1	1. Ejempios coencientes de renexión y transmisión en una fractura
2	In this section, we test the reflection and transmission coefficients and consider several
3	cases of interest in reservoir geophysics. The following cases are taken into account:
4	Case 1 : Comparación método capa fina con el sistema 30 de Nakagawa-Schoemberg
5	(2007)
6	Case 2 : Comparación método capa fina con el sistema 52 de Nakagawa-Schoemberg
7	(2007)
8	Case 3: Comparación método capa fina con el sistema 53 de Nakagawa-Schoemberg
9	(2007). Cuando la permeabilidad tiende al infinito.
10	Case 4 : Analisis de casos con diferente fluido en la fractura.
11	A. Case 1. Capa fina y sistema 30
12	Aquí para la frecuencia de 1000 Hz la longitud de onda es: 3.2030 m en el background
13	y 1.5286 m en la fractura.
14	Cuando el espesor h=0.001 m es 0.031% de la longitud de onda en el background y
15	0.065% de la longitud de onda en la fractura. Ver figura 1.
16	Cuando el espesor es h=0.00001 m, es 0.00031% de la longitud de onda en el
17	background y 0.00065% de la longitud de onda en la fractura. Ver figura 2.

I. Ejemplos coeficientes de reflexión y transmisión en una fractura

¹⁸ B. Case 2. Capa Fina vs sistema 52

Aquí si la frecuencia es de 10 Hz, la longitud de onda es de 320 m en el background y
152.86 m en la fractura.

Para h=0.001 m, es $3.1*10^{-4}\%$ de la longitud de onda en el background y $6.5*10^{-4}\%$ de la longitud de onda en la fractura.

Cuando la frecuencia es 100 Hz, ya empieza a verse diferencias entre los resultados
obtenidos con el metodo de la capa fina y el sistema 52, en este caso las longitudes de onda
son 32 m en el background y 15.2 m en la fractura.

Para h=0.001 m, es $3.1*10^{-3}\%$ de la longitud de onda en el background y $6.5*10^{-3}\%$ de la longitud de onda en la fractura.

 $_{28}$ En el caso de h=0.00001 m, no se observan diferencias significativas para las

 $_{29}~$ frecuencias en el rango de la sísmica. Cuando la frecuencia es de 10 Hz, h es $3.1^{*}10^{-6}\%$ de

 $_{30}~$ la longitud de onda en el background y 6.5*10^{-6}\% de la longitud de onda en la fractura.

 $_{31}\,$ Cuando la frecuencia es de 100 Hz, h es 3.1*10^{-5}\% de la longitud de onda en el background

 $_{32}~~{\rm y}~6.5^{*}10^{-5}\%$ de la longitud de onda en la fractura. Ver figura 3.

³³ C. Case 3. Capa fina vs. sistema 53 (permeabilidad infinita)

Es caso es similar al anterior, la diferencia es que la permeabilidad tiende al infinito.

³⁵ En la figura 4 se observa que los resultados obtenidos con la capa fina y los resultados

³⁶ obtenidos con con el sistema 53 empiezan a a diferenciarse cuando la frecuencia es de 1000

Hz, en el caso de h=0.001 m, donde las longitudes de onda son, 3.2 m en el background y
1.528 m en la fractura.

Cuando el espesor h=0.001 m es 0.031% de la longitud de onda en el background y 0.065% de la longitud de onda en la fractura (Para 1000 Hz).

⁴¹ Cuando el espesor de la fractura es h=0.00001 m, esto es $3.1*10^{-4}\%$ de la longitud de ⁴² onda en el background y $6.5*10^{-4}\%$ de la longitud de onda en la fractura (Para 1000 Hz).

⁴³ D. Case 4. Analisis para diferentes fluidos en la fractura.

En esta etapa se va a mostrar los cambios que hay con diferentes fluidos en la fractura, cuando en el background hay agua. Ver figura 5

Para el caso de petroleo en la fractura y frecuencia de 50 Hz, las longitudes de onda
son, 64.0594 m en el background y 16.9346 m en la fractura. Como h=0.001 m, esto es
0.0016% de la longitud de onda en el background y 0.0059% de la longitud de onda en la
fractura.

Para el caso de gas en la fractura y frecuencia de 50 Hz, las longitudes de onda son, 64.0594 m en el background y 7.6977 m en la fractura. Como h=0.001 m, esto es 0.0016%de la longitud de onda en el background y 0.0130% de la longitud de onda en la fractura.

Properties	Matrix	Fracture	
Porosity	0.15	0.5	
Solid density (kg/m^3)	2700	2700	
Solid bulk modulus (Pa)	$36.0^{*}10^{9}$	$36.0^{*}10^{9}$	
Frame bulk modulus (Pa)	$9.0^{*}10^{9}$	$5.56^{*}10^{7}$	
Frame shear modulus (Pa)	$7.0^{*}10^{9}$	3.33^*10^7	
Permeability (m^2)	$1.0^{*}10^{-13}$	1.0^*10^{-10} (case 1, 4)	
		$1.0^{*}10^{-16}$ (case 1)	
		$1.0^{*}10^{-15}$ (case 2)	
		∞ (case 3)	
Tortuosity	3	1	

Table 1: Baseline material properties used for the numerical examples are shown.

Properties	Gas	Water	Oil
Density (kg/m^3)	139.8	1000	700
Fluid viscosity (Pa*s)	0.000022	0.001	0.004
Fluid bulk modulus (Pa)	0.05543^*10^9	$2.25^{*}10^{9}$	$0.57^{*}10^{9}$

Table 2: Saturant fluids.

Figure 1: Magnitud coeficientes de reflexión y transmisión para las ondas P tipo I y II, para dos valores de permeabilidad, cuando incide una onda P tipo I. El espesor de la fractura es de h = 0.001 m. a) Incidencia normal y permeabilidad $\kappa = 1.0 * 10^{-10}$ m² b) Incidencia normal y permeabilidad $\kappa = 1.0 * 10^{-10}$ m² b) Incidencia normal y permeabilidad $\kappa = 1.0 * 10^{-10}$ m² d) Frecuencia 1000 Hz, permeabilidad $\kappa = 1.0 * 10^{-10}$ m².

Figure 2: Magnitud coeficientes de reflexin y transmisin para las ondas P tipo I y II, cuando incide una onda P tipo I de 1000 Hz. El espesor de la fractura es de h = 0.00001 m. a) Incidencia normal y permeabilidad $\kappa = 1.0 * 10^{-16}$ m² b) Frecuencia 1000 Hz, permeabilidad $\kappa = 1.0 * 10^{-16}$ m².

Figure 3: Magnitud coeficientes de reflexion y transmision para las ondas P tipo I, II, para una permeabilidad de $\kappa = 1.0 * 10^{-15} \text{ m}^2$ cuando incide una onda P tipo I. Se obtuvo los coeficientes de reflexion y transmision para dos valores de h, h = 0.001 m y h = 0.00001 m.a) Magnitud del coeficiente de reflexion de la onda P tipo I. b) Magnitud del coeficiente de reflexion de la onda P tipo II. d) Magnitud del coeficiente de transmision de la onda P tipo I. e) Magnitud del coeficiente de transmision de la onda P tipo II.

Figure 4: Magnitud coeficientes de reflexión y transmisión para las ondas P tipo I, II, para una permeabilidad de $\kappa \to \infty$ cuando incide una onda P tipo I. Se obtuvo los coeficientes de reflexion y transmision para dos valores de h, h = 0.001 m y h = 0.00001 m. a) Magnitud del coeficiente de reflexion de la onda P tipo I. b) Magnitud del coeficiente de reflexion de la onda P tipo II. d) Magnitud del coeficiente de transmision de la onda P tipo I. e) Magnitud del coeficiente de transmision de la onda P tipo II.

Figure 5: Magnitud coeficientes de reflexión y transmisión para las ondas P tipo I, II y las ondas de corte, cuando incide una onda P tipo I de 50 Hz. El fluido en el background es agua. El espesor de la fractura es de h = 0.001 m y su la permeabilidad es $\kappa = 1.0 \times 10^{-10}$ m². a) Petroleo en la fractura b) Gas en la fractura.