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Abstract

Fractures in a fluid-saturated poroelastic – Biot – medium can be modeled as very
thin highly permeable and compliant layers within a porous background. A Biot
medium containing a dense set of aligned fractures behaves as an effective trans-
versely isotropic and viscoelastic (TIV) medium at the macroscale when the predom-
inant wavelength is much larger than the average distance between fractures. One
important mechanism in Biot media at seismic frequencies is wave-induced fluid flow
generated by fast compressional waves at mesoscopic-scale heterogeneities, generat-
ing slow diffusion-type Biot waves. In this work, we present and analyze a collection
of time-harmonic finite element experiments that take into account the effects of the
presence of aligned fractures and interlayer fluid flow occurring at the mesoscale,
allowing us to determine the complex and frequency dependent stiffnesses of the
effective TIV medium at the macroscale.

These numerical upscaling experiments are defined as boundary value problems
on representative samples of the fractured material, with boundary conditions asso-
ciated with compressibility and shear tests, which are solved using the finite element
(FE) method. The FE space chosen to discretize each component of the solid dis-
placement vector is that of globally continuous piecewise bilinear functions, while for
the fluid phase the vector part of the Raviart-Thomas-Nedelec space of zero order
is employed. We present results on the uniqueness of the solution of the continuous
and discrete problems, and derive optimal a priori energy error estimates. First, the
numerical results are validated with those of a theory valid for fluid flow perpendic-
ular to the fracture layering and independent of the loading direction, so that the
attenuation mechanism can be represented by a single relaxation function. Then,
the methodology is applied to cases for which no analytical solutions are available,
such as a fractured Biot medium saturated with brine and patches of CO2 and a
brine saturated sample of uniform background and fractures with fractal variations
in their petrophysical properties.

Keywords: Fractures, poroelasticity, finite elements, anisotropy, velocity dis-
persion, attenuation.

1 Introduction

Fractured hydrocarbon reservoirs have been the subject of interest in explo-
ration and production geophysics, since generally, natural fractures control
the permeability of the reservoir [1]. In geophysical prospecting and reservoir
development, knowledge of fracture orientation, densities and sizes is essential
since these factors control hydrocarbon production [2]. This is also important
in CO2 storage in geological formations to monitor the injected plumes as
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faults and fractures are generated, where CO2 can leak to the surface [3]. One
of the important mechanisms of seismic attenuation in fluid-saturated porous
media is wave-induced fluid flow, by which the fast compressional wave is
converted to slow (diffusive) Biot waves at mesoscopic-scale heterogeneities,
which are larger than the pore size but much smaller than the predominant
wavelengths of the fast compressional and shear waves [5,15].

White et al. [4] were the first to introduce the mesoscopic-loss mechanism
in the framework of Biot theory considering alternating thin poroelastic lay-
ers along the direction perpendicular to the layering plane [5]. Gelinsky and
Shapiro [6] obtained the relaxed and unrelaxed stiffnesses of the equivalent
poro-viscoelastic medium to a finely layered horizontally homogeneous ma-
terial. Krzikalla and Müller [7] combined the two previous models to obtain
the five complex and frequency-dependent stiffnesses of the equivalent TIV
medium. Their approach assumes a 1D character of the fluid pressure equili-
bration process which generates diffusive modes from the fast compressional
wave, i.e., the fluid-flow direction is perpendicular to the fracture layering.
As a consequence, compressional waves travelling horizontally or vertically or
shear waves will generate fluid pressure in such a way as to maintain its distri-
bution. Thus, the model considers only one relaxation function, corresponding
to the symmetry-axis compressional wave stiffness. These assumptions fail for
heterogeneous layers, where the propagation of waves may depend on direc-
tion.

A planar fracture embedded in a fluid-saturated poroelastic background is a
particular case of the thin layer problem, when one of the layers is very thin,
highly permeable and compliant. A dense set of horizontal fractures in a fluid-
saturated poroelastic medium behaves as a TIV medium when the average
fracture distance is much smaller than the predominant wavelength of the
traveling waves. This leads to frequency and angular variations of velocity and
attenuation of seismic waves. An analysis of wave anelasticity and anisotropy
in fractured poroelastic rocks is presented in [8].

FE harmonic compressibility and shear tests is first presented in [9] to ob-
tain a viscoelastic medium long-wavelenght equivalent to a highly heteroge-
neous isotropic sample. Then, in [10] and [11] the procedure is extended to
determine long-wave equivalent media to finely layered viscoelastic materials.
Among other works employing numerical simulations to analyze dispersion,
attenuation and anisotropy in Biot media we mention the works by Saenger
et al. [12] and Wenzlau et al. [13].

This work presents and analyzes a collection of time-harmonic finite element
experiments defined on fluid-saturated isotropic poroelastic samples having a
dense set of horizontal fractures modeled as very thin layers. The experiments
take into account both the effects fractures and interlayer fluid flow occur-
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ring at the mesoscale. Each experiment is defined at the continuous level as a
boundary value problem defined in the space-frequency domain, with bound-
ary conditions representing compressibility and shear tests that are solved
using the FE method. To discretize each component of the solid displacement
vector we employ the space of of globally continuous piecewise bilinear func-
tions over a quasi-regular partition of the computational domain. For the fluid
phase, the vector part of the Raviart-Thomas-Nedelec space of zero order is
used [14]. First, we demonstrate the uniqueness of the solution of the contin-
uous and discrete boundary value problems associated with each experiment
and derive a priori error estimates in the energy norm for the FE solutions.
These estimates are optimal for the assumed regularity of the solution.

First, we present the validation of the FE procedure by comparison with the
analytical solutions provided in [7] for a brine saturated homogeneous sample
having a dense set of horizontal fractures. Then, the methodology is applied in
two cases for which no analytical solutions are available, namely patchy brine-
CO2 saturated samples and brine-saturated samples with fractures having
fractal variations in the petrophysical properties. We analyze the effect of
these fluid and frame heterogeneities on the attenuation and dispersion of
the quasi-compressional wave (qP wave), vertically polarized quasi-shear wave
(qSV wave) and horizontally polarized shear wave (SH wave).

2 The Biot model and the equivalent TIV medium

Let us consider isotropic fluid-saturated poroelastic layers and let us(x) =
(us,1, us,2, us,3) and uf (x) = (uf,1, uf,2, uf,3) indicate the time Fourier transform
of the displacement vector of the solid and fluid relative to the solid frame,
respectively. Here, if Uf denotes the fluid displacement vector, uf = φ(Uf −
us), where φ is the porosity.

Set u = (us,uf ) and let σ(u) and pf (u) denote the time Fourier transform of
the total stress and the fluid pressure, respectively, and let e(us) be the strain
tensor of the solid phase. On each plane layer n in a sequence of N layers, the
frequency-domain stress-strain relations are [15]

σkl(u) = 2µ ekl(us) + δkl (λG
∇ · us + αM∇ · uf ) , (1)

pf (u) = −αM∇ · us − M∇ · uf . (2)

The coefficient µ is the shear modulus of the bulk material, considered to be
equal to the shear modulus of the dry matrix. The other coefficients in (1)-(2)
can be obtained from the relations [15]
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λG = KG − 2

3
µ, KG = Km + α2M, (3)

α = 1 − Km

Ks

, M =

(
α − φ

Ks

+
φ

Kf

)−1

,

where Ks, Km and Kf denote the bulk moduli of the solid grains, dry matrix
and saturant fluid, respectively.

Let us define the differential operator L(u) and the matrix B ∈ R4 as follows:

L(u) = (∇ · σ(u),∇pf (u)) , B =




0I2 0I2

0I2
η

κ
I2


 , (4)

where I2 is the 2×2 identity matrix, η is the fluid viscosity and κ is the frame
permeability. Denoting by ω = 2πf the angular frequency, Biot’s equations in
the diffusive range, stated in the space-frequency domain are (in the absence
of external sources)

iωBu − L(u) = 0, (5)

where i =
√
−1. Let us consider x1 and x3 as the horizontal and vertical coor-

dinates, respectively. As shown by Gelinsky and Shapiro (1997), the medium
behaves as a TI medium with a vertical symmetry axis (the x3-axis) at long
wavelengths. They obtaine the relaxed and unrelaxed limits, i.e., the low-
and high-frequency limit real-valued stiffnesses, respectively. Assuming a 1D
character of the fluid pressure equilibration process, Krzikalla and Müller [7]
present a model to obtain the five complex and frequency-dependent stiff-
nesses pIJ , I, J = 1, . . . , 6, of the equivalent TIV medium that is included in
Appendix A.

Denote by τij(ũs) and ǫij(ũs) the stress and strain tensor components of the
equivalent TIV medium, where ũs denotes the solid displacement vector at
the macroscale. The corresponding stress-strain relations, stated in the space-
frequency domain, are [16,15]

τ11(ũs) = p11 ǫ11(ũs) + p12 ǫ22(ũs) + p13 ǫ33(ũs), (6)

τ22(ũs) = p12 ǫ11(ũs) + p11 ǫ22(ũs) + p13 ǫ33(ũs), (7)

τ33(ũs) = p13 ǫ11(ũs) + p13 ǫ22(ũs) + p33 ǫ33(ũs), (8)

τ23(ũs) = 2 p55 ǫ23(ũs), (9)

τ13(ũs) = 2 p55 ǫ13(ũs), (10)

τ12(ũs) = 2 p66 ǫ12(ũs). (11)
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In (6)-(11) we have assumed a closed system. This can be done for the undrained
composite medium, for which the variation of fluid content ζ = −∇ · uf is
equal to zero. This approach provides the complex velocities of the fast qP,
qSV and SH modes. The pIJ are the complex and frequency-dependent Voigt
stiffnesses to be determined with the harmonic experiments. In the next sec-
tions we present and analyze a FE procedure to determine the coefficients in
equations (6)-(11) and the corresponding phase velocities and quality factors.
These properties, which depend on frequency and propagation direction, are
given in Appendix B. We show that to determine the pIJ ’s it is sufficient to
perform a collection of FE harmonic tests on representative 2D samples of the
viscoelastic material.

3 Determination of the stiffnesses

Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0}, ΓR = {(x1, x3) ∈ Γ : x1 = L},
ΓB = {(x1, x3) ∈ Γ : x3 = 0}, ΓT = {(x1, x3) ∈ Γ : x3 = L}.

Denote by ν the unit outer normal on Γ and let χ be a unit tangent on Γ so
that {ν,χ} is an orthonormal system on Γ.

i) To determine the complex coefficient p33 let us consider the solution of (5)
in Ω together with the following boundary conditions

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT , (12)

σ(u)ν · χ = 0, (x1, x3) ∈ Γ, (13)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR ∪ ΓB, (14)

uf · ν = 0, (x1, x3) ∈ Γ. (15)

Denoting by V the original volume of the sample, its (complex) oscillatory
volume change, ∆V (ω), allows us to define p33 by using the relation

∆V (ω)

V
= − ∆P

p33(ω)
, (16)

valid for a viscoelastic homogeneous medium in the quasistatic case.

After solving (5) with the boundary conditions (12)-(15), the vertical displace-
ments us,3(x1, L, ω) on ΓT allow us to obtain an average vertical displacement
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uT
s,3(ω) suffered by the boundary ΓT . Then, for each frequency ω, the vol-

ume change produced by the compressibility test can be approximated by
∆V (ω) ≈ LuT

s,3(ω), which enable us to compute p33(ω) by using the relation
(16).

ii) To determine p11, we solve (5) in Ω together with the boundary conditions

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR, (17)

σ(u)ν · χ = 0, (x1, x3) ∈ Γ, (18)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB ∪ ΓT , (19)

uf · ν = 0, (x1, x3) ∈ Γ. (20)

In this experiment ǫ33(us) = ǫ22(us) = ∇ · uf = 0 and from (6) we see that
this experiment determines p11 as indicated for p33 measuring the oscillatory
volume change.

iii) To determine p55 let us consider the solution of (5) in Ω with the following
boundary conditions

−σ(u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (21)

us = 0, (x1, x3) ∈ ΓB, (22)

uf · ν = 0, (x1, x3) ∈ Γ, (23)

where

g =





(0, ∆p), (x1, x3) ∈ ΓL,

(0,−∆p), (x1, x3) ∈ ΓR,

(−∆p, 0), (x1, x3) ∈ ΓT .

The change in shape of the rock sample allows to obtain p55(ω) by using the
relation

tg(βω)) =
∆p

p55(ω)
, (24)

where β(ω) is the departure angle between the original positions of the lateral
boundaries and those after applying the shear stresses (see, for example, [17]).
Equation (24) holds for this experiment in a viscoelastic homogeneous media
in the quasistatic approximation.

The horizontal displacements us,1(x1, L, ω) at the top boundary ΓT allow us to
obtain, for each frequency, an average horizontal displacement uT

s,1(ω) suffered
by the boundary ΓT . This average value allows us to approximate the change
in shape suffered by the sample, given by tg(β(ω)) ≈ uT

s,1(ω)/L, which from
(24) let us estimate p55(ω).

7



v) To determine p13 we solve (5) in Ω with the boundary conditions

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT , (25)

σ(u)ν · χ = 0, (x1, x3) ∈ Γ, (26)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB, (27)

uf · ν = 0, (x1, x3) ∈ Γ. (28)

Thus, in this experiment ǫ22(us) = ∇ · uf = 0, and from (6) and (8) we get

τ11 = c11ǫ11 + c13ǫ33 (29)

τ33 = c13ǫ11 + c33ǫ33,

where ǫ11 and ǫ33 are the (macroscale) strain components at the right lateral
side and top side of the sample, respectively. Then from (29) and the fact that
τ11 = τ33 = −∆P (c.f.(25)) we obtain p13(ω) as

p13(ω) =
c11ǫ11 − c33ǫ33

ǫ11 − ǫ33

. (30)

iv) To determine p66, since this stiffness is associated with shear waves traveling
in the (x1, x2)-plane, we consider an homogeneous horizontal slab in the x2-
direction and an homogeneous sample Ω2 = (0, L)2 in the (x1, x2)-plane, with
boundary Γ2 = ΓL

2 ∪ ΓB
2 ∪ ΓR

2 ∪ ΓT
2 , where

ΓL
2 = {(x1, x2) ∈ Γ : x1 = 0}, ΓR

2 = {(x1, x2) ∈ Γ : x1 = L},
ΓB

2 = {(x1, x2) ∈ Γ : x2 = 0}, ΓT = {(x1, x2) ∈ Γ : x2 = L}.

Then let us consider the solution of (5) in Ω2 with the following boundary
conditions

−σ(u)ν = g2, (x1, x2) ∈ ΓT
2 ∪ ΓL

2 ∪ ΓR
2 , (31)

us = 0, (x1, x2) ∈ ΓB
2 , (32)

uf · ν = 0, (x1, x2) ∈ Γ, (33)

where

g2 =





(0, ∆p), (x1, x2) ∈ ΓL
2 ,

(0,−∆p), (x1, x2) ∈ ΓR
2 ,

(−∆p, 0), (x1, x2) ∈ ΓT
2 .

8



Then, we proceed as indicated for p55(ω).

The stiffnesses coefficients pIJ allow us to to calculate the wave velocities and
quality factors of the effective TIV medium as explained in Appendix B.

4 A variational formulation

In order to state a variational formulation we need to introduce some nota-
tion. For X ⊂ R

d with boundary ∂X, let (·, ·)X and 〈·, ·〉∂X denote the complex
L2(X) and L2(∂X) inner products for scalar, vector, or matrix valued func-
tions. Also, for s ∈ R, ‖ · ‖s,X and | · |s,X will denote the usual norm and
seminorm for the Sobolev space Hs(X), [18]. In addition, if X = Ω or X = Γ,
the subscript X may be omitted such that (·, ·) = (·, ·)Ω or 〈·, ·〉 = 〈·, ·〉Γ.

Let us introduce the following closed subspaces of [H1(Ω)]2 and [H1(Ω2)]
2:

W11(Ω) = {v ∈ [H1(Ω)]2 : v · ν = 0 on ΓB ∪ ΓT ∪ ΓL},

W33(Ω) = {v ∈ [H1(Ω)]2 : v · ν = 0 on ΓL ∪ ΓR ∪ ΓB},

W13(Ω) = {v ∈ [H1(Ω)]2 : v · ν = 0 on ΓL ∪ ΓB},

W55(Ω) = {v ∈ [H1(Ω)]2 : v = 0 on ΓB},

W66(Ω2) = {v ∈ [H1(Ω2)]
2 : v = 0 on ΓB

2 }.

Also, let

H0(div; Ω) = {v ∈ H(div; Ω) : v · ν = 0 on Γ},

H0(div; Ω2) = {v ∈ H(div; Ω2) : v · ν = 0 on Γ2},

H1(div; Ω) = {v ∈ [H1(Ω)]2 : ∇ · v ∈ H1(Ω)},

and for (I, J) = (1, 1), (3, 3), (1, 3), (5, 5) let

ZIJ(Ω) = WIJ(Ω) × H0(div; Ω).

Also, let
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Z66(Ω2) = W66(Ω2) × H0(div; Ω2).

To obtain our variational formulation associated with p33, multiply equation
(5) by v = (vs,vf ) ∈ Z33(Ω), use integration by parts and apply the boundary

conditions (12)-(15) to see get the weak form: find u(33) = (u(33)
s ,u

(33)
f ) ∈

Z33(Ω) such that

Λ(u(33),v) ≡ iω
(

η

κ
u

(33)
f ,vf

)
(34)

+
∑

s,t

(
σst(u

(33)), est(vs)
)
−
(
pf (u

(33)),∇ · vf )
)

= −〈∆P,vs · ν〉ΓT , ∀ v = (vs,vf ) ∈ Z33(Ω).

Note that in (34), we can write

2∑

l=1

∑

s,t

(
σst(u

(33)), est(v
s)
)
−
(
pf (u

(33)),∇ · vf )
)

R(l)
(35)

=
(
E ẽ(u(33)), ẽ(v)

)
.

In (35), the matrix E = and the column vector ẽ((u(33))) are defined by

E =




λG + 2µ λG αM 0

λG λG + 2µ αM 0

αM αM M 0

0 0 0 4µ




, ẽ(u(33)) =




e11(u
(33)
s )

e33(u
(33)
s )

∇ · u(33)
f

e13(u
(33)
s )




. (36)

Note that E is positive definite since it is associated with the strain energy
density.

Thus we can state (34) in the equivalent form: find u(33) = (u(33)
s ,u

(33)
f ) ∈

Z33(Ω) such that

Λ(u(33),v) = iω
(

η

κ
u

(33)
f ,vf

)
+
(
E ẽ(u(33)), ẽ(v)

)
. (37)

Similarly, we obtain the variational formulations for the other pIJ ’s:

• p(11):

Find u(11) = (u(11)
s ,u

(11)
f ) ∈ Z11(Ω) such that
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Λ(u(11),v) = −〈∆P,vs · ν〉ΓR , ∀ v = (vs,vf ) ∈ Z11(Ω). (38)

• p(13):

Find u(13) = (u(13)
s ,u

(13)
f ) ∈ Z13(Ω) such that

Λ(u(13),v) = −〈∆P,vs · ν〉ΓR∪ΓT , ∀ v = (vs,vf ) ∈ Z13(Ω). (39)

• p(55):

Find u(55) = (u(55)
s ,u

(55)
f ) ∈ Z55(Ω) such that

Λ(u(55),v) = −〈g,vs〉ΓR∪ΓT , ∀ v = (vs,vf ) ∈ Z55(Ω). (40)

• p(66):

Find u(66) = (u(66)
s ,u

(66)
f ) ∈ Z66(Ω2) such that

Λ(u(66),v) = −〈g2,vs〉ΓR∪ΓT , ∀ v = (vs,vf ) ∈ Z66(Ω2). (41)

4.1 Uniqueness of the solution of the variational problems

The five boundary-value problems formulated above are associated with second-
order operators having boundary data in L2(Ω). Existence will be assumed
for the solution of these problems. Also, following [19] we will assume that

u(IJ)
s ∈ [H3/2]2. On the other hand, it will be assumed that u

(IJ)
f ∈ H1(div; Ω).

These assumptions will be used in the proof of the theorem stated below.

Theorem 1 Assume that u(IJ)
s ∈ [H3/2(Ω)]2,u

(IJ)
f ∈ H1(div; Ω) for (I, J) =

(1, 1), (3, 3), (1, 3), (5, 5) and that u(66)
s ∈ [H3/2(Ω2)]

2,u
(66)
f ∈ H1(div; Ω2) .

Also assume that the matrix E in (36) is positive definite. Then the solution

of problems (37), (38), (39), (40) and (41) is unique.

Proof: To analyze the uniqueness of the solution of (37), set ∆P = 0 and
choose v = u(33) in (37) to obtain the equation

iω
(

η

κ
u

(33)
f ,u

(33)
f

)
+
(
E ẽ(u(33)), ẽ(u(33))

)
= 0. (42)

Choose the imaginary part in (42) to conclude that

‖u(33)
f ‖0 = 0. (43)

Using (43) in (42) we obtain
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(
Ê ê(u(33)

s ), ê(u(33)
s )

)
= 0, (44)

where

Ê =




λG + 2µ λG 0

λG λG + 2µ 0

0 0 4µ




, ê(u(33)
s ) =




e11(u
(33)
s )

e33(u
(33)
s )

e13(u
(33)
s )




. (45)

Next, since the matrix E is positive, so it is the matrix Ê, which from (44)
allow us to conclude that

‖e11(u
(33)
s )‖0 = ‖e33(u

(33)
s )‖0 = ‖e13(u

(33)
s )‖0 = 0. (46)

Now use the Sobolev embedding [18]

H3/2(Ω) → C0(Ω) (47)

and (46) to see that for some constants A,B,C

u
(33)
s,1 (x1, x3) = Cx3 + B, u

(33)
s,3 (x1, x3) = −Cx1 + B, ∀(x1, x3) ∈ Ω. (48)

Next using the boundary condition (14) we see that A = B = C = 0, so that

u(33)
s = 0, ∈ Ω. (49)

Combining (43) and (48) we conclude that uniqueness holds for the solution
of (37). Uniqueness for the solution of (38) and (39) follows with the same
argument.

Let us analyze uniqueness for the solution of (40). Set ∆P = 0 and choose
v = u(55) in (40). Repeating the argument given to show uniqueness for v =
u(33) we obtain

‖u(55)
f ‖0 = 0, (50)

‖e11(u
(55)
s )‖0 = ‖e33(u

(55)
s )‖0 = ‖e13(u

(55)
s )‖0 = 0.

Next, note that since elements in Z55(Ω) vanish on ΓB,

‖|v‖| =



∑

k,l

∫

Ω
|εkl(v)|2dΩ




1/2

(51)
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defines a norm on Z55(Ω) equivalent to the H1-norm in Ω, [20]. Thus from
(50) we see that

‖u(55)
s ‖1 = 0. (52)

¿From (50) and (52) we see that uniqueness holds for the solution of (40).
Uniqueness for the solution of (41) follows with identical argument. This com-
pletes the proof.

5 The finite element method

Let T h(Ω) be a non-overlapping partition of Ω into rectangles Ωj of diameter
bounded by h such that Ω = ∪J

JΩj. Denote by Γjk = ∂Ωj ∩ ∂Ωk the common
side of two adjacent rectangles Ωj and Ωk. Also, let Γj = ∂Ωj ∩ Γ.

We employ the space of globally continuous piecewise bilinear polynomials,
denoted below below by Wh

33(Ω) to approximate each component of the solid
displacement us, while the vector part of the Raviart-Thomas-Nedelec space
Vh

33(Ω) of zero order is used to approximate the fluid displacement vector uf

[14]. More specifically, let

Wh
11(Ω) = {vs : vs|Ωj

∈ [P1,1(Ωj)]
2, vs · ν = 0 on ΓB ∪ ΓT ΓL} ∩ [C0(Ω)]2,

Wh
33(Ω) = {vs : vs|Ωj

∈ [P1,1(Ωj)]
2, vs · ν = 0 on ΓL ∪ ΓRΓB} ∩ [C0(Ω)]2,

Wh
13(Ω) = {vs : vs|Ωj

∈ [P1,1(Ωj)]
2, vs · ν = 0 on ΓL ∪ ΓB} ∩ [C0(Ω)]2,

Wh
55(Ω) = {vs : vs|Ωj

∈ [P1,1(Ωj)]
2, vs · ν = 0 on ΓB} ∩ [C0(Ω)]2

Wh
66(Ω2) = {vs : vs|Ω2,j

∈ [P1,1(Ω2,j)]
2, vs · ν = 0 on ΓB

2 } ∩ [C0(Ω)2]
2

be the FE spaces to approximate the solid displacement, and let

Vh(Ω) = {vf ∈ H(div; Ω) : vf |Ωj
∈ P1,0(Ωj) × P0,1(Ωj), vf · ν = 0 on Γ}

Vh(Ω2) = {vf ∈ H(div; Ω2) : vf |Ω2,j
∈ P1,0(Ω2,j) × P0,1(Ω2,j), vf · ν = 0 on Γ}

be the space to approximate the fluid displacement vector. Here Ps,t denotes
the polynomials of degree not greater than s in x1 and not greater than t in
x3.

Then, for (I, J) = (1, 1), (3, 3), (1, 3), (5, 5) let

13



Zh
IJ(Ω) = Wh

IJ(Ω) × Vh(Ω).

Also, let

Zh
66(Ω2) = Wh

IJ(Ω2) × Vh(Ω2).

Next, for (I, J) = (1, 1), (3, 3), (1, 3), (5, 5) let

Πh
IJ : [H3/2(Ω)]2 → Wh

IJ(Ω)

be the interpolant operators associated with the spaces Wh
IJ . More specifi-

cally, the degrees of freedom associated with Πh
IJv are the vertexes of the

rectangles Ωj and if b is a common node of the adjacent rectangles Ωj and

Ωk then
(
Πh

IJϕ
)

j
(b) =

(
Πh

IJϕ
)

k
(b), where

(
Πh

IJϕ
)

j
denotes the restriction of

the interpolant Πh
IJϕ of ϕ to Ωj.

Also, let

Qh : H1
0 (div; Ω) → Vh(Ω)

be the projection defined by

〈
(Qhψ −ψ) · ν, 1

〉

B
= 0, B = Γjk or B = Γj.

The approximating properties of Πh
IJ and Qh are [14,20,22]

‖ϕ− Πh
IJϕ‖0 + h‖ϕ− Πh

IJϕ‖1 ≤ Ch3/2‖ϕ‖3/2, (53)

‖ψ − Qhψ‖0 ≤ Ch‖ψ‖1, (54)

‖∇ · (ψ − Qhψ)‖0 ≤ Ch (‖ψ‖1 + ‖∇ ·ψ‖1) . (55)

The projection operators

Πh
66 : [H3/2(Ω2)]

2 → Wh
66(Ω2), Qh : H1

0 (div; Ω2) → Vh(Ω2)

are defined similarly and satisfy the approximating properties (53)-(55).

Now, we formulate the FE procedures to determine the stiffnesses pIJ ’s as
follows:

14



• p33(ω): find u(h,33) ∈ Zh
33(Ω) such that

Λ(u(h,33),v) = −〈∆P,v · ν〉ΓT , ∀ v ∈ Zh
33(Ω). (56)

• p11(ω): find u(h,11) ∈ Zh
11(Ω) such that

Λ(u(h,11),v) = −〈∆P,v · ν〉ΓR , ∀ v ∈ Zh
11(Ω). (57)

• p13(ω): find u(h,13) ∈ Zh
13(Ω) such that

Λ(u(h,13),v) = −〈∆P,v · ν〉ΓR∪ΓT , ∀ v ∈ Zh
13(Ω). (58)

• p55(ω): find u(h,55) ∈ Zh
55(Ω) such that

Λ(u(h,55),v) = −〈g,vs〉Γ\ΓB , ∀ v ∈ Zh
55(Ω). (59)

• p66(ω): find u(h,66) ∈ Zh
66(Ω2) such that

Λ(u(h,66),v) = −〈g2,vs〉Γ2\ΓB
2

, ∀ v ∈ Zh
66(Ω2). (60)

Uniqueness for the FE procedures (56)-(60) can be shown with the same argu-
ment used for the continuous case. Existence follows from finite dimensionality.

6 A priori error estimates

In this section we derive the error estimates associated with the FE procedures
(56)-(60).

Theorem 2 Assume that u(IJ)
s ∈ [H3/2(Ω)]2,u

(IJ)
f ∈ H1(div; Ω) for (I, J) =

(1, 1), (3, 3), (1, 3). Also assume that the matrix E in (36) is positive definite.

Then the following a priori error estimate holds:

‖u(IJ)
s − u(h,IJ)

s ‖1 + ‖u(IJ)
f − u

(h,IJ)
f ‖0 + ‖∇ · (u(IJ)

f − u
(h,IJ)
f )‖0 (61)

≤ C(ω)
[
h1/2‖u(IJ)

s ‖3/2 + h
(
‖u(IJ)

f ‖1 + ∇ · u(IJ)
f ‖1

)]
.

Proof: First we analyze the error for the procedure (56) associated with de-
termination of p33.

Recall Korn’s second inequality [21]:

∑

l,m=1,3

‖ǫlm(v)‖2 + ‖v‖2
0 ≥ C1‖v‖2

1, ∀ v ∈ [H1(Ω)]2. (62)
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Let L∗ denote the minimum eigenvalue of the matrix E. Then use (62) to see
that the following Garding-type inequality holds:

Re (Λ(v,v)) = Re ((E ẽ(v), ẽ(v))) (63)

≥ C2

(
‖vs‖2

1 + ‖∇ · vf‖2
0

)
− C3‖vs‖2

0,

where

C2 = min (L∗C1, 1) , C3 = L∗.

Also, note that

|Λ(u,v)| ≤ C4(ω) (‖us‖1‖vs‖1 + ‖∇ · uf‖0‖vs‖1 (64)

+‖us‖1‖∇ · vf‖0 + ‖∇ · uf‖0‖∇ · vf‖0 + ‖uf‖0‖vf‖0)

∀u = (us,uf ) ∈ Zh
33,v = (vs,vf ) ∈ Zh

33.

Set

e = u(33) − u(h,33) ≡ (es, ef ). (65)

Subtract (56) from (37) to obtain the error equation

Λ(e,v) = 0, ∀ v ∈ Zh
33. (66)

Set

Θh(u(33)) =
(
Πh

33u
(33)
s , Qhu

(33)
f

)
(67)

and take v = e + Θh(u(33)) − u(33) in (66) to obtain the equation

Λ(e, e) = Λ(e,u(33) − Θh(u(33)). (68)

Take imaginary part in (68) and use the approximating properties (53)-(55)
to see that
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ω
(

η

κ
ef , ef

)
= Im

(
Λ(e,u(33) − Θh(u(33))

)
(69)

≤ |Λ(e,u(33) − Θh(u(33))|
≤ C4(ω)

[
‖es‖1‖u(33)

s − Πh
33u

(33)
s ‖1 + ‖∇ · ef‖0‖u(33)

s − Πh
33us‖1

+‖es‖1‖∇ · (u(33)
f − Qhu

(33)
f ))‖0 + ‖∇ · ef‖0‖∇ · (u(33)

f − Qhu
(33)
f )‖0

+‖ef‖0‖u(33)
f − Qhu

(33)
f )‖0

]

≤ C5(ω)
[
h1/2‖u(33)

s ‖3/2 (‖es‖1 + ‖∇ · ef‖0)

+h‖∇ · u(33)
f ‖1 (‖es‖1 + ‖∇ · ef‖0) + h‖ef‖0‖u(33)

f ‖1

]

≤ δ1

(
‖es‖2

1 + ‖∇ · ef‖2
0

)
+ δ2‖ef‖2

0

+C6(ω)
(
h‖u(33)

s ‖2
3/2 + h2

(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))
.

Then, choose δ2 small enough in (69) to obtain the estimate

‖ef‖2
0 ≤ δ3

(
‖es‖2

1 + ‖∇ · ef‖2
0

)
(70)

+C7(ω)
(
h‖u(33)

s ‖2
3/2 + h2

(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))
.

Next, take real part in (68) and use (63) and the argument given above to
derive the inequality (69) to obtain

C2

(
‖es‖1 + ‖∇ · ef‖2

0

)
(71)

≤ Re
(
Λ((e,u − Θh)

)
+ C3‖es‖2

0

≤ |Λ((e,u − Θh)| + C3‖es‖2
0

≤ C8(ω)
[
h1/2‖u(33)

s ‖3/2 (‖es‖1 + ‖∇ · ef‖0)

+h‖∇ · u(33)
f ‖1 (‖es‖1 + ‖∇ · ef‖0) + h‖ef‖0‖u(33)

f ‖1

]
+ C3‖es‖2

0

≤ ǫ
(
‖es‖2

1 + ‖∇ · ef‖2
0

)

+C9(ǫ, ω)
(
h‖u(33)

s ‖3/2 + h2
(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))
+ C6(ǫ, ω)

(
‖es‖2

0 + ‖ef‖2
0

)
.

Then, choose ǫ small enough in (71) to conclude that

‖es‖2
1 + ‖∇ · ef‖2

0 ≤ C10(ǫ, ω)
(
h‖u(33)

s ‖3/2 + h2
(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))

+C11(ǫ, ω)
(
‖es‖2

0 + ‖ef‖2
0

)
. (72)

Next, we will employ a duality argument to estimate the ‖e‖0-term in the
right hand side of (72).
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Let us solve the adjoint problem

−iωBψ − L∗(ψ) = e, (73)

σ(ψ)ν · ν = 0, (x1, x3) ∈ ΓT ,

σ(ψ)ν · χ = 0, (x1, x3) ∈ Γ,

us ·ψ = 0, (x1, x3) ∈ ΓL ∪ ΓR ∪ ΓB,

uf ·ψ = 0, (x1, x3) ∈ Γ.

The following regularity will be assumed for the solution of (73) [19]:

‖ψs‖3/2 + ‖ψf‖1 + ‖∇ ·ψ‖1 ≤ C(ω)‖e‖0. (74)

Thus, using integration by parts, for any v ∈ Zh
33

‖e‖2
0 = (e,−iωBψ − L∗(ψ)) = Λ(e,ψ) = Λ(e,ψ − v). (75)

Choose v =
(
Πh

33ψs, Q
hψf )

)
in (75), use the approximating properties (53)-

(55) and apply (74) to see that

‖e‖2
0 ≤ C12(ω)

[
h1/2‖ψs‖3/2 (‖es‖1 + ‖∇ · ef‖0) (76)

+h‖∇ ·ψf‖1 (‖es‖1 + ‖∇ · ef‖0) + h‖ef‖0‖ψf‖1

]

≤ C12(ω)
(
h1/2 (‖es‖1 + ‖∇ · ef‖0) + h‖ef‖0‖e‖0

)
. (77)

Hence,

‖e‖0 ≤ C12(ω)
(
h1/2 (‖es‖1 + ‖∇ · ef‖0) + h‖ef‖0

)
. (78)

Next, use (70) in (78) to obtain

‖e‖2
0 ≤ C13(ω)

(
h
(
‖es‖2

1 + ‖∇ · ef‖2
0

)
+ h2δ3

(
‖es‖2

1 + ‖∇ · ef‖2
0

))
(79)

+C14(ǫ, ω)
(
h‖u(33)

s ‖2
3/2 + h2

(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))
.

Employing the estimate (79) in (72) we conclude that

‖es‖2
1 + ‖∇ · ef‖2

0 (80)

≤ C15(ω)
(
h‖u(33)

s ‖2
3/2 + h2

(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))

+C11(ω)
(
h
(
‖es‖2

1 + ‖∇ · ef‖2
0

)
+ h2δ3

(
‖es‖2

1 + ‖∇ · ef‖2
0

))
.
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Then, choose δ3 sufficiently small in (80) to get

‖es‖2
1 + ‖∇ · ef‖2

0 (81)

≤ C16(ω)
(
h‖u(33)

s ‖2
3/2 + h2

(
‖u(33)

f ‖2
1 + ‖∇ · u(33)

f ‖2
1

))

+C11(ω)
(
h
(
‖es‖2

1 + ‖∇ · ef‖2
0

))
.

Thus, for h sufficiently small, from (81) we get the inequality

‖es‖1 + ‖∇ · ef‖0 (82)

≤ C17(ω)
(
h1/2‖u(33)

s ‖3/2 + h
(
‖u(33)

f ‖1 + ‖∇ · u(33)
f ‖1

))
.

Finally, using (82) in (70) we conclude the validity of the error estimate (61)
for the solution of (56). The error analysis for the solution of (57) and (58)
follows with the same argument. This completes the proof.

The error analysis for the FE procedure (59) and (60) requires another ar-
gument because the solution vanishes on a set of positive measure of Γ. The
following theorem states the estimates.

Theorem 3 Assume that u(55)
s ∈ [H3/2(Ω)]2,u

(55)
f ∈ H1(div; Ω) and that

u(66)
s ∈ [H3/2(Ω2)]

2,u
(66)
f ∈ H1(div; Ω2). Also, assume that the matrix E in

(36) is positive definite. Then for (I, J) = (5, 5), (6, 6) the following a priori

error estimate holds.

‖u(IJ)
s − u(h,IJ)

s ‖1 + ‖u(IJ)
f − u

(h,IJ)
f ‖0 + ‖∇ · (u(IJ)

f − u
(h,IJ)
f )‖0 (83)

≤ C(ω)
[
h1/2‖u(IJ)

s ‖3/2 + h
(
‖u(IJ)

f ‖1 + ∇ · u(IJ)
f ‖1

)]
.

Proof: Set

e = u(55) − u(h,55) = (es, ef ). (84)

Subtract (59) from (40) to obtain the error equation

Λ(e,v) = 0, ∀v ∈ Zh
55. (85)

Set

Θh(u(55)) =
(
Πh

55u
(55)
s , Qhu

(55)
f

)
(86)

and take v = e + Θh(u(55)) − u(55) in (85) to obtain
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Λ(e, e) = Λ(e,u(55) − Θh(u(55)). (87)

Next, recall that

‖|v‖| =




∑

l,m=1,3

‖ǫlm(v)‖2




1/2

(88)

defines a norm on {Wh
55 equivalent to the H1-norm [20], i.e., there exist positive

constants C11, C12 such that

C18‖v‖1 ≤ ‖|v‖| ≤ C19‖v‖1, ∀ v ∈ Wh
55. (89)

Hence,

Re (Λ(e, e)) = Re ((E ẽ(e), ẽ(e))) (90)

≥ L∗

(
‖|es‖|2 + ‖∇ · ef‖2

0

)
≥ L∗

(
C18‖es‖2

1 + ‖∇ · ef‖2
0

)
.

Then, take real part in (87) and use the approximating properties (53)-(55)
to obtain

L∗

(
C18‖es‖2

1 + ‖∇ · ef‖2
0

)
(91)

≤ Re
(
Λ(e,u(55) − Θh(u(55))

)
≤ |Λ(e,u(55) − Θh(u(55))|

≤ C20(ω)
[
h1/2‖u(55)

s ‖3/2 (‖es‖1 + ‖∇ · ef‖0)

+h‖∇ · u(55)
f ‖1 (‖es‖1 + ‖∇ · ef‖0) + h‖ef‖0‖u(55)

f ‖1

]
.

≤ ǫ
(
‖es‖2

1 + ‖ef‖2
0 + ‖∇ · ef‖2

0

)

+C21(ω)
(
h‖u(55)

s ‖2
3/2 + h2

(
‖u(55)

f ‖2
1 + ‖∇ · u(55)

f ‖2
1

))
.

Next, taking imaginary part in (87) and repeating the argument leading to
(70) we see that the ‖ef‖0-term in the right-hand side of (91) satisfies the
estimate

‖ef‖2
0 ≤ δ3

(
‖es‖2

1 + ‖∇ · ef‖2
0

)
(92)

+C7(ω)
(
h‖u(55)

s ‖2
3/2 + h2

(
‖u(55)

f ‖2
1 + ‖∇ · u(55)

f ‖2
1

))
.

Next using (92) in (91), we obtain
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L∗

(
C18‖es‖2

1 + ‖∇ · ef‖2
0

)
(93)

≤ ǫ
(
‖es‖2

1 + ‖∇ · ef‖2
0

)

+C21(ω)
(
h‖u(55)

s ‖2
3/2 + h2

(
‖u(55)

f ‖2
1 + ‖∇ · u(55)

f ‖2
1

))

+ǫ
(
δ3

(
‖es‖2

1 + ‖∇ · ef‖2
0

)

+C7(ω)
(
h‖u(55)

s ‖2
3/2 + h2

(
‖u(55)

f ‖2
1 + ‖∇ · u(55)

f ‖2
1

)))

Thus, take ǫ and δ3 small enough in (93) to derive the inequality

‖es‖2
1 + ‖∇ · ef‖2

0 ≤ C22(ω)
[
h‖u(55)

s ‖2
3/2 (94)

+h2
(
‖u(55)

f ‖2
1 + ‖∇ · u(55)

f ‖2
1

)]
.

Finally using (94) in (92) we conclude the validity of the error estimate (83)
for (I, J) = (5, 5). The proof for (I, J) = (6, 6) is identical. This completes the
proof.

7 Numerical experiments

The FE procedures described above are implemented to determine the five
complex stiffnesses pIJ(ω) as a function of frequency and the corresponding
phase velocities and dissipation coefficients as indicated in Appendix B. In
all the experiments the numerical samples were discretized using a 160 × 160
uniform mesh representing 10 periods of 15 cm background sandstone and
1 cm fracture thickness. Both background and fractures have grain density
ρs = 2650 kg/m3, bulk modulus Ks = 37 GPa and shear modulus µs = 44
GPa.

The dry bulk and shear moduli of the samples are determined by using the
Krief model [23],

Km

Ks

=
µ

µs

= (1 − φ)3/(1−φ). (95)

Porosity is φ = 0.25 in the background and φ = 0.5 in the fractures. Using
(95) we obtain Km = 1.17 GPa and µ = 1.4 GPa for the background and
Km = 0.58 GPa and µ = 0.68 GPa for the fractures. Permeability is obtained
as [24]

κ =
r2
g φ3

45(1 − φ)2
(96)
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where rg = 20 µm is the average radius of the grains, giving κ = 0.247 D in
the background and κ = 4.44 D in the fractures.

The first numerical experiments show the validation of the FE procedure by
comparison with the analytical solution given in [7] which is included in Ap-
pendix A. In this example, we consider a brine saturated sample, with brine
having a density of 1040 kg/m3, a viscosity of 0.0018 Pa s and a bulk modulus
of 2.25 GPa.

Figures 1 and 2 show the compressional wave phase velocity and dissipation
factor, respectively, as a function of frequency, in the direction parallel (squares
and solid lines) and normal (circles and solid lines) to the fractures. The solid
lines indicate the theoretical values, while symbols indicate the FE solution.
It can be observed a perfect fit of the FE solution to the analytical values in
the whole frequency range displayed.

<< Figure 1 >>

<< Figure 2 >>

The phase velocities of the qP, qSV and SH waves and dissipation factors of
the qP and qSV waves as a function of the propagation angle are represented
in Figures 3 and 4, respectively, where the frequency is 300 Hz. Symbols and
solid lines indicate the FE and theoretical values, respectively. Again an ex-
cellent match between the numerical and analytical curves is obtained for all
angles. Here and in the following figures, the propagation angle is understood
to be given with respect to the symmetry axis, so that 0 degrees and 90 de-
grees correspond to waves arriving normal and parallel to the fracture layering,
respectively. Figures 3 and 4 show that anisotropy induced by fractures is no-
ticeable for the phase velocities of all waves. On the other hand, the qP curves
show strong attenuation for waves arriving normal to the fracture layering.
The qSV wave has no loss along the directions parallel and perpendicular to
the layering plane, showing maximum attenuation at about 45 degrees.
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<< Figure 3 >>

<< Figure 4 >>

Next, we present two experiments for which no analytical solutions are avail-
able. The first experiment considers the case of a patchy brine-CO2 saturated
fractured sample, with CO2 having density 500 kg/m3, viscosity 2.10−5 Pa s
and bulk modulus 22.5 MPa. To generate a patchy CO2-brine saturation we
use the von Karman self-similar correlation function for which the spectral
density is given by [25]

Sd(rx, rz) = N0(1 + R2a2)−(H+E/2). (97)

Here, R =
√

r2
x + r2

z is the radial wavenumber, a the correlation length, H is

a self-similarity coefficient (0 < H < 1), N0 is a normalization constant and
E is the euclidean dimension. The von Karman correlation (97) describes a
self-affine, fractal processes of fractal dimension D = E + 1 − H at a scale
smaller than a. We choose E = 2, D = 2.2 and a to be 2.5 % of the domain
size. Once a continuous fractal distribution of brine is obtained over the 160
× 160 mesh, by properly chosen threshold values S∗

b , for each cell with brine
saturation below and above S∗

b we assign to that cell either full CO2 or full
brine saturation, respectively. In this way we generated two different patchy
CO2-brine distributions of overall 10 % and 30 % CO2 saturation. Figure 5
displays the obtained patchy CO2-brine saturation at 10 % CO2 saturation.

<< Figure 5 >>

Figures 6 and 7 show the phase velocities of the qP and qSV waves at 300 Hz
for full brine saturation, 10 % and 30 % patchy CO2-brine saturation as func-
tion of the propagation angle, while Figures 8 and 9 show the corresponding
dissipation factors.

It can be seen that for qP waves, patchy saturation enhances the strong veloc-
ity anisotropy caused by fractures observed in the brine saturated case, with
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values depending on the overall CO2 saturation. Maximum differences with
respect to the full brine saturation case are at 10 % patchy saturation and
angles normal to the fracture layering.

On the other hand, the qSV phase velocity anisotropy is less affected by patchy
saturation. For both the qP and qSV waves we observe lower velocities when
patches are present, with decreasing values for increasing CO2 overall satura-
tion. SH waves phase velocities are not affected by the presence of CO2 patches,
so the corresponding curve is identical to that for the full brine saturation in
Figure 3 and it is omitted.

<< Figure 6 >>

<< Figure 7 >>

Concerning the dissipation factors, the patchy saturation enhances attenuation
anisotropy of the qP waves for all the angles and it is strong at 10 % patchy
saturation for waves arriving normal to the fracture layering plane and up
to 30 degrees. Above 60 degrees, for the two cases of patchy saturation qP
waves show an almost constant dissipation factor independently of the value
of CO2 saturation. This is opposite to the case of full brine saturation, for
which dissipation vanishes for angles above 60 degrees.

For qSV waves, attenuation anisotropy is null for waves arriving normal or
parallel to the fracture layering plane and strong for angles between 30 and 60
degrees. Also, when compared with full brine saturation, dissipation factors
are almost unaffected for 10 % patchy saturation but noticeably reduced for
the 30 % CO2 case.

<< Figure 8 >>

<< Figure 9 >>
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Figures 10 and 11 show the fluid pressure distribution for compressions normal
to the fracture layering (p33 experiment) at frequency 300 Hz and for 10 % and
30 % patchy CO2 saturation, respectively. The figure for 10 % CO2 saturation
has larger regions of high pressure gradients than the 30 % one , which explains
the lower values of the dissipation factors for qP and qSV waves for 30 % CO2

saturation (squares) as compared with the corresponding curves for 10 % CO2

saturation (circles) in Figures 8 and 9.

<< Figure 10 >>

<< Figure 11 >>

The second experiment considers the case of the brine saturated sample with
uniform background as in the first set of experiments but with fractures having
binary fractal variations in their petrophysical properties, which is another
case not described by the theory in [7]. To generate such sample, first we
generated a continuous fractal distribution of porosity over the mesh by using
the spectral density in (97) with average φ equal to 0.5, fractal dimension D
= 2.3 and correlation length a = 0.3 in a scale of 10. In this way, we obtain
minimum and maximum values of porosity of 0.32 and 0.646, respectively.
Permeability is then computed using (96), giving values between 0.7 Darcy
and 19 Darcy, with an average of 4.9 Darcy. The binary fractals associated
with porosity and permeability are then computed as follows. For each cell
in the computational mesh, if the value of porosity is smaller (respectively,
bigger) than the average φ, we assign to that cell the minimum (respectively,
maximum) porosity value. The procedure is repeated to obtain a binary fractal
permeability distribution. Binary fractal distributions of bulk modulus Km

and shear modulus µ are determined by using (95) and the computed binary
fractal porosity field.

Taking 1D restrictions of these four binary fractal distributions for porosity φ,
permeability κ, and bulk and shear moduli Km and µ, we obtain the binary
fractal petrophysical properties defining the brine saturated fractures.

<< Figure 12 >>
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<< Figure 13 >>

<< Figure 14 >>

Figures 12, 13 and 14 display the phase velocities of the qP qSV and SH waves
at 300 Hz as a function of the propagation angle for a brine saturated sample
with uniform and binary fractal variations in the petrophysical properties of
the fractures. Figures 15, 16 and 17 show the corresponding dissipation factors.
It can be noticed a strong increase in velocity anisotropy for the three waves
with respect to the case of uniform fractures. In particular, the qSV wave
suffers a velocity reduction for almost all angles except near 40 degrees and
the phase velocity of the SH wave decreases by about 75 %. Also, qP waves
have a velocity increase for waves arriving at angles close to the normal to the
fracture layering, and velocity decreases for all other angles. Regarding the
dissipation factors, the qP waves show an increase in attenuation for angles
up to 50 degrees, while the qSV waves also show increasing attenuation for
angles above 45 degrees. The most significant changes are observed in the SH
dissipation factors, which change from vanishing dissipation to a continuous
increase in dissipation for increasing angles.

<< Figure 15 >>

<< Figure 16 >>

<< Figure 17 >>
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8 Conclusions

We have presented a set of finite element harmonic experiments to deter-
mine the five complex and frequency-dependent stiffnesses of the TIV medium
equivalent to a fractured fluid-saturated porous material, where the fractures
are modeled as very thin, highly permeable and compliant porous layers. The
procedure allow us to compute the wave velocities and quality factors at the
macroscale as a function of frequency and propagation angle. The proposed
methodology is based on the solution of the diffusive Biot equations in the
space-frequency domain to simulate harmonic compressibility and shear tests.
The methodology is validated against a theory valid at long wavelengths for
homogeneous layers and fluid flow normal to the fracture layering.

Then, the experiments are applied for the cases of patchy brine-CO2 saturation
and a brine saturated sample of uniform background and fractures with frac-
tal variations in their petrophysical properties. For the case of a patchy brine-
CO2 saturated sample, the experiments show that both for qP and qSV waves
the presence of patches enhances the strong seismic velocity and attenuation
anisotropy induced by the fractures. Also, SH waves show moderate velocity
anisotropy, whose values are not affected by the presence of the patches of
CO2. In the last experiment, considering a brine saturated sample of uniform
background and fractures of having fractal variations in petrophysical proper-
ties, it is observed a noticeable increase in velocity and Q anisotropy for all the
waves, with higher dissipation factors as compared with the case of fractures of
uniform properties. In particular, the SH dissipation factor shows positive and
increasing values with increasing angles, as opposite to the uniform fractures
case, which exhibits vanishing attenuation at all angles.
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A Mesoscopic-flow attenuation theory for anisotropic poroelastic

media

White’s mesoscopic attenuation theory of interlayer flow [4], [5] describes the
equivalent viscoelastic medium of a stack of two thin alternating porous layers
of thickness d1 and d2, such that the period of the stratification is d = d1 +d2.
The theory gives the complex and frequency dependent stiffness p33. White
model has been generalized in [7] by Krzikalla and Müller to anisotropic me-
dia, i.e., they have obtained the five stiffnesses of the equivalent transversely
isotropic medium, denoted by pIJ . The stress-strain relations is given by equa-
tions (6)-(11) and

pIJ(ω) = cIJ +

(
cIJ − cr

IJ

c33 − cr
33

)
[p33(ω) − c33], (A.1)

where cr
IJ and cIJ are the relaxed and unrelaxed stiffnesses.

According to Gelinsky and Shapiro [6] [their eq. (14)], the quasistatic or re-
laxed effective constants of a stack of poroelastic layers are
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where

λm = Km − 2

3
µ and Em = Km +

4

3
µ (A.3)

and we have also reported the notation of that paper for clarity. In the case
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of no interlayer flow, i.e., the unrelaxed regime, the stiffnesses are

c66 = cr
66,

c11 − 2c66 = c12 = 2

〈
(EG − 2µ)µ

EG

〉
+
〈

EG − 2µ

EG

〉2 〈 1

EG

〉−1

,

c13 =
〈

EG − 2µ

EG

〉〈
1

EG

〉−1

,

c33 =
〈

1

EG

〉−1

,

c55 = cr
55

(A.4)

[Gelinsky and Shapiro (1997), eq. (15)], where

EG = Em + α2M, (A.5)

and M is given in (3).

Finally, the P-wave modulus p33 is [4], also see in [15]

p33 =

[
1

c33

+
2(r2 − r1)

2

iω(d1 + d2)(I1 + I2)

]−1

, (A.6)

where

r =
αM

EG

(A.7)

and

I =
η

κa
coth

(
ad

2

)
, a =

√
iωηEG

κMEm

, (A.8)

for each single layer.

The main assumption in [7] is that the fluid-flow direction is perpendicular to
the fracture layering and that the relaxation behavior is described by a single
relaxation function or stiffness, i.e., p33(ω). Thus the theory is valid for plane
layers and can not be used when 2D or 3D heterogeneities are present.

B Wave velocities and quality factors

We consider homogeneous viscoelastic waves [15]. The complex velocities are
the key quantity to obtain the wave velocities and quality factor of the equiv-
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alent anisotropic medium. They are given by

vqP = (2ρ̄)−1/2
√

p11l21 + p33l23 + p55 + A,

vqSV = (2ρ̄)−1/2
√

p11l21 + p33l23 + p55 − A,

vSH = ρ̄−1/2
√

p66l21 + p55l23,

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]
2 + 4[(p13 + p55)l1l3]2,

(B.1)

where ρ̄ is the average density, l1 = sin θ and l3 = cos θ are the directions
cosines, θ is the propagation angle between the wavenumber vector and the
symmetry axis, and the three velocities correspond to the qP, qS and SH
waves, respectively. The phase velocity is given by

vp =
[
Re

(
1

v

)]−1

, (B.2)

while the quality factor is given by

Q =
Re(v2)

Im(v2)
, (B.3)

where v represents either vqP, vqSV or vSH.

34



10 100 1000
Frequency (Hz)

2.8

3

3.2

3.4

3.6

3.8

4
Ph

as
e 

ve
lo

ci
ty

 (
km

/s
)

Numerical

Analytical

Fig. 1. P-wave velocity as a function of frequency in the direction parallel (squares
and solid lines) and normal (circles and solid lines) to the fracture plane. The solid
lines indicate the theoretical values.
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Fig. 2. P-wave dissipation factors as a function of frequency in the direction parallel
(squares and solid lines) and normal (circles and solid lines) to the fracture plane.
The solid lines indicate the theoretical values.
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Fig. 3. Phase velocities for qP (circles), qSV (squares) and SH (triangles up) waves
as function of the propagation angle. Frequency is 300 Hz. The solid lines indicate
the theoretical values.
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Fig. 4. Dissipation factors for qP (circles) and qSV (squares) waves as function of
the propagation angle. Frequency is 300 Hz. The solid lines indicate the theoretical
values.
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Fig. 6. qP phase velocities for brine, 10 % and 30 % patchy CO2-brine saturation
as function of the propagation angle. Frequency is 300 Hz.
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Fig. 7. qSV phase velocities for brine, 10 % and 30 % percent patchy CO2-brine
saturation as function of the propagation angle. Frequency is 300 Hz.

41



0 20 40 60 80
Propagtion angle (degrees)

0

50

100

150
10

00
/Q

Brine saturated
10 % patchy CO2 saturated

30 % patchy CO2 saturated

qP waves

Fig. 8. Dissipation factors for brine, 10 % and 30 % patchy CO2-brine saturation
as function of the propagation angle. Frequency is 300 Hz.
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Fig. 9. Dissipation factors of qSV waves for brine, 10 % and 30 % patchy CO2-brine
saturation as function of the propagation angle. Frequency is 300 Hz.
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Fig. 10. Fluid pressure for normal compression to the fracture plane at 10 % patchy
CO2-brine saturation. Frequency is 300 Hz.
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Fig. 11. Fluid pressure for normal compression to the fracture plane at 30 % patchy
CO2-brine saturation. Frequency is 300 Hz.
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Fig. 12. Phase velocities of qP waves for a brine saturated sample with uniform and
binary fractal fractures.
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Fig. 13. Phase velocities of qSV waves for a brine saturated sample with uniform
and binary fractal fractures.
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Fig. 14. Phase velocities of SH waves for a brine saturated sample with uniform and
binary fractal fractures.
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Fig. 15. Dissipation factors of qP waves for a brine saturated sample with uniform
and binary fractal fractures.
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Fig. 16. Dissipation factors of qSV waves for a brine saturated sample with uniform
and binary fractal fractures.

50



0 20 40 60 80
Propagation angle (degrees)

0

25

50

75

100

125
10

00
/Q

Uniform fractures

Fractal fractures

SH waves

Fig. 17. Dissipation factors of SH waves for a brine saturated sample with uniform
and binary fractal fractures.
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