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Introduction. I

A planar fracture embedded in a fluid-saturated poroelastic – Biot -

medium can be modeled as a extremely thin, highly permeable a nd

compliant porous layer.

A Biot medium containing a dense set of aligned fractures beh aves

as an effective transversely isotropic and viscoelastic (TIV) medium

when the average fracture distance is much smaller than the

predominant wavelength of the traveling waves.

This leads to frequency and angular variations of velocity a nd

attenuation of seismic waves.

Fractures and induced anisotropy in poroelastic media. From the Mesoscale to the Macroscale – p. 2



Introduction. II

P-waves traveling in this type of medium induce fluid-pressu re

gradients at fractures and mesoscopic-scale heterogeneit ies,

generating fluid flow and slow (diffusion) Biot waves, causin g

attenuation and dispersion of the fast modes (mesoscopic lo ss).

A poroelastic medium with embedded aligned fractures exhib its

significant attenuation and dispersion effects due to this m echanism.

Due to the extremely fine meshes needed to properly represent these

mesoscopic-scale fractures, numerical simulations are ve ry

expensive or even not feasible.
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Introduction. III

Our approach: In the context of Numerical Rock Physics , we use a

numerical upscaling procedure to determine the complex and

frequency dependent stiffness at the macroscale of a TIV med ium

equivalent to a Biot medium with aligned fractures.

To determine the complex stiffness coefficients of the equivalent TIV

medium at the macroscale , we solve a set of boundary value

problems (BVP’s) for Biot’s equation in the diffusive range .

The BVP’s are stated and solved in the space-frequency-doma in

using the finite-element method (FEM).
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Introduction. IV

The BVP’s represent harmonic tests at a finite number of frequencies

on a representative sample of the material.

Numerical Rock Physics offer an alternative to laboratory

measurements.

Numerical experiments are inexpensive and informative sin ce the

physical process of wave propagation can be inspected durin g the

experiment.

Moreover, they are repeatable, essentially free from experimental

errors , and may easily be run using alternative models of the rock an d

fluid properties.
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The Mesoscale. Anisotropic poroelasticity. I

For Biot’s media, White et al. (1975) were the first to
introduce the mesoscopic-loss mechanism in the framework
of Biot’s theory.

For fine layered poroelastic materials, the theories of
Gelinsky and Shapiro (GPY, 62, 1997) and Krzikalla and
Müller (GPY, 76, 2011) allow to obtain the five complex and
frequency-dependent stiffnesses of the equivalent TIV
medium.

To provide a more general modeling tool, we present a
numerical upscaling procedure to obtain the complex
stiffnesses of the effective TIV medium.
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The Mesoscale. Anisotropic poroelasticity. II

We employ the FEM to solve in the space-frequency domain
Biot’s equations in the diffusive range with boundary
conditions representing compressibility and shear harmonic
experiments.

The methodology is applied to saturated isotropic poroelastic
samples having a dense set of horizontal fractures.

The samples contained mesoscopic-scale heterogeneities
due to patchy brine-CO2 saturation and fractal porosity and
consequently, fractal permeability and frame properties.

Applying a Bond transfomation matrix, the macroscale
stiffness coefficients can be used to represent fractures at
any orientation.
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The Mesoscale. Anisotropic poroelasticity. III

Let us consider isotropic fluid-saturated poroelastic laye rs.

u
s(x),uf (x) : time Fourier transform of the displacement vector of the

solid and fluid relative to the solid frame, respectively.

u = (us,uf )

σkl(u),pf (u): Fourier transform of the total stress and the fluid pressure ,

respectively

On each plane layer n in a sequence of N layers, the frequency-domain

stress-strain relations are

σkl(u) = 2µ εkl(u
s) + δkl

(
λ

G
∇ · us + αM∇ · uf

)
,

pf (u) = −αM∇ · us −M∇ · uf .
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The Mesoscale. Anisotropic poroelasticity. IV

Biot’s equations in the diffusive range:

∇ · σ(u) = 0,

iω
η

κ
uf (x, ω) +∇pf (u) = 0,

ω = 2πf : angular frequency

η: fluid viscosity κ: frame permeability
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The TIV medium at the Macroscale.

τij: stress tensor of the equivalent TIV medium

For a closed system( ∇ · uf = 0), the corresponding stress-strain

relations , stated in the space-frequency domain, are

τ11(u) = p11 ǫ11(u
s) + p12 ǫ22(u

s) + p13 ǫ33(u
s),

τ22(u) = p12 ǫ11(u
s) + p11 ǫ22(u

s) + p13 ǫ33(u
s),

τ33(u) = p13 ǫ11(u
s) + p13 ǫ22(u

s) + p33 ǫ33(u
s),

τ23(u) = 2 p55 ǫ23(u
s),

τ13(u) = 2 p55 ǫ13(u
s),

τ12(u) = 2 p66 ǫ12(u
s).

This approach provides the complex velocities of the fast mo des and

takes into account interlayer flow effects .
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The harmonic experiments to determine the stiffness coeffic ients. I

To determine the complex stiffness we solve Biot’s equation in the 2D

case on a reference square Ω = (0, L)2 with boundary Γ in the

(x1, x3)-plane. Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0}, ΓR = {(x1, x3) ∈ Γ : x1 = L},

ΓB = {(x1, x3) ∈ Γ : x3 = 0}, ΓT = {(x1, x3) ∈ Γ : x3 = L}.
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The harmonic experiments to determine the stiffness coeffic ients. II

The sample is subjected to harmonic compressibility and shear tests

described by the following sets of boundary conditions .

p33(ω):

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ,

us · ν = 0, (x1, x3) ∈ Γ \ ΓT ,

uf · ν = 0, (x1, x3) ∈ Γ.

ν: the unit outer normal on Γ

χ: a unit tangent on Γ so that {ν, χ} is an orthonormal system on Γ.

Denote by V the original volume of the sample and by ∆V (ω) its

(complex) oscillatory volume change.
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The harmonic experiments to determine the stiffness coeffic ients. III

In the quasistatic case

∆V (ω)

V
= −

∆P

p33(ω)
,

Then after computing the average us,T3 (ω) of the vertical displacements

on ΓT , we approximate

∆V (ω) ≈ Lus,T3 (ω)

which enable us to compute p33(ω)

To determine p11(ω) we solve an identical boundary value problem than

for p33 but for a 90 o rotated sample.
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The harmonic experiments to determine the stiffness coeffic ients. IV

p55(ω): the boundary conditions are

−σ(u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR,

us = 0, (x1, x3) ∈ ΓB,

uf · ν = 0, (x1, x3) ∈ Γ,

where

g =





(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .
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The harmonic experiments to determine the stiffness coeffic ients. V

The change in shape suffered by the sample is

tan[θ(ω)] =
∆G

p55(ω)
. (1)

θ(ω): the angle between the original positions of the lateral bou ndaries

and the location after applying the shear stresses.

Since

tan[θ(ω)] ≈ us,T1 (ω)/L, where us,T1 (ω) is the average horizontal

displacement at ΓT , p55(ω) can be determined from

to determine p66(ω) (shear waves traveling in the (x1, x2)-plane), we

rotate the layered sample 90 o and apply the shear test as indicated for

p55(ω).
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The harmonic experiments to determine the stiffness coeffic ients. VI

p13(ω): the boundary conditions are

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ,

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB, uf · ν = 0, (x1, x3) ∈ Γ.

In this experiment ǫ22 = ∇ · uf = 0, so that

τ11 = p11ǫ11 + p13ǫ33, τ33 = p13ǫ11 + p33ǫ33, (2)

ǫ11, ǫ33: the strain components at the right lateral side and top side of the

sample, respectively. Then,

p13(ω) = (p11ǫ11 − p33ǫ33) / (ǫ11 − ǫ33) .
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Schematic representation of the oscillatory compressibility and shear tests.
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Local degrees of freedom for the FEM solution of the harmonic tests.

Fluid (x−comp) dofs

Solid dofs

Fluid (y−comp) dofs

The solution of the oscillatory tests was computed using the FEM. The

figure displays the local degrees of freedom (DOFs) associated with each

component of the solid displacement and the fluid displaceme nt vectors.

Once we computed the pIJ coefficients, we can determine the velocities

and attenuation factors of the equivalent TIV medium.
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Velocities and attenuation in TIV media. I

Complex velocities of the equivalent TIV anisotropic mediu m:

vqP = (2ρ̄)−1/2
√
p11l21 + p33l23 + p55 + A,

vqSV = (2ρ̄)−1/2
√
p11l21 + p33l23 + p55 − A,

vSH = ρ̄−1/2
√
p66l21 + p55l23,

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]
2 + 4[(p13 + p55)l1l3]2.

ρ̄ = 〈ρ〉: average bulk density,

l1 = sin θ, l3 = cos θ are the directions cosines, θ is the propagation

angle between the wavenumber vector and the x3-symmetry axis and the

three velocities correspond to the qP, qS and SH waves, respe ctively.
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Velocities and attenuation in TIV media. II

The seismic phase velocity and quality factors are:

vp =

[
Re

(
1

v

)]−1

and Q =
Re(v2)

Im(v2)
,

where v represents either vqP, vqSV or vSH.

The energy-velocity vector ve of the qP and qSV waves is

ve

vp
= (l1 + l3 cotψ)

−1
ê1 + (l1 tanψ + l3)

−1
ê3,

ψ: angle between the energy-velocity vector and the x3-axis.

The energy velocity of the SH wave is

ve =
1

ρ̄vp
(l1p66ê1 + l3p55ê3) .
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The Mesoscale. Examples . I

A set of numerical examples consider the following cases for a
square poroelastic sample of 160 cm side length and 10 period s of 1
cm fracture, 15 cm background:

Case 1: A brine-saturated sample with fractures.

Case 2: A brine-CO 2 patchy saturated sample without fractures.

Case 3: A brine-CO 2 patchy saturated sample with fractures.

Case 4: A brine saturated sample with a fractal frame and
fractures.

The discrete boundary value problems to determine the compl ex
stiffnesses pIJ(ω) were solved for 30 frequencies using a public
domain sparse matrix solver package.
The pIJ(ω)’s determine in turn the energy velocities and dissipation
coefficients shown in the next figures.
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Polar representation of the qP energy velocity vector at 50 H z for cases 1, 2 and 3
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Velocity anisotropy caused by the fractures in cases 1 and 3 i s enhanced for the case of patchy saturation, with

lower velocities when patches are present. The velocity beh aves isotropically in case 2.

Fractures and induced anisotropy in poroelastic media. From the Mesoscale to the Macroscale – p. 22



Dissipation factor of the qP waves at 50 Hz for cases 1, 2 and 3
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Fractures induce strong Q anisotropy for angles normal to th e fracture plane, enhanced by patchy saturation.
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Fluid pressure distribution at 50 and 300 Hz. Compressibili ty test for p33 for case 3.
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Compression is normal to the fracture plane. Attenuation is stronger at

300 Hz.
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Polar representation of the qSV energy velocity vector at 50 Hz for cases 1, 2 and 3
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Velocity anisotropy is induced by fractures (cases 1 and 3 ). Patchy saturation does not affect the anisotropic

behavior of the qSV velocities. Case 2 shows isotropic veloc ity, with higher velocity values than for the

fractured cases.

Fractures and induced anisotropy in poroelastic media. From the Mesoscale to the Macroscale – p. 25



Dissipation factor of qSV waves at 50 Hz for cases 1, 2 and 3
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qSV anisotropy is strong for angles between 30 and 60 degrees . The lossless case 2 is represented by a

triangle at the origin.

Fractures and induced anisotropy in poroelastic media. From the Mesoscale to the Macroscale – p. 26



Polar representation of the qSH energy velocity vector at 50 Hz for cases 1, 2 and 3
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SH velocity anisotropy is observed to be induced by fracture s. Cases 1 and 3 are almost indistinguishable.

Velocity for case 2 is isotropic. SH waves are lossles, since p55 and p66 are real.
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Lamé coefficient (GPa) for the brine-saturated fractal porosit y-permeability sample of case 4.
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log κ(x, z) = 〈log κ〉+ f(x, z), f(x, z): fractal representing the spatial fluctuation of the permea bility field

κ(x, z).
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Polar representation of the qP energy velocity vector at 50 H z for cases 1 and 4.
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Note the increase in Q anisotropy for qP waves for angles norm al to the fracture plane.
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Dissipation factor of qP waves at 50 Hz for cases 1 and 4.
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Note the increase in Q anisotropy for qP waves for angles norm al to the fracture plane.
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Polar representation of the qSV energy velocity vector at 50 Hz for cases 1 and 4.
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Note the energy velocity reduction in the heterogeneous cas e.

Fractures and induced anisotropy in poroelastic media. From the Mesoscale to the Macroscale – p. 31



Dissipation factor of qSV waves at 50 Hz for cases 1 and 4.
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Note the increase in Q anisotropy for angles between 30 and 60 degrees. Also, velocity anisotropy is less

affected by frame heterogeneities than Q-anisotropy.
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The Macroscale I. Seismic modeling. Variational formulation

We solve the following boundary value problem at the macrosc ale in a

domain Ω with boundary ∂Ω:

−ω2ρu−∇ · τ(u) = F, Ω

−τ(u)ν = iωDu, ∂Ω, (absorbing bounday condition, D > 0)

u = (ux, uz): displacement vector, ρ: average density.

τ(u): stress-tensor of our equivalent TIV medium , defined in terms of the

p′IJs.

A global continuous variational formulation: Find u(x, ω) ∈ [H1(Ω)]2

such that

−(ρω2u, ϕ) + (τ(u), ε(ϕ)) + iω 〈Du, ϕ〉∂Ω = (f, ϕ), ϕ ∈ [H1(Ω)]2,
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The Macroscale. II. Global continuous and FE variational formulation.

T h: a partition of Ω̄ into rectangles of diameter bounded by h:

Ω̄ = ∪J
j=1Ωj

Γj = ∂Ω∩∂Ωj , Γjk = Γkj = ∂Ωj ∩∂Ωk; ξjk the centroids of Γj and Γjk.

Reference rectangular element

R = [−1, 1]2, S(R) = Span

{
1, x, z,

(
x2 −

5

3
x4
)
−

(
z2 −

5

3
z4
)}

.

The DOF associated with S: values at the mid points of the faces of R.

If a1 = (−1, 0), a2 = (0,−1), a3 = (1, 0) and a4 = (0, 1),

the basis function

ψ1(x, z) =
1
4
− 1

2
x− 3

8

[
(x2 − 5

3
x4)− (z2 − 5

3
z4)

]

is such that

ψ1(a1) = 1 and ψ1(aj) = 0, j = 2, 3, 4.
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The Macroscale. III. Global FE variational formulation.

The nonconforming FE space NCh

NCh = {ϕ ∈ [L2(Ω)]2 : ϕj ∈ [S(Ωj)]
2, ϕj(ξjk) = ϕk(ξjk)∀j, k},

ϕj : the restriction of ϕ as seen from Ωj . The global nonconforming FE

procedure: Find uh ∈ NCh such that

−(ρω2uh, ϕ) +
∑

j

(τ(uh), ε(ϕ))Ωj
+ iω

〈
Duh, ϕ

〉
∂Ω

= (f, ϕ), ϕ ∈ NCh.

Instead of solving the global algebraic problem associated with the global

FE procedure above, we will employ the iterative domain deco mposition

procedure.
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The Macroscale. IV. FE Domain decomposition.

Consider the decomposed problem over Ωj satisfying he interface

consistency conditions

τjkνjk + iβjkuj = −τkjνkj + iβjkuk, x ∈ Γjk ⊂ ∂Ωj ,

τkjνkj + iβjkuk = −τjkνjk + iβjkuj , x ∈ Γkj ⊂ ∂Ωk,

βjk: positive definite iteration matrix functions defined on the interior

boundaries Γjk.

To localize the calculations, we introduce a set of Lagrange multipliers

λhjk: associated with the stress values −τ(uj)νjk(ξjk):

Λ̃h = {λh : λh|Γjk
= λhjk ∈ [P0(Γjk)]

2 = [Λh
jk]

2}.

P0(Γjk) are constant functions on Γjk. Note that Λh
jk and Λh

kj are

considered to be distinct.
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The Macroscale. V. FE Domain Decomposition Iteration.

Given an initial guess
(
ûh,0j , λh,0jk , λ

h,0
kj

)
∈ [NCh

j ]
2 × [Λh

jk]
2 × [Λh

kj ]
2,

compute
(
ûh,nj , λh,njk

)
∈ [NCh

j ]
2 × [Λh

jk]
2 as the solution of the equations

−(ρω2ûh,nj , ϕ)j +
∑

pq

(τpq(û
h,n), εpq(ϕ))j + iω

〈〈
Dûh,nj , ϕ

〉〉
Γj

+
∑

k

〈〈
λh,njk , ϕ

〉〉
Γjk

= (f̂ , ϕ)j , ϕ ∈ [NCh
j ]

N ,

λh,njk = −λh,n−1
kj + iβjk[û

h,n
j (ξjk)− ûh,n−1

k (ξjk)], on Γjk.

It can be shown that if uh is the solution of the global FE
procedure,

‖ûh,n − uh‖0 → 0 in [L2(Ω)]2 when n→ ∞,
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The Macroscale Model. I

The macroscopic model consists of an isotropic square backg round

Ω of 1.6 km side length containing an anisotropic layer of 400m

thickness of either horizontal or vertical aligned fractur es (HTI or VTI

medium).

The stiffnesses coefficients of the anisotropic layer are th ose

determined using the harmonic experiments, for the cases of fully

brine saturated fractures (Case 1) or 10 % patchy CO 2 saturation

(Case 3).

The isotropic background has P- and S-wave velocities at 50 H z equal

to 2633 m/s and 1270 m/s, respectively.
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The Macroscale Model. II

For the HTI-case, qP- and qSV-wave velocities at 50 Hz are equ al to

3808. m/s and 1686 m/s, respectively, while for the VTI-case qP- and

qSV-wave velocities at 50 Hz are equal to 3008. m/s and 1686 m/ s,

respectively

The computational mesh consists of square cells having side length

4 m, and The source is a dilatational perturbation of central frequency

is 50 Hz, located at (x = 800m, z = 6.m).
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The Macroscale Model. III
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Snapshots of z-component of velocity at 150ms (left) and 200 ms (right). HTI brine saturated fractures.
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At 150 ms the incident P-wave is arriving to the top of the HTI l ayer. At 200 ms a reflected P-wave travelling

upwards and a transmitted qP-wave travelling downwards are observed. The other wavefronts are S-waves

generated by the point source at the top boundary.
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Snapshots of z-component of velocity at 220ms (left) and 240 ms (right). HTI brine saturated fractures.
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At 220 ms and 240 ms a reflected P-wave and travelling upwards a nd a transmitted qP-wave travelling

downwards are observed. Note the deformation of the qP-wave front because of the anisotropy in the HTI layer.

The other (thin) wavefronts are S-waves generated by the poi nt source at the top boundary.
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Snapshots of z-component of velocity at 280ms (left) and 300 ms (right). HTI brine saturated fractures.
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At 280 and 300 ms we can observe an upgoing P-wavefront and a ti ny upgoing S-wavefront reflected at the top

of the HTI layer and an upgoing qP-wavefront generated by refl ection of the downgoing qP-wave at the bottom

of the HTI layer. At 300 ms the reflected P-wave generated at th e top of the HTI layer is arriving at the surface

geophones.
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Snapshots of z-component of velocity at 380ms (left) and 500 ms (right). HTI brine saturated fractures.
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At 380 and 500 ms we can observe the reflected S-wave arriving a t at the surface geophones, together with the

qP-P wave reflected at the bottom of the HTI layer. The transmi tted qP wave has already left the HTI layer and

continues travelling downwards as a converted P-wave. Conv ersions to S-waves can also be seen in both

snapshots
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Synthetic traces. HTI and VTI brine saturated fractures.
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Synthetic traces. HTI brine and patchy brine-CO2 saturated fractures.
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Synthetic seismograms. HTI (left) and VTI (right) brine saturated fractures.
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The seismograms show the arrivals of P and S waves reflected at the top of the HTI and VTI layers, as well as

later arrivals corresponding to conversions from incident P to qP and qSV waves at the top and bottom of the

layers. In particular, it is clearly seen the late P-qP-P arrival of the VTI case as compared with the corresponding

one in the HTI case. The qP-velocities in the HTI and VTI layer s are about 3800 m/s and 3000m/s, respectively.
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Synthetic seismograms. HTI brine (left) and 10 % CO2 (right) saturated fractures.
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The seismograms show the arrivals of P and S waves reflected at the top of the HTI layer, and later arrivals

corresponding to conversions from incident P to qP and qSV wa ves at the top and bottom of the layer. In

particular, the P-qP-qP-qP-qP-qP-P arrival in the brine-saturated case is not seen in the patchy brine-C O2 case

due to the strong attenuation of qP waves when CO 2 is present ( Qp ≈ 10 at normal incidence). Instead

qSV-waves are less attenuated when CO 2 is present and the P-qP-qSV-S-arrival is still observed.
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Conclusions

Numerical upscaling procedures allow to represent poroela stic

samples with a dense set of aligned fractures at the

mesoscopic-scale saturated by different fluids, bringing t he induced

anisotropy at the macroscale.

THE FEM is a useful tool to solve local problems at the mesosca le in

the context of Numerical Rock Physics and global wave propag ation

problems at the macroscale.

The techniques presented here to model acoustics of porous m edia in

geophysics can be extended to other fields, like ultrasound t esting of

quality of foods, groundwater flow and contamination among o thers.

Thanks for your attention !!!!!.
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