimmeridge-shale velocities at 2146 m depth.

(Vernik, 1995)

pc v11 vP(45) v33 v55 v66
(MPa) (km/s) (km/s) (km/s) (km/s) (km/s)

10 3.13 2.89 2.8 1.33 1.62

20 3.37 3.23 3.01 1.52 1.8

30 3.49 3.26 3.17 1.63 1.89

50 3.68 3.40 3.34 1.74 2.02

70 3.76 3.48 3.42 1.80 2.07



35

Table 4. Kimmeridge-shale properties at 2768 m depth.

pc vP (0) vP (45) vP (90) vS(0) vS(90)

(MPa) (m/s) (m/s) (m/s) (m/s) (m/s)

5 2690 2890 3520 1490 1910

30 2820 3030 3680 1540 1990

70 2920 3150 3790 1570 2020

pc c̄11 c̄33 c̄13 c̄55 c̄66
(MPa) (GPa) (GPa) (GPa) (GPa) (GPa)

5 23.1 13.5 3.1 4.1 6.8

30 25.2 14.8 3.8 4.4 7.4

70 26.8 15.9 5 4.6 7.6

pc cm11 cm33 cm13 cm55 cm66
(MPa) (GPa) (GPa) (GPa) (GPa) (GPa)

5 19.2 2.3 4.8 3.3 6.5

30 19.6 13.1 5.3 4 6.8

70 19.7 15.8 5.5 4.3 6.9

Table 5. Intercept and gradient of a source-rock layer.

Sg S′

g K (%) A B

0 0 25 −0.24 0.42

0.1 0.02 24.4 −0.25 0.44

0.2 0.05 23.7 −0.26 0.48

0.3 0.08 22.8 −0.27 0.49

0.4 0.13 21.6 −0.29 0.51

0.5 0.2 20 −0.32 0.52

0.6 0.3 17.5 −0.35 0.54

0.7 0.46 13.3 −0.4 0.55

0.8 0.8 5 −0.48 0.56
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Smectite/Illite kerogen water oil gas

porosity (Backus)

porosity (Gassmann)

Fig. 1 Organic shale components indicating the “porosity” corresponding to the Backus and
Gassmann models. The porosity in the case of the Gassmann model includes the solid pore
infill. The actual porosity, φ, of the rock to calculate the fluid saturations is that indicated
for the Backus model, i.e., the sum of the water, oil and gas proportions. The organic content
porosity, φOC, is the sum of the kerogen, oil and gas proportions.

a) 

b) 

c) 

z 

x Smectite/illite

Kerogen

Fig. 2 Schematic fabric topology of transversely isotropic kerogen-rich shales, according to
Backus model (a), modified Backus model (b) and Gassmann model (c). The z-direction cor-
responds to the symmetry axis.
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Fig. 3 Kerogen/oil and oil/gas fractions as a function of depth (a) and pore pressure generated
due to the kerogen/oil conversion (b) (φ′ = 0.3 in equation (22) is assumed).
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Fig. 4 Illite/smectite ratio as a function of depth.
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Fig. 5 Phase-velocity variations (v33 (P wave) and v55 (S wave)) (a) and mass density (b) of
the mineral composing the shale frame as a function of depth due to diagenesis (smectite/illite
conversion).
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Fig. 6 TOC (in weight percent) and kerogen content K (in volume percent) corresponding to
wells 1 and 3.
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Fig. 7 Porosity (a) and bulk density (b) as a function of depth corresponding to wells 1 and
3. The open circles correspond to calculations performed with the properties given in Table 1.
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Fig. 8 TOC (in weight percent) from well reports (solid line) and predicted by equation (9)
(full circles), corresponding to wells 1 and 3.
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Fig. 9 Backus (a) and Gassmann (b) bedding-normal P-wave velocities as a function of depth,
corresponding to wells 1 and 3. The solid lines and open circles correspond to the well-log data
and model calculations at the depths indicated at the well reports, respectively.
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(a)

Fig. 10 Bedding-normal S-wave velocity as a function of depth, corresponding to Backus
averaging (a) and Gassmann equation (b). The solid lines and open circles correspond to the
well-log data and model calculations at the depths indicated at the well reports, respectively.
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Fig. 11 Anisotropy parameters as a function of depth obtained from the Backus (a) and
Gassmann (b) models, corresponding to wells 1 and 3, at the depths where TOC is given in
the well reports.



47

Fig. 12 Sonic, density and Gamma ray logs.
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Fig. 13 Bulk density from logs (a) and theory (b), corresponding to an smectite/illite acti-
vation energy of 39 kcal/mol and a smectite density of 2.2 g/cm3.
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Fig. 14 Bedding-normal P-wave velocity from logs (a) and theory (b), corresponding to an
smectite/illite activation energy of 44 kcal/mol and a smectite density of 2.6 g/cm3.
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Fig. 15 Density (a) and bulk modulus (b) of the fluids as a function of depth.
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Fig. 16 Effective bulk modulus of the oil-gas mixture as a function of frequency due to the
mesoscopic-loss mechanism. The Wood average is also shown.
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Fig. 17 Bedding-normal (a) and bedding-parallel (b) P-wave velocities as a function of gas
saturation, Sg, for various values of the kerogen content, K = 100φk , and oil saturation, So

(dashed and solid lines, respectively). The model is Backus averaging and the frequency is 50
Hz.
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Fig. 18 Bedding-normal (a) and bedding-parallel (b) P-wave velocities as a function of gas
saturation for various values of the kerogen content and oil saturations (see Figure 15). The
model is Gassmann equation and the frequency is 50 Hz.
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Fig. 19 Energy velocity for a shale with full kerogen content (immature) (a) and a shale
saturated with oil and gas (mature) (b). The model is Gassmann equation and the frequency
is 50 Hz.
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Fig. 20 vP /vS (v33/v55) as a function of the acoustic impedance (AI) for various values of the
gas and oil saturations (solid and dashed lines, respectively). The models are Backus averaging
(a) and Gassmann equation (b) and the frequency is 50 Hz.
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Fig. 21 λ-µ-ρ templates for various values of the gas and oil saturations (solid and dashed
lines, respectively). The models are Backus averaging (a) and Gassmann equation (b) and the
frequency is 50 Hz.
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Fig. 22 Y -ν (Young modulus-Poisson ratio) templates for various values of the gas and oil
saturations (solid and dashed lines, respectively) and three definitions of the Poisson ratio (a,b
and c). The model is Backus averaging.
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Fig. 23 Wet-rock wave velocities as a function of pressure corresponding to experimental data
for the Kimmeridge shale (Vernik, 1995) (a) and to the present model (b).
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Fig. 24 Dry-rock velocities (dashed lines) and wet-rock velocities (solid lines) as a function
of the differential pressure for full kerogen (a) and So = 0.3 and Sg = 0.1 (b).
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Fig. 25 vP /vS (v33/v55) as a function of the acoustic impedance (AI) (a) and λ-µ-ρ template
for different values of the pore pressure and varying oil saturation. The model is Gassmann
equation and the frequency is 50 Hz.
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Fig. 26 Source-rock layer to study the AVO effects of organic matter.
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Fig. 27 Real part of the reflection and transmission coefficients at depths of 2 km (a) and 3
km (b), corresponding to a source-rock layer of h = 15 m (thickness) and gas saturation Sg =
0.2. The model is Gassmann equation and the frequency is 30 Hz.
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Fig. 28 Intercept gradient plot corresponding to a source-rock layer of h = 25 m thickness
and varying gas saturation S′

g. The model is Gassmann equation and the frequency is 30 Hz.


