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Abstract

A fluid-saturated poroelastic isotropic medium with aligned fractures behaves as a
transversely isotropic and viscoelastic (TIV) medium when the predominant wave-
length is much larger than the average distance between fractures. A planar fracture
embedded in a fluid saturated poroelastic background medium can be modeled as
a extremely thin and compliant porous layer. P-waves traveling in this type of
medium induce fluid-pressure gradients at fractures and mesoscopic-scale hetero-
geneities, generating fluid flow and slow (diffusion) Biot waves, causing attenuation
and dispersion of the fast modes (mesoscopic loss). A poroelastic medium with
embedded aligned fractures exhibits significant attenuation and dispersion effects
due to this mechanism, which can properly be represented at the macroscale with
an equivalent TIV medium. In this work, we apply a set of compressibility and
shear harmonic finite-element (FE) experiments on fractured highly heterogeneous
poroelastic samples to determine the five complex and frequency dependent stiff-
nesses characterizing the equivalent medium. The experiments consider brine or
patchy brine-CO2 saturated samples and a brine saturated sample with an hetero-
geneous (fractal) skeleton with fractures. We show that fractures induces strong
seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced either by
patchy saturation or frame heterogeneity.

Keywords: Fractures, poroelasticity, anisotropy, velocity dispersion, attenu-
ation, finite elements.

1 Introduction

Seismic wave propagation through fractures is an important subject in hy-
drocarbon exploration geophysics, mining and reservoir characterization and
production [1]. In particular, naturally fractured reservoirs have received inter-
est in recent years, since, generally, natural fractures control the permeability
of the reservoir. In geophysical prospecting and reservoir development, knowl-
edge of fracture orientation, densities and sizes is essential since these factors
control hydrocarbon production [2,3]. This is also important in CO2 storage
in geological formations to monitor the injected plumes as faults and frac-
tures are generated, where CO2 can leak to the surface [4]. Among papers
presenting numerical approaches to determine effective media corresponding
to fractured rocks, Grechka and Kachanov [5,6] performed 3D static FE simu-
lations, summing up the individual contributions of the fractures and ignoring
their interactions. Also, Saenger et al. [7] presented numerical simulations in
2D and 3D media saturated with fluids to analyze Biot’s predictions in the
high and low frequency limits of poroelasticity, while Wenzlau et al. [8] per-
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formed FE simulations to analyze anisotropic dispersion and attenuation in
poroelastic materials.

A dense set of horizontal fractures in a fluid-saturated poroelastic medium
behaves as a TIV medium when the average fracture distance is much smaller
than the predominant wavelength of the traveling waves. This leads to fre-
quency and angular variations of velocity and attenuation of seismic waves.
A major cause of attenuation in porous media is wave-induced fluid flow,
which can take place at mesoscopic-scale heterogeneities, when the fast P-
wave is converted into diffusion-type Biot slow waves. Wave anelasticity and
anisotropy are significant in fractured poroelastic rocks due to this mechanism
[9].

White et al. [10] were the first to introduce the mesoscopic-loss mechanism in
the framework of Biot theory considering porous and thin plane layers. Next,
Gelinsky and Shapiro [11] obtained the relaxed and unrelaxed stiffnesses of
the equivalent poro-viscoelastic medium to a finely layered horizontally homo-
geneous material. Krzikalla and Müller [12] combined the two previous models
assuming that fluid flow is perpendicular to the layering plane and indepen-
dent of the loading direction; they obtained the five complex and frequency-
dependent stiffnesses of the equivalent TIV medium [13].

A planar fracture embedded in a fluid-saturated poroelastic background is
a particular case of the thin layer problem, when one of the layers is very
thin and compliant. FE harmonic compressibility and shear tests were first
presented in [15] to obtain a viscoelastic medium long-wavelenght equivalent
to a highly heterogeneous isotropic sample. Then, in [14], [16] and [13] the
procedure was extended to determine long-wave equivalent media to finely
layered viscoelastic and poroelastic materials. The procedure used here was
validated using the analytical solution presented in [12] and [9].

In this work, we apply these harmonic FE harmonic tests to saturated isotropic
poroelastic samples having a dense set of horizontal fractures modeled as very
thin layers. The samples contained mesoscopic-scale heterogeneities due to
patchy brine-CO2 saturation and fractal porosity and consequently, fractal
permeability and frame properties. We analyze attenuation and velocity dis-
persion as function of frequency and propagation angle.

2 The Biot model, equivalent medium and seismic properties

Let us consider isotropic fluid-saturated poroelastic layers and let us(x) =
(us1, u

s
2, u

s
3) and uf(x) = (uf1 , u

f
2 , u

f
3) indicate the time Fourier transform of

the displacement vector of the solid and fluid relative to the solid frame,
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respectively. Here, if Uf denotes the fluid displacement vector, uf = φ(Uf −
us), where φ is the porosity.

Set u = (us,uf) and let σ(u) and pf(u) denote the time Fourier transform of
the total stress and the fluid pressure, respectively, and let e(us) be the strain
tensor of the solid phase. On each plane layer n in a sequence of N layers, the
frequency-domain stress-strain relations are [17]

σkl(u) = 2µ ekl(u
s) + δkl

(
λ

G
∇ · us + αM∇ · uf

)
, (1)

pf(u) = −αM∇ · us −M∇ · uf . (2)

The coefficient µ is the shear modulus of the bulk material, considered to be
equal to the shear modulus of the dry matrix. The other coefficients in (1)-(2)
can be obtained from the relations [17]

λG = KG −
2

3
µ, KG = Km + α2M, (3)

α = 1−
Km

Ks
, M =

(
α− φ

Ks
+

φ

Kf

)
−1

,

where Ks, Km and Kf denote the bulk moduli of the solid grains, dry matrix
and saturant fluid, respectively.

Denoting by ω = 2πf the angular frequency, Biot’s equations of motion in the
diffusive range, stated in the space-frequency domain, are

∇ · σ(u) = 0, (4)
iωη

κ
uf +∇pf(u) = 0, (5)

where η is the fluid viscosity and κ is the frame permeability.

Let us consider x1 and x3 as the horizontal and vertical coordinates, respec-
tively. Gelinsky and Shapiro [11] showed that the medium behaves as a TI
medium with the vertical symmetry axis at long wavelengths. They obtained
the relaxed and unrelaxed limits, i.e., the low- and high-frequency limit real-
valued stiffnesses, respectively. At all frequencies, the medium behaves as an
equivalent TIV medium with complex and frequency-dependent stiffnesses,
pIJ , I, J = 1, . . . , 6. For the case of flow normal to the fracture layering and
independent of the loading direction, these complex stiffnesses can be deter-
mined as presented by Krzikalla and Müller in [12] and Carcione at al. [13].

Denoting by τ the stress tensor of the equivalent TIV medium and by ε the
solid strain tensor at the macroscale, the corresponding stress-strain relations,

4



stated in the space-frequency domain, are [18,17]

τ11(u) = p11 ε11(u
s) + p12 ε22(u

s) + p13 ε33(u
s), (6)

τ22(u) = p12 ε11(u
s) + p11 ε22(u

s) + p13 ε33(u
s), (7)

τ33(u) = p13 ε11(u
s) + p13 ε22(u

s) + p33 ε33(u
s), (8)

τ23(u) = 2 p55 ε23(u
s), (9)

τ13(u) = 2 p55 ε13(u
s), (10)

τ12(u) = 2 p66 ε12(u
s). (11)

Here, we have assumed a closed system, for which the variation of fluid content
ζ = −∇· uf is equal to zero. This formulation provides the complex velocities
of the fast modes at the macroscale and takes into account interlayer flow
effects.

The coefficients pIJ in (6)-(11) can be determined by applying five compress-
ibility and shear harmonic FE tests to a representative 2D sample of the frac-
tured poroelastic material. These tests are associated with boundary value
problems for Biot’s equations (4) stated in the space-frequency domain. The
different boundary conditions represent the following virtual experiments [13]:

(1) A compressibility test in the parallel direction to the fracture layering to
determine p11.

(2) A compressibility test in the normal directions to the fracture layering to
determine p33.

(3) A test applying simultaneous compressions in both, the normal and par-
allel directions to the fracture layering to determine p13.

(4) A shear test applied in the (x1, x3)-plane to determine p55.
(5) A shear test in the (x1, x2) plane to determine p66.

Regarding the spatial discretization, the computational domain was parti-
tioned uniformly into square cells of side length h. The FE spaces employed
to represent each component of the solid displacement vector us are locally
bilinear functions which are globally continuous. The local degrees of freedom
(DOF’s) are the values of the components of us at the four corners of the
computational cells.

On the other hand, the relative fluid displacement uf was represented using
the vector part of the Raviart-Thomas FE space of zero order [19]. The local
DOF’s are the values of the normal component of uf at the mid points of the
faces of the computational cells.

The arguments presented in [15] can be applied here to show that the error of
the FE procedure is of the order of h1/2 in the energy norm and of the order
h in the L2-norm.
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For a detailed description of the FE tests used in this work, we refer to [13],
where the model for these stiffnesses proposed by [12] was employed to validate
the procedure.

The complex velocities of the equivalent TIV anisotropic medium are [17]

vqP = (2ρ̄)−1/2
√
p11l

2
1 + p33l

2
3 + p55 + A,

vqSV = (2ρ̄)−1/2
√
p11l

2
1 + p33l

2
3 + p55 −A,

vSH = ρ̄−1/2
√
p66l

2
1 + p55l

2
3,

A =
√
[(p11 − p55)l21 + (p55 − p33)l23]

2 + 4[(p13 + p55)l1l3]2,

where ρ̄ = 〈ρ〉 is the thickness weighted average of the bulk density, l1 = sin θ
and l3 = cos θ are the directions cosines, θ is the propagation angle between
the wavenumber vector and the x3-symmetry axis and the three velocities cor-
respond to the qP, qS and SH waves, respectively. The seismic phase velocity
and quality factors are given by

vp =
[
Re

(
1

v

)]
−1

and Q =
Re(v2)

Im(v2)
, (12)

where v represents either vqP, vqSV or vSH.

The energy-velocity vector ve of the qP and qSV waves is

ve

vp
= (l1 + l3 cotψ)

−1ê1 + (l1 tanψ + l3)
−1ê3, (13)

with ψ being the angle between the energy-velocity vector and the x3-axis
[17], while the energy velocity of the SH wave is [17]

ve =
1

ρ̄vp
(l1p66ê1 + l3p55ê3) . (14)

3 Numerical Results

The FE procedures described above were implemented in FORTRAN lan-
guage and run in the SUN workstations of the Department of Mathematics
at Purdue University. This approach yields the five complex stiffnesses pIJ
as a function of frequency and the corresponding phase velocities and dissi-
pation coefficients. For each frequency, the five discrete problems associated
with the harmonic compressibility and shear tests were solved using a pub-
lic domain sparse matrix solver package. This approach yields directly the
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frequency dependent velocities and dissipation coefficients, instead of solving
Biot’s equation in the space-time domain and using Fourier transforms to
obtain the desired frequency domain characterization at the macroscale.

In all the experiments the numerical samples were discretized using a 160×160
uniform mesh representing 10 periods of 15 cm background sandstone and
1 cm fracture thickness. Both background and fractures have grain density
ρs = 2650 kg/m3, bulk modulus Ks = 37 GPa and shear modulus µs = 44
GPa.

The dry bulk and shear modulus of the samples were determined using the
Krief model [20],

Km

Ks
=

µ

µs
= (1− φ)3/(1−φ). (15)

A set of numerical examples consider the following cases:

Case 1: A brine-saturated sample with fractures.
Case 2: A brine-CO2 patchy saturated sample without fractures.
Case 3: A brine-CO2 patchy saturated sample with fractures.
Case 4: A brine saturated sample with a fractal frame and fractures.

Porosity is φ = 0.25 in the background and φ = 0.5 in the fractures. Using
(15) we obtained Km = 1.17 GPa and µ = 1.4 GPa for the background and
Km = 0.58 GPa and µ = 0.68 GPa for the fractures.

Permeability is obtained as [21]

κ =
r2g φ

3

45(1− φ)2
(16)

where rg = 20 µm is the average radius of the grains.

Although the algorithm has already been validated in [13], we include, for
completeness, a comparison of the analytical and numerical solutions for case
1. Figures 1 and 2 show plots of the dissipation factors and energy velocities
of qP and qSV waves at 300 Hz, respectively, where it can be observed a very
good match between the theoretical and numerical results.

<< Figure 1 >>
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<< Figure 2 >>

Figures 3 and 4 show plots of the dissipation factors at 50 Hz and 300 Hz, for
the cases 1, 2 and 3, while Figures 5 and 6 display the corresponding polar
plots of the qP energy velocity. Loss is negligible in case 1 along the direction
of the fracture plane. It can be observed strong velocity and Q anisotropy,
with higher attenuation at 300 Hz and patchy brine-CO2 saturation. Energy
losses are much higher for angles between 60 and 90 degrees, i.e., for waves
traveling in the direction incident normal to the fracture layering.

On the other hand, velocity anisotropy caused by the fractures in cases 1 and
3 is enhanced for the case of patchy saturation, with lower velocities when
patches are present. The velocity behaves isotropically in case 2.

<< Figure 3 >>

<< Figure 4 >>

<< Figure 5 >>

<< Figure 6 >>

Figures 7 and 8 show the fluid pressure distribution at frequencies 50 Hz
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and 300 Hz, respectively, for case 3 and compressions normal to the fracture
layering. It can be observed that pressure gradients take their highest values
at the fractures, and at 300 Hz remain always higher than at 50 Hz. This
explains the higher losses for qP waves at 300 Hz as compared with the 50 Hz
experiment observed in Figures 3 and 4.

<< Figure 7 >>

<< Figure 8 >>

Denoting by QP1, QP2 and QP3 the qP-quality factors associated with cases
1, 2 and 3 , Figure 9 shows the approximate validity of the commonly used
approximation for the dissipation factors for qP waves

Q−1
P3 = Q−1

P1 +Q−1
P2 (17)

relating different attenuation mechanisms for these cases at 300 Hz as function
of the propagation angle. This approximation was also tested in [22] and [23].
Numerical experiments have shown that this equation cannot be used as an
approximation in Case 4.

<< Figure 9 >>

Figures 10 and 11 show polar plots of the dissipation factors of qSV waves at
50 Hz and 300 Hz, respectively, for the three cases. For both frequencies, case
2 shows isotropic attenuation, while for a fractured sample brine or patchy
saturated (cases 1 and 3 ), Q anisotropy is strong for angles between 30 and
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60 degrees, with about a 50 % increase in attenuation at 300 Hz with respect
to 50 Hz.

<< Figure 10 >>

<< Figure 11 >>

Figure 12 displays polar plots of the qSV energy velocities at 50 Hz, where
velocity anisotropy is observed to be induced by fractures (cases 1 and 3 ),
while patchy saturation , as expected, does not affect the anisotropic behavior
of the qSV velocities. On the other hand, case 2 shows isotropic velocity, with
higher velocity values than for the fractured cases. The corresponding qSV
energy velocities at 300 Hz are almost identical to those at 50 Hz and are not
shown.

Figure 13 displays polar plots of the SH-wave energy velocity at 50 Hz, where
velocity is observed to be induced by fractures. Cases 1 and 3 are almost
indistinguishable, while the velocity for case 2 is isotropic. SH energy velocities
at 300 Hz are identical to those 50 Hz, since there is no energy loss (p55 and
p66 are real [9]).

<< Figure 12 >>

<< Figure 13 >>

Figures 14 and 15 analyze the variations in attenuation of qP waves for case 3
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due to changes in CO2 saturation, with attenuation coefficients computed at
300 Hz. Figure 14 shows that an increase of CO2 saturation from 10% to 50%
induces a noticeable decrease in attenuation for angles close to the normal
orientation of the fractures. Figure 15 displays the corresponding attenuation
curves for qSV waves, where the same decrease in attenuation is observed, but
for angles between 30 and 60 degrees.

<< Figure 14 >>

<< Figure 15 >>

On the other hand, it was observed that qP energy velocities decrease for
increasing CO2 saturation, with the greater decreases for angles closer to the
normal layering of the fractures. For qSV and SH waves, energy velocities
show almost no change between the two CO2 saturations. The related plots
are omitted for brevity.

Next, we analyze the behavior of waves as a function of frequency in the range
1 Hz - 1 kHz at 10% CO2 saturation. Figures 16 and 17 display dissipation
factors for cases 1, 2 and 3 for waves parallel (‘11’ waves ) and normal (‘33’
waves) to the fracture layering, respectively, while Figures 18 and 19 show the
corresponding velocities.

Figure 16 indicate that ‘11’ waves for case 1 (brine-saturated homogeneous
background with fractures) are lossless, while the cases of patchy saturation
with and without fractures suffer similar attenuation, though there is a change
from lower to higher attenuation for the patchy saturated case with fractures
(case 3 ) at a frequency of about 40 Hz.

On the other hand, the curves for ‘33’ waves displayed in Figure 17 show much
higher attenuation than those for ‘11’ waves for the three cases. The case of
patchy saturation with fractures (case 3 ) is the one exhibiting the highest at-
tenuation values for all frequencies. Besides, the case of brine-saturated homo-
geneous background with fractures (case 1) shows a much higher attenuation
than the non-fractured patchy saturated case (case 2) starting at a frequency
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of about 26 Hz, while below such frequency the opposite behavior is observed,
though with quite similar attenuation.

<< Figure 16 >>

<< Figure 17 >>

Figure 18 shows that for the case of brine-saturated homogeneous background
with fractures (case 1), ‘11’ velocities are essentially independent of frequency.
In the case of patchy saturation with fractures (case 3 ), velocities are always
smaller than in case 1, i.e., the presence of CO2 patches induces a velocity
decay in the whole range of frequencies analyzed. On the other hand, veloci-
ties for patchy saturation with or without fractures show a similar increasing
behavior with frequency.

Figure 19 shows that ‘33’ waves have the higher frequency dependent behavior
for the case of a patchy saturated fractured medium (case 3 ), with lower values
than in the other two cases and increasing behavior after 10 Hz. When the
sample is brine saturated with fractures (case 1), velocities are higher than
in case 3 . On the other hand, the patchy saturated case without fractures
exhibits the highest velocity values with moderate increase with frequency.
Thus, for ‘33’ waves the presence of fractures induces a noticeable reduction
of velocities normal to the fracture plane, either for brine or patchy saturation.

<< Figure 18 >>

<< Figure 19 >>
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The last experiment (case 4) analyzes the effects of the presence of hetero-
geneities in the skeleton or frame of the fractured sample. The binary fractal
permeability is obtained with the following logarithmic relation [24,25]

log κ(x, z) = 〈log κ〉+ f(x, z) (18)

with f(x, z) being the fractal representing the spatial fluctuation of the per-
meability field, chosen to be of fractal dimension D = 2.2, correlation length
2 cm and average permeability 0.25 Darcy in the background and 4.44 Darcy
in the fractures. Porosity was obtained using the Kozeny-Carman relation.
Thus, the heterogeneous sample was constructed as a fractal perturbation of
the sample in case 1. Figure 20 shows the Lamé coefficient λG of the brine
saturated fractal sample used in case 4.

<< Figure 20 >>

Figures 21 and 22 compare the qP and qSV dissipation factors of this case at
50 Hz with those of case 1, while Figures 23 and 24 compares the correspond-
ing energy velocities. As in the patchy saturation case, frame heterogeneities
induce a noticeable increase in Q anisotropy for qP waves for angles normal
to the fracture plane and for qSV waves for angles between 30 and 60 de-
grees. From Figures 21 and 22, we conclude that qSV wave attenuation is
more affected than qP attenuation when frame heterogeneities are present.
Also, from Figures 23 and 24 we see the expected energy velocity reduction
in the heterogeneous case, and that velocity anisotropy is less affected by
frame heterogeneities than Q anisotropy. Concerning SH velocities, they show
anisotropy and a moderate reduction in velocity and negligible attenuation in
the heterogeneous case. The SH energy velocity is similar to that in case 1 of
Figure 11 and the plot is omitted.

<< Figure 21 >>
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<< Figure 22 >>

<< Figure 23 >>

<< Figure 24 >>

4 Conclusions

We have presented a set of numerical quasi-static harmonic experiments to
determine the complex and frequency dependent stiffnesses of a viscoelastic
transversely isotropic homogeneous medium equivalent to a fluid-saturated
poroelastic material containing a dense set of planar fractures. The numeri-
cal simulators are based on the finite-element solution of Biot’s equations in
the diffusive range with boundary conditions representing compressibility and
shear tests. The fractures are modeled as very thin highly permeable poroe-
lastic layers of small frame moduli.

The numerical experiments consider brine, patchy brine-CO2 saturation and
fractal frame heterogeneities, with and without fractures. Attenuation, veloc-
ity dispersion and anisotropy are analyzed as a function of both propagation
angle and frequency. The effects of variation in CO2 saturation has also been
analyzed.

Strong velocity and attenuation anisotropy can be observed in the qP and qSV
wave modes, with attenuation enhanced when patches of CO2 are present,
and decreasing attenuation with increasing CO2 patchy saturation. While the
higher values of the dissipation factor for qP waves are found to be at angles
close to the normal direction to the fracture layering, for qSV waves the higher
values are found at angles between 30 and 60 degrees. Both, qP and qSV waves,
show a decrease in velocity when fractures are present, and Q anisotropy is
more pronounced than velocity anisotropy.
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There is no shear loss in the abscense of fractures, since the attenuation mech-
anism is only affecting the P waves. Fractures induce anisotropy and the P-S
coupling generates losses in the shear waves as well.

On the other hand, the horizontally polarized S-wave (the SH wave) is lossless
because it is a pure mode in transversely isotropic media, although exhibits
velocity anisotropy, as expected.

The analysis of waves traveling parallel (‘11’) and normal (‘33’) to the fracture
plane as a function of frequency has been performed in the range 1 Hz-1 kHz.
It has been observed lower dissipation factors for ‘11’ than for ‘33’ waves, as
expected, and the attenuation peak for ‘11’ waves at a lower frequency than
that for ‘33’ waves.

Regarding the velocities, ‘11’ waves show a stronger dependency on frequency
as compared with ‘33’ waves, and the presence of fractures induces a noticeable
reduction in velocities in all the frequency range analyzed for ‘33’ waves and
at low frequencies up to about 90 Hz for ‘11’ waves.

In the last experiment, based on frame heterogeneities, it has been observed
a similar effect on velocity and Q anisotropy than in the patchy saturation
case, with enhanced Q anisotropy and energy velocity reduction in all waves,
being the qSV waves the more affected by the fractal variations of the porous
frame.
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Fig. 1. Dissipation factor of the qP and qSV waves at 300 Hz for case 1. The solid
lines indicate the theorical values.
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Fig. 2. Polar representation of the qP and qSV energy velocity vector at 300 Hz for
case 1. The solid lines indicate the theorical values.
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Fig. 3. Dissipation factor of the qP waves at 50 Hz for cases 1, 2 and 3 .
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Fig. 4. Dissipation factor of the qP waves at 300 Hz for cases 1, 2 and 3 .
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Fig. 5. Polar representation of the qP energy velocity vector at 50 Hz for cases 1, 2
and 3 .
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Fig. 6. Polar representation of the qP energy velocity vector at 300 Hz for cases 1,
2 and 3 .
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Fig. 7. Fluid pressure distribution at 50 Hz for the compressibility test for case 3
with compression normal to the fracture plane (‘33’)
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Fig. 8. Fluid pressure distribution at 300 Hz for the compressibility test for case 3
with compression normal to the fracture plane (‘33’)
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Fig. 9. Test of the approximate validity of equation (17) for cases 1, 2 and 3 at 300
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Fig. 10. Dissipation factor of the qSV waves at 50 Hz for cases 1, 2 and 3 . The
lossless case 3 is represented by a point at the origin
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Fig. 11. Dissipation factor of the qSV waves at 300 Hz for cases 1, 2 and 3 . The
lossless case 3 is represented by a point at the origin
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Fig. 12. Polar representation of the qSV energy velocity vector at 50 Hz for cases
1, 2 and 3 .
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Fig. 13. Polar representation of the SH energy velocity vector at 50 Hz for cases 1,
2 and 3 .
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Fig. 14. Dissipation factor of qP waves for case 3 at 300 Hz for 10% and 50% CO2

saturation.
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Fig. 15. Dissipation factor of qSV waves for case 3 at 300 Hz for 10% and 50% CO2

saturation.
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Fig. 16. Dissipation factor of waves parallel to the fracture plane (‘11’ waves) as
function of frequency
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Fig. 17. Dissipation factor factor of waves normal to the fracture plane (‘33’waves)
as function of frequency
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Fig. 18. Velocity of waves parallel to the fracture plane (‘11’ waves) as function of
frequency
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Fig. 19. Velocity of waves normal to the fracture plane (‘33’waves) as function of
frequency
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Fig. 20. Lamé coefficient (GPa) for the brine-saturated fractal porosity-permeability
sample of case 4.
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Fig. 21. Dissipation factor of qP waves at 50 Hz for a brine saturated homogeneous
background with fractures (case 1) and a brine saturated fractal-porosity perme-
ability background with fractures (case 4).
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Fig. 22. Dissipation factor of qSV waves at 50 Hz for a brine saturated homoge-
neous background with fractures (case 1) and a brine saturated fractal-porosity
permeability background with fractures (case 4).
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Fig. 23. Polar representation of the qP energy velocity vector at 50 Hz for a brine
saturated homogeneous background with fractures (case 1) and a brine saturated
fractal-porosity permeability background with fractures (case 4).
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Fig. 24. Polar representation of the qSV energy velocity vector at 50 Hz for a brine
saturated homogeneous background with fractures (case 1) and a brine saturated
fractal-porosity permeability background with fractures (case 4).

32


