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Abstract

Using bivariate generating functions, we prove convergence of the Grünwald–Letnikov difference scheme for the fractional
diffusion equation (in one space dimension) with and without central linear drift in the Fourier–Laplace domain as the space and
time steps tend to zero in a well-scaled way. This implies convergence in distribution (weak convergence) of the discrete solution
towards the probability of sojourn of a diffusing particle. The difference schemes allow also interpretation as discrete random
walks. For fractional diffusion with central linear drift we show that in the Fourier–Laplace domain the limiting ordinary differential
equation coincides with that for the solution of the corresponding diffusion equation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

During the last 20 years many numerical methods have been developed using discrete approximations to fractional
differential equations. There exists already a rich literature on the subject that we cannot survey here giving full justice
to each contribution. But let us mention the pioneering paper by Lubich [19], also [7] and the references therein.
As a newer reference let us quote [4]. Fractional diffusion processes have found growing interest among scientists
and have been applied to many different topics, e.g., in physics and chemistry, see [24] and for a grand survey about
these applications and the collection of articles [17]. For them there are (besides many papers on continuous time
random walks) already available many publications on approximations by difference schemes. Without going into
details let us quote only the papers [12,18,20,22,23,30]. In some of these papers the essential role is played by the
Grünwald–Letnikov approximation of fractional derivatives.

Being interested in the Grünwald–Letnikov discretization of the space–time-fractional diffusion equation we prove
its convergence in the Fourier–Laplace domain to the solution of the differential equation. In doing this we generalize
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the method used in [11] for the Markovian case � = 1. We begin with the space–time-fractional diffusion equation,
namely the Cauchy problem

D
t ∗

�u(x, t) = D
x 0

�u(x, t), u(x, 0) = �(x), 0 < ��1, 0 < ��2, (1.1)

for x ∈ R, t �0. Here D
x 0

� denotes the linear pseudo-differential operator with symbol −|�|�, the Riesz space-fractional

derivative operator. Its Fourier representation for a sufficiently smooth function f (x), x ∈ R, has the form

F{D
x 0

�f (x); �} = f̂ (�) = −|�|�f̂ (�), � ∈ R, (1.2)

with the Fourier transform of a (generalized) function f (x) defined as

F{f (x); �} = f̂ (�) =
∫ ∞

−∞
ei�xf (x) dx, � ∈ R. (1.3)

The operator D
t ∗

� denotes the Caputo time-fractional derivative operator, see [10,26] for more information. For our

purpose we use the definition

D
t ∗

�f (t) = 1

�(1 − �)

∫ t

0

f ′(�)
(t − �)�

d� for 0 < � < 1, f ′(t) = df (t)

dt
for � = 1. (1.4)

This fractional derivative has the Laplace image

L{D
t ∗

�f (t); s} = s�f̃ (s) − s�−1f (0), 0 < ��1, s > 0,

with the Laplace transform of a (generalized) function g(t) defined as

L{g(t); s} = g̃(s) =
∫ ∞

0
e−st g(t) dt . (1.5)

For the proof of convergence we distinguish several cases:

(a) � = 2, � = 1: classical diffusion, which is Markovian,
(b) � = 2, 0 < � < 1: time-fractional diffusion,
(c) 0 < � < 2, � = 1: space-fractional diffusion, which is Markovian,
(d) 0 < � < 2, � �= 1, 0 < � < 1: space–time-fractional diffusion,
(e) � = 1, 0 < � < 1: a singular case of space–time-fractional diffusion.

Case (a) is formally contained in case (b). By extending all formulas to �=1, the proof remains valid. The convergence
in case (a) is well-known from classical random walk theory and from numerical analysis. Case (c) has been treated
by Gorenflo and Mainardi, see [11]. We treat here case (b), because the proofs for (d) and (e) can easily be carried out
by modifying those for (b) and (c).

For the time-fractional diffusion equation with central linear drift, we have the Cauchy problem for x ∈ R, t �0,

0 < ��1:

D
t ∗

�u(x, t) = �2

�x2 u(x, t) + �

�x
(xu(x, t)), u(x, 0) = �(x − x∗), (1.6)

with x∗ ∈ R as the initial position of the particle. Avoiding confusion with the grid point x0 = 0h, we denote the
initial position by x∗. Eq. (1.6) is a time-fractional continuous version of the Ehrenfest model describing diffusion in
a potential well, see [1] for more information and [3] for other effects of non-linear oscillators driven by Lévy noise.
We distinguish the two cases:

(f) � = 1: classical diffusion with central linear drift (the continuous version of the Ehrenfest model),
(g) 0 < � < 1: time-fractional diffusion with central linear drift.
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Case (f) is formally contained in case (g), but we treat it separately because its transition probabilities are much simpler
than those of case (g). For all these cases, we show that by properly scaled transition to the limit of vanishing step sizes,
in space and time, there is convergence in the Fourier–Laplace domain, implying convergence in distribution (weak
convergence) of the corresponding probability densities for the location of the particle.

This paper is organized as follows: in Section 2, the discretization of case (b) will be discussed. We outline the theory
of convergence to the corresponding fundamental solution in Section 3. In Section 4, the convergence of case (f) is
treated. In Section 5, we prove the convergence of case (g). Finally, in Section 6, we state our Conclusions. Our proofs
by help of bivariate generating functions amount to show convergence in the Fourier–Laplace domain and to use the
continuity theorems of probability theory to obtain weak convergence (convergence in distribution) in the physical
domain.

2. Discretization of the time-fractional diffusion equation and general conditions

We discuss here case (b) of Section 1,

D
t ∗

�u(x, t) = �2

�x2 u(x, t), u(x, 0) = �(x), 0 < ��1, (2.1)

in the Fourier–Laplace domain s�̂̃u(�, s) − s�−1 = −�2̂̃u(�, s), implying

̂̃u(�, s) = s�−1

s� + �2
, s > 0, � ∈ R. (2.2)

Inverting the Laplace transform of (2.2) gives û(�, t) = E�(−|�|2t�), with the Mittag-Leffler function

E�(z) =
∞∑

k=0

zk

�(1 + k�)
, � ∈ R, z ∈ C (2.3)

introduced in [25]. It arises naturally in the solution of many fractional differential equations, see [10,21]. Actually
it appears as the solution of the Abel integral equation of the second type, see e.g., [5,14,29]. For applications in
anomalous diffusion, see e.g., [2,16,28].

The solution u(x, t) of Eq. (2.1) with the initial condition u(x, 0)=�(x) is known as the Green function or fundamental
solution or propagator and can be interpreted as a probability density. We have the conservation property

u(x, t)�0,

∫ ∞

−∞
u(x, t) dx = 1 ∀t �0.

Now, to generate a discrete approximate solution to Eq. (2.1), we discretize the space variable x by grid points xj = jh,
with h > 0, j ∈ Z, the time variable t by grid points tn = n�, with � > 0, n ∈ N0. The dependent variable is then
discretized by introducing yj (tn) intended as approximations:

yj (tn) ≈
∫ xj +h/2

xj −h/2
u(x, tn) dx ≈ hu(xj , tn). (2.4)

The yj (tn) can be visualized as clumps of probability of sojourn in points xj , collected from intervals of length h at
time tn.

The discretization of the time-fractional diffusion equation (2.1) is based first on the backward Grünwald–Letnikov
scheme in time. The discretization of the fractional derivative operators (in space or in time), has been widely used.
Gorenflo and Vivoli [15] used it for constructing fully discrete random walk models for the space–time-fractional
diffusion equation. See [11] for the special case � = 1. Recently Meerschaert et al. have published a series of papers
in which they used the Grünwald–Letnikov difference scheme in approximating the fractional diffusion equation, see
e.g., [22,23].
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For discretizing the Caputo time-fractional derivative operator D
t ∗

� starting at level t = tn+1, see [7,26,27], we use

the formula

D
� ∗

�yj (tn+1) =
n+1∑
k=0

(−1)k
(

�
k

)
yj (tn+1−k) − yj (t0)

��
, 0 < ��1 ∀n ∈ N0, (2.5)

observing that D
� ∗

1yj (tn+1)= (1/�)(yj (tn+1)− yj (tn)). Approximating the operator �2/�x2, symmetrically we get the

discretization of Eq. (2.1) ∀n ∈ N0, ∀j ∈ Z as

n+1∑
k=0

(−1)k
(

�
k

)
(yj (tn+1−k) − yj (t0)) = �yj+1(tn) − 2�yj (tn) + �yj−1(tn), (2.6)

with the scaling parameter � = ��/h2. Solving for yj (tn+1), we obtain

yj (tn+1) =
n∑

k=0

(−1)k
(

�
k

)
yj (t0) +

n∑
k=1

(−1)k+1
(

�
k

)
yj (tn+1−k)

+ �yj+1(tn) − 2�yj (tn) + �yj−1(tn), yj (0) = �j,0. (2.7)

Here and later we denote by �j,m the usual Kronecker symbol. yj (tn+1) represents the probability for where to find the
particle at time tn+1. It depends on yj−1(tn), yj (tn), yj+1(tn), yj (tn−1), . . . , yj (t1), yj (t0). So this equation represents
a discrete process with memory. According to Eq. (2.4), we introduce a vector

y(tn) = {. . . , y−1(tn), y0(tn), y1(tn), . . .} ∀n ∈ N0.

For the interpretation of y(tn) as a vector of probabilities we need the condition of preservation of non-negativity which
requires that yj (tn+1) is a linear combination of all yj (tk), k�n with non-negative coefficients. To achieve this we
impose the condition

0 < � = ��/h2 ��/2. (2.8)

For proving the conservation property, we suitably use in Eq. (2.7) the initial value yj (t0)=yj (0)=�j,0 corresponding to
u(x, 0)=�(x) and implying

∑
j∈Z yj (t0)=1. To imitate the conservation property we want

∑
j∈Z yj (tn)=1 ∀n ∈ N0.

Gorenflo et al. [12] have proved this discrete conservation property by induction and interpreted Eq. (2.6) as a random
walk on the spatial grid in discrete time. See also [12,13]. This random walk stands in conceptual contrast to the method
of approximating time-fractional diffusion by continuous time random walks, see e.g., [2] that, however, can also be
given a discrete version (see [15]).

Remark. In order to obtain in Eq. (2.7) an explicit scheme we have in Eq. (2.6) discretized the spatial part of the
operator at the old time tn.

3. Proof of convergence

For dealing with the system (2.6) of difference equations we apply the method of generating functions. For n ∈ N0,
we define

qn(z) =
∑
j∈Z

yj (tn)z
j , (3.1)

for the two-sided sequence of the sojourn probabilities

{. . . , y−2(tn), y−1(tn), y0(tn), y1(tn), y2(tn), . . .} ∀n ∈ N0. (3.2)

We note that this sequence satisfies the conservation property and the non-negativity preservation because all yj (tn)�0
and

∑∞
j=−∞ yj (tn)= 1. Therefore, the series (3.1) converges absolutely on the circle |z| = 1. From now on we assume



R. Gorenflo, E.A. Abdel-Rehim / Journal of Computational and Applied Mathematics 205 (2007) 871–881 875

|z| = 1. Introducing the generalized function
∑

j∈Z �(x − xj )yj (tn), ∀n ∈ N0 and applying the Fourier transform, we
obtain

F

⎧⎨⎩∑
j∈Z

�(x − xj )yj (tn); �

⎫⎬⎭ =
∑
j∈Z

ei�xj yj (tn) = qn(e
i�h), � ∈ R. (3.3)

By comparing Eqs. (3.1) and (3.3), we see that the Fourier-transform of the sequence (3.2) coincides with the generating
function qn(z), if we replace z by ei�h. In other words, the Fourier transform of the sequence of clumps yj (tn), j ∈ Z,
is represented by qn(ei�h).

Now let us introduce the bivariate (two-fold) generating function

Q(z, 	) =
∞∑

n=0

qn(z)	
n =

∞∑
n=0

⎛⎝∑
j∈Z

yj (tn)z
j

⎞⎠ 	n, (3.4)

as a function of 	 for the sequence

{q0(z), q1(z), q2(z), . . .}. (3.5)

Because all |qn(z)|�1, the sequence Q(z, 	) converges for |	| < 1, and from now on we assume |	| < 1. By introducing
the generalized function

∑∞
n=0 �(t − tn)qn(z) and applying the Laplace transform, we get

L

{ ∞∑
n=0

�(t − tn)qn(z); s

}
=

∞∑
n=0

e−stnqn(z), s > 0. (3.6)

From Eqs. (3.3) and (3.6), we deduce that with z = ei�h and 	 = e−s� we get the Fourier–Laplace transform of the
bivariate sequence {yj (tn)|j ∈ Z, n ∈ N0}. This means

Q(ei�h, e−s�) =
∞∑

n=0

⎛⎝∑
j∈Z

yj (tn)e
i�jh

⎞⎠ e−ns�, � ∈ R, s > 0. (3.7)

Our aim now is to prove that Q(ei�h, e−s�) is related asymptotically to the Fourier–Laplace transform of u(x, t) which
represents the fundamental solution of the time-fractional diffusion equation (2.1). By considering (2.4), we find that
the discretization of the Fourier-transform of u(x, t) formally gives the approximation

û(�, tn) ≈ qn(e
i�h), � ∈ R.

By taking its Laplace transform and imitating a rectangle rule for numerical integration, we get the formal approximation̂̃u(�, s) ≈ �Q(ei�h, e−s�), s > 0. (3.8)

To find the explicit form of �Q(ei�h, e−s�), we fix � ∈ R and s > 0, use the condition (2.8), and intend to show that

lim
h,�→0

�Q(ei�h, e−s�) = ̂̃u(�, s),

namely that the Fourier–Laplace transform of the discrete solution approximates the Fourier–Laplace transform of the
corresponding fundamental solution. To this aim, we construct Q(z, 	) with the initial condition q0(z) = �̂(�) ≡ 1.
Multiplying Eq. (2.6) by zj and summing over all j, we get

n+1∑
k=0

(−1)k
(

�
k

)
(qn+1−k(z) − 1) = �(z−1 − 2 + z)qn(z),

∑
j∈Z

yj (0)zj = 1. (3.9)

Multiplying Eq. (3.9) by 	n and summing over n ∈ N0 we get

∞∑
n=0

n+1∑
k=0

(−1)k
(

�
k

)
(qn+1−k(z) − 1)	n = �(z−1 − 2 + z)

∞∑
n=0

qn(z)	
n. (3.10)
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Using the definition (3.4), setting m = n + 1, and summing the RHS of Eq. (3.10) over m ∈ N, we obtain

∞∑
m=1

m∑
k=0

(−1)k
(

�
k

)
(qm−k(z) − 1)	m = �(z−1 − 2 + z)Q(z, 	). (3.11)

Since q0(z) ≡ 1, we can begin the summation over m with m = 0.
To proceed further, we need the convolution of two general sequences which is equivalent to the multiplication of

their generating functions (see [6]). If {�n} and {�k} are two numerical sequences with absolutely convergent power
series

�(	) =
∞∑

n=0

�n	
n, �(	) =

∞∑
k=0

�k	
k ,

then

�(	)�(	) = c(	) =
∞∑

r=0

cr	
r , cr =

r∑
n=0

�n�r−n.

This means that the LHS of Eq. (3.11) can be represented as a product of the two generating functions

�(	) =
∞∑

k=0

(−1)k
(

�
k

)
	k = (1 − 	)�, �(	) =

∞∑
m=0

(qm(z) − 1)	m.

By a simple index shift equation (3.11) goes over in

(1 − 	)�

	

(
Q(z, 	) − 1

1 − 	

)
= �(z−1 − 2 + z)Q(z, 	). (3.12)

Solving for Q(z, 	), we get

Q(z, 	) = (1 − 	)�−1

(1 − 	)� − 	�(z−1 − 2 + z)
. (3.13)

With z = ei�h, 	 = e−s�, we get asymptotically for h → 0, � → 0

(z−1 − 2 + z) ∼ −(�h)2, (1 − 	)� ∼ s��h. (3.14)

Now multiplying by �, using the scaling relation (2.8), and passing to the limit in Eq. (3.13), we find

lim
h→0,�→0

�Q(ei�h, e−s�) = s�−1

s� + �2
= ̂̃u(�, s). (3.15)

Using the continuity theorems of probability theory (see [6]) we deduce from this equation with the scaling relation
(2.8) that the solution of the difference scheme of the time-fractional diffusion equation converges in distribution to the
corresponding fundamental solution. Let us remark that by applying the inverse Laplace transform to Eq. (3.15) we get
û(�, t)=E�(−�2t�). So the second moment of the density u(x, t) is (
(t))2 =−(�2/��2)̂u(�, t)|�=0 = 2t�/�(1 +�),

see [8]. In the special case � = 1 we have û(�, t) = e−�2t and consequently (
(t))2 = 2t . We summarize our results as

Theorem 1. With the notations xj = jh, h > 0, tn = n�, � > 0, j ∈ Z, n ∈ N0, the intended approximation (2.4), and
under the restriction 2�� �h2, the solution of the difference scheme (2.7) converges, for h → 0, weakly (in distribution)
to the time-dependent probability distribution whose density is u(x, t), the solution of the Cauchy problem (2.1).
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4. Convergence for classical diffusion with central linear drift

We devote this section to case (f) of Section 1

�

�t
u(x, t) = �2

�x2 u(x, t) + �

�x
(xu(x, t)), u(x, 0) = �(x − x∗), (4.1)

with x∗ ∈ R. In the Fourier–Laplace domain this means

�
�

��
̂̃u(�, s) + (�2 + s)̂̃u(�, s) = ei�x∗

, ̂̃u(0, s) = 1/s. (4.2)

The scaling relation (2.8), for � = 1, takes the form

0 < � = �/h2 � 1
2 . (4.3)

Conveniently with the scaling relation (4.3), we discretize by central differences (4.1) as

yj (tn+1) − yj (tn) = �(yj+1(tn) − 2yj (tn) + yj−1(tn))

+ �h2

2
{(j + 1)yj+1(tn) − (j − 1)yj−1(tn)}, yj (0) = �j,x∗/h. (4.4)

As we have discussed in [1,9], Eq. (4.1) describes the elastic diffusion of a bounded particle. Allowing only values h
with 2/h2 = R ∈ N, restricting the index j to {−R, −R + 1, . . . , R − 1, R}, we write (4.4) as

yj (tn+1) = �yj (tn) + �j+1yj+1(tn) + 
j−1yj−1(tn), −R�j �R, (4.5)

with


j = �

(
1 − j

R

)
, � = (1 − 2�), �j = �

(
1 + j

R

)
. (4.6)

These coefficients (as transition probabilities) satisfy the condition


j + �j + � = 1, 
R = �−R = 0 ∀j ∈ [−R, R]. (4.7)

We interpret yj (tn+1) in Eq. (4.5) as the probability of finding the diffusing particle at the point xj , j ∈ [−R, R], at
the time instant tn+1, n ∈ N0. In [1] the reader can find interpretation of our discretization as a particular form of the
classical Ehrenfest urn model with specific meanings of N, R and �. To get an initial condition for the probability vector

y(tn) = {y−R(tn), y−R+1(tn), . . . , y0(tn), . . . , yR−1(tn), yR(tn)} ∀n ∈ N0, (4.8)

we set in the initial condition of Eq. (1.6) x∗ = mh with m ∈ {−R, −R + 1, . . . , R − 1, R} and correspondingly

yj (t0) = �j,m. (4.9)

We can use Eq. (4.7) and the condition (4.9) to show that

R∑
j=−R

yj (tn) =
R∑

j=−R

yj (t0) = 1, (4.10)

where yj (tn)�0 ∀j ∈ [−R, R]. See [9] and the thesis [1], for the full proof of these non-negativity and conservation
properties. We concentrate here on the proof of the convergence using our previous results as a tool. Since all xj ∈
{−Rh, (−R+1)h, . . . , 0 . . . , (R−1)h, Rh} and no jump goes outside of this set we can fix yj (tn)=0, ∀|j |�R+1, n ∈
N0. This guarantees us a finite Markov chain with the states xj = jh, j ∈ {−R, −R +1, . . . , R −1, R}. We can extend
Eq. (4.10) to∑

j∈Z

yj (tn) =
∑
j∈Z

yj (t0) = 1. (4.11)
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Hence we can use the generating function qn(z) defined in (3.1) for the infinitely extended sequence of sojourn
probabilities

y(tn) = {. . . , 0, y−R(tn), y−R+1(tn), . . . , y0(tn), . . . , yR−1(tn), yR(tn), 0, . . .}, (4.12)

∀n ∈ N0. Here the series qn(z) is convergent on |z| = 1. We use the definition (3.4) of the generating function Q(z, 	)
for the sequence (4.12), having convergence for |	| < 1. Our aim is to prove that in the limit h → 0, � → 0, the sequence
�Q(ei�h, e−s�) satisfies the ordinary differential equation (4.2). Multiplying Eq. (4.4) by zj and summing over all j, we
find

qn+1(z) − qn(z) = �qn(z)

{
(z−1 − 2 + z) − y−R

zR+1 − yRzR+1
}

+ �h2

2

⎧⎨⎩(z−1 − z)
∑
j∈Z

jyj (tn)z
j + Ry−R

zR+1 + RyRzR+1

⎫⎬⎭ . (4.13)

With R = 2/h2 and the identity∑
j∈Z

jyj (tn)z
j = z

d

dz

∑
j∈Z

yj (tn)z
j , (4.14)

we get

qn+1(z) − qn(z) = �qn(z)(z
−1 − 2 + z) + �h2

2
(z−1 − z)z

d

dz
qn(z). (4.15)

Now multiplying by 	n and summing over all n ∈ N, we obtain

1

	
(Q(z, 	) − zm) − Q(z, 	) = �Q(z, 	)(z−1 − 2 + z) + �h2

2
(1 − z2)

d

dz
Q(z, 	). (4.16)

Rearranging, we find

�h2

2
(1 − z2)

d

dz
Q(z, 	) + {	�(z−1 − 2 + z) − (1 − 	)}Q(z, 	) = −zm. (4.17)

For h → 0, � → 0, using Eq. (3.14) and multiplying by �, we get

�
d

d�
(�Q(ei�h, e−s�)) + (�2 + s)(�Q(ei�h, e−s�)) = ei�mh. (4.18)

So far, we have proved that �Q(ei�h, e−s�) under our scaling relation asymptotically solves the ordinary differential
equation (4.2) which is exact for ̂̃u(�, s). Hence the discrete solution of the classical diffusion equation with central
linear drift tends asymptotically for h → 0, � → 0, to the corresponding solution of Eq. (4.1) in the Fourier–Laplace
domain in spite of vanishing outside of a finite interval (the exterior however being exhausted for h tending to zero).

Theorem 2. With the notations as in Theorem 1, and under the condition 2��h2, the solution of the difference scheme
(4.4) provided with the initial condition (4.9) and intended as approximation (2.4) converges, for h → 0, weakly (in
distribution) to the time-dependent probability distribution whose density is u(x, t), the solution of the Cauchy problem
(4.1).

5. Convergence for time-fractional diffusion with central linear drift

We consider now case (g) of Section 1.Again the particle is moving in the bounded interval [−Rh, Rh] with R=2/h2

and again we have the scaling relation (2.8) but here we have 0 < � < 1, and hence Eq. (1.6) in the Fourier–Laplace
domain reads

�
�

��
̂̃u(�, s) + (�2 + s� )̂̃u(�, s) = ei�x∗

s�−1, ̂̃u(0, s) = 1/s. (5.1)
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Its solution ̂̃u(�, s) has the form of a complicated expression which we do not write down here. By using Eq. (2.5), we
write the discretization of Eq. (1.6) as

n+1∑
k=0

(−1)k
(

�
k

)
(yj (tn+1−k) − yj (t0))

= �(yj+1(tn) − 2yj (tn) + yj−1(tn)) + �h2

2
{(j + 1)yj+1(tn) − (j − 1)yj−1(tn)}, yj (0) = �j,x∗/h. (5.2)

Solving for y
(n+1)
j , we get

yj (tn+1) =
n∑

k=0

(−1)k
(

�
k

)
yj (t0) +

n∑
k=1

(−1)k+1
(

�
k

)
yj (tn+1−k)

+ yj+1(tn)

[
� + �h2

2
(j + 1)

]
− 2�yj (tn) + yj−1(tn)

[
� − �h2

2
(j − 1)

]
. (5.3)

Again yj (tn+1) is the probability for where to find the particle at time tn+1.
Using the initial condition (4.9) and the scaling relation (2.8), we can prove the non-negativity and the conservation

properties by induction, see [9] and the thesis [1] where we have also simulated the random walks for different values
of �. To prove convergence we first note that at n = 0, it is analogous to case (f) where � = 1. Then at n�1, we use
the generating function qn(z) defined in Eq. (3.1) for the extended sequence of the sojourn probabilities (4.12), which
is convergent on |z| = 1. Again we use the bivariate generating function Q(z, t) defined in Eq. (3.4) for the sequence
(3.5), the series being convergent on |	| < 1.

Our aim now is to prove that �Q(ei�h, e−s�) satisfies asymptotically the ordinary differential equation (5.1). Multi-
plying Eq. (4.4) by zj and summing over all j, we get

n+1∑
k=0

(−1)k
(

�
k

)
(qn+1−k(z) − zm) = �qn(z)

{
(z−1 − 2 + z) − y−R

zR+1 − yRzR+1
}

+ �h2

2

⎧⎨⎩(z−1 − z)
∑
j∈Z

jyj (tn)z
j + Ry−R

zR+1 + RyRzR+1

⎫⎬⎭ . (5.4)

Again using the definition of R and the identity (4.14), we get

n+1∑
k=0

(−1)k
(

�
k

)
(qn+1−k(z) − zm) = �qn(z)(z

−1 − 2 + z) + �h2

2
(z−1 − z)z

d

dz
qn(z), (5.5)

and multiplying by 	n, summing over n and using (3.12),

∞∑
n=0

n+1∑
k=0

(−1)k
(

�
k

)
(qn+1−k(z) − zm)	n = �Q(z, 	)(z−1 − 2 + z) + �h2

2
(1 − z2)

d

dz
Q(z, 	). (5.6)

In analogy to Eq. (3.12), we find

(1 − 	)�

	

(
Q(z, 	) − zm

1 − 	

)
= �Q(z, 	)(z−1 − 2 + z) + �h2

2
(1 − z2)

d

dz
Q(z, 	). (5.7)

A rearrangement gives

	�h2

2
(1 − z2)

d

dz
Q(z, 	) + Q(z, 	)(	�(z−1 − 2 + z) − (1 − 	)�) = −zm(1 − 	)�−1. (5.8)
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With h → 0, � → 0, using the scaling relation (2.8) and Eq. (3.14), we get after multiplying by �

�
d

d�
(�Q(ei�h, e−s�)) + (�2 + s�)(�Q(ei�h, e−s�)) ∼ s�−1 ei�mh, � > 0, (5.9)

where �Q(0, s) = 1/s. So far, we have found that the asymptotic ordinary differential equation (5.9) with x∗ = mh is
structured like the ordinary differential equation (5.1) and �Q(ei�h, e−s�) represents an approximation to ̂̃u(�, s).

We can interpret this result in the following words: the Fourier–Laplace transform of the discrete solution of
Eq. (1.6) satisfies the ordinary differential equation (5.1) asymptotically as h → 0 and � → 0. The results of this
section are confirmed by the numerical results discussed in our previous papers, see [1,9]. Summarizing, we have

Theorem 3. With the notations as in Theorem 1, the intended approximation (2.4), and under the condition � =
��/h2 ��/2, the solution of the difference scheme (5.3) with the initial condition (4.9) converges, for h → 0, weakly
(in distribution) to the time-dependent probability distribution whose density is the solution u(x, t) of the Cauchy
problem (1.6).

6. Conclusions

Using bivariate generating functions for working in the Fourier–Laplace domain we have proved weak convergence
of discrete solutions of space–time-fractional diffusion processes to the solution of the corresponding equations for
time derivative orders in (0, 1]. These discrete solutions are interpreted as random walk models. Thus, inspired by their
usefulness in probability theory, we have applied the discrete and continuous transforms of Fourier and Laplace for
constructing our proofs, leaving aside the questions of numerical accuracy in the supremum norm. In her thesis, Abdel-
Rehim [1] has presented case studies illustrating the numerical convergence of the discrete solutions for the explicit
and for the here not treated implicit difference scheme and simulated random walks via the Monte Carlo method.
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