
Numerical Methods 
for 

Fractional Calculus



CHAPMAN & HALL/CRC 
Numerical Analysis and Scientific Computing

Aims and scope: 
Scientific computing and numerical analysis provide invaluable tools for the sciences and engineering. 
This series aims to capture new developments and summarize state-of-the-art methods over the whole 
spectrum of these fields. It will include a broad range of textbooks, monographs, and handbooks. 
Volumes in theory, including discretisation techniques, numerical algorithms, multiscale techniques, 
parallel and distributed algorithms, as well as applications of these methods in multi-disciplinary fields, 
are welcome. The inclusion of concrete real-world examples is highly encouraged. This series is meant 
to appeal to students and researchers in mathematics, engineering, and computational science.

Editors

Choi-Hong Lai
School of Computing and  
Mathematical Sciences

University of Greenwich

Frédéric Magoulès
Applied Mathematics and  

Systems Laboratory
Ecole Centrale Paris

Editorial Advisory Board

Mark Ainsworth
Mathematics Department

Strathclyde University

Todd Arbogast
Institute for Computational  
Engineering and Sciences 

The University of Texas at Austin

Craig C. Douglas
Computer Science Department 

University of Kentucky

Ivan Graham
Department of Mathematical Sciences

University of Bath
 
 
 

Peter Jimack
School of Computing
University of Leeds

Takashi Kako
Department of Computer Science

The University of Electro-Communications

Peter Monk
Department of Mathematical Sciences

University of Delaware

Francois-Xavier Roux
ONERA

Arthur E.P. Veldman
Institute of Mathematics and Computing Science

University of Groningen

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
3 Park Square, Milton Park
Abingdon, Oxfordshire OX14 4RN
UK

 



Published Titles

Classical and Modern Numerical Analysis: Theory, Methods and Practice 
Azmy S. Ackleh, Edward James Allen, Ralph Baker Kearfott, and Padmanabhan Seshaiyer

Cloud Computing: Data-Intensive Computing and Scheduling Frédéric Magoulès, Jie Pan,  
and Fei Teng

Computational Fluid Dynamics Frédéric Magoulès

A Concise Introduction to Image Processing using C++ Meiqing Wang and Choi-Hong Lai

Coupled Systems: Theory, Models, and Applications in Engineering Juergen Geiser

Decomposition Methods for Differential Equations: Theory and Applications Juergen Geiser

Designing Scientific Applications on GPUs Raphaël Couturier

Desktop Grid Computing Christophe Cérin and Gilles Fedak

Discrete Dynamical Systems and Chaotic Machines: Theory and Applications 
Jacques M. Bahi and Christophe Guyeux

Discrete Variational Derivative Method: A Structure-Preserving �Numerical Method for 
�Partial Differential Equations Daisuke Furihata and Takayasu Matsuo

Grid Resource Management: Toward Virtual and Services Compliant Grid Computing 
Frédéric Magoulès, Thi-Mai-Huong Nguyen, and Lei Yu 

Fundamentals of Grid Computing: Theory, Algorithms and Technologies Frédéric Magoulès

Handbook of Sinc Numerical Methods Frank Stenger

Introduction to Grid Computing Frédéric Magoulès, Jie Pan, Kiat-An Tan, and Abhinit Kumar 

Iterative Splitting Methods for Differential Equations Juergen Geiser 

Mathematical Objects in C++: Computational Tools in a Unified Object-Oriented Approach 
Yair Shapira 

Numerical Linear Approximation in C Nabih N. Abdelmalek and William A. Malek 

Numerical Methods and Optimization: An Introduction Sergiy Butenko and Panos M. Pardalos 

Numerical Methods for Fractional Calculus Changpin Li and Fanhai Zeng 

Numerical Techniques for Direct and Large-Eddy Simulations Xi Jiang and Choi-Hong Lai 

Parallel Algorithms Henri Casanova, Arnaud Legrand, and Yves Robert 

Parallel Iterative Algorithms: From Sequential to Grid Computing Jacques M. Bahi,  
Sylvain Contassot-Vivier, and Raphaël Couturier

Particle Swarm Optimisation: Classical and Quantum Perspectives Jun Sun, Choi-Hong Lai, 
and Xiao-Jun Wu

XML in Scientific Computing C. Pozrikidis

 



 



Changpin Li
Department of Mathematics

Shanghai University 
China

Fanhai Zeng
Department of Mathematics

Shanghai University 
China

Numerical Methods 
for 

Fractional Calculus

 



MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does 
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MAT-
LAB® software or related products does not constitute endorsement or sponsorship by The MathWorks 
of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20150409

International Standard Book Number-13: 978-1-4822-5380-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

 

www.copyright.com
www.copyright.com


Contents

Foreword xi

Preface xiii

List of Figures xv

List of Tables xvii

1 Introduction to Fractional Calculus 1

1.1 Fractional Integrals and Derivatives . . . . . . . . . . . . . . . . . 1
1.2 Some Other Properties of Fractional Derivatives . . . . . . . . . . 10

1.2.1 Leibniz Rule for Fractional Derivatives . . . . . . . . . . . 10
1.2.2 Fractional Derivative of a Composite Function . . . . . . . 11
1.2.3 Behaviors Near and Far from the Lower Terminal . . . . . . 12
1.2.4 Laplace Transforms of Fractional Derivatives . . . . . . . . 14
1.2.5 Fourier Transforms of Fractional Derivatives . . . . . . . . 16

1.3 Some Other Fractional Derivatives and Extensions . . . . . . . . . 18
1.3.1 Marchaud Fractional Derivative . . . . . . . . . . . . . . . 18
1.3.2 The Finite Parts of Integrals . . . . . . . . . . . . . . . . . 19
1.3.3 Directional Integrals and Derivatives in R2 . . . . . . . . . 20
1.3.4 Partial Fractional Derivatives . . . . . . . . . . . . . . . . . 21

1.4 Physical Meanings . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Fractional Initial and Boundary Problems . . . . . . . . . . . . . . 25

2 Numerical Methods for Fractional Integral and Derivatives 29

2.1 Approximations to Fractional Integrals . . . . . . . . . . . . . . . 29
2.1.1 Numerical Methods Based on Polynomial Interpolation . . . 30
2.1.2 High-Order Methods Based on Gauss Interpolation . . . . . 34
2.1.3 Fractional Linear Multistep Methods . . . . . . . . . . . . . 38

2.2 Approximations to Riemann–Liouville Derivatives . . . . . . . . . 40
2.2.1 Grünwald–Letnikov Type Approximation . . . . . . . . . . 41
2.2.2 L1, L2 and L2C Methods . . . . . . . . . . . . . . . . . . . 43

2.3 Approximations to Caputo Derivatives . . . . . . . . . . . . . . . . 48
2.3.1 L1, L2 and L2C Methods . . . . . . . . . . . . . . . . . . . 49

vii

 



viii Contents

2.3.2 Approximations Based on Polynomial Interpolation . . . . . 49
2.3.3 High-Order Methods . . . . . . . . . . . . . . . . . . . . . 52

2.4 Approximation to Riesz Derivatives . . . . . . . . . . . . . . . . . 55
2.4.1 High-Order Algorithms (I) . . . . . . . . . . . . . . . . . . 55
2.4.2 High-Order Algorithms (II) . . . . . . . . . . . . . . . . . 67
2.4.3 High-Order Algorithms (III) . . . . . . . . . . . . . . . . . 71
2.4.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 86

2.5 Matrix Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.6 Short Memory Principle . . . . . . . . . . . . . . . . . . . . . . . 92
2.7 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3 Numerical Methods for Fractional Ordinary Differential Equations 97

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 109
3.4 Fractional Linear Multistep Methods . . . . . . . . . . . . . . . . 110

4 Finite Difference Methods for Fractional Partial Differential Equations 125

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 One-Dimensional Time-Fractional Equations . . . . . . . . . . . . 125

4.2.1 Riemann–Liouville Type Subdiffusion Equations . . . . . . 127
4.2.1.1 Explicit Euler Type Methods . . . . . . . . . . . 127
4.2.1.2 Implicit Euler Type Methods . . . . . . . . . . . 130
4.2.1.3 Crank–Nicolson Type Methods . . . . . . . . . . 136
4.2.1.4 Integration Methods . . . . . . . . . . . . . . . . 142
4.2.1.5 Numerical Examples . . . . . . . . . . . . . . . 144

4.2.2 Caputo Type Subdiffusion Equations . . . . . . . . . . . . . 146
4.2.2.1 Explicit Euler Type Methods . . . . . . . . . . . 147
4.2.2.2 Implicit Euler Type Methods . . . . . . . . . . . 150
4.2.2.3 FLMM Finite Difference Methods . . . . . . . . 153
4.2.2.4 Numerical Examples . . . . . . . . . . . . . . . 157

4.3 One-Dimensional Space-Fractional Differential Equations . . . . . 159
4.3.1 One-Sided Space-Fractional Diffusion Equation . . . . . . . 159
4.3.2 Two-Sided Space-Fractional Diffusion Equation . . . . . . 168
4.3.3 Riesz Space-Fractional Diffusion Equation . . . . . . . . . 170
4.3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 172

4.4 One-Dimensional Time-Space Fractional Differential Equations . . 174
4.4.1 Time-Space Fractional Diffusion Equation with Caputo

Derivative in Time . . . . . . . . . . . . . . . . . . . . . . 174
4.4.2 Time-Space Fractional Diffusion Equation with Riemann–

Liouville Derivative in Time . . . . . . . . . . . . . . . . . 179
4.4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 181

 



Contents ix

4.5 Fractional Differential Equations in Two Space Dimensions . . . . 183
4.5.1 Time-Fractional Diffusion Equation with Riemann–Liouville

Derivative in Time . . . . . . . . . . . . . . . . . . . . . . 185
4.5.2 Time-Fractional Diffusion Equation with Caputo Derivative

in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.5.3 Space-Fractional Diffusion Equation . . . . . . . . . . . . . 204
4.5.4 Time-Space Fractional Diffusion Equation with Caputo

Derivative in Time . . . . . . . . . . . . . . . . . . . . . . 208
4.5.5 Time-Space Fractional Diffusion Equation with Riemann–

Liouville Derivative in Time . . . . . . . . . . . . . . . . . 212
4.5.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 214

5 Galerkin Finite Element Methods for Fractional Partial Differential
Equations 219

5.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . 219
5.2 Galerkin FEM for Stationary Fractional Advection Dispersion Equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.2.1 Notations and Polynomial Approximation . . . . . . . . . . 225
5.2.2 Variational Formulation . . . . . . . . . . . . . . . . . . . 226
5.2.3 Finite Element Solution and Error Estimates . . . . . . . . 229

5.3 Galerkin FEM for Space-Fractional Diffusion Equation . . . . . . . 230
5.3.1 Semi-Discrete Approximation . . . . . . . . . . . . . . . . 230
5.3.2 Fully Discrete Approximation . . . . . . . . . . . . . . . . 234

5.4 Galerkin FEM for Time-Fractional Differential Equations . . . . . 238
5.4.1 Semi-Discrete Schemes . . . . . . . . . . . . . . . . . . . 238
5.4.2 Fully Discrete Schemes . . . . . . . . . . . . . . . . . . . . 241
5.4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 248

5.5 Galerkin FEM for Time-Space Fractional Differential Equations . . 251
5.5.1 Semi-Discrete Approximations . . . . . . . . . . . . . . . . 253
5.5.2 Fully Discrete Schemes . . . . . . . . . . . . . . . . . . . . 256

Bibliography 265

Index 279

 



 



Foreword

Fractional calculus is often regarded as a branch of mathematical analysis which
deals with integro-differential equations where the integrals are of the convolution
type and exhibit (weakly singular) kernels of the power-law type. It has a history of
at least three hundred years, since it can be dated back to a letter from G.W. Leibniz
to G. L’Hôpital, dated 30 September 1695, in which the meaning of the one-half or-
der derivative was first discussed and some remarks about its possibility were made.
Subsequent mention of fractional derivatives was made by L. Euler (1730), J.L. La-
grange (1772), P.S. Laplace (1812), S.F. Lacroix (1819), J.B.J. Fourier (1822), N.H.
Abel (1823), J. Liouville (1832), B. Riemann (1847), H.L. Green (1859), H. Holm-
gren (1865), A.K. Grünwald (1867), A.V. Letnikov (1868), N.Ya. Sonin (1869), H.
Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), O. Heaviside (1892), S.
Pincherle (1902), H. Weyl ( 1919), P. Lévy (1923), A. Marchaud (1927), H.T. Davis
(1936), A. Zygmund (1945), M. Riesz (1949), and W. Feller (1952), to cite some
relevant contributors up to the middle of the last century. For the entire history of
fractional calculus, refer to K.B. Oldham and J. Spanier’s book– The Fractional Cal-
culus: Theory and Applications of Differentiation and Integration to Arbitrary Order
(Academic Press, New York, renewed 2002). Some complementary materials can be
found from J.A. Tenreiro Machado, V. Kiryakova and F. Mainardi’s posters (poster
depicting the recent history of fractional calculus, Fractional Calculus and Applied
Analysis 13(3), 329-334, 2010; poster depicting the old history of fractional calcu-
lus, Fractional Calculus and Applied Analysis 13(4), 447-454, 2010) and a brief
introduction also by them (Recent history of fractional calculus, Communications in
Nonlinear Science and Numerical Simulation 16, 1140-1153, 2011).

Roughly speaking, fractional calculus underwent two stages: from its beginning
to the 1970s, and after 1970s. In the first stage, fractional calculus was studied mainly
by mathematicians as an abstract area containing only pure mathematical manipula-
tions of little or no use. In the second stage, the paradigm began to shift from pure
mathematical research to application in various fields, such as long-memory pro-
cesses and materials, anomalous diffusion, long-range interactions, long-term behav-
iors, power laws, allometric scaling laws, and so on.

Due to applications of fractional calculus, various kinds of numerical methods
have independently appeared in periodicals. This book aims to collect and sort out
these studies, including the authors’ work. Loosely speaking, the present book con-
tains (1) numerical methods for fractional integrals and fractional derivatives, (2)
finite difference methods for fractional ordinary/partial differential equations, and (3)
finite element methods for fractional partial differential equations. Due to the rapid

xi

 



xii Foreword

development of fractional numerical methods, more and more publications are emerg-
ing. However, very recent publications are not included or introduced since this book
is designed for beginners.

Last but not least, we thank Professors Vo Anh, Kevin Burrage, Guanrong Chen,
Wen Chen, YangQuan Chen, Qiang Du, Jinqiao Duan, Roberto Garrappa, Ben-
yu Guo, Haiyan Hu, George Em Karniadakis, Virginia Kiryakova, Jürgen Kurths,
Fawang Liu, Francesco Mainardi, Igor Podlubny, Zhongci Shi, Yifa Tang, Ian Turner,
Blas M. Vinagre, Hong Wang, Xiaohua Xia, Dingyu Xue, and Weiqiu Zhu for their
strong support, unselfish cooperation, and for providing suggestions for revision. We
greatly appreciate Sunil Nair and Sarfraz Khan for sparing no pains to inform us,
replying to us and explaining various details regarding this book. The first author
particularly thanks his PhD students Fanhai Zeng (who is also the second author
of this book) and An Chen for collecting the materials and difficult typesetting. He
also thanks his PhD students Jianxiong Cao, Hengfei Ding, Peng Guo, Yutian Ma,
Fengrong Zhang, Zhengang Zhao, and Yunying Zheng for their careful reading and
for providing correction suggestions. CL acknowledges the financial support from
National Natural Science Foundation of China (10872119, 11372170) and the Key
Program of Shanghai Municipal Education Commission (12ZZ084).

Changpin Li and Fanhai Zeng
April 2015

 



Preface

Fractional calculus (which includes fractional integration and fractional differentia-
tion) is as old as its familiar counterpart, classical calculus (or integer order calculus).
For quite a long time it developed slowly. However, in the past few decades, frac-
tional calculus has attracted increasing interest due to its applications in science and
engineering. Fractional derivatives have provided excellent tools to describe various
materials and processes with memory and hereditary properties, etc.; and fractional
differential equation models in these applied fields are thus established.

There are several analytical methods used to solve very special (mostly linear)
fractional differential equations (FDEs), such as the Fourier transform method, the
Laplace transform method, the Mellin transform method and the Green function
method. Hence, developing efficient and reliable numerical methods for solving gen-
eral FDEs is of particular usefulness in application. The book mainly focuses on
investigating numerical methods for fractional integrals, fractional derivatives, and
fractional differential equations.

There are five chapters in this book. In Chapter 1, the basic definitions and prop-
erties of fractional integrals and derivatives are introduced, including the most fre-
quently used Riemann–Liouville integral, the Riemann–Liouville derivative, the Ca-
puto derivative, and some other fractional derivatives. Furthermore, important and/or
complicated properties are studied. Also, the corresponding physical meaning of frac-
tional calculus and the definite conditions for fractional differential equations are
included.

In Chapter 2, numerical methods for fractional integrals and fractional derivatives
are displayed in detail. We first derive the numerical schemes based on polynomial
interpolation, Gauss interpolation and linear multistep methods for the fractional inte-
grals (or Riemann–Liouville integrals). Then we investigate the Grünwald–Letnikov
approximation, L1, L2 and L2C methods for the Riemann–Liouville derivatives. The
natural generalization of the above methods for the Caputo derivatives and the Riesz
derivatives are also introduced. These discretized schemes are useful for the discus-
sions in the subsequent chapters.

In the next chapter, the finite difference methods for fractional ordinary differen-
tial equations are investigated. These finite difference methods mainly include the
fractional Euler method, the fractional Adams method, the high order method, the
fractional linear multistep method, and their various variants. The stability, conver-
gence, and error estimates of these methods are also carefully studied.

Next, the finite difference methods for fractional partial differential equations
are presented in Chapter 4. The fractional partial differential equations in this chap-

xiii

 



xiv Preface

ter include (1) the time-fractional differential equations (with Riemann–Liouville
derivative or Caputo derivative) in one spatial dimension, (2) the space-fractional
differential equations (with one-sided Riemann–Liouville derivative, or two-sided
Riemann–Liouville derivative, or the Riesz derivative) in one spatial dimension, (3)
the time-space fractional differential equation in one spatial dimension, and (4) the
fractional differential equations in two spatial dimensions. The derived numerical
methods mainly consist of the Euler method, the Crank–Nicolson method and the
fractional linear multistep methods. The stability, convergence, and error estimates
are studied. Many numerical examples are also displayed, which support the theoret-
ical analysis.

Generally speaking, the fractional finite difference methods are convenient to im-
plement but the smooth conditions of the solutions often need to be assumed. If the
solutions have good smoothness (and the domains are regular), then spectral methods
are possibly the best solvers. However, fractional calculus seems to be a useful tool
to deal with nonsmooth problems. So the finite element method is often regarded as
one of main methods for solving fractional differential equations. In the last chapter,
the finite element methods for fractional partial differential equations are presented
and analyzed. We first introduce the basic framework of the finite element methods
for fractional differential equations. Then we establish the fully discrete schemes for
time-space fractional equations, where the time-fractional derivatives are discretized
by the finite difference methods, and the space-fractional derivatives are approxi-
mated by the finite element methods. The stability, convergence, and error estimates
for the established methods are also studied. Additional material is available from
the CRC Web site: http://www.crcpress.com/product/isbn/9781482253801

Due to broad applications of fractional calculus, seeking numerical algorithms
with high accuracy, rapid convergence, and less storage is becoming more and more
important. This book is just a primer in this respect. We hope it can offer fresh stimuli
for the fractional calculus community to further promote and develop the cutting-
edge research on numerical fractional calculus.
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Chapter 1
Introduction to Fractional Calculus

In this chapter, we first introduce fractional calculus (i.e., fractional integration and
fractional differentiation). Generally speaking, the fractional integral mainly means
(fractional) Riemann–Liouville integral. The fractional derivatives consist of at least
six kinds of definitions, but they are not equivalent. Here, we present the most fre-
quently used fractional integral and derivatives, i.e., the Riemann–Liouville integral,
the Riemann–Liouville derivative, the Caputo derivative, etc. Then we study their im-
portant properties, some of which are easily confused. Besides, we further introduce
the definite conditions of fractional differential equations which are often misused.

1.1 Fractional Integrals and Derivatives
Fractional calculus is not a new topic, in reality it has almost the same history as

that of classical calculus. It can be dated back to the Leibniz’s letter to L’Hôpital, see
[72, 115, 118], dated 30 September 1695, in which the meaning of the one-half order
derivative was first discussed with some remarks about its possibility. Nowadays,
fractional calculus is undergoing rapid development, with more and more convincing
applications in the real world, see [74, 75, 80, 85] and references therein. Maybe one
notices that another word “fractal” sometimes takes the place of “fractional calculus”
in some situations. However, this may be not proper. As far as we know, fractal [108]
is in the realm of geometry, while fractional calculus belongs to analysis. Although
some studies displayed the relations between them, they are different.

It is known that calculus means integration and differentiation. Fractional calcu-
lus, as its name suggests, refers to fractional integration and fractional differentiation.
Fractional integration often means Riemann–Liouville integral. But for fractional dif-
ferentiation, there are several kinds of fractional derivatives. In the following, some
definitions are introduced [68, 124, 134].

Definition 1 The left fractional integral (or the left Riemann–Liouville integral) and
right fractional integral (or the right Riemann–Liouville integral) with order α > 0
of the given function f (t), t ∈ (a,b) are defined as

D−αa,t f (t) = RLD−αa,t f (t) =
1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, (1.1)

1
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and

D−αt,b f (t) = RLD−αt,b f (t) =
1
Γ(α)

∫ b

t
(s− t)α−1 f (s)ds, (1.2)

respectively, where Γ(·) is the Euler’s gamma function.

Definition 2 The left and right Grünwald–Letnikov derivatives with order α > 0 of
the given function f (t), t ∈ (a,b) are defined as

GLDα
a,t f (t) = lim

h→0
Nh=t−a

h−α
N∑

j=0

(−1) j
(
α

j

)

f (t− jh), (1.3)

and

GLDα
t,b f (t) = lim

h→0
Nh=b−t

h−α
N∑

j=0

(−1) j
(
α

j

)

f (t+ jh), (1.4)

respectively.

Definition 3 The left and right Riemann–Liouville derivatives with order α > 0 of
the given function f (t), t ∈ (a,b) are defined as

RLDα
a,t f (t) =

dm

dtm
[
D−(m−α)

a,t f (t)
]

=
1

Γ(m−α)
dm

dtm

∫ t

a
(t− s)m−α−1 f (s)ds,

(1.5)

and

RLDα
t,b f (t) = (−1)m dm

dtm
[
D−(m−α)

t,b f (t)
]

=
(−1)m

Γ(m−α)
dm

dtm

∫ b

t
(s− t)m−α−1 f (s)ds,

(1.6)

respectively, where m is a positive integer satisfying m−1 ≤ α < m.

Definition 4 The left and right Caputo derivatives with order α > 0 of the given
function f (t), t ∈ (a,b) are defined as

CDα
a,t f (t) = D−(m−α)

a,t

[
f (m)(t)

]

=
1

Γ(m−α)

∫ t

a
(t− s)m−α−1 f (m)(s)ds,

(1.7)

and

CDα
t,b f (t) =

(−1)m

Γ(m−α)

∫ b

t
(s− t)m−α−1 f (m)(s)ds, (1.8)

respectively, where m is a positive integer satisfying m−1 < α ≤ m.
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Definition 5 The Riesz derivative with order α> 0 of the given function f (t), t ∈ (a,b)
is defined as

RZDα
t f (t) = cα

(
RLDα

a,t f (t)+ RLDα
t,b f (t)

)
, (1.9)

where cα = − 1
2cos(απ/2) ,α � 2k+ 1,k = 0,1, · · · . RZDα

t f (t) is sometimes expressed as
∂α f (t)
∂|t|α .

In the above definitions, the initial value a is often set to zero. When we say the
fractional integral (or Riemann–Liouville integral), the Grünwald–Letnikov deriva-
tive, the Riemann–Liouville derivative, and the Caputo derivative, we often mean the
left fractional integral (or the left Riemann–Liouville integral), the left Grünwald–
Letnikov derivative, the left Riemann–Liouville derivative, and the left Caputo deriva-
tive, respectively if no confusion is caused.

Generally speaking, the above definitions of the Grünwald–Letnikov derivative,
the Riemann–Liouville derivative, and the Caputo derivative are not equivalent. If
f (t) is suitably smooth, i.e. f ∈ Cm[a,b], then the Grünwald–Letnikov derivative of
f (t) and the Riemann–Liouville derivative of f (t) are equivalent, that is

RLDα
a,t f (t) = GLDα

a,t f (t), RLDα
t,b f (t) = GLDα

t,b f (t). (1.10)

The Riemann–Liouville derivative and Caputo derivative of f (t) have following rela-
tion [124]

RLDα
a,t f (t) = CDα

a,t f (t)+
m−1∑

k=0

f (k)(a)(t−a)k−α

Γ(k+1−α)
, (1.11)

where m− 1 < α < m, m is a positive integer, f∈Cm−1[a, t] and f (m) is integrable on
[a, t]. In fact, (1.11) can be obtained by repeatedly performing integration by parts.
Furthermore, if f∈Cm[a, t], then from (1.11) or the Taylor series expansion, we have

RLDα
a,t
[
f (t)−φ(t)

]
= CDα

a,t f (t), (1.12)

where φ(t) =
m−1∑

k=0

f (k)(a)
Γ(k+1) (t−a)k. On the other hand, it is easy to find that

RLDα
a,t f (t) = CDα

a,t f (t) (1.13)

if f (k)(a) = 0 (k = 0,1,2, · · · ,m−1,m−1< α < m), or a = −∞.
For the continuous function f (t), one has

lim
α→0+

D−αa,t f (t) = f (t), α > 0.

Suppose that f (t) is suitably smooth, m−1 < α <m, m is a positive integer. Then one
has

lim
α→m−

RLDα
a,t f (t) = f (m)(t), lim

α→(m−1)+
RLDα

a,t f (t) = f (m−1)(t);

lim
α→m−

CDα
a,t f (t) = f (m)(t), lim

α→(m−1)+
CDα

a,t f (t) = f (m−1)(t)− f (m−1)(0).
(1.14)
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Obviously, the Riemann–Liouville derivative is reduced to the classical derivative
when the fractional order α approaches an integer for the fixed t, but it is not the case
for the Caputo derivative if the homogeneous initial conditions are not satisfied.

Because of the relations (1.11) and (1.10), we mainly focus on introducing
the properties of the Riemann–Liouville derivative operator below. Next, we intro-
duce some further properties for the fractional integral operator and the Riemann–
Liouville derivative operator.

Proposition 1.1.1 ([131]) The left and right Riemann–Liouville fractional integral
operators satisfy the following semi-group properties

D−αa,t D−βa,t f (t) = D−βa,t D
−α
a,t f (t) = D−α−βa,t f (t), (1.15)

D−αt,b D−βt,b f (t) = D−βt,b D−αt,b f (t) = D−α−βt,b f (t), (1.16)

where α, β > 0. If f (t) is continuous on [a,b], then

lim
t→a

D−αa,t f (t) = lim
t→b

D−αt,b f (t) = 0, ∀α > 0. (1.17)

Proposition 1.1.2 ([124, 131]) The left and right Riemann–Liouville fractional
derivative operators satisfy the following properties

RLDα
a,tD

−α
a,t f (t) = f (t), (1.18)

RLDα
t,bD−αt,b f (t) = f (t), (1.19)

where α > 0.

Proposition 1.1.3 ([124, 131]) The left and right Riemann–Liouville fractional
derivative operators satisfy the following properties

D−αa,t

(
RLDα

a,t f (t)
)
= f (t)−

m∑

j=1

[
RLDα− j

a,t f (t)
]

t=a

(t−a)α− j

Γ(α− j+1)
, (1.20)

D−αt,b

(
RLDα

t,b f (t)
)
= f (t)−

m∑

j=1

[
RLDα− j

t,b f (t)
]

t=b

(b− t)α− j

Γ(α− j+1)
, (1.21)

where m−1≤α < m, m is a positive integer. Furthermore,

D−αa,t RLDα
a,t f (t) = f (t), D−αt,b RLDα

t,b f (t) = f (t)

when
[
RLDα− j

a,t f (t)
]

t=a
= 0,

[
RLDα− j

t,b f (t)
]

t=b
= 0, j = 1,2, · · · ,m. (1.22)

If f (t) has a sufficient number of continuous derivatives, then the conditions (1.22)
are equivalent to

f ( j)(a) = 0, f ( j)(b) = 0, j = 0,1, · · · ,m−1. (1.23)

 



Chapter 1 Introduction to Fractional Calculus 5

In effect, (1.22) and (1.23) are generally not equivalent. (1.23) is often chosen to
take the place of (1.22) in numerically studying Riemann–Liouville type differential
equations, mainly for convenience.

Note that
lim
t→a

CDα
a,t f (t) = lim

t→b
CDα

t,b f (t) = 0, α > 0, (1.24)

if f (t) is sufficiently smooth and f (m) is bounded [164]. So the equivalence of (1.22)
and (1.23) can be derived easily from (1.11) and (1.24).

Next, we present the more general cases of (1.18)–(1.21).
For any m−1 ≤ α < m,n−1 ≤ β < n, m,n are positive integers, one has [124]

RLDα
a,t

(
D−βa,t f (t)

)
= RLDα−β

a,t f (t), RLDα
t,b

(
D−βt,b f (t)

)
= RLDα−β

t,b f (t) (1.25)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D−βa,t

(
RLDα

a,t f (t)
)
= RLDα−β

a,t f (t)−
m∑

j=1

[
RLDα− j

a,t f (t)
]

t=a

(t−a)β− j

Γ(1+β− j)
,

D−βt,b

(
RLDα

t,b f (t)
)
= RLDα−β

t,b f (t)−
m∑

j=1

(b− t)β− j

Γ(1+β− j)
.

(1.26)

Next, let us consider the composition of two Riemann–Liouville derivative op-
erators: RLDα

a,t (m− 1 ≤ α < m) and RLDβ
a,t (n− 1 ≤ β < n), where m,n are positive

integers.

Proposition 1.1.4 ([90, 91, 124]) If m−1 ≤ α <m, n−1 ≤ β < n, where m,n are pos-
itive integers, RLDα+β

a,t f (t), RLDα
a,t

(
RLDβ

a,t f (t)
)
, RLDα+β

t,b f (t), and RLDα
t,b

(
RLDβ

t,b f (t)
)

ex-
ist, then

RLDα
a,t

(
RLDβ

a,t f (t)
)
= RLDα+β

a,t f (t)−
n∑

j=1

[
RLDβ− j

a,t f (t)
]

t=a

(t−a)−α− j

Γ(1−α− j)
, (1.27)

RLDα
t,b

(
RLDβ

t,b f (t)
)
= RLDα+β

a,t f (t)−
n∑

j=1

[
RLDβ− j

t,b f (t)
]

t=b

(b− t)−α− j

Γ(1−α− j)
. (1.28)

Furthermore,
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

RLDα
a,t

(
RLDβ

a,t f (t)
)
= RLDβ

a,t

(
RLDα

a,t f (t)
)
= RLDα+β

a,t f (t),

RLDα
t,b

(
RLDβ

t,b f (t)
)
= RLDβ

t,b

(
RLDα

t,b f (t)
)
= RLDα+β

t,b f (t),
(1.29)

if f (t) satisfies the following homogeneous conditions
[
RLDβ− j

a,t f (t)
]

t=a
=
[
RLDβ− j

b,t f (t)
]

t=b

[
RLDα−k

a,t f (t)
]

t=a
=
[
RLDα−k

b,t f (t)
]

t=b
= 0. (1.30)

where j=1,..., n, k=1,..., m.
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In some situations, (1.30) is substituted for f ( j)(a) = f ( j)(b) = 0, j = 0,1, · · · ,r−
1, r =max{m,n}, but this is not mathematically reasonable.

If α or β is a positive integer in (1.27) and (1.28) (for example, α=m is a positive
integer), then

RLDm
a,t

(
RLDβ

a,t f (t)
)
= RLDm+β

a,t f (t). (1.31)

Eq. (1.31) can be derived directly from (1.27) by letting α = m, where one can see
that

n∑

j=1

[
RLDβ− j

a,t f (t)
]

t=a

(t−a)−m− j

Γ(1−m− j)
= 0,

due to 1
Γ(1−m− j) = 0 for the nonpositive integer (1 − m − j). For the operator

RLDβ
a,t

(
RLDm

a,t

)
, the relation

RLDβ
a,tRLDm

a,t = RLDβ+m
a,t

generally does not hold. Actually, we have

RLDβ
a,t

(
RLDm

a,t f (t)
)
=RLDβ+m

a,t f (t)−
m∑

j=1

f (m− j)(a)
Γ(1−β− j)

(t−a)−β− j

=RLDβ+m
a,t f (t)−

m−1∑

j=0

f ( j)(a)
Γ(1+ j−β−m)

(t−a) j−β−m.

(1.32)

Of course, the above relation can be directly deduced from (1.27) by letting β = m
and α = β.

In most real applications, the fractional order between 0 and 2 is of great interest.
Now we consider some properties of a special case, which also has much simpler
forms. Here, we must suppose that the function f (t) is sufficiently smooth on [a,b]
and a certain number of derivatives of f (t) are bounded.

From (1.27) we have

RLDα
a,t

(
RLDβ

a,t f (t)
)
= RLDα+β

a,t f (t), 0 < α,β < 1, (1.33)

where we have used [
RLDμ−1

a,t f (t)
]

t=a
= 0, 0 < μ < 1

due to the sufficiently smooth assumption. Actually from (1.26), (1.27) and (1.28),
for any 0 < β < 1,α ∈ R, we have

RLDα
a,t

(
RLDβ

a,t f (t)
)
= RLDα+β

a,t f (t), RLDα
t,b

(
RLDβ

t,b f (t)
)
= RLDα+β

t,b f (t). (1.34)

In the following, we introduce several properties for the Caputo derivative op-
erator in the real line. And the properties in complex planes can be found in [76].
Using (1.12) and (1.26), we have the following properties for the Caputo derivative
operator.
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Proposition 1.1.5 Let α > 0, n−1 < β < n, n is a positive integer, f ∈Cn[a,b]. Then

D−αa,t

(
CDβ

a,t f (t)
)
= CDβ−α

a,t f (t), α � β, (1.35)

D−αt,b

(
CDβ

t,b f (t)
)
= CDβ−α

t,b f (t), α � β, (1.36)

where CDβ−α
a,t = Dβ−α

a,t and CDβ−α
t,b = Dβ−α

t,b if β < α. Especially

D−βa,t

(
CDβ

a,t f (t)
)
= f (t)−

n−1∑

k=0

f (k)(a)
Γ(k+1)

(t−a)k, (1.37)

D−βt,b

(
CDβ

t,b f (t)
)
= f (t)−

n−1∑

k=0

f (k)(b)
Γ(k+1)

(b− t)k. (1.38)

Proof. We first prove (1.35) and (1.37). By the Taylor series expansion, one has

f (t) =
n−1∑

k=0

f (k)(a)
Γ(k+1)

(t−a)k+D−n
a,t f (n)(t) = φ(t)+D−n

a,t f (n)(t).

Using (1.12) and (1.26) gives

D−αa,t

(
CDβ

a,t f (t)
)
= D−αa,t

(
RLDβ

a,t[ f (t)−φ(t)]
)

=RLDβ−α
a,t [ f (t)−φ(t)]−

n∑

j=1

[
RLDβ− j

a,t ( f (t)−φ(t))
]

t=a

(t−a)−α− j

Γ(1−α− j)

=RLDβ−α
a,t [ f (t)−φ(t)]−

n∑

j=1

[
RLDβ− j−n

a,t f (n)(t)
]

t=a

(t−a)−α− j

Γ(1−α− j)

=RLDβ−α
a,t [ f (t)−φ(t)],

(1.39)

where we use
[
RLDβ− j−n

a,t f (n)(t)
]

t=a
= 0 when (β− j− n) < 0 and f (n)(t) is bounded.

If β = α, then RLDβ−α
a,t [ f (t)− φ(t)] = f (t)− φ(t). If β � α, then RLDβ−α

a,t [ f (t)− φ(t)] =

CDβ−α
a,t f (t). The proofs of (1.35) and (1.37) are completed. The proofs of (1.36) and

(1.38) can be similarly given. All this completes the proof. �

For the operators CDβ
a,tD

−α
a,t and CDβ

t,bD−αt,b , α,β > 0, we have

Proposition 1.1.6 Suppose that α,β > 0, f (t) is sufficiently smooth, CDβ
a,tD

−α
a,t f (t),

CDβ−α
a,t f (t), CDβ

t,bD−αt,b f (t), and CDβ−α
t,b f (t) exist. Then

CDβ
a,t

(
D−αa,t f (t)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D−(α−β)
a,t f (t), β≤α or α < β, α ∈N,

CDβ−α
a,t f (t)+

n−m∑

k=0

f (k)(a)
Γ(k+1+α−β)

(t−a)k+α−β,

α < β, m−1 < α < m, n−1 < β < n, m,n ∈ N.

(1.40)
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CDβ
t,b

(
D−αt,b f (t)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D−(α−β)
t,b f (t), β≤α or α < β, α ∈N,

CDβ−α
t,b f (t)+

n−m∑

k=0

f (k)(b)
Γ(k+1+α−β)

(b− t)k+α−β,

α < β, m−1 < α < m, n−1 < β < n, m,n ∈ N.

(1.41)

Proof. We first prove (1.40). For β≤α, we have

CDβ
a,t

(
D−αa,t f (t)

)
=D−(n−β)

a,t RLDn
a,tD

−α
a,t f (t) = D−(n−β)

a,t D−(α−m)
a,t D−(m−n)

a,t f (t)

=D−(n−β)−(α−n)
a,t f (t) = D−(α−β)

a,t f (t),

where we have used n ≤ m and (1.15).
For the positive integer α, i.e., α = m,m < β, we have

CDβ
a,t

(
D−m

a,t f (t)
)
=D−(n−β)

a,t RLDn
a,tD

−m
a,t f (t) = D−(n−β)

a,t RLDn−m
a,t f (t).

Using n > m and (1.32) yields

CDβ
a,t

(
D−m

a,t f (t)
)
= D−(n−β)

a,t RLDn−m
a,t f (t)

=RLDβ−m
a,t f (t)−

n−m−1∑

j=0

f ( j)(a)
Γ(1+ j+m−β)

(t−a)m−β+ j

=RLDβ−m
a,t ( f (t)−φ(t))+ RLDβ−m

a,t φ(t)−
n−m−1∑

j=0

f ( j)(a)
Γ(1+ j+m−β)

(t−a)m−β+ j

=RLDβ−m
a,t ( f (t)−φ(t)) = CDβ−m

a,t f (t),

where φ(t) =
n−m−1∑

j=0

f ( j)(a)
Γ( j+1) (t−a) j.

For α < β,n−1 < β < n, and m−1 < α <m, one has n−m < n−α < n−m+1. By
using the Taylor series expansion, one has

f (t) =
n−m∑

k=0

f (k)(a)
Γ(k+1)

(t−a)k+D−(n−m)
a,t f (n−m)(t) = φ(t)+D−(n−m)

a,t f (n−m)(t).

Hence,
f (t)−φ(t) = D−(n−m)

a,t f (n−m)(t).

Therefore,
D−αa,t [ f (t)−φ(t)] = D−(n−m)−α

a,t f (n−m)(t),

which implies that RLDk
a,t

[
D−αa,t ( f (t)−φ(t))

]

t=a
= 0 for k = 0,1, · · · ,n−m. Combining
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(1.12) and (1.25) gives

CDβ
a,t

(
D−αa,t f (t)

)
=CDβ

a,tD
−α
a,t [ f (t)−φ(t)]+CDβ

a,tD
−α
a,t φ(t)

=RLDβ
a,tD

−α
a,t [ f (t)−φ(t)]+CDβ

a,tD
−α
a,t φ(t)

=RLDβ−α
a,t [ f (t)−φ(t)]+CDβ

a,tD
−α
a,t φ(t)

=CDβ−α
a,t f (t)+

n−m∑

k=0

f (k)(a)
Γ(k+1+α−β)

(t−a)k+α−β.

(1.42)

The proof of (1.40) is completed. The proof of (1.41) can be similarly given. All this
ends the proof. �

For the Riemann–Liouville derivative operators, we have the relation RLDm
a,t

(
RLDβ

a,t

f (t)
)
= RLDm+β

a,t f (t) for any β > 0 and any nonnegative integer m. While for the Caputo
derivative operators, we have

CDβ
a,tCDm

a,t f (t) = CDm+β
a,t f (t), β > 0,m ∈ N. (1.43)

For CDm
a,tCDβ

a,t, n−1 < β < n, m and n are positive integers, one has

CDm
a,tCDβ

a,t f (t) =RLDm
a,tRLD−(n−β)

a,t f (n)(t) = RLDm−n−β
a,t f (n)(t)

=RLDm+β
a,t f (t)−

n−1∑

j=0

f ( j)(a)
Γ(1+ j−m−β)

(t−a) j−m−β,
(1.44)

where Eq. (1.32) is used. Denote it by

φ(t) =
m+n−1∑

j=0

f ( j)(a)
Γ( j+1)

(t−a) j.

Then

CDm
a,tCDβ

a,t f (t) =CDm+β
a,t f (t)+ RLDm+β

a,t φ(t)−
n−1∑

j=0

f ( j)(a)
Γ(1+ j−m−β)

(t−a) j−m−β

=CDm+β
a,t f (t)+

m+n−1∑

j=n

f ( j)(a)
Γ(1+ j−m−β)

(t−a) j−m−β.

(1.45)

By (1.43) and (1.45), the interchange of the Caputo derivative operators in (1.43) is
allowed under the following conditions:

f ( j)(a) = 0, j = n,n+1, · · · ,m+n−1, m = 0,1,2, · · · . (1.46)

From (1.46) we see that there are no restrictions on the values f ( j)(a) = 0 ( j =
0,1, · · · ,n−1).

 



10 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

For CDα
a,tCDβ

a,t, m− 1 < α < m, n− 1 < β < n, m and n are positive integers, one
can obtain

CDα
a,tCDβ

a,t f (t) = CDα+β
a,t f (t)+ψ(t). (1.47)

In fact, ψ(t) is more complicated than the second term of the right-hand side of (1.27).
Here, we present two special cases of CDα

a,tCDβ
a,t f (t) = CDα+β

a,t f (t) with no restrictions
on f (t) at t = a.

Assume that f ∈Cn[a, t], n is a positive integer, n−1< β≤ n. Hence, 0≤ n−β< 1.
So for 0 < n−β < 1, one has

CDn−β
a,t CDβ

a,t f (t) = CDn−β
a,t D−(n−β)

a,t f (n)(t) = f (n)(t), (1.48)

where (1.40) has been used.
Let 0 < α < 1,n−1 < α+β < n,n−1 < β < n, n is a positive integer, f ∈ Cn[a, t].

Then one has

CDα
a,tCDβ

a,t f (t) =RLDα
a,tCDβ

a,t f (t) = RLDα
a,tRLDβ

a,t( f (t)−φ(t)), (1.49)

where φ(t) =
∑n−1

j=0
f ( j)(a)
Γ( j+1) (t − a) j. It is easy to verify that ( f (k) − φ(k))(a) = 0 for k =

0,1, · · · ,n−1. So

CDα
a,tCDβ

a,t f (t) =RLDα
a,tRLDβ

a,t( f (t)−φ(t))

=RLDα+β
a,t ( f (t)−φ(t))

=CDα+β
a,t f (t).

(1.50)

1.2 Some Other Properties of Fractional Derivatives
In this section, we introduce some more interesting properties of fractional inte-

gration and differentiation. These properties include the linearity, the Leibniz rule,
the behaviors near and far from the lower terminal, the Laplace transform, and the
Fourier transform.

From the definitions of the fractional integrals (see (1.1) and (1.2)) and deriva-
tives (see (1.3)–(1.9)) in the previous section, it is easy to verify that the fractional
integrals and derivatives are linear operators, i.e.,

Dα (λ f (t)+μg(t)) = λDα f (t)+μDαg(t), (1.51)

where Dα denotes any fractional integral or derivative hereafter.

1.2.1 Leibniz Rule for Fractional Derivatives

Next, we investigate the Leibniz rule for the fractional derivative. Let f (t) and
g(t) be two functions with derivatives up to n. Then the Leibniz rule for evaluating
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the n-th derivative of g(t) f (t) gives:

dn

dtn
(
g(t) f (t)

)
=

n∑

k=0

(
n
k

)

g(k)(t) f (n−k)(t). (1.52)

Let us replace n with the real-valued parameter α in the right-hand side of (1.52),
and denote

Ωαn (t) =
n∑

k=0

(
α

k

)

g(k)(t) f (α−k)(t),

where f (α−k)(t) = RLDα−k
a,t f (t) or f (α−k)(t) = GLDα−k

a,t f (t). We now wonder if there ex-
ists a positive integer n such that Ωαn is just the α-th order derivative of g(t) f (t). This
is not the case when α is not an integer. In fact, RLDα

a,t(g(t) f (t)) has the following
form [124]

RLDα
a,t(g(t) f (t)) =

n∑

k=0

(
α

k

)

g(k)(t) f (α−k)(t)−Rαn(t) = Ωαn (t)−Rαn(t), (1.53)

where n≥α+1 and

Rαn (t) =
1

n!Γ(−α)

∫ t

a
(t− τ)−α−1 f (τ)dτ

∫ t

τ
(τ− ξ)ng(n+1)(ξ)dξ. (1.54)

Let ξ = τ+ ς(t− τ) and τ = a+ η(t− a), we obtain the following expression of Rαn (t)
as:

Rαn (t) =
(−1)n(t−a)n−α+1

n!Γ(−α)

∫ 1

0
Fa(t, ζ,η)dζ dη, (1.55)

where
Fa(t, ζ,η) = f (a+η(t−a))g(n+1)(a+ (t−a)(ζ+η− ζη)).

From (1.55), one obtains
lim

n→∞Rαn (t) = 0,

if f (t) and g(t) together with their derivatives are continuous in [a, t]. Under these
conditions the Leibniz rule for fractional differentiation takes the form:

RLDα
a,t(g(t) f (t)) =

∞∑

k=0

(
α

k

)

g(k)(t) f (α−k)(t). (1.56)

Obviously, the above rule (1.56) is especially useful when g(t) is a polynomial.

1.2.2 Fractional Derivative of a Composite Function

The Leibniz rule for the fractional derivative can be used to obtain the fractional
derivative for a composite function.
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Let f (t) = 1 in (1.56), then

RLDα
a,tg(t) =

(t−a)−α

Γ(1−α)
g(t)+

∞∑

k=1

(
α

k

)
(t−a)k−α

Γ(1−α+ k)
g(k)(t). (1.57)

Suppose that g(t) is a composite function, i.e., g(t) = F(h(t)). Then the k-th derivative
of g(t) is evaluated with the help of the Faà di Bruno formula [124]

dk

dtk
F(h(t)) = k!

k∑

m=1

F(m)(h(t))
∑ k∏

r=1

1
ar!

(
h(r)(t)

r!

)ar

, (1.58)

where the sum
∑

extends over all combinations of non-negative integer values of
a1,a2, · · · ,ak such that

k∑

r=1

rar = k and
k∑

r=1

ar = m.

Inserting g(t) = F(h(t)), (1.58) into (1.57) gives the formula for the fractional
derivative of a composite function as:

RLDα
a,tF(h(t)) =

(t−a)−α

Γ(1−α)
F(h(t))

+

∞∑

k=1

(
α

k

)
k!(t−a)k−α

Γ(1−α+ k)

k∑

m=1

F(m)(h(t))
∑ k∏

r=1

1
ar!

(
h(r)(t)

r!

)ar

,

(1.59)

where the sum
∑

and coefficients ar have the meaning explained as above.

1.2.3 Behaviors Near and Far from the Lower Terminal

For the sufficiently smooth function f (t), for example, f (t) is a polynomial, the
classical derivative of f (t) exists and is bounded, but this is not the case for the
fractional derivative operators.

For the simplicity of the theoretical analysis, we suppose that f (t) has an arbitrary
order derivative at the lower terminal (t = a). Therefore, f (t) can be represented by
the Taylor series

f (t) =
n∑

k=0

f (k)(a)
Γ(1+ k)

(t−a)k+D−n
a,t f (n)(t). (1.60)

Applying the Riemann–Liouville derivative operator on both sides of (1.60) and
using term-by-term differentiation yields

RLDα
a,t f (t) =

n∑

k=0

f (k)(a)
Γ(1+ k−α)

(t−a)k−α+Dα−n
a,t f (n)(t), α < n. (1.61)

As t→ a+0,

RLDα
a,t f (t) ∼ f (a)

Γ(1−α)
(t−a)−α. (1.62)
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Hence

lim
t→a+0

RLDα
a,t f (t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, α < 0,
f (a), α = 0,
∞, α > 0.

(1.63)

The simplest example for illustrating (1.63) is to set f (t) = 1. This means that the
fractional initial value(s) in the sense of Riemann–Liouville must be very carefully
given.

Next, we study the behavior of the fractional derivative far from the lower termi-
nal (or, upper terminal), i.e., t→∞. First consider RLDα

a,t f (t), m−1 ≤ α < m, where
f (t) is sufficiently smooth. By the definition of the Riemann–Liouville derivative
operator we have

RLDα
a,t f (t) =

1
Γ(m−α)

dm

dtm

∫ t

a
(t− s)m−α−1 f (s)ds

=
1

Γ(m−α)
dm

dtm

∫ t

0
(t− s)m−α−1 f (s)ds

− 1
Γ(m−α)

dm

dtm

∫ a

0
(t− s)m−α−1 f (s)ds

=RLDα
0,t f (t)− 1

Γ(m−α)
dm

dtm

∫ a

0
(t− s)m−α−1 f (s)ds.

(1.64)

For sufficiently large t (|t| 
 |a|) and bounded f (t) (| f (t)|≤C), one has

∣∣∣∣
1

Γ(m−α)
dm

dtm

∫ a

0
(t− s)m−α−1 f (s)ds

∣∣∣∣

=
∣∣∣∣

1
Γ(1−α)

∫ a

0
(t− s)−α−1 f (s)ds

∣∣∣∣

≤ C
|Γ(−α)|

[
(t−a)−α− t−α

]→ 0 (t→∞).

(1.65)

Therefore, for large enough t we have

RLDα
a,t f (t) ≈ RLDα

0,t f (t), (|t| 
 |a|). (1.66)

For the sufficiently smooth f (t) and α > 0, one has also the following relation [124]

RLDα
a,t f (t) ≈ RLDα

0,t f (t)+
aΓ(α+1)sin(απ) f (0)

πtα+1 , (|t| 
 |a|). (1.67)

For the Caputo derivative operator CDα
a,t, we get

CDα
a,t f (t) ≈ CDα

0,t f (t), (|t| 
 |a|) (1.68)

if | f (m)(t)| is bounded, m−1 < α < m.
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For the fixed t and sufficiently large |a|, i.e., a→−∞, we can similarly obtain

RLDα
a,t f (t) =

1
Γ(m−α)

dm

dtm

∫ t

a
(t− s)m−α−1 f (s)ds

=RLDα
t−a,t f (t)− 1

Γ(m−α)
dm

dtm

∫ t−a

a
(t− s)m−α−1 f (s)ds.

(1.69)

Similar to (1.65), we can obtain

1
Γ(m−α)

dm

dtm

∫ t−a

a
(t− s)m−α−1 f (s)ds→ 0 (1.70)

when | f (m−1)(t)| is bounded and a→−∞. Hence,

RLDα
a,t f (t) ≈ RLDα

t−a,t f (t), |a| 
 |t|. (1.71)

In a similar manner, we can obtain

CDα
a,t f (t) ≈ CDα

t−a,t f (t), |a| 
 |t| (1.72)

if | f (m)(t)| is bounded, m−1 < α < m.

1.2.4 Laplace Transforms of Fractional Derivatives

The Laplace transform of a given function f (t) is defined as

F(s) = L{ f (t); s} =
∫ ∞

0
e−st f (t)dt. (1.73)

The existence of the integral (1.73) requires that the function f (t) must be of expo-
nential order μ such that for positive constants M and T

| f (t)|≤Meμt holds for all t > T.

The original function f (t) in (1.73) can be restored from F(s) with the help of the
inverse Laplace transform

f (t) = L−1{F(s); t} = 1
2πi

∫ c+i∞

c−i∞
estF(s)ds, c = Re(s) > c0, (1.74)

where c0 lies in the right half plane of the absolute convergence of the Laplace inte-
gral (1.73).

Next, we present two important properties that will be useful in obtaining the
Laplace transform of the fractional derivative operators.

The first property states that the Laplace transform of the convolution

f (t) ∗g(t) =
∫ t

0
f (t− s)g(s)ds =

∫ t

0
f (s)g(t− s)ds (1.75)
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is given as
L{ f (t) ∗g(t); s} = F(s)G(s), (1.76)

where F(s) and G(s) are Laplace transforms of f (t) and g(t), respectively, and f (t)
and g(t) are equal to zero for t < 0.

The second property states that the Laplace transform of f (n)(t) is given by:

L{ f (n)(t); s} = snL{ f (t); s}−
n−1∑

k=0

sn−k−1 f (k)(0) = snL{ f (t); s}−
n−1∑

k=0

sk f (n−k−1)(0),

(1.77)
which can be obtained from the definition of the Laplace transform (1.73) by integrat-
ing by parts under the assumption that the corresponding integrals exist (for instance,
f (n−1) is bounded).

Next, let us start with the Laplace transform of the fractional integral. Let α > 0
and g(t) = tα−1. Then the fractional integral D−α0,t f (t) can be rewritten as

D−α0,t f (t) =
1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds =

1
Γ(α)

tα−1 ∗ f (t). (1.78)

It is easy to calculate that

G(s) = L{tα−1; s} = Γ(α)s−α. (1.79)

Hence

L{D−α0,t f (t); s} = 1
Γ(α)

L{tα−1 ∗ f (t); s} = s−αL{ f (t); s} = s−αF(s). (1.80)

Now let us turn to the Laplace transform of the Riemann–Liouville derivative
operator with order α,m−1 ≤ α < m. Let

g(t) = D−(m−α)
0,t f (t). (1.81)

Then
RLDα

0,t f (t) = g(m)(t). (1.82)

Applying (1.77) gives

L{RLDα
0,t f (t); s} = L{g(m)(t); s} = smL{g(t); s}−

m−1∑

k=0

skg(m−k−1)(0). (1.83)

By (1.80) one has

L{g(t); s} = L{D−(m−α)
0,t f (t); s} = s−(m−α)L{ f (t); s}. (1.84)

Combining (1.81)–(1.84) gives the Laplace transform of the Riemann–Liouville
derivative as

L{RLDα
0,t f (t); s} = sαL{ f (t); s}−

m−1∑

k=0

sk
[
RLDα−k−1

0,t f (t)
]

t=0
, m−1 ≤ α < m. (1.85)
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Next, let us turn attention to the Laplace transform of the Caputo derivative oper-
ator. The α-th order Caputo derivative of f (t) can be written as

CDα
0,t f (t) = D−(m−α)

0,t g(t), g(t) = f (m)(t). (1.86)

Using (1.80) and (1.77) gives

L{CDα
0,t f (t); s} =L{D−(m−α)

0,t g(t); s} = s−(m−α)L{g(t); s}

=s−(m−α)

⎡
⎢⎢⎢⎢⎢⎢⎣s

mL{ f (t); s}−
m−1∑

k=0

sm−k−1 f (k)(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

=sαL{ f (t); s}−
m−1∑

k=0

sα−k−1 f (k)(0).

(1.87)

Therefore, the Laplace transform of the Caputo derivative operator reads as

L{CDα
0,t f (t); s} =sαL{ f (t); s}−

m−1∑

k=0

sα−k−1 f (k)(0), m−1 < α ≤ m. (1.88)

1.2.5 Fourier Transforms of Fractional Derivatives

The Fourier transform of a continuous function f (t) that is absolutely integrable
in (−∞,∞) is defined by

F{ f (t);ω} =
∫ ∞

−∞
e−iωt f (t)dt. (1.89)

The original function f (t) in (1.89) can be restored from F{ f (t);ω} with the help of
the inverse Fourier transform:

f (t) =
1

2π

∫ ∞

−∞
F{ f (t);ω}eiωt f (t)dω. (1.90)

Similar to (1.75) and (1.76), the Fourier transform of the convolution

f (t) ∗g(t) =
∫ ∞

−∞
f (t− s)g(s)ds =

∫ ∞

−∞
f (s)g(t− s)ds (1.91)

satisfies
F{ f (t) ∗g(t);ω} = F{ f (t);ω}F{g(t);ω}. (1.92)

A useful property of the Fourier transform is the Fourier transform of the deriva-
tives of f (t). If f (k)(t) (k = 0,1,2, · · · ,n−1) vanish as t→±∞, then the Fourier trans-
form of f (n)(t) is given as

F{ f (n)(t);ω} = (iω)nF{ f (t);ω}. (1.93)
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Next, we investigate the Fourier transform of the fractional integral operator D−αa,t
with a = −∞ and 0 < α < 1. Let

h+(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tα−1

Γ(α)
, t > 0,

0, t = 0.
(1.94)

Then
D−α−∞,t f (t) = h+(t) ∗ f (t). (1.95)

It is easy to calculate that
F{h+(t);ω} = (iω)−α. (1.96)

Therefore
F{D−α−∞,t f (t);ω} =F{h+(t) ∗ f (t);ω} = F{h+(t);ω}F{ f (t);ω}

=(iω)−αF{ f (t);ω}. (1.97)

For the right fractional integral operator D−αt,∞, one has

D−αt,∞ f (t) = h+(−t) ∗ f (t). (1.98)

Note that
F{h+(−t);ω} = (−iω)−α. (1.99)

Hence

F{D−αt,∞ f (t);ω} = F{h+(−t);ω}F{ f (t);ω} = (−iω)−αF{ f (t);ω}. (1.100)

Next, we discuss the Fourier transform for the fractional derivatives. Suppose
that m− 1 < α < m, f (t) is sufficiently smooth and f (k)(−∞) (k = 0,1, · · · ,m− 1) are
bounded. Then from (1.10) and (1.11), we see that the left Riemann–Liouville deriva-
tive, the left Grünwald–Letnikov derivative, and the left Caputo derivative have the
same form:

GLDα−∞,t f (t)

RLDα−∞,t f (t)

CDα−∞,t f (t)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= D−(m−α)

−∞,t f (m)(t), m−1 < α < m. (1.101)

One can similarly obtain

GLDα
t,∞ f (t)

RLDα
t,∞ f (t)

CDα
t,∞ f (t)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= (−1)mD−(m−α)

t,∞ f (m)(t), m−1 < α < m. (1.102)

Now, let us turn to the evaluation of the Fourier transform of (1.101). From (1.97)
and (1.102) one has

F{RLDα−∞,t f (t);ω} = F{RLD−(m−α)
−∞,t f (m)(t);ω}

=(iω)−(m−α)F{ f (m)(t);ω} = (iω)−(m−α)(iω)mF{ f (t);ω}
=(iω)αF{ f (t);ω}.

(1.103)

We can similarly obtain

F{RLDα
t,∞ f (t);ω} = (−iω)αF{ f (t);ω}. (1.104)
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1.3 Some Other Fractional Derivatives and Extensions
In this section, we introduce some extensions of the fractional derivatives.

1.3.1 Marchaud Fractional Derivative

Consider the Riemann–Liouville derivative (1.5) with a = −∞ and 0 < α < 1. For
convenience, let us suppose that f (t) is a sufficiently “good” function, for example,
f (t) is continuously differentiable with its derivatives, f ′(t), vanishing at the infinity
as |t|α−1−ε , ε > 0. Then we obtain

RLDα−∞,t f (t) =
1

Γ(1−α)
d
dt

∫ t

−∞
(t− s)−α f (s)ds

=
1

Γ(1−α)

∫ t

−∞
(t− s)−α f ′(s)ds

=
1

Γ(1−α)

∫ ∞

0
ξ−α f ′(t− ξ)dξ

=
α

Γ(1−α)

∫ ∞

0

f (t)− f (t− ξ)
ξ1+α dξ.

(1.105)

One can similarly get

RLDα
t,∞ f (t) =

α

Γ(1−α)

∫ ∞

0

f (t)− f (t+ ξ)
ξ1+α dξ (1.106)

for sufficiently “good” function f (t).
From the structures of (1.105) and (1.106), the so called Marchaud fractional

derivatives can be derived. The left and right Marchaud fractional operators with
order α (0 < α < 1) are defined as

MDα
+ f (t) =

α

Γ(1−α)

∫ ∞

0

f (t)− f (t− ξ)
ξ1+α dξ, (1.107)

and

MDα− f (t) =
α

Γ(1−α)

∫ ∞

0

f (t)− f (t+ ξ)
ξ1+α dξ. (1.108)

If f (t), with its derivatives f (k)(t) (k = 1,2, · · · ,m), is continuous and vanishes at
infinity as |t|α−1−ε , ε > 0, m−1 < α < m, then it follows from (1.5) that

RLDα−∞,t f (t) =
dm−1

dtm−1

[
D{α}−∞,t f (t)

]
=

{α}
Γ(1− {α})

∫ ∞

0

f (m−1)(t)− f (m−1)(t− ξ)
ξ1+{α} dξ,

(1.109)
where {α} = α−m+1, and (1.105) is used.
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Hence, for any α > 0, we can define the left and right Marchaud fractional deriva-
tives as

MDα
+ f (t) =

dm−1

dtm−1

[
D{α}+ f (t)

]
=

{α}
Γ(1− {α})

∫ ∞

0

f (m−1)(t)− f (m−1)(t− ξ)
ξ1+{α} dξ

(1.110)
and

MDα− f (t) =
dm−1

dtm−1

[
D{α}− f (t)

]
=

{α}
Γ(1− {α})

∫ ∞

0

f (m−1)(t)− f (m−1)(t+ ξ)
ξ1+{α} dξ,

(1.111)
respectively, where {α} = α−m+1, m−1 < α < m.

1.3.2 The Finite Parts of Integrals

From (1.105), we know that if f (t) is “good,” then RLDα−∞,t f (t) = Dα
+ f (t). One

can also find that RLDα−∞,t f (t) can be obtained from D−α−∞,t f (t) if we replace α with
−α. We know that

α

Γ(1−α)

∫ ∞

0

f (t− ξ)
ξ1+α dξ

is divergent to infinity. In spite of this, its finite part in the sense of Hadamard is
introduced below.

Definition 6 Let a functionΦ(t) be integrable on an interval (ε,A) for any A (> ε > 0).
The function Φ(t) is said to possess the Hadamard property at the point t = 0 if there
exist constants ak,b and λk > 0 such that

∫ A

ε
Φ(t)dt =

N∑

k=1

akε
−λk +b ln

1
ε
+ J0(ε), (1.112)

where lim
ε→0

J0(ε) exists and is finite. Set

p.f.
∫ A

0
Φ(t)dt = lim

ε→0
J0(ε). (1.113)

The limit (1.113) is called a finite part of the divergent integral
∫ A

0 Φ(t)dt in the
Hadamard sense or simply an integral in the Hadamard sense. The constructive re-
alization of the function J0(ε) is sometimes called a regularization of the integral
∫ A

0 Φ(t)dt.

It is not difficult to find that the constants ak,b and λk > 0 in (1.112) are not
dependent on A. Hence, one can easily obtain

p.f.
∫ ∞

0
Φ(t)dt = p.f.

∫ A

0
Φ(t)dt+

∫ ∞

A
Φ(t)dt, (1.114)

where A is arbitrarily chosen with A > 0.
Next we introduce several properties of the finite part of integrals due to

Hadamard.
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Lemma 1.3.1 ([134]) Let 0 < α < 1 and f (t) be locally Hölderian of order λ > α.
Then the function Φ(s) = f (t− s)s−1−α possesses the Hadamard property at the point
s = 0 for each t and if | f (s)|≤c|s|α−ε , ε > 0, as s→−∞, then

p.f.
∫ ∞

0

f (t− s)
s1+α ds =

∫ ∞

0

f (t− s)− f (t)
s1+α ds.

Lemma 1.3.2 ([134]) Let f (t) ∈ Cm and f (t) be locally Hölderian of order λ, 0 <
λ < 1. Then the functionΦ(s)= f (t− s)s−1−α possesses the Hadamard property at the
point s = 0 for each t and α < m+λ. If | f (s)|≤c|s|α−ε also holds, ε > 0 for s→ −∞,
then

1
Γ(−α)

p.f.
∫ ∞

0

f (t− s)
s1+α ds =

1
Γ(−α)

∫ 1

0

f (t− s)−∑m
k=0(−1)k sk

k! f (k)(t)

s1+α ds

+
1
Γ(−α)

∫ ∞

0

f (t− s)
s1+α ds+

m∑

k=0

(−1)k

k!
f (k)(t)

Γ(−α)(k−α)
,

(1.115)

where α < m+λ,α � 0,1,2, · · · .
Theorem 1 ([134]) Let f (t) satisfy the assumption of Lemma 1.3.2 with m − 1 <
α≤m. Then the Liouville fractional derivative RLDα−∞,t f (t) coincides with (1.115)
for any α > 0,α � 1,2, · · · .

1.3.3 Directional Integrals and Derivatives in R2

Definition 7 Let α > 0, θ ∈ [0,2π) be given. The α-th order fractional integral in the
direction of θ is given by

D−αθ u(x,y) =
1
Γ(α)

∫ ∞

0
ξα−1u(x− ξ cosθ,y− ξ sinθ)dξ. (1.116)

Remark 1.3.1 It is easy to see that for special directions as θ = 0, π/2, π and 3π/2,
the directional operator is reduced to left and right Riemann–Liouville integral oper-
ators, i.e.,

D−α0 u(x,y) = D−α−∞,xu(x,y),
D−απ u(x,y) = D−αx,∞u(x,y),
D−απ/2u(x,y) = D−α−∞,yu(x,y),

D−α3π/2u(x,y) = D−αy,∞u(x,y).

(1.117)

The directional derivatives can be similarly defined as in (1.5).

Definition 8 Let n be a positive integer satisfying n−1 ≤ α < n, θ ∈ [0,2π). Then the
α-th order fractional derivative in the direction θ is defined by

Dα
θ u(x,y) = Dn

θD
−(n−α)
θ u(x,y), (1.118)

where Dn
θ is given by

Dn
θu(x,y) =

(

cosθ
∂

∂x
+ sinθ

∂

∂y

)n

u(x,y). (1.119)
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Next, we list some properties of the directional integrals and derivatives, which
are similar to those of the fractional integrals and derivatives.

Proposition 1.3.1 ([131]) The fractional directional integral operator satisfies the
following semi-group properties

D−αθ D−βθ u(x,y) = D−α−βθ u(x,y), (1.120)

where α, β > 0, θ ∈ [0,2π), u ∈ L2(R2).

Proposition 1.3.2 ([131]) For α > 0, θ ∈ [0,2π), u ∈ L2(R2), the following relation
holds

Dα
θD−αθ u(x,y) = u(x,y). (1.121)

Proposition 1.3.3 ([131]) The fractional directional integral operator D−α
θ

satisfies
the following Fourier transform property

F{D−αθ u(x,y);ω} = (iω1 cosθ+ iω2 sinθ)−αF{u(x,y);ω}, (1.122)

where ω = (ω1,ω2) and

F{u(x,y);ω} =
∫

R2
e−i(ω1 x+ω2y)u(x,y)dxdy.

Proposition 1.3.4 ([131]) For u ∈C∞0 (Ω),Ω ∈ R2 and α > 0, we have

F{Dα
θ u(x,y);ω} = (iω1 cosθ+ iω2 sinθ)αF{u(x,y);ω}. (1.123)

1.3.4 Partial Fractional Derivatives

Similar to the classical partial derivatives, we can also define the partial frac-
tional derivatives [134]. For example, let 0 < α1,α2 < 1, the partial fractional deriva-
tive RLDα1+α2

xα1 yα2 u(x,y) is defined by

RLDα1+α2
xα1 yα2 u(x,y) = RLDα2

0,y

[
RLDα1

0,xu(x,y)
]

=RLDα2
0,y

[
1

Γ(1−α1)
∂

∂x

∫ x

0
(x− s)−α1u(s,y)ds

]

=
1

Γ(1−α1)Γ(1−α2)
∂2

∂x∂y

∫ x

0

∫ y

0
(x− s)−α1(y− τ)−α2u(s, τ)dτds.

(1.124)

Obviously, if u(x,y) is “good” enough, then one can easily obtain

RLDα1+α2
xα1 yα2 u(x,y) = RLDα2+α1

yα2 xα1 u(x,y).

For any α1,α2 > 0, we can give the following definition of the partial fractional
derivative.
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Definition 9 The partial fractional derivative operator RLDα1+α2
xα1 yα2 with order (α1 +

α2) is defined by

RLDα1+α2
xα1 yα2 u(x,y) =

1
Γ(m−α1)Γ(n−α2)

∂m+n

∂xm∂yn

×
∫ x

0

∫ y

0
(x− s)m−α1−1(y− τ)n−α2−1u(s, τ)dτds,

(1.125)

where m−1 < α1 < m, n−1 < α2 < n, m, n are positive integers.

Similar to (1.125), the definition of the partial fractional derivative in the
Riemann–Liouville sense can be given below.

Definition 10 The partial fractional derivative operator RLDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

with order

(α1 +α2+ · · ·+α�) is defined by

RLDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

u(x1, · · · , x�) = 1
∏�

k=1Γ(mk −αk)

∂m1+m2+···+m�

∂xm1
1 ∂xm2

2 · · ·∂xm�
�

×
∫ x1

0
· · ·
∫ x�

0
(x� − ξ�)m�−α�−1 · · · (x1− ξ1)m1−α1−1u(ξ1, · · · , ξ�)dξ1 · · · dξ�,

(1.126)

where mk −1 < αk < mk (k = 1,2, · · · , �), mk are positive integers.

We can define the partial fractional derivative in the Caputo sense.

Definition 11 The partial fractional derivative operator CDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

with order

(α1 +α2+ · · ·+α�) is defined by

CDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

u(x,y)

=
1

∏�
k=1 Γ(mk−αk)

∫ x1

0
· · ·
∫ x�

0
(x�− ξ�)m�−α�−1 · · · (x1− ξ1)m1−α1−1

× ∂m1+m2+···+m�

∂ξ
m1
1 ∂ξ

m2
2 · · ·∂ξm�

�

u(ξ1, · · · , ξ�)dξ1 · · · dξ�,

(1.127)

where mk −1 < αk < mk (k = 1,2, · · · , �), mk are positive integers.
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Similar to (1.14), one has

lim
αi→m−i

RLDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

u(x1, · · · , x�) = RLDα1+···+αi−1+αi+1+···+α�
x
α1
1 ···x

αi−1
i−1 x

αi+1
i+1 ···x

α�
�

∂mi

∂xmi
i

u(x1, · · · , x�),

lim
αi→(mi−1)+

RLDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

u(x1, · · · , x�) = RLDα1+···+αi−2+αi+···+α�
x
α1
1 ···x

αi−2
i−2 x

αi
i ···x

α�
�

∂mi−1

∂xmi−1
i

u(x1, · · · , x�);

lim
αi→m−i

CDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

u(x1, · · · , x�) = CDα1+···+αi−1+αi+1+···+α�
x
α1
1 ···x

αi−1
i−1 x

αi+1
i+1 ···x

α�
�

∂mi

∂xmi
i

u(x1, · · · , x�),

lim
αi→(mi−1)+

CDα1+α2+···+α�
x
α1
1 x

α2
2 ···x

α�
�

u(x1, · · · , x�) = CDα1+···+αi−2+αi+···+α�
x
α1
1 ···x

αi−2
i−2 x

αi
i ···x

α�
�

∂mi−1

∂xmi−1
i

u(x1, · · · , x�)

−CDα1+···+αi−2+αi+···+α�
x
α1
1 ···x

αi−2
i−2 x

αi
i ···x

α�
�

∂mi−1

∂xmi−1
i

u(x1, · · · , xi−2,0, xi, · · · , x�).
(1.128)

1.4 Physical Meanings
It is known that classical calculus (or “calculus” for brevity) means integra-

tion and differentiation. So fractional calculus also means fractional integration and
fractional differentiation. Different from the typical derivative, there are more than
six kinds of definitions of fractional derivatives. They are not mutually equivalent.
Among these definitions, the Riemann–Liouville derivative and the Caputo deriva-
tive which are defined on the basis of fractional integral (or, Riemann–Liouville in-
tegral) are most frequently used. Stochastic experts, pure mathematicians and physi-
cists would rather use the former, while applied mathematicians and engineers prefer
to utilize the latter, mainly due to their respective research backgrounds [46, 107].

In the following, we explain that fractional calculus is not the mathematical gen-
eralization of classical calculus.

For the Caputo derivative, if we fix t and let the order α ∈ (n− 1,n) vary, so we
have

lim
α→(n−1)+

CDα
0,t x(t) = x(n−1)(t)− x(n−1)(0), lim

α→n− CDα
0,t x(t) = x(n)(t).

It follows that the Caputo derivative is not the mathematical extension of a typical
derivative. More explanations can be found in [77].

Next consider a simple function below,

x(t) =
{

1− t, t ∈ [0,1],
t−1, t ∈ (1,1+ t0).

RLDα
0,t x(t) (α ∈ (0,1)) exists on the interval (0,1+ t0], while x′(t) exists on the domain

[0,1)∪ (1,1+ t0]. If RLDα
0,t x(t) (α ∈ (0,1)) is the generalization of x′(t), then the in-

terval (0,1+ t0] should be “bigger” than the domain [0,1)∪ (1,1+ t0]. But it is not
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true. So the Riemann–Liouville derivative is not the mathematical generalization of
the typical derivative, either. More illustrations are given in [81, 91].

Overall, fractional calculus, closely related to classical calculus, is not direct gen-
eralization of classical calculus in the sense of rigorous mathematics. In the follow-
ing, we give possible physical and geometrical interpretation.

Recalling the integral A =
∫ b

a f (x)dx, from the viewpoint of geometry, it means
the area of the domain {(x,y) | a ≤ x < b, 0 ≤ y ≤ f (x)} presuming that f (x) ≥ 0. From
the viewpoint of physics, it implies the displacement from a to b if f (x) indicates the
velocity at time x. The geometrical and physical meaning of the derivative is well
known to us. For example, f ′(x) indicates the slope of the curve f (x) at x. On the
other hand, if s(t) is the displacement at time t, then, s′(t) stands for the velocity at
time t, s′′(t) the acceleration at time t. Now, we give a possible interpretation of the
fractional calculus.

The fractional integral with order α

D−αa,t f (t) = RLD−αa,t f (t) =
1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds

can be rewritten as

D−αa,t f (t) =
∫ t

a
f (τ)dYα(τ),

where

Yα(τ) =
{ − (t−τ)α

Γ(α+1) , τ ∈ [a, t],
0, τ < a.

This is the standard Stieltjes integral. Yα(τ) is a monotonously increasing function in
(−∞, t]. The positive number α is an index characterizing the singularity: the smaller
α, the stronger singularity the integral. If Yα(τ) = τ, the above integral is reduced to
a typical one. So D−αa,t f (t) indicates the generalized area in the sense of length Yα(τ)
(geometrical meaning) or the generalized displacement in the sense of Yα(τ) if f (t)
means the velocity at time t (physical meaning).

The Riemann–Liouville derivative with order α ∈ (0,1) can be written as

RLDα
a,t f (t) =

d
dt

∫ t

a
f (τ)dY1−α(τ),

where

Y1−α(τ) =

⎧
⎪⎪⎨
⎪⎪⎩
− (t−τ)1−α
Γ(2−α) , τ ∈ [a, t],

0, τ < a.

Obviously, Y1−α(τ) is a monotonously increasing function in (−∞, t]. So RLDα
a,t f (t)

indicates the generalized slope in the sense of length Y1−α(τ) if f (t) means the slope
(geometrical meaning) or the generalized velocity in the sense of length Y1−α(τ) if
f (t) means the velocity (physical meaning). If Y1−α(τ) = τ, it is reduced to the classi-
cal case.
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Similarly, the interpretation of the Caputo derivative can be also given. In effect,
the Caputo derivative with order α ∈ (0,1) is written as

CDα
a,t f (t) =

∫ t

a
f ′(τ)dY1−α(τ),

where

Y1−α(τ) =

⎧
⎪⎪⎨
⎪⎪⎩
− (t−τ)1−α
Γ(2−α) , τ ∈ [a, t],

0, τ < a.

So CDα
a,t f (t) indicates the generalized displacement of the curve f (t) in the sense

of length Y1−α(τ) (physical meaning) if f (t) means the displacement, or represents
the generalized curve in the sense of length Y1−α(τ) if f (t) is a curve (geometrical
meaning). If Y1−α(τ) = τ, the above integral is reduced to the typical one.

1.5 Fractional Initial and Boundary Problems
How to determine the definite conditions for fractional differential systems seems

to be a ticklish matter [91]. But after careful analysis, one can grasp it. In the follow-
ing, we first study the Caputo case.

Consider the following Caputo-type differential equation

CDα
0,t x(t) = f (x, t), n−1 < α < n ∈ Z+.

Noticing that CDα
0,t x(t) = D−(n−α)

0,t Dnx(t) =D−(n−α)
0,t x(n)(t), acting RLDn−α

0,t in both sides
of the above equation yields

x(n)(t) = RLDn−α
0,t f (x, t) =

1
Γ(α−n+1)

d
dt

∫ t

0
(t− τ)α−n f (x(τ), τ)dτ =: F(x, t).

It immediately follows that the initial value conditions of the Caputo-type differential
equation are given as x(k)(0) = x(k)

0 ,k = 0,1, . . . ,n−1. So the initial value condition(s),
boundary value condition(s), the initial and boundary value conditions of the Caputo-
type (ordinary or partial) differential equation are the same as those of the classical
(ordinary or partial) differential equation. Therefore we do not discuss the definite
conditions of the Caputo-type differential equation any more.

In the following, we consider the Riemann–Liouville type differential equation,

RLDα
0,t x(t) = f (x, t), n−1 < α < n ∈ Z+.

Noting RLDα
0,t x(t) = dn

dtn RLD−(n−α)
0,t x(t), the above equation can be changed into

dn

dtn
(

RLD−(n−α)
0,t x(t)

)
= f (x, t),
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therefore the initial value conditions of the Riemann–Liouville type differential equa-
tion should be given as

dk

dtk
(

RLD−(n−α)
0,t x(t)

)

t=0
= RLDk+α−n

0,t x(t)|t=0 = x(k)
0 , k = 0,1, . . . ,n−1.

When k = 0, the corresponding initial value condition is the integral initial value con-
dition. Such definite conditions for this Riemann–Liouville type differential equa-
tion makes the Cauchy problem well-posed. Here “being well-posed” means the ex-
istence, uniqueness and stability of its solution. Please note that the above initial
value conditions can not be replaced by the classical initial value conditions x(k)(0) =
x(k)

0 ,k = 0,1, . . . ,n− 1; otherwise, the problem will be ill-posed. In effect, if x(t) is
a solution to the above Riemann–Liouville-type differential equation, then x(0+) =
limx→0+ x(t) is often unbounded. Under RLDk+α−n

0,t x(t)|t=0 = 0, k = 0,1, . . . ,n− 1, the
initial value conditions of the Riemann–Liouville type differential equation is often
transformed as x(k)(0)= 0,k = 0,1, . . . ,n−1. However, this is not mathematically true.
If some extra conditions are imposed, then we can do it like this. Ref. [39] seems to
give a suitable choice.

Based on the above analysis, we can give two point boundary value conditions
for the Riemann–Liouville type differential equation as follows,

RLDα
a,xy(x) = f (x,y), x ∈ (a,b), 1 < α < 2,

its boundary value conditions can be given as:
i) RLDα−2

a,x y(x)|x=a = c1, RLDα−2
x,b y(x)|x=b = c2,

or,
ii) RLDα−1

a,x y(x)|x=a = c3, RLDα−1
x,b y(x)|x=b = c4,

or,
iii) RLDα−2

a,x y(x)|x=a = c1, RLDα−1
x,b y(x)|x=b = c4,

or,
iv) RLDα−1

a,x y(x)|x=a = c3, RLDα−2
x,b y(x)|x=b = c2.

Next, we only list the initial-boundary value problem of the Riemann–Liouville
type partial differential equation,

RLDα
0,tu(x, t) = RLDβ

a,xu(x, t), t > 0, x ∈ (a,b), α ∈ (0,1), β ∈ (1,2),

where RLDα
0,tu(x, t) means the α-th order partial derivative of u(x, t) with respect to t

and RLDβ
a,xu(x, t) means the β-th order partial derivative of u(x, t) with respect to x.

The initial value condition of this fractional partial differential equation is given as

RLDα−1
0,t u(x, t)|t=0 = φ(x).

Its boundary value conditions can be of Dirichlet type (the first class), or of Neumann
type (the second class), or of Rubin type (the third class), which are presented below:

i) Dirichlet type

RLDβ−2
a,x u(x, t)|x=a = ξ1(t), RLDβ−2

x,b u(x, t)|x=b = ξ2(t).
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ii) Neumann type

RLDβ−1
a,x u(x, t)|x=a = ξ1(t), RLDβ−1

x,b u(x, t)|x=b = ξ2(t).

iii) Rubin type
(

RLDβ−1
a,x u(x, t)−σ1 RLDβ−2

a,x u(x, t)
)

x=a
= ξ1(t), σ1 > 0,

(
RLDβ−1

x,b u(x, t)+σ2 RLDβ−2
x,b u(x, t)

)

x=b
= ξ2(t), σ2 > 0.

If α ∈ (1,2) and β remains unchanged, then two initial value conditions are needed
which read as below,

RLDα−2
0,t u(x, t)|t=0 = φ(x), RLDα−1

0,t u(x, t)|t=0 = ψ(x).

The boundary value conditions are unchanged.
For the fractional partial differential equation, the definite conditions need to be

properly proposed, otherwise the corresponding initial-boundary value problems will
be ill-posed.

 



Chapter 2
Numerical Methods for Fractional Integral
and Derivatives

In the previous chapter, the important properties of the most frequently used
fractional integral and fractional derivatives are introduced. In this chapter, we
mainly construct the efficient algorithms for Riemann–Liouville integrals, Riemann–
Liouville derivatives, Caputo derivatives, and Riesz derivatives, etc.

2.1 Approximations to Fractional Integrals
The fractional integral operator plays an important role in fractional calculus,

which is useful for converting the fractional differential equations into integral equa-
tions with a weakly singular kernel. So it is necessary to study the numerical methods
for approximating fractional integrals. This section introduces numerical approaches
used to approximate the fractional integrals based on the polynomial interpolation.

Suppose that f (t)∈C(I), I = [0,T ]. Let Δt be the step size with Δt = T/nT ,nT ∈N,
and denote by tk = kΔt. Next, we investigate how to numerically calculate the follow-
ing integral

D−α0,t f (t) =
1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, α > 0. (2.1)

One way to numerically calculate (2.1) is to approximate f (t) by a certain func-
tion f̃ (t) in order that D−α0,t f̃ (t) can easily be calculated exactly. We naturally think of
the polynomial approximation of f (t) on the interval [0,T ]. Theoretically speaking,
D−α0,t f̃ (t) can be calculated exactly if f̃ (t) is a polynomial. For t = tn, n∈N, we rewrite
[
D−α0,t f (t)

]

t=tn
as the following form

[
D−α0,t f (t)

]

t=tn
=

1
Γ(α)

∫ tn

0
(tn− s)α−1 f (s)ds

=
1
Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn − s)α−1 f (s)ds.

(2.2)

Next, we introduce the numerical methods based on the polynomial interpolation
to calculate (2.2).

29
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2.1.1 Numerical Methods Based on Polynomial Interpolation

This subsection extends the numerical methods for the classical integrals to the
fractional integrals.

• Fractional Rectangular Formula

On each subinterval [tk, tk+1],k = 0,1, · · · ,n−1, the function f (t) is approximated by
a constant, i.e.,

f (t)|[tk ,tk+1)≈ f̃ (t)|[tk ,tk+1) = f (tk), (2.3)

one obtains
[
D−α0,t f (t)

]

t=tn
=

1
Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn− s)α−1 f (s)ds

≈ 1
Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn− s)α−1 f (tk)ds

=

n−1∑

k=0

bn−k−1 f (tk),

(2.4)

where

bk =
Δtα

Γ(α+1)
[
(k+1)α− kα

]
. (2.5)

Hence,
[
D−α0,t f (t)

]

t=tn
≈

n−1∑

k=0

bn−k−1 f (tk). (2.6)

Similar to the classical left rectangular formula, we call (2.6) the left fractional rect-
angular formula.

Similarly, if
f (t)|(tk ,tk+1]≈ f̃ (t)|(tk ,tk+1] = f (tk+1), (2.7)

then we get the following right fractional rectangular formula

[
D−α0,t f (t)

]

t=tn
≈

n−1∑

k=0

bn−k−1 f (tk+1). (2.8)

The formulae (2.7) and (2.8) can be seen as the special cases of the following
weighted fractional rectangular formula

[
D−α0,t f (t)

]

t=tn
≈

n−1∑

k=0

bn−k−1
[
θ f (tk)+ (1− θ) f (tk+1)

]
, 0≤θ≤1. (2.9)

Of course, one can also obtain the following formula

[
D−α0,t f (t)

]

t=tn
≈

n−1∑

k=0

bn−k−1 f (tk + (1− θ)Δt), 0≤θ≤1. (2.10)
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Remark 2.1.1 If θ = 1 (or 0) in (2.9) (or (2.10)), the left fractional rectangular
formula (2.6) (or right fractional rectangular formula (2.8)) will be recovered. If
α = 1 (or 1/2) in (2.9) (or (2.10)), then the formula (2.9) (or (2.10)) is reduced to
the composite trapezoidal formula (or midpoint formula) for the classical integral
[127].

• Fractional Trapezoidal Formula

On each subinterval [tk, tk+1], f (t) is approximated by the following piecewise poly-
nomial with degree of order one

f (t)|[tk ,tk+1]≈ f̃ (t)|[tk ,tk+1] =
tk+1 − t
tk+1 − tk

f (tk)+
t− tk

tk+1 − tk
f (tk+1), (2.11)

one obtains the fractional trapezoidal formula as follows
[
D−α0,t f (t)

]

t=tn
≈
[
D−α0,t f̃ (t)

]

t=tn

=
1
Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn − t)α−1

( tk+1 − t
tk+1 − tk

f (tk)+
t− tk

tk+1 − tk
f (tk+1)

)

dt

=

n∑

k=0

ak,n f (tk),

(2.12)

where

ak,n =
1
Γ(α)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ t1
0 (tn− t)α−1 t1−t

t1−t0
dt, k = 0,

∫ tk+1
tk

(tn− t)α−1 tk+1−t
tk+1−tk

dt+
∫ tk

tk−1
(tn− t)α−1 t−tk−1

tk−tk−1
dt, 1 ≤ k ≤ n−1,

∫ tn
tn−1

(tn− t)α−1 t−tk−1
tn−tn−1

dt, k = n.
(2.13)

By simple calculation, one has

ak,n =
Δtα

Γ(α+2)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n−1)α+1− (n−1−α)nα, k = 0,

(n− k+1)α+1+ (n−1− k)α+1−2(n− k)α+1, 1 ≤ k ≤ n−1,
1, k = n.

(2.14)

• Fractional Simpson’s Formula

On each subinterval [tk, tk+1], denote by tk+ 1
2
=

tk+tk+1
2 . Interpolating f (t) at the grid

points {tk, tk+1/2, tk+1} on the subinterval [tk, tk+1], i.e., f (t) is approximated by a piece-
wise quadratic polynomial on the whole interval [0, tn], which is given by

f (t)|[tk ,tk+1]≈ f̃ (t)|[tk ,tk+1] =
∑

i∈S
f (ti)lk,i(t), (2.15)
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where {lk,i(t)} are Lagrangian base functions defined on the grid points {t j, j∈S }, S =
{0, 1

2 ,1}, which are given by

lk,i(t) =
∏

j∈S , j�i

t− t j

ti − t j
, i∈S .

Replacing f (t) in (2.2) by f̃ (t) defined by (2.15), one obtains the fractional Simp-
son’s formula as follows

[
D−α0,t f (t)

]

t=tn
≈
[
D−α0,t f̃ (t)

]

t=tn
=

n∑

k=0

ck,n f (tk)+
n−1∑

k=0

ĉk,n f (tk+ 1
2
), (2.16)

where

ck,n =
Δtα

Γ(α+3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
[
(n+1)2+α−n2+α

]
− (α+2)

[
3(n+1)1+α+n1+α

]

+ (α+2)(α+1)(n+1)α, k = 0,

− (α+2)
[
(n+1− k)1+α+6(n− k)1+α+ (n− k−1)1+α

]

+4
[
(n+1− k)2+α− (n−1− k)2+α

]
, 1 ≤ k ≤ n−1,

2−α, k = n,

(2.17)

and

ĉk,n =
4Δtα

Γ(α+3)

{

(α+2)
[
(n+1− k)1+α+ (n− k)1+α

]

−2
[
(n+1− k)2+α− (n− k)2+α

]
}

, 0≤k≤n−1.
(2.18)

• Fractional Newton–Cotes Formula

Theoretically speaking, higher order methods such as fractional Newton–Cotes for-
mulas can be derived if f (t) is approximated by polynomials with higher degrees. On
each subinterval [tk, tk+1], f (t) can be interpolated by a polynomial pk,r(t) of degree
r on the grid points {tk = t(k)

0 , t(k)
1 , · · · , t(k)

r−1, t
(k)
r = tk+1}. Letting

lk,i(t) =
r∏

j=0, j�i

t− t(k)
j

t(k)
i − t(k)

j

,

we get

pk,r(t) =
r∑

i=0

f (t(k)
i )lk,i(t).

Setting f̃ (t)|[xk ,xk+1] = pk,r(t), we can calculate
[
D−α0,t f̃ (t)

]

t=tn
analytically, which yields

the fractional Newton–Cotes formula

[
D−α0,t f (t)

]

t=tn
≈
[
D−α0,t f̃ (t)

]

t=tn
=

n−1∑

k=0

r∑

i=0

A(k)
i,n f (t(k)

i ), (2.19)
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where

A(k)
i,n =

1
Γ(α)

∫ tk+1

tk
(tn− t)α−1lk,i(t)dt

is computable for big k. Here, we do not give the explicit expression of A(k)
i,n .

If f ∈Cr+1([0,T ]), r∈N, then the error estimate of f̃ (t) on each subinterval
[tk, tk+1] can be expressed by

[
f (t)− f̃ (t)

]

[tk ,tk+1]
=

f (r+1)(ξk)
(r+1)!

r∏

j=0

(
t− t(k)

j

)
, ξk ∈ [tk, tk+1].

Therefore, we can get that the error estimate of (2.19) is O(Δtr+1), which can be
simply derived by the following calculation

∣∣∣∣
[
D−α0,t f (t)

]

t=tn
−
[
D−α0,t f̃ (t)

]

t=tn

∣∣∣∣

≤ 1
Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn− t)α−1| f (t)− p(k)

r (t)|dt

≤ max
s∈[0,tn]

{
| f (r+1)(s)|

} 1
(r+1)!

1
Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn− t)α−1

r∏

j=0

∣∣∣∣t− t(k)
j

∣∣∣∣ dt

≤ max
s∈[0,tn]

{
| f (r+1)(s)|

} (tk+1− tk)r+1

(r+1)!Γ(α)

n−1∑

k=0

∫ tk+1

tk
(tn− t)α−1 dt

= max
s∈[0,tn]

{
| f (r+1)(s)|

} tαn
(r+1)!Γ(α+1)

Δtr+1.

(2.20)

Remark 2.1.2 It is known that the error estimate for the classical composite
Newton–Cotes formula is of order O(Δtr+2) for the odd number r [127]. This is not
applicable for the fractional composite Newton–Cotes formula (2.19), which is due
to the nonsymmetry of the weakly singular kernel (tn− t)α−1 that leads to the nonsym-

metry of the remainder term (tn− t)α−1
r∏

j=0

(
t− t(k)

j

)
in the integrand.

Remark 2.1.3 The fractional rectangular formulae (2.6) and (2.7), the fractional
trapezoidal formula (2.12) and the fractional Simpson’s formula (2.16) are special
cases of the fractional Newton–Cotes formula (2.19). Hence, the convergence orders
of these methods are O(Δt) ,O(Δt2) and O(Δt3) for the noninteger number α > 0. If
α = 1, these formulae reduce to the corresponding classical formulas of the classical
integral except that the formulas (2.9) and (2.10) with θ = 1/2 are reduced to the
classical trapezoidal formula and the midpoint formula, respectively.

• Cubic Spline Interpolation
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On each subinterval [tk, tk+1], k = 0,1, · · · ,n−1, f̃ (t) is the cubic spline interpolation
given by the following expression [73]

f̃ (t) |[tk ,tk+1] =

(

1−2
t− tk

tk− tk+1

)(
t− tk+1

tk − tk+1

)2

f (tk)+
(

1−2
t− tk+1

tk+1− tk

)(
t− tk

tk+1 − tk

)2

f (tk+1)

+ (t− tk)
(

t− tk+1

tk − tk+1

)2

f ′(tk)+ (t− tk+1)
(

t− tk
tk+1 − tk

)2

f ′(tk+1).

(2.21)
Then,

[
D−α0,t f (t)

]

t=tn
can be approximated by

[
D−α0,t f (t)

]

t=tn
≈
[
D−α0,t f̃ (t)

]

t=tn
=
Δtα

Γ(α+4)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n∑

j=0

e j,n f (t j)+Δt
n∑

j=0

ê j,n f ′(t j)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.22)

where

e0,n =−6(n−1)2+α(1+2n+α)+nα
(
12n3−6(3+α)n2+ (1+α)(2+α)(3+α)

)
,

e j,n =6
(
4(n− j)3+α+ (n− j−1)2+α(2 j−2n−1−α)

)

+ (1+n− j)2+α(2 j−2n+1+α), j = 1,2, · · · ,n−1,
en,n =6(1+α),

ê0,n =−2(n−1)2+α(3n+α)+n1+α
(
6n2−4(3+α)n+ (2+α)(3+α)

)
,

ê j,n =2(n− j−1)α+2(3 j−3n−α)−2(n− j+1)α+2(3 j−3n+α),
ên,n =−2α.

(2.23)
The error estimate of the formula (2.22) is of order O(Δt4), which is determined by
the error of the cubic spine interpolation, see [73].

2.1.2 High-Order Methods Based on Gauss Interpolation

The procedure that leads to the fractional Newton–Cotes formula can be used to
generate the following more generalized formula of the form

[
D−α0,t f (t)

]

t=tn
≈
[
D−α0,t pN(t)

]

t=tn
=

N∑

k=0

wj,k f (tk),

where pN(t) is an approximate polynomial of f (t) with degree of order N. For exam-
ple, pN(t) is an interpolation of f (t) on the collocation points {tk}Nk=0, tk ∈ [0,T ] or an
orthogonal projector. When N is big enough, {wj,k} are not easy to compute, though
they can be calculated exactly.

Next, we introduce an algorithm to compute {wj,k} effectively. As is known, any
polynomial pN(t), t ∈ [0,T ] can be written in the following form

pN(t) =
N∑

j=0

c jP
a,b
j (2t/L−1) =

N∑

j=0

c jP
a,b
j (x) = p̂N(x), (2.24)
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where t = L(x+1)
2 ∈ [0,L], x ∈ [−1,1], {Pa,b

j (x)} are Jacobi orthogonal polynomials de-
fined on [−1,1] with respect to the weight functionsω(a,b)(x) = (1− x)a(1+ x)b (a,b>
0). The coefficients {c j} can be easily calculated due to the orthogonal property of
Jacobi polynomials (see Theorem 3.9 in [135]). Here we do not present the explicit
expression of c j, which will be illustrated later on when pN(t) is an interpolation
polynomial of f (t).

Next, we consider the αth-order fractional integral of p̂N(x), i.e.,

D−α−1,x p̂N(x), x ∈ [−1,1].

In order to derive the fractional integral of p̂N(x), we need to introduce the Jacobi
polynomials. The three-term recurrence relation of Jacobi polynomials {Pa,b

j (x)} is
given by [135]

Pa,b
0 (x) = 1, Pa,b

1 (x) =
1
2

(a+b+2)x+
1
2

(a−b),

Pa,b
j+1(x) = (Aa,b

j x−Ba,b
j )Pa,b

j (x)−Ca,b
j Pa,b

j−1(x), j ≥ 1,
(2.25)

where
Aa,b

j =
(2 j+a+b+1)(2 j+a+b+2)

2( j+1)( j+a+b+1)
,

Ba,b
j =

(b2−a2)(2 j+a+b+1)
2( j+1)( j+a+b+1)(2 j+a+b)

,

Ca,b
j =

( j+a)( j+b)(2 j+a+b+2)
( j+1)( j+a+b+1)(2 j+a+b)

.

(2.26)

The Jacobi polynomials are orthogonal with the weight function ωa,b(x) = (1−
x)a(1+ x)b, i.e.,

∫ 1

−1
Pa,b

m (x)Pa,b
n (x)ωa,b(x)dx =

⎧
⎪⎪⎨
⎪⎪⎩

0, m � n,

γa,b
n , m = n,

(2.27)

where

γa,b
n =

2a+b+1Γ(n+a+1)Γ(n+b+1)
(2n+a+b+1)n!Γ(n+a+b+1)

. (2.28)

Some other properties of the Jacobi polynomials are shown as follows

Pa,b
j (1) =

(
j+a

j

)

=
Γ( j+a+1)
j!Γ(a+1)

, Pa,b
j (−1) = (−1) jΓ( j+b+1)

j!Γ(b+1)
. (2.29)

dm

dxm Pa,b
j (x) = da,b

j,mPa+m,b+m
j−m (x), j≥m,m ∈ N, (2.30)

where
da,b

j,m =
Γ( j+m+a+b+1)
2mΓ( j+a+b+2)

. (2.31)
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Pa,b
j (x) = Âa,b

j
d
dx

Pa,b
j−1(x)+ B̂a,b

j
d
dx

Pa,b
j (x)+ Ĉa,b

j
d
dx

Pa,b
j+1(x), j ≥ 1. (2.32)

Here
Âa,b

j =
−2( j+a)( j+b)

( j+a+b)(2 j+a+b)(2 j+a+b+1)
,

B̂a,b
j =

2(a−b)
(2 j+a+b)(2 j+a+b+2)

,

Ĉa,b
j =

2( j+a+b+1)
(2 j+a+b+1)(2 j+a+b+2)

.

(2.33)

If j = 1, Âa,b
1 in (2.32) is set to be zero.

The key to calculating D−α−1,x p̂N(x) rests on computing D−α−1,xPa,b
j (x) effectively

when p̂N(x) has the expression p̂N(x) =
∑N

j=0 c jP
a,b
j (x). Let

P̂a,b,α
j (x) = D−α−1,xPa,b

j (x) =
1
Γ(α)

∫ x

−1
(x− s)α−1Pa,b

j (s)ds, x∈ [−1,1].

For fixed x, P̂a,b,α
j (x) ( j = 0,1, · · · ,N) can be evaluated with O(N) operations, we will

give the detailed deduction below.
For simplicity, we denote

Fa,b
j (x) = Pa,b

j (x) = Âa,b
j Pa,b

j−1(x)+ B̂a,b
j Pa,b

j (x)+ Ĉa,b
j Pa,b

j+1(x). (2.34)

From (2.25), one has

P̂a,b,α
j+1 (x) =

1
Γ(α)

∫ x

−1
(x− s)α−1Pa,b

j+1(s)ds

=
1
Γ(α)

∫ x

−1
(x− s)α−1

[
(Aa,b

j s−Ba,b
j )Pa,b

j (s)−Ca,b
j Pa,b

j−1(s)
]

ds

=(Aa,b
j x−Ba,b

j )P̂a,b,α
j (x)−Ca,b

j P̂a,b,α
j−1 (x)+

Aa,b
j

Γ(α)

∫ x

−1
(x− s)αPa,b

j (s)ds.

(2.35)
From (2.32) and (2.34), one has

∫ x

−1
(x− s)αPa,b

j (s)ds

=

∫ x

−1
(x− s)α

d
ds

Pa,b
j (s)

=(x− s)αPa,b
j (s)

∣∣∣∣∣

x

−1
+

1
α

∫ x

−1
(x− s)α−1Fa,b

j (s)ds

=(x+1)αPa,b
j (−1)+

1
α

[
Âa,b

j P̂a,b
j−1(x)+ B̂a,b

j P̂a,b
j (x)+ Ĉa,b

j P̂a,b
j+1(x)

]
.

(2.36)
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Note that P̂a,b,α
0 (x) and P̂a,b,α

1 (x) can be obtained very easily. Therefore, we can
derive the recurrence formula to calculate P̂a,b,α

j (x) from (2.35) and (2.36) as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̂a,b,α
0 (x) =

(x+1)α

Γ(α+1)
,

P̂a,b,α
1 (x) =

a+b+2
2

(
x(x+1)α

Γ(α+1)
− α(x+1)α+1

Γ(α+2)

)

+
a−b

2
P̂a,b,α

0 (x),

P̂a,b,α
j+1 (x) =

Aa,b
j x−Ba,b

j −αAa,b
j B̂a,b

j

1+αAa,b
j Ĉa,b

j

P̂a,b,α
j (x)−

Ca,b
j +αAa,b

j Âa,b
j

1+αAa,b
j Ĉa,b

j

P̂a,b,α
j−1 (x)

+
αAa,b

j

(
Âa,b

j Pa,b
j−1(−1)+ B̂a,b

j Pa,b
j (−1)+ Ĉa,b

j Pa,b
j+1(−1)

)

Γ(α+1)
(
1+αAa,b

j Ĉa,b
j

) (x+1)α, j≥1.

(2.37)
Hence, D−α−1,x p̂N(x) =

∑N
j=0 c jP̂

a,b,α
j (x) can be evaluated effectively with O(N) op-

erations for a fixed number x.
Denoting by t = L(x+1)

2 ∈ [0,L], x ∈ [−1,1], we can easily derive

D−α0,t pN(t) =
1
Γ(α)

∫ t

0
(t− s)α−1 pN(s)ds

=

(L
2

)α 1
Γ(α)

∫ x

−1
(x− s)α−1 p̂N(s)ds

=

(L
2

)α
Dα
−1,x p̂N(x), x = 2t/L−1.

(2.38)

Hence, we have the desired formula to calculate Dα
0,t pN(t) as follows.

D−α0,t pN(t) =
(L

2

)α N∑

j=0

c jP̂
a,b,α
j (2t/L−1). (2.39)

If pN(t) is the Jacobi–Gauss–Lobatto interpolation of f (t), then we have the
explicit expression of c j defined in (2.24) (see also (2.39)) as follows

c j =
1

δa,b
j

N∑

k=0

f (tk)Pa,b
j (xk)ωk =

1

δa,b
j

N∑

k=0

f (L(xk +1)/2)Pa,b
j (xk)ωk, (2.40)

where ωk is the weight with respect to the Jacobi–Gauss–Lobatto point xk, and

δa,b
j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γa,b
j , j = 0,1, · · · ,N −1,
(

2+
a+b+1

N

)

γa,b
N .

γa,b
j in the above equation is defined by (2.28). The Jacobi–Gauss–Lobatto points
{xk} are defined as the roots of the following polynomial

(1− x2)
d

dx
Pa,b

N (x).

 



38 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

Readers can refer to [135] for more properties of the Jacobi polynomials.
We briefly denote the matrix D̂(−α,a,b)

L ∈ R(N+1)×(N+1) with

(
D̂(−α,a,b)

L

)

i, j
= P̂a,b,α

j (xi), i, j = 0,1, · · · ,N. (2.41)

Then from Dα
−1,x pN(x) = (P̂a,b,α

0 (x), P̂a,b,α
1 (x), .., P̂a,b,α

N (x))(c0,c1, · · · ,cN)T , one can ob-
tain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
D−α0,t pN(t)

]

t=t0[
D−α0,t pN(t)

]

t=t1
...[

D−α0,t pN(t)
]

t=tN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(L
2

)α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
D−α−1,x p̂N(x)

]

x=x0[
D−α−1,x p̂N(x)

]

x=x1
...[

D−α−1,x p̂N(x)
]

x=xN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(L
2

)α (
D̂(−α,a,b)

L

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
...

cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the Jacobi–Gauss–Lobatto point xi in (2.41) is replaced by other collocation points,
i.e., Jacobi–Gauss point or Jacobi–Gauss–Radau point, one can also obtain the cor-
responding matrices as D̂(−α,a,b)

L .
The above formula (2.39) has the rapid convergence rate if f (t)∈Cr([0,T ]). The

error bound for (2.39) is given by
∣∣∣D−α0,t f (t)−D−α0,t pN(t)

∣∣∣ ≤CN3/4−r,

when a = b = 0 and pN(t) is the interpolation of f (t) on the Legendre–Gauss–Lobatto
points {tk},k = 0,1, · · · ,N. Of course, if pN(t) is the interpolation of f (t) on any other
Gauss points, then the spectral accuracy can be still achieved under the condition that
f (t) is suitably smooth. See [9, 135] for more error estimates of the Jacobi–Gauss
interpolations and orthogonal projections.

2.1.3 Fractional Linear Multistep Methods

The fractional linear multistep methods (FLMMs) based on the convolution
quadrature were studied by Lubich [104], who got pth order (p = 1,2, · · · ,6) ap-
proximation of D−α0,t f (t). The FLMMs have a very close relationship to the classi-
cal linear multistep methods (LMMs). If f (t) is suitably smooth, then the pth-order
(p = 1,2, · · · ,6) FLMMs for

[
D−α0,t f (t)

]

t=tn
are given by

[
D−α0,t f (t)

]

t=tn
= Δtα

n∑

j=0

ω(α)
n− j f (t j)+Δtα

s∑

j=0

ω(α)
n, j f (t j)+O(Δtp), (2.42)

where {ω(α)
j } are called convolution weights defined by the coefficients of Taylor ex-

pansions of the following generating functions
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w(α)(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p∑

j=1

1
j
(1− z) j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−α
, p = 1,2, · · · ,6, (2.43)

w(α)(z) = (1− z)−α
[
γ0+γ1(1− z)+γ2(1− z)2+ · · ·+γp−1(1− z)p−1

]
,(2.44)

w(α)(z) =
(

1
2

1+ z
1− z

)α

, p = 2, (2.45)

in which {γk} in (2.44) satisfy the following relation
(

lnz
z−1

)−α
=

∞∑

k=0

γk(1− z)k, γ0 = 1,γ1 = −α2 .

The starting weights {w(β)
n,k} are chosen such that the asymptotic behavior of the func-

tion f (t) near the origin (t = 0) is taken into account [28]. One way to determine
{w(β)

n,k} for the suitably smooth function u(t) is given [28, 104] by

p−1∑

k=1

ω(α)
n,kkq =

Γ(q+1)
Γ(q+α+1)

nq+α−
n∑

k=1

ω(α)
n−kkq, q = 0,1, · · · , p−1. (2.46)

The above choices of {w(α)
n,k } imply that (2.42) is exact for f (t) = tμ,μ = 0,1, · · · , p−1.

If f (t) is not suitably smooth with expression f (t) =
∑s

k=0 fktσ(k) + tμφ(t), where
φ(t) is smooth and μ≥ p−1≥σ(k), then one can still construct the pth-order FLMMs
as in (2.42). In such a case, we can obtain the starting weights {w(β)

n,k} in the following
way

[
D−α0,t tσ( j)

]

t=tn
= Δtα

s∑

k=0

ω
(α)
n,k (kΔt)σ( j)+Δtα

n∑

k=0

ω
(α)
n− j(kΔt)σ( j) (2.47)

through inserting f (t) = tσ( j) into (2.42) and letting (2.42) be exact. We rewrite (2.47)
as the following equivalent form

s∑

k=0

ω(α)
n,kkσ( j) =

Γ(σ( j)+1)
Γ(σ( j)+1+α)

nσ( j)+α−
n∑

k=0

ω(α)
n−kkσ( j), j = 0,1, · · · , s. (2.48)

The derivation of the FLMMs for the fractional integral is more complicated than
that of the classical LMMs; readers can refer to [104] for detailed information.

Remark 2.1.4 Let wp(z) =
∑p

j=1
1
j (1− z) j. Then wp(z) is just the generating func-

tion of the (p+1)-point backward difference method. For any α ∈ R, the coefficients
ω(α)

j of the Taylor expansions of the generating function (2.43) can be easily and ef-
fectively calculated by the fast Fourier transform method. Of course, there exists a
recurrence formula to calculate ω(α)

j , which is given below [28]

ω(α)
j =

1
ju0

j−1∑

i=0

(α( j− i)− i)ω(α)
i u j−i,

 



40 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

where u j satisfies wp(z) =
∑p

j=0 u jz j.

Remark 2.1.5 If α < 0, α is not an integer, D−α0,t f (t) is just the finite-part integral
[124], which is equivalent to the (−α)th-order Riemann–Liouville derivative of f (t).
In this case, the formula (2.42) is the corresponding pth-order approximation of the
(−α)th Riemann–Liouville derivative of the given function f (t).

The coefficients γn in (2.44) can be calculated by the following formula (see
Theorem 2 in [54])

γ0 = 1, γn =

n∑

j=1

(
(1−α) j−n

n( j+1)

)

γn− j, n = 1,2, · · · . (2.49)

The first six coefficients are given by

γ0 = 1,

γ1 = −α2 ,

γ2 =
1
8
α2 − 5

24
α,

γ3 = − 1
48
α3 +

5
48
α2 − 1

8
α,

γ4 =
1

384
α4 − 5

192
α3+

97
1152

α2− 251
2880

α,

γ5 = − 1
3840

α5 +
5

1152
α4 − 61

2304
α3 +

401
5760

α2 − 19
288

α.

(2.50)

2.2 Approximations to Riemann–Liouville Derivatives
For a class of functions, both the Grünwald–Letnikov derivative and the

Riemann–Liouville derivative are equivalent, especially for applications. Therefore,
the Riemann–Liouville definition is suitable for the problem formulation, where the
Grünwald–Letnikov definition is utilized to obtain the numerical solution [106, 124].
This section mainly focuses on the approximation of the Riemann–Liouville deriva-
tive.

We mainly consider the numerical methods for the Riemann–Liouville derivative
with fractional order 0 < α < 1 and 1 < α < 2, which has special importance in real
applications, such as the modeling of the anomalous diffusion [92, 113, 114]. In this
section, we investigate the numerical discretization of the Riemann–Liouville opera-
tor. Here, we only introduce the numerical methods for the left Riemann–Liouville
derivatives; the methods for the right Riemann–Liouville derivatives can be similarly
obtained.
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2.2.1 Grünwald–Letnikov Type Approximation

• Grünwald–Letnikov Approximation

If f (t) is suitably smooth, the Grünwald–Letnikov derivative is equivalent to
the Riemann–Liouville derivative. Therefore, using Eq. (1.3) to approximate the
Riemann–Liouville derivative is natural. Denoting by ω(α)

j = (−1) j
(
α
j

)
, one gets

[
RLDα

0,t f (t)
]

t=tn
≈ 1
Δtα

n∑

j=0

ω(α)
j f (tn− j). (2.51)

The above formula (2.51) is convergent of order 1 for any α > 0 [124]. We call
(2.51) the standard Grünwald–Letnikov formula, which may contribute to unstable
numerical schemes in solving FDEs [111] for 1 < α < 2. The shifted Grünwald–
Letnikov formula is useful for constructing the stable numerical schemes. The
right shifted Grünwald–Letnikov formula (p shifts, p ∈ N) to approximate the left
Riemann–Liouville derivative is defined by

[
RLDα

0,t f (t)
]

t=tn
≈ 1
Δtα

n+p∑

j=0

ω(α)
j f (tn− j+p). (2.52)

The above shifted Grünwald–Letnikov formula gives the first-order accuracy; the
best performance comes from minimizing |p−α/2| [111, 118]. If 1 < α≤2, the opti-
mal choice is p = 1. The case of α = 2 reduces to the second order central difference
method for the second order classical derivative.

Theorem 2 If 1 < α < 2, f (t) = tμ, μ is a nonnegative integer, t = tn = nΔt, then the
following relations hold [140]

1
Δtα

n∑

j=0

ω(α)
j f (tn− j) =

[
RLDα

0,t f (t)
]

t=tn
+ (1−α)

(−α)t−1−α

2Γ(1−α)
Δt+O(Δt2), μ = 0,

1
Δtα

n∑

j=0

ω
(α)
j f (tn− j) =

[
RLDα

0,t f (t)
]

t=tn
+ (−α)

Γ(μ+1)tμ−1−α

2Γ(μ−α)
Δt+O(Δt2), μ > 0,

(2.53)
and

1
Δtα

n+1∑

j=0

ω(α)
j f (tn− j+1) =

[
RLDα

0,t f (t)
]

t=tn
+ (3−α)

(−α)t−1−α

2Γ(1−α)
Δt+O(Δt2), μ = 0,

1
Δtα

n+1∑

j=0

ω(α)
j f (tn− j+1) =

[
RLDα

0,t f (t)
]

t=tn
+ (2−α)

Γ(μ+1)tμ−1−α

2Γ(μ−α)
Δt+O(Δt2), μ > 0.

(2.54)

The leading terms of the truncation errors for the standard Grünwald–Letnikov for-
mula (2.51) and the shifted (one shift) Grünwald–Letnikov formula (2.52) are slightly
different.
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From Theorem 2, we find that the Grünwald–Letnikov formula (2.52) does not
have first-order accuracy for the smooth function f (t) if f (0) � 0. The remedy is to
use the following technique

[
RLDα

0,t f (t)
]

t=tn
=
[
RLDα

0,t( f (t)− f (0))
]

t=tn
+

f (0)t−αn

Γ(1−α)

≈ 1
Δtα

n+p∑

j=0

ω(α)
j

[
f (tn− j+p)− f (0)

]
+

f (0)t−αn

Γ(1−α)
.

(2.55)

The advantage of such a remedy is that the above formula (2.55) is exact when f (t)
is a constant.

For f (t) = tμ,μ > 0, we can obtain from (2.53) and (2.54) that

(2−α)
1
Δtα

n∑

j=0

ω(α)
j f (tn− j) =(2−α)

[
RLDα

0,t f (t)
]

t=tn

+ (2−α)(−α)
Γ(μ+1)tμ−1−α

2Γ(μ−α)
Δt+O(Δt2)

(2.56)

and

α
1
Δtα

n+1∑

j=0

ω(α)
j f (tn− j+1) =α

[
RLDα

0,t f (t)
]

t=tn

+α(2−α)
Γ(μ+1)tμ−1−α

2Γ(μ−α)
Δt+O(Δt2).

(2.57)

Eliminating the term α(2−α) Γ(μ+1)tμ−1−α
2Γ(μ−α) Δt from (2.56) and (2.57) yields

[
RLDα

0,t f (t)
]

t=tn
=

1
Δtα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(2−α)
2

n∑

j=0

ω
(α)
j f (tn− j)+

α

2

n+1∑

j=0

ω
(α)
j f (tn− j+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+O(Δt2).

(2.58)
Hence, for a suitably smooth function f (t) with f (0) = 0, a second-order method

(2.58) is obtained to approximate RLDα
0,t f (t).

Similar to (2.55), we can obtain the following second-order method

[
RLDα

0,t f (t)
]

t=tn
=

1
Δtα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(2−α)
2

n∑

j=0

ω(α)
j ( f (tn− j)− f (0))+

α

2

n+1∑

j=0

ω(α)
j ( f (tn− j+1)− f (0))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
f (t0)t−αn

Γ(1−α)
+O(Δt2)

(2.59)
for any suitably smooth function f (t).

Tadjeran et al. [145] proved that the shifted Grünwald–Letnikov formula (2.52)
has first-order accuracy for suitably smooth function f (t) satisfying f (0) = 0 by the
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Fourier transform method. Tian et al. [146] proposed a class of second-order methods
as in (2.58) to discretize the Riemann–Liouville derivative of f (t) satisfying f (0) = 0,
which are given as follows

[
RLDα

0,t f (t)
]

t=tn
=

1
Δtα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(α−2q)
2(p−q)

n∑

j=0

ω
(α)
j f (tn− j+p)+

2p−α
2(p−q)

n+1∑

j=0

ω
(α)
j f (tn− j+q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+O(Δt2),
(2.60)

where p,q are integers.

• Fractional Linear Multistep Methods

In Subsection 2.1.3, we know that the FLMMs for the fractional integral are intro-
duced. The formula (2.42) is also suitable for the discretization of the Riemann–
Liouville derivative. The FLMMs for the αth-order Riemann–Liouville derivative
are presented below

[
RLDα

0,t f (t)
]

t=tn
= Δt−α

n∑

j=0

ω(−α)
n− j f (t j)+Δt−α

s∑

j=0

ω(−α)
n, j f (t j)+O(Δtp) (2.61)

where ω(−α)
j are called convolution weights defined by the coefficients of Taylor ex-

pansions of the generating functions w(−α)(z), which can be derived from (2.43)–
(2.45) with α being replaced by (−α). The starting weights ω(−α)

n, j are chosen such

that (2.61) is exact for some f (t) = tμ, which is determined the same way as ω(α)
n, j ,

defined in (2.42).
If f (t) is suitably smooth and f (k)(0) = 0, k = 0, 1, · · · , p− 1, then one can re-

move Δt−α
∑s

j=0ω
(−α)
n, j f (t j) in (2.61) to obtain the corresponding discretization with

the same pth-order accuracy.

2.2.2 L1, L2 and L2C Methods

This subsection concerns the numerical methods for the Riemann–Liouville
derivative with fractional order 0 < α < 1 and 1 < α < 2. The classical L1 method
[71, 96, 118, 144] is suitable for the case of 0 < α < 1. The L2 and L2C methods are
suitable for the case of 1< α < 2. Next, we simply introduce the construction of these
methods.

• L1 method

Here we introduce the detailed derivation and theoretical analysis of the L1 method,
since the L1 method is often used by some researchers for the discretization of the
time fractional differential equations, which can lead to unconditionally stable algo-
rithms [56, 65, 66, 71, 96, 130, 144, 166, 176].
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By (1.12), we get

RLDα
0,t f (t) = CDα

0,t f (t)+
f (0)
Γ(1−α)

t−α.

Letting t = tn and 0 < α < 1, one gets

[
CDα

0,t f (t)
]

t=tn
=

1
Γ(1−α)

∫ tn

t0
(tn− s)−α f ′(s)ds

=
1

Γ(1−α)

n−1∑

k=0

∫ tk+1

tk
(tn− s)−α f ′(s)ds

≈ 1
Γ(1−α)

n−1∑

k=0

∫ tk+1

tk
(tn− s)−α

f (tk+1)− f (tk)
Δt

ds

=

n−1∑

k=0

bn−k−1 ( f (tk+1)− f (tk)) ,

(2.62)

where

t0 = 0, bk =
Δt−α

Γ(2−α)

[
(k+1)1−α− k1−α] .

Therefore,

[
RLDα

0,t f (t)
]

t=tn
≈ f (0)t−αn

Γ(1−α)
+

n−1∑

k=0

bn−k−1
[
f (tk+1)− f (tk)

]
. (2.63)

The above L1 method (2.63) has the following error estimate [71, 96, 144]
∣∣∣∣∣∣∣

f (0)t−αn

Γ(1−α)
+

n−1∑

k=0

bn−k−1
[
f (tk+1)− f (tk)

]−
[
RLDα

0,t f (t)
]

t=tn

∣∣∣∣∣∣∣
≤CΔt2−α,

where C is a positive constant only dependent on α and f .
The derivative of the classical L1 method can be extended to the more general

case on the nonuniform grids [172].
Let {s j} be the any division of [0,T ] with 0 = s0≤ s1≤ · · · ≤ sN−1≤ sN = T and

τ j = s j+1 − s j. Then one has

∫ sn

s0

(sn − s)−α f ′(s)ds =
n−1∑

k=0

∫ sk+1

sk

(sn− s)−α f ′(s)ds

=

n−1∑

k=0

∫ sk+1

sk

(sn− s)−α
f (sk+1)− f (sk)

τk
ds+ R̂n

=

n−1∑

k=0

an
k+1 ( f (sk+1)− f (sk))+ R̂n,

(2.64)
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where

an
k+1 =

1
τk

∫ sk+1

sk

(sn − s)−α ds =
1

(1−α)τk

[
(sn − sk)1−α− (sn− sk+1)1−α] .

Hence, one derives

[
CDα

0,t f (t)
]

t=sn
=

n−1∑

k=0

bn
k+1 ( f (sk+1)− f (sk))+Rn,

[
RLDα

0,t f (t)
]

t=sn
=

n−1∑

k=0

bn
k+1 ( f (sk+1)− f (sk))+

f (0)s−αn

Γ(1−α)
+Rn,

(2.65)

in which Rn = R̂n/Γ(1−α), and

bn
k+1 =

an
k+1

Γ(1−α)
=

1
Γ(2−α)τk

[
(sn − sk)1−α− (sn− sk+1)1−α] .

It can be proved that if τmax/τmin≤C0, τmax = max0≤ j≤N−1{τ j} and τmin =

min0≤ j≤N−1{τ j}, then |Rn|≤C(τmax)2−α; see [172].

Theorem 3 Let 0 < α < 1 and f (t) ∈C2[0,T ]. Then it holds

|R̂n| =
∣∣∣∣∣∣∣

∫ tn

t0
(sn − s)−α f ′(s)ds−

n−1∑

k=0

an
k+1 ( f (sk+1)− f (sk))

∣∣∣∣∣∣∣
≤C(τmax)2−α max

0≤t≤T
| f ′′(t)|,

(2.66)
where C is only dependent on α and τmax/τmin.

Obviously, when {s j = t j} are uniform grids, then the method (2.65) is reduced
to the classical L1 method, see (2.62) and (2.63). Next, we introduce a special case
with s0 = t0, s j = t j+1/2 = (t j+ t j+1)/2, j = 0,1,2, · · · . In such a case, (2.65) is reduced
to

[
CDα

0,t f (t)
]

t=tn+1/2
=b0 f (tn+1/2)−

n∑

j=1

(bn− j−bn− j+1) f (t j−1/2)

− (bn−Bn) f (t1/2)−Bn f (t0)+O(Δt2−α),

(2.67)

where

bn =
Δt−α

Γ(2−α)

[
(n+1)1−α−n1−α] , Bn =

2Δt−α

Γ(2−α)

[
(n+1/2)1−α−n1−α] . (2.68)

Replacing f (t j−1/2) with ( f (t j)+ f (t j−1))/2 in (2.67) yields

[
CDα

0,t f (t)
]

t=tn+1/2
=

b0

2
( f (tn+1)+ f (tn))− 1

2

n∑

j=1

(bn− j−bn− j+1)( f (t j−1)+ f (t j))

− 1
2

(bn−Bn)( f (t0)+ f (t1))−Bn f (t0)+O(Δt2−α).
(2.69)
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By (2.69) and CDα
0,t f (t) = RLDα

0,t( f (t)− f (0)), we obtain

[
RLDα

0,t f (t)
]

t=tn+1/2
=

b0

2
( f (tn+1)+ f (tn))− 1

2

n∑

j=1

(bn− j−bn− j+1)( f (t j−1)+ f (t j))

− 1
2

(bn−Bn)( f (t0)+ f (t1))−An f (t0)+O(Δt2−α),
(2.70)

where An = Bn − (1−α)(n+1/2)−α
Γ(2−α)Δtα , and bn and Bn are defined in (2.68). For simplicity,

we call the method using (2.69) and (2.70) the modified L1 method.
We will find that the discretization (2.70) is useful to obtain the Crank–Nicolson

method for the time-fractional subdiffusion equation [166], which can be seen as a
natural extension of the classical Crank–Nicolson method.

• L2 and L2C Methods

The L2 method and its variant L2C method [105, 118] are used to discretize the
Riemann–Liouville derivative of order α (1 < α < 2), which can be obtained in a way
similar to that of the L1 method. For the Caputo derivative with order 1 < α < 2, one
has

[
CDα

0,t f (t)
]

t=tn
=

1
Γ(2−α)

∫ tn

t0
(tn− s)1−α f ′′(s)ds

=
1

Γ(2−α)

n−1∑

k=0

∫ tk+1

tk
(tn− s)1−α f ′′(s)ds

=
1

Γ(2−α)

n−1∑

k=0

∫ tk+1

tk
s1−α f ′′(tn− s)ds.

(2.71)

On each subinterval [tk, tk+1], one gets
∫ tk+1

tk
s1−α f ′′(tn− s)ds≈ f (tn− tk+1)−2 f (tn− tk)+ f (tn− tk−1)

Δt2

∫ tk+1

tk
s1−α ds.

Hence, one has

[
CDα

0,t f (t)
]

t=tn
≈ 1
Γ(2−α)

f (tn−k−1)−2 f (tn−k)+ f (tn−k+1)
Δt2

∫ tk+1

tk
s1−α ds

=

n∑

k=−1

Wk f (tn−k),
(2.72)

which leads to the following L2 method for Riemann–Liouville derivative

[
RLDα

0,t f (t)
]

t=tn
≈ f (0)t−αn

Γ(1−α)
+

f ′(0)t1−αn

Γ(2−α)
+

n∑

k=−1

Wk f (tn−k), (2.73)
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where

Wk =
Δt−α

Γ(3−α)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, k = −1,

22−α−3, k = 0,

(k+2)2−α−3(k+1)2−α+3k2−α− (k−1)2−α, 1≤k≤n−2,

−2n2−α+3(n−1)2−α− (n−2)2−α, k = n−1,

n2−α− (n−1)2−α, k = n.

(2.74)

On the other hand, we have CDα
0,t f (t) = CDα−1

0,t f ′(t). Hence, the L1 method can
be used to discretize the (α− 1)-order Caputo derivative of f ′(t). We use (2.67) to
discretize CDα

0,t f ′(t), which yields

[
CDα

0,t f (t)
]

t=tn+1/2
=b0 f ′(tn+1/2)−

n∑

j=1

(bn− j−bn− j+1) f ′(t j−1/2)

− (bn−Bn) f ′(t1/2)−Bn f ′(t0)+O(Δt3−α),

(2.75)

where bn and Bn are defined by

bn =
Δt1−α

Γ(3−α)

[
(n+1)2−α−n2−α] , Bn =

2Δt1−α

Γ(3−α)

[
(n+1/2)2−α−n2−α] . (2.76)

Obviously, f ′(t j−1/2) satisfies f ′(t j−1/2) = f (t j)− f (t j−1)
Δt +O(Δt2) = δt f (t j−1/2)+O(Δt2).

Hence, we can derive the following discretization

[
CDα

0,t f (t)
]

t=tn+1/2
=b0δt f (tn+1/2)−

n∑

j=1

(bn− j−bn− j+1)δt f (t j−1/2)

− (bn−Bn)δt f (t1/2)−Bn f ′(t0)+O(Δt3−α).

(2.77)

The L2C method can be derived by letting
∫ tk+1

tk
s1−α f ′′(tn− s)ds

≈ f (tn − tk+2)− f (tn− tk+1)+ f (tn− tk−1)− f (tn− tk)
2Δt2

∫ tk+1

tk
s1−α ds.

So the L2C method for Riemann–Liouville derivative is given by

[
RLDα

0,t f (t)
]

t=tn
≈ f (0)t−αn

Γ(1−α)
+

f ′(0)t1−αn

Γ(2−α)
+

n+1∑

k=−1

Ŵk f (tn−k), (2.78)
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where

Ŵk =
Δt−α

2Γ(3−α)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, k = −1,

22−α−2, k = 0,

32−α−22−α, k = 1,

(k+2)2−α−2(k+1)2−α+2(k−1)2−α− (k−2)2−α, 2≤k≤n−2,

−n2−α− (n−3)2−α+2(n−2)2−α, k = n−1,

−n2−α+2(n−1)2−α− (n−2)2−α, k = n,

n2−α− (n−1)2−α, k = n+1.
(2.79)

The accuracy of the L2 and L2C methods depends on α. If α = 1, the L2 and
L2C methods reduce to the backward difference method and the central difference
method for the first order derivative, respectively. If α = 2, the L2 method reduces to
the central difference method for the second order derivative, and the L2C method
reduces to

d2 f (tk)
dt2

≈ f (tk+2)+ f (tk)− f (tk−1)− f (tk+1)
2Δt2

with accuracy of order 1. In fact, the L2 method converges with order O(Δt3−α).
Experiments show that the L2 method is more accurate than the L2C method for
1 < α < 1.5, while the reverse happens for 1.5< α < 2. Near α = 1.5, the two methods
have almost similar results [105].

Remark 2.2.1 The numerical methods based on the polynomial interpolation for the
fractional integral in the previous section can be directly extended to the Riemann–
Liouville derivative. By (1.12), we get

RLDα
0,t f (t) = CDα

0,t f (t)+
m−1∑

k=0

f (k)(0)tk−α

Γ(k+1−α)
, m−1 < α < m. (2.80)

Hence, we only need to develop numerical methods for CDα
0,t f (t). From the definition

of the Caputo derivative, we find that the αth-order (m−1<α<m) Caputo derivative
of a given function f (t) can be seen as the (m−α)th-order fractional integral of the
function f (m)(t). Therefore, the numerical methods developed in Section 2.1 can be
directly extended to simulate the numerical solutions of the Caputo derivative, which
leads to the numerical methods for the Riemann–Liouville derivative. Here, we do
not list these methods, which will be discussed in the following section.

2.3 Approximations to Caputo Derivatives
Since the Riemann–Liouville derivative and the Caputo derivative have the rela-

tion (1.12), almost all the numerical methods for the Riemann–Liouville derivative
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can be theoretically extended to the Caputo derivative if f (t) satisfies suitable smooth
conditions. We first list some algorithms that are often used in the simulation of the
Caputo derivative in FDEs.

2.3.1 L1, L2 and L2C Methods

• The L1 method for the Caputo derivative is given by:

[
CDα

0,t f (t)
]

t=tn
=

n−1∑

k=0

bn−k−1 ( f (tk+1)− f (tk))+O(Δt2−α), 0 < α < 1, (2.81)

where bk =
Δt−α
Γ(2−α)

[
(k+1)1−α− k1−α].

• The modified L1 method for the Caputo derivative is given by:

[
CDα

0,t f (t)
]

t=tn+1/2
=

b0

2
( f (tn+1)+ f (tn))− 1

2

n∑

j=1

(bn− j−bn− j+1)( f (t j−1)+ f (t j))

− 1
2

(bn−Bn)( f (t0)+ f (t1))−Bn f (t0)+O(Δt2−α),
(2.82)

where bn =
Δt−α
Γ(2−α)

[
(n+1)1−α−n1−α] and Bn =

2Δt−α
Γ(2−α)

[
(n+1/2)1−α−n1−α].

• The L2 method for the Caputo derivative is given by:

[
CDα

0,t f (t)
]

t=tn
=

n∑

k=−1

Wk f (tn−k)+O(Δt3−α), 1 < α < 2, (2.83)

where {Wk} are defined by (2.74).

• The L2C method for the Caputo derivative is given by:

[
CDα

0,t f (t)
]

t=tn
=

n+1∑

k=−1

Ŵk f (tn−k)+O(Δt3−α), 1 < α < 2, (2.84)

where {Ŵk} are defined by (2.79).

2.3.2 Approximations Based on Polynomial Interpolation

From the definition of the Caputo derivative, we can find that the αth-order
(m−1<α<m) Caputo derivative of a given function f (t) can be seen as the (m−α)th-
order fractional integral of the function f (m)(t). Therefore, we can extend the numer-
ical methods developed in Section 2.1 to simulate the numerical solutions of the
Caputo derivative. Here, we give the generalized formulae and some of their special
cases and modifications.

• Fractional Rectangular Formula
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From (2.9), one gets the following formula:

[
CDα

0,t f (t)
]

t=tn
≈

n−1∑

k=0

wn−k−1
[
θ f (m)(tk)+ (1− θ) f (m)(tk+1)

]
, 0≤θ≤1, (2.85)

where

wk =
Δtm−α

Γ(m+1−α)
[
(k+1)m−α− km−α] .

If the mth-order derivative of f (t) is known, the formula (2.85) provides easy
implementation of the method. In many cases, f (m)(t) is not given, so it is necessary
to combine (2.85) and the numerical methods of the classical derivative to give the
more convenient formulae. In order to illustrate the numerical method clearly, we
denote by

δt f (tk) =
f (tk+1)− f (tk)

Δt
,

δ2
t f (tk) =

f (tk+1)−2 f (tk)+ f (tk−1)
Δt2 .

Next, we give the two cases with the same accuracy as (2.85).
Case I: If 0 < α < 1, then we use f ′(tk)≈δt f (tk) to get the following formula

[
CDα

0,t f (t)
]

t=tn
≈

n−1∑

k=0

wn−k−1
[
θδt f (tk)+ (1− θ)δt f (tk+1)

]
, 0≤θ≤1, (2.86)

where

wk =
Δt1−α

Γ(2−α)

[
(k+1)1−α− k1−α] .

Case II: If 1 < α < 2, then we use f ′′(tk)≈δ2
t f (tk) to get the following formula

[
CDα

0,t f (t)
]

t=tn
≈

n−1∑

k=0

wn−k−1
[
θδ2

t f (tk)+ (1− θ)δ2
t f (tk+1)

]
, 0≤θ≤1, (2.87)

where

wk =
Δt1−α

Γ(3−α)

[
(k+1)2−α− k2−α] .

It is easy to see that formulas (2.86) and (2.87) are convergent with order O(Δt).

• Fractional Trapezoidal Formula

The fractional trapezoidal formula for CDα
0,t f (t) is given by

[
CDα

0,t f (t)
]

t=tn
≈

n∑

k=0

ak,n f (m)(tk), (2.88)
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where

ak,n =
Δtm−α

Γ(m+2−α)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)m−α+1− (n−1−m+α)nm−α, k = 0,

(n− k+1)m−α+1+ (n−1− k)m−α+1

−2(n− k)m−α+1, 1 ≤ k ≤ n−1,
1, k = n.

(2.89)
Similar to (2.85), we list the two special modifications of (2.88).

Case I: If 0 < α < 1, one can get the following modified formula of (2.88)

[
CDα

0,t f (t)
]

t=tn
≈

n∑

k=0

ak,n δt̂ f (tk), (2.90)

where ak,n is defined by (2.89), and

δt̂ f (tk) =
f (tk+1)− f (tk−1)

2Δt
.

For the suitably smooth function f (t), the formula (2.88) has convergence of order
O(Δt2). Since δt̂ f (tk)− f ′(tk) = O(Δt2), therefore, the formula (2.90) still keeps con-
vergent of order O(Δt2). In (2.90), f (t−1) = f (−Δt) is used. In order to avoid using
f (−τ), one can use f ′(t0) = −3 f (t0)+2 f (t1)− f (t2)

2Δt +O(Δt2) to get the following formula

[
CDα

0,t f (t)
]

t=tn
≈

n∑

k=1

ak,n δt̂ f (tk)+a0,n
−3 f (t0)+2 f (t1)− f (t2)

2Δt
. (2.91)

Case II: If 1 < α < 2, we can get the following second order formula

[
CDα

0,t f (t)
]

t=tn
≈

n∑

k=0

ak,n δ
2
t f (tk), (2.92)

where ak,n is defined by (2.89), and f (t−1) = f (−Δt). Similar to (2.91), one can get

[
CDα

0,t f (t)
]

t=tn
≈

n∑

k=1

ak,n δ
2
t f (tk)+a0,n

f (t1)−2 f (t0)+ f (t−1)
Δt2 . (2.93)

• Fractional Newton–Cotes Formula

Similar to (2.19), the fractional Newton–Cotes formula for the Caputo derivative are
given by

[
CDα

0,t f (t)
]

t=tn
≈I( f̃ , tn,α) =

n−1∑

k=0

r∑

i=0

A(k,m)
i,n f (m)(t(k)

i ), (2.94)

where

A(k,m)
i,n =

1
Γ(α)

∫ tk+1

tk
(tn− t)m−α−1lk,i(t).

 



52 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

2.3.3 High-Order Methods

Suppose that pN(t) = p̂(x), t = L(x+1)/2 has the following representation

pN(t) =
N∑

j=0

c jP
a,b
j (2t/L−1) =

N∑

j=0

c jP
a,b
j (x) = p̂(x), t∈ [0,T ]. (2.95)

Using the property (2.30), we can easily get

CDα
−1,xPa,b

j (x) =
1

Γ(m−α)

∫ x

−1
(x− s)m−α−1 dm

dsm

[
Pa,b

j (s)
]

ds

=
1

Γ(m−α)

∫ x

−1
(x− s)m−α−1 da,b

j,mPa+m,b+m
j−m (s)ds

=da,b
j,mP̂a+m,b+m,m−α

j−m (x),

(2.96)

where da,b
j,m and P̂a+m,b+m,m−α

j (x) are defined by (2.31) and (2.37), respectively, with

P̂a+m,b+m,m−α
j (x) = 0 for j = 0,1, · · · ,m−1. On the other hand, we have

CDα
0,L pN(t) =

1
Γ(m−α)

∫ t

0
(t− s)m−α−1 dm

dsm (pN(s)) ds

=

(L
2

)−α 1
Γ(m−α)

∫ 2t
L −1

−1

(
2t
L
−1− s

)m−α−1

pN(s)ds

=

(L
2

)−α
CDα

−1, 2t
L −1

pN(2t/L−1) =
(L

2

)−α
CDα
−1,x p̂N(x).

(2.97)

Therefore, for any α > 0, from (2.95)–(2.97) one has [89]

CDα
0,L pN(t) =

(L
2

)−α
CDα
−1,x p̂N(x) =

(L
2

)−α N∑

j=0

c j da,b
j,m P̂a+m,b+m,m−α

j−m (x). (2.98)

Let t j ( j = 0,1, · · · ,N) be collocation points on [0,T ]. Then x j = 2t j/L− 1 are collo-
cation points on [−1,1]. We can obtain C Dα

0,L pN(t) at t = t j as follows
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
CDα

0,t pN(t)
]

t=t0[
CDα

0,t pN(t)
]

t=t1
...[

CDα
0,t pN(t)

]

t=tN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(L
2

)−α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
CDα
−1,x p̂N(x)

]

x=x0[
CDα
−1,x p̂N(x)

]

x=x1
...[

CDα
−1,x p̂N(x)

]

x=xN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(L
2

)−α (
D̂(α,a,b)

L,C

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
...

cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the matrix D̂(α,a,b)
L,C is given by

(
D̂(α,a,b)

L,C

)

i, j
= da,b

j,m P̂a+m,b+m,m−α
j−m (xi).

If pN(t) is the Legendre–Gauss–Lobatto interpolation of f (t), f ∈Hr([0,L]), then
the following error estimate holds

∣∣∣CDα
0,t f (t)−CDα

0,t pN(t)
∣∣∣ ≤CN3/4+2m−r‖ f ‖Hr , r≥2m.
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Remark 2.3.1 Generally speaking, pN(t) is not necessarily the interpolation of f (t).
pN(t) can be any approximation of f (t) that is expressed in the form of (2.95). For
example, pN(t) can be the orthogonal projection of f (t) [135], the formula (2.98) is
still valid and efficient with high accuracy if f (t) is suitably smooth.

Next, we introduce another operational matrix to approximate the Caputo deriva-
tive, which is based on the explicit expression of the Jacobi polynomials. The Jacobi
polynomial Pa,b

j (x), x ∈ [0,1] has the following explicit expression

Pa,b
j (x) =

Γ( j+b+1)
Γ( j+a+b+1)

j∑

k=0

(−1) j−k Γ( j+ k+a+b+1)
Γ(k+b+1)k!( j− k)!2k

(1+ x)k . (2.99)

It is easy to get

CDα
−1,xPa,b

j (x) =
Γ( j+b+1)
Γ( j+a+b+1)

j∑

k=0

(−1) j−kΓ( j+ k+a+b+1)
Γ(k+b+1)( j− k)!Γ(k+1−α)2k (1+ x)k−α,k≥ α.

(2.100)
Hence, for any pN(t), t ∈ [0,L] of the form pN(t)= p̂N(x)=

∑N
j=0 c jP

a,b
j (x) (x= 2t/L−

1) and m−1 < α < m, m ∈ Z+, we have

CDα
0,L pN(t) =

(L
2

)−α
CDα
−1,x p̂N(x) =

N∑

j=0

c j
Γ( j+b+1)
Γ( j+a+b+1)

×
j∑

k=m

(−1) j−kΓ( j+ k+a+b+1)
Γ(k+b+1)( j− k)!Γ(k+1−α)2k (1+ x)k−α

=

N∑

j=0

c j
Γ( j+b+1)
Γ( j+a+b+1)

j∑

k=m

(−1) j−kΓ( j+ k+a+b+1)
Γ(k+b+1)( j− k)!Γ(k+1−α)Lk tk−α.

(2.101)
It is clear that this technique gives an exact expression of CDα

0,L pN(t), but it seems
a little tedious.

Let Φa,b(x) = (Pa,b
0 (x),Pa,b

1 (x), · · · ,Pa,b
N (x))T ,c = (c0,c1, · · · ,cN)T . Then p̂N(x) =

cTΦa,b(x). It is known that d
dx p̂N(x) can be simply expressed in the following form

d
dx

p̂N(x) = cT D(1)Φa,b(x),

where D(1) can be easily derived from (2.32). For example, if a = b = 0, then

D(1) = (di j) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(2 j+1), j = i− k,k = 1,3, · · · ,m, k is odd
or k = 1,3, · · · ,m−1, k is even,

0, otherwise.
(2.102)

Does there exist a matrix D(α) such that CDα
−1,x p̂N(x)= cT D(α)Φa,b(x)? Obviously
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this is not true for a noninteger number α, since cT D(α)Φa,b(x) is a polynomial while
CDα
−1,x p̂N(x) is not a polynomial.
Some researchers construct matrix D(α) such that CDα

−1,x p̂N(x) ≈ cT D(α)Φa,b(x),
for example, see [43, 44, 45, 132]. Their methods are derived from further expanding
(1+ x)k−α in (2.101) in the series of Jacobi polynomials, i.e.,

(1+ x)k−α≈
N∑

l=0

bk,lP
a,b
l (x). (2.103)

Hence, one has

CDα
−1,x p̂N(x) ≈

N∑

j=0

c j
Γ( j+b+1)
Γ( j+a+b+1)

j∑

k=m

(−1) j−kΓ( j+ k+a+b+1)
Γ(k+b+1)( j− k)!Γ(k+1−α)2k

×
N∑

l=0

bk,lP
a,b
l (x)

=cT D(α)Φa,b(x).

(2.104)

This approach seems somewhat complicated. For a = b = 0, bk,l in (2.103) is given
by

bk,l = (2l+1)
l∑

r

(−1)l+r(l+ r)!
(l− r)(r!)2(k+ r−α+1)

.

And the matrix D(α) is given by

D(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
...

... · · · ...
0 0 · · · 0

m∑

k=m
θm,0,k

m∑

k=m
θm,1,k · · · m∑

k=m
θm,N,k

...
... · · · ...

i∑

k=m
θi,0,k

i∑

k=m
θi,1,k · · · i∑

k=m
θi,N,k

...
... · · · ...

N∑

k=m
θN,0,k

N∑

k=m
θN,1,k · · · N∑

k=m
θN,N,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.105)

where θi, j,k is given by

θi, j,k = (2 j+1)
j∑

l=0

(−1)i+ j+k+l(i+ k)!(l+ j)!
(i− k)!k!Γ(k−α+1)( j− l)!(l!)2(k+ l−α+1)

.

The operational matrix as D(α) defined by (2.105) based on Chebyshev polyno-
mials is established in [43, 44]. The operational matrix based on generalized Jacobi
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polynomials is developed in [45]. The operational matrices based on the Legendre
wavelets for the fractional integration and Caputo derivative are presented in [128].
The operational matrix based on the B-spline functions is constructed in [70]. For
other related works, see [1, 2, 12, 15, 48, 51, 61, 79, 84, 129, 133, 142, 155, 162] and
the references cited therein.

2.4 Approximation to Riesz Derivatives
In this section, we derive some high-order algorithms for the Riesz derivative

with order α (1 < α < 2) defined as follows [68, 157]

RZDα
x u(x) =

∂αu(x)
∂|x|α = −Ψα

(
RLDα

a,x+ RLDα
x,b

)
u(x), (2.106)

where Ψα =
1
2

sec
(
πα

2

)

, RLDα
a,x and RLDα

x,b are the left and right Riemann–Liouville
derivatives. We take the mesh points xm = a + mh, m = 0,1, . . . ,M, where h =
(b−a)/M, i.e., h is the uniform spatial stepsize. The numerical schemes come from
a series of papers by Ding and Li, et al. [37, 38, 39]. It should be noted that the
high-order algorithms for Riemann–Liouville derivatives are first proposed by Lu-
bich [104], while the high order algorithms for Riesz derivatives are constructed by
Ding and Li [37, 38, 39].

2.4.1 High-Order Algorithms (I)

For every α (1 < α < 2), we assume that the left, right Riemann–Liouville deriva-
tives exist and coincide with the left, right Grünwald–Letnikov derivatives under
suitable conditions, respectively, where the definitions of the left, right Grünwald–
Letnikov derivative with order α are given below [124]

GLDα
a,xu(xm) =

1
hα

m∑

k=0

�(α)
k u(xm−k)+O(h),

and

GLDα
x,bu(xm) =

1
hα

M−m∑

k=0

�(α)
k u(xm+k)+O(h),

in which �(α)
k = (−1)k

(
α

k

)

=
(−1)kΓ(1+α)

Γ(1+ k)Γ(1+α− k)
.

So, the Riesz derivative with order α ∈ (1,2) can be discretized in the following
ways.

• By the standard Grünwald–Letnikov formula
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Based on the above assumption and the equation (1.9), we can obtain the first
order approximation formula

∂αu(xm)
∂|x|α = −Ψα

hα

⎛
⎜⎜⎜⎜⎜⎜⎝

m∑

k=0

�(α)
k u(xm−k)+

M−m∑

k=0

�(α)
k u(xm+k)

⎞
⎟⎟⎟⎟⎟⎟⎠+O(h).

• By the shifted Grünwald–Letnikov formula

In [111], Meerschaert and Tadjeran show that above standard Grünwald–
Letnikov formula is often unstable for time dependent problems. Hence, they propose
the following shifted Grünwald–Letnikov formulas for the left and right Riemann–
Liouville derivatives in order to overcome the instability,

RLDα
a,xu(xm) =

m+1∑

k=0

�(α)
k u(xm−k+1)+O(h)

and

RLDα
x,bu(xm) =

M−m+1∑

k=0

�(α)
k u(xm+k−1)+O(h).

Therefore, the modified first order approximation scheme is constructed as fol-
lows,

∂αu(xm)
∂|x|α = −Ψα

hα

⎛
⎜⎜⎜⎜⎜⎜⎝

m+1∑

k=0

�
(α)
k u(xm−k+1)+

M−m+1∑

k=0

�
(α)
k u(xm+k−1)

⎞
⎟⎟⎟⎟⎟⎟⎠+O(h).

• By the L2 approximation method

Note that the left, right Riemann–Liouville derivatives can be rewritten as (1 <
α < 2),

RLDα
a,xu(x) =

1∑

k=0

xk−α

Γ(k+1−α)
∂ku(a)
∂xk +

1
Γ(2−α)

∫ x

a

∂2u(ξ)
∂ξ2 (x− ξ)1−αdξ

and

RLDα
x,bu(x) =

1∑

k=0

(b− x)k−α

Γ(k+1−α)
∂ku(b)
∂xk +

1
Γ(2−α)

∫ b

x

∂2u(ξ)
∂ξ2 (ξ− x)1−αdξ.

Hence, we can obtain a first order scheme for the left and right Riemann–
Liouville derivatives [157],

RLDα
a,xu(xm) =

1
Γ(3−α)hα

{
(1−α)(2−α)u(x0)

mα
+

(2−α) [u(x1)−u(x0)]
mα−1

+

m−1∑

k=0

d(α)
k [u(xm−k+1)−2u(xm−k)+u(xm−k−1)]

⎫
⎪⎪⎬
⎪⎪⎭

+O(h),
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RLDα
x,bu(xm) =

1
Γ(3−α)hα

{
(1−α)(2−α)u(xM)

(M−m)α
+

(2−α) [u(xM)−u(xM−1)]
mα−1

+

M−m−1∑

k=0

d(α)
k [u(xm+k−1)−2u(xm+k)+u(xm+k+1)]

⎫
⎪⎪⎬
⎪⎪⎭

+O(h),

where d(α)
k = (k+1)2−α− k2−α,k = 0,1, . . . ,m−1, or k = 0,1, . . . ,M−m−1,

Therefore, applying the above two formulas and (2.106) gives

∂αu(xm)
∂|x|α = − Ψα

Γ(3−α)hα

{
(1−α)(2−α)u(x0)

mα
+

(2−α) [u(x1)−u(x0)]
mα−1

+

m−1∑

k=0

d(α)
k [u(xm−k+1)−2u(xm−k)+u(xm−k−1)]

+
(1−α)(2−α)u(xM)

(M−m)α
+

(2−α) [u(xM)−u(xM−1)]
mα−1

+

M−m−1∑

k=0

d(α)
k [u(xm+k−1)−2u(xm+k)+u(xm+k+1)]

⎫
⎪⎪⎬
⎪⎪⎭

+O(h),

in which d(α)
k is defined as above.

• By the spline interpolation method

In [139], Sousa proposed a second-order scheme by linear spline interpolation
method for the left and right Riemann–Liouville derivatives,

RLDα
a,xu(xm) =

1
Γ(4−α)hα

m+1∑

k=0

z̄(α)
m,ku(xk)+O(h2), (2.107)

where

z̄(α)
m,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄m−1,k −2c̄m,k+ c̄m+1,k, k ≤ m−1,

−2c̄m,k + c̄m+1,k, k = m,

c̄m+1,k, k = m+1,

0, k > m+1,

in which

c̄ j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( j−1)3−α− j2−α( j−3+α), k = 0,

( j− k+1)3−α−2( j− k)3−α+ ( j− k−1)3−α, 1 ≤ k ≤ j−1,

1, k = j,
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and

RLDα
x,bu(xm) =

1
Γ(4−α)hα

M∑

k=m−1

z̃(α)
m,ku(xk)+O(h2), (2.108)

where

z̃(α)
m,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k < m−1,

c̃m−1,m−1, k = m−1,

−2c̃m,m+ c̃m−1,m, k = m,

c̃m−1,k −2c̃m,k+ c̃m+1,k, m+1 ≤ k ≤ M,

in which

c̃ j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, k = j,

(k− j+1)3−α−2(k− j)3−α+ (k− j−1)3−α, j+1 ≤ k ≤ M−1,

(3−α−M+ j)(M− j)2−α+ (M− j−1)3−α, k = M,

with j = m−1,m,m+1.
Combining (2.107), (2.108) and (2.106) gives

∂αu(xm)
∂|x|α =

−Ψα
Γ(4−α)hα

M∑

k=0

z(α)
m,ku(xk)+O(h2),

where

z(α)
m,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z̄(α)
m,k, k < m−1,

z̄(α)
m,m−1 + z̃(α)

m,m−1, k = m−1,

z̄(α)
m,m + z̃(α)

m,m, k = m,

z̄(α)
m,m+1 + z̃(α)

m,m+1, k = m+1,

z̃(α)
m,k, k > m+1.

• By the fractional central difference method

In [119], Ortigueira introduced a symmetrical fractional central difference oper-
ator as follows

Δαh u(x) =
∞∑

k=−∞

(−1)kΓ(α+1)

Γ
(
α
2 − k+1

)
Γ
(
α
2 + k+1

)u(x− kh).

Later on, Çelik and Duman [14] proved that the above symmetrical fractional
central difference operator for the Riesz fractional derivative has the following esti-
mate

∂αu(xm)
∂|x|α = − 1

hα
Δαh u(xm)+O(h2).
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• By the weighted and shifted Grünwald–Lentikov formulas

In [146], Tian and Deng proposed the second-order and third-order numerical
schemes for the left and right Riemann–Liouville derivatives:

RLDα
a,xu(xm) =

ν1

hα

m+�1∑

k=0

�(α)
k u(xm−k+�1 )+

ν2

hα

m+�2∑

k=0

�(α)
k u(xm−k+�2 )+O(h2),

and

RLDα
x,bu(xm) =

ν1

hα

M−m+�1∑

k=0

�(α)
k u(xm+k−�1 )+

ν2

hα

M−m+�2∑

k=0

�(α)
k u(xm+k−�2 )+O(h2),

where �1 and �2 are two arbitrary integers and �1 − �2 � 0, ν1 =
α−2�2

2(�1− �2)
, ν2 =

2�1−α
2(�1− �2)

.

And

RLDα
a,xu(xm) =

κ1

hα

m+�1∑

k=0

�(α)
k u(xm−k+�1 )+

κ2

hα

m+�2∑

k=0

�(α)
k u(xm−k+�2 )

+
κ3

hα

m+�3∑

k=0

�
(α)
k u(xm−k+�3)+O(h3),

and

RLDα
x,bu(xm) =

κ1

hα

M−m+�1∑

k=0

�(α)
k u(xm+k−�1 )+

κ2

hα

M−m+�2∑

k=0

�(α)
k u(xm+k−�2 )

+
κ3

hα

M−m+�3∑

k=0

�(α)
k u(xm+k−�3)+O(h3),

in which �1, �2 and �3 are three arbitrary integers and (�1 − �2)(�2 − �3)(�1 − �3) �

0, κ1 =
12�2�3− (6�2+6�3+1)α+3α2

12(�2�3− �1�2− �1�3+ �
2
1)

, κ2 =
12�1�3− (6�1+6�3+1)α+3α2

12(�1�3− �1�2− �2�3+ �
2
2)

, κ3 =

12�1�2− (6�1+6�2+1)α+3α2

12(�1�2− �1�3− �2�3+ �
2
3)

.

Naturally, we can obtain the following second-order and third-order numerical
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formulas for the Riesz fractional derivative

∂αu(xm)
∂|x|α = −Ψα

hα

⎛
⎜⎜⎜⎜⎜⎜⎝ν1

m+�1∑

k=0

�(α)
k u(xm−k+�1 )+ ν2

m+�2∑

k=0

�(α)
k u(xm−k+�2 )

+ ν1

M−m+�1∑

k=0

�(α)
k u(xm+k−�1 )+ ν2

M−m+�2∑

k=0

�(α)
k u(xm+k−�2 )

⎞
⎟⎟⎟⎟⎟⎟⎠

+O(h2),

and,

∂αu(xm)
∂|x|α = −Ψα

hα

⎛
⎜⎜⎜⎜⎜⎜⎝κ1

m+�1∑

k=0

�(α)
k u(xm−k+�1 )+ κ2

m+�2∑

k=0

�(α)
k u(xm−k+�2 )

+κ3

m+�3∑

k=0

�
(α)
k u(xm−k+�3)+ κ1

M−m+�1∑

k=0

�
(α)
k u(xm+k−�1 )

+κ2

M−m+�2∑

k=0

�
(α)
k u(xm+k−�2 )+ κ3

M−m+�3∑

k=0

�
(α)
k u(xm+k−�3)

⎞
⎟⎟⎟⎟⎟⎟⎠

+O(h3),

respectively.
Here, we construct another second-order scheme and two kinds of fourth-order

numerical schemes for the Riesz derivative. In order to construct the new computa-
tional schemes, we introduce the following theorem.

Lemma 2.4.1 ([49]) Let α > 0, u(x) ∈C∞0 (R), the Fourier transforms of the left and
right Riemann–Liouville derivative are,

F
(

RLDα−∞,xu(x)
)
= (iω)α û(ω),

and
F
(

RLDα
x,∞u(x)

)
= (−iω)α û(ω),

where û(ω) denotes the Fourier transform of the function u(x), i.e.,

û(ω) =
∫

R

exp(−iωx)u(x)dx.

In [148], Tuan and Gorenflo introduce the following left fractional central differ-
ence operator:

CΔ
α
−hu(x) =

∞∑

k=0

�(α)
k u

(

x−
(

k− α
2

)

h
)

. (2.109)
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Similarly, we define the following right fractional central difference operator:

CΔ
α
+hu(x) =

∞∑

k=0

�(α)
k u

(

x+
(

k− α
2

)

h
)

. (2.110)

Analogous to the integer-order finite difference formula, we define the following
fractional average operator,

μα±hu(x− sh) =
u
(
x±

(
s− α

2

)
h
)
+u

(
x±

(
s+ α

2

)
h
)

2
. (2.111)

Then we can get the following fractional left and right average central difference
operators based on (2.109), (2.110) and (2.111), respectively.

ACΔ
α
−hu(x) = μα−h

(
CΔ

α
−hu(x)

)

=

∞∑

j=0

(−1) j
(
α

j

)

μα−h

(

u
(

x−
(

j− α
2

)

h
))

(2.112)

=
1
2

∞∑

j=0

(−1) j
(
α

j

)

(u(x− jh)+u (x− ( j−α)h))

and

ACΔ
α
+hu(x) = μα+h

(
CΔ

α
+hu(x)

)

=

∞∑

j=0

(−1) j
(
α

j

)

μα+h

(

u
(

x+
(

j− α
2

)

h
))

(2.113)

=
1
2

∞∑

j=0

(−1) j
(
α

j

)

(u(x+ jh)+u (x+ ( j−α)h)) .

Here, we always assume that μα±h can commute with the infinite summation.
For the fractional left and right average central difference operators defined in

(2.112) and (2.113),we have the following result.

Theorem 4 Let u(x) and the Fourier transforms of RLDα+2−∞,xu(x) and RLDα+2
x,+∞u(x)

both be in L1(R), then

RLDα−∞,xu(x) =
ACΔ

α
−hu(x)
hα

+O(h2) (2.114)

and

RLDα
x,+∞u(x) =

ACΔ
α
+hu(x)
hα

+O(h2)

uniformly hold for x ∈ R.
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Proof. Here, we only prove (2.114). As u(x, t) with respect to x belongs to
L1(R), then the Fourier transform of the fractional average central difference oper-
ator (2.112) exists and has the following form

F
{

ACΔ
α
−hu(x)

hα
;ω
}

=
1

2hα

∞∑

j=0

(−1) j
(
α

j

)
(
exp(−iω jh)+ exp(−iω( j−α)h)

)
û(ω)

=
1
hα

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∞∑

j=0

(−1) j
(
α

j

)

exp(−i jωh)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
1+ exp(iωαh)

2

)

û(ω)

= (iω)α
(
1− exp(−iωh)

iωh

)α (1+ exp(iωαh)
2

)

û(ω).

(2.115)

Note that the function
(
1− exp(−iωh)

iωh

)α (1+ exp(iωαh)
2

)

has the following Tay-

lor expansion:
(

1− exp(−iωh)
iωh

)α (1+ exp(iωαh)
2

)

= 1+
α(3α+1)

24
(iωh)2+O(|iωh|)4. (2.116)

If we denote

φ̂(ω,h) = F
{

ACΔ
α
−hu(x)

hα
;ω
}

−F
(

RLDα−∞,xu(x)
)
,

then from (2.115), (2.116) and Lemma 2.4.1, we have
∣∣∣φ̂(ω,h)

∣∣∣ ≤C1h2
∣∣∣(iω)α+2 û(ω)

∣∣∣ .

In light of the condition F
(

RLDα+2−∞,xu(x)
)
∈ L1(R), i.e.,

∫

R

∣∣∣∣F
(

RLDα+2−∞,xu(x)
)∣∣∣∣dω <C2,
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we obtain
∣∣∣∣∣∣

ACΔ
α
−hu(x)

hα
− RLDα−∞,xu(x)

∣∣∣∣∣∣
= |φ(ω,h)|

=
1

2π

∣∣∣∣∣

∫

R

exp(iωh)φ̂(ω,h)dω
∣∣∣∣∣

≤ 1
2π

∫

R

∣∣∣φ̂(ω,h)
∣∣∣dω

≤ C1

2π

(∫

R

∣∣∣(iω)α+2 û(ω)
∣∣∣dω

)

h2

=
C1

2π

(∫

R

∣∣∣∣F
(

RLDα+2−∞,xu(x)
)∣∣∣∣dω

)

h2

≤ Ch2

= O(h2).

where C = C1C2
2π . This finishes the proof. �

Next, we construct two classes of fourth-order difference schemes for the left
and right Riemann–Liouville derivatives based on (2.112) and (2.113) through the
following theorem:

Theorem 5 Let u(x) and the Fourier transforms of RLDα+4−∞,xu(x) and RLDα+4
x,+∞u(x)

both be in L1(R), then

RLDα−∞,xu(x) =
1

hα

(

1+
α(3α+1)

24
δ2

x

)−1

ACΔ
α
−hu(x)+O(h4)

and

RLDα
x,+∞u(x) =

1
hα

(

1+
α(3α+1)

24
δ2

x

)−1

ACΔ
α
+hu(x)+O(h4)

uniformly hold for x ∈ R, where δ2
x denotes second-order central difference operator

and is defined by δ2
xu(x j) = u(x j+1)−2u(x j)+u(x j−1).

Proof. The proof is almost the same as that of Theorem 4, so is omitted here. �

Combining (2.106), Theorems 4 and 5, we can get the following difference
schemes for the Riesz derivative

∂αu(x)
∂|x|α = −

Ψα

2hα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∞∑

j=0

(−1) j
(
α

j

)

(u(x− jh)+u (x− ( j−α)h))

+

∞∑

j=0

(−1) j
(
α

j

)

(u(x+ jh)+u (x+ ( j−α)h))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+O(h2)

(2.117)
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and

∂αu(x)
∂|x|α = −

Ψα

2hα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∞∑

j=0

(−1) j
(
α

j

)(

1+
α(3α+1)

24
δ2

x

)−1

(u(x− jh)+u(x− ( j−α)h))

+

∞∑

j=0

(−1) j
(
α

j

)(

1+
α(3α+1)

24
δ2

x

)−1

(u(x+ jh)+u(x+ ( j−α)h))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+O(h4).

(2.118)

Moreover, let

ũ(x) =
⎧
⎪⎨
⎪⎩

u(x), x ∈ [a,b],
0, x � [a,b],

(2.119)

then formulas (2.117) and (2.118) change into

∂αu(x)
∂|x|α = −

Ψα

2hα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
x−a

h

]

∑

j=0

(−1) j
(
α

j

)

(u(x− jh)+u (x− ( j−α)h))

+

[
b−x

h

]

∑

j=0

(−1) j
(
α

j

)

(u(x+ jh)+u (x+ ( j−α)h))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+O(h2),

(2.120)

and

∂αu(x)
∂|x|α = −

Ψα

2hα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
x−a

h

]

∑

j=0

(−1) j
(
α

j

)(

1+
α(3α+1)

24
δ2

x

)−1

(u(x− jh)+u(x− ( j−α)h))

+

[
b−x

h

]

∑

j=0

(−1) j
(
α

j

)(

1+
α(3α+1)

24
δ2

x

)−1

(u(x+ jh)+u(x+ ( j−α)h))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+O(h4).

(2.121)

Finally, we derive another kind of fourth-order numerical method for the Riesz
derivative which is presented in the following theorem.

Theorem 6 Let u(x) lie in C7(R) whose partial derivatives up to order seven belong
to L1(R). Set

Lθu(x) =
∞∑

k=−∞
g(α)

k
u(x− (k+ θ)h), θ = −1,0,1,

in which

g(α)
k
=

(−1)kΓ(α+1)

Γ
(
α
2 − k+1

)
Γ
(
α
2 + k+1

) ,
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then we have

∂αu(x)
∂|x|α =

1
hα

[
α

24
L−1u(x)−

(

1+
α

12

)

L0u(x)+
α

24
L1u(x)

]

+O(h4).

Proof. Here, we use the Fourier transform method to prove it. From [119], we
know that the generating function with coefficients g(α)

k satisfies

∣∣∣∣∣2sin
( x
2

)∣∣∣∣∣

α

=

∞∑

k=−∞
g(α)

k
exp(ikx). (2.122)

From (2.106) and Lemma 2.4.1, we get the Fourier transform of the Riesz deriva-
tive as follows

F
{
∂αu(x)
∂|x|α ;ω

}

= −Ψα [(iω)α+ (−iω)α
]
û(ω)

= −|ω|αû(ω).
(2.123)

Applying the Fourier transform to the difference operator

1
hα

[
α

24
L−1u(x)−

(

1+
α

12

)

L0u(x)+
α

24
L1u(x)

]

and using equation (2.122), gives

F
{

1
hα

[
α

24
L−1u(x)−

(

1+
α

12

)

L0u(x)+
α

24
L1u(x)

]

;ω
}

=
1
hα

⎡
⎢⎢⎢⎢⎢⎢⎣
α

24

∞∑

k=−∞
g(α)

k
exp(−i(k−1)ωh) û(ω)

−
(

1+
α

12

) ∞∑

k=−∞
g(α)

k
exp(−ikωh) û(ω)

+
α

24

∞∑

k=−∞
g(α)

k
exp(−i(k+1)ωh) û(ω)

⎤
⎥⎥⎥⎥⎥⎥⎦

= − 1
hα

[

1+
α

12
(1− cos(ωh))

] ∣∣∣∣∣∣
2sin

(
ωh
2

)∣∣∣∣∣∣

α

û(ω).

Set

|ω|αû(ω) =

Ĉ(h,ω)−F
{

1
hα

[
α

24
L−1u(x)−

(

1+
α

12

)

L0u(x)+
α

24
L1u(x)

]

;ω
}

,
(2.124)
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then

Ĉ(h,ω) = |ω|α
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1−
[

1+
α

12
(1− cos(ωh))

]
∣∣∣∣∣∣∣∣

2sin
(
ωh
2

)

ωh

∣∣∣∣∣∣∣∣

α⎫⎪⎪⎪⎬
⎪⎪⎪⎭

û(ω)

= |ω|α
{

1−
[

1+
α

24
(ωh)2− α

288
(ωh)4+O(ωh)6

]

·
[

1− α

24
(ωh)2+α

(
1

1920
+
α−1
1152

)

(ωh)4+O(ωh)6
]}

û(ω)

= −|ω|α
{

α

(
α

1152
+

11
2880

)

(ωh)4 −O (ωh)6
}

û(ω).

(2.125)

Since u(x) ∈ C7(R) and its partial derivatives up to order seven belong to L1(R),
there exists a positive constant C̃1 such that

|û(ω)| ≤ C̃1 (1+ |ω|)−7 . (2.126)

So, using (2.125) and (2.126) leads to
∣∣∣Ĉ(h,ω)

∣∣∣ ≤ C̃2h4 |ω|4+α |û(ω)| ≤ C̃2h4 (1+ |ω|)4+α |û(ω)|
≤ C̃3h4 (1+ |ω|)α−3 ,

(2.127)

where C̃3 = C̃1C̃2.
At this moment, taking the inverse Fourier transformation on both sides of (2.124)

and noting (2.123) gives

∂αu(x)
∂|x|α =

1
hα

[
α

24
L−1u(x)−

(

1+
α

12

)

L0u(x)+
α

24
L1u(x)

]

−C(h,ω).

In view of (2.127), we have

|C(h, x)| = 1
2π

∣∣∣∣∣

∫

R

Ĉ(h,ω)exp(iωx)dω
∣∣∣∣∣

≤ 1
2π

∫

R

∣∣∣Ĉ(h,ω)
∣∣∣dω

≤ C̃3

2π

(∫

R

(1+ |ω|)α−3 dω
)

h4

= C̃h4,

where C̃ =
C̃3

(2−α)π
, that is to say

∂αu(x)
∂|x|α =

1
hα

[ α

24
L−1u(x)−

(

1+
α

12

)

L0u(x)+
α

24
L1u(x)

]

+O(h4). (2.128)

This finishes the proof. �
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Furthermore, equation (2.128) can be rewritten as

∂αu(x)
∂|x|α =

α

24hα

∞∑

k=−∞
g(α)

k
u(x− (k+1)h)−

(

1+
α

12

) 1
hα

∞∑

k=−∞
g(α)

k
u(x− kh)

+
α

24hα

∞∑

k=−∞
g(α)

k
u(x− (k−1)h)+O(h4).

Combining (2.119) one can get

∂αu(xm)
∂|x|α =

α

24hα

m−1∑

k=−M+m+1

g(α)
k

u(xm−(k+1))

+
α

24hα

m−1∑

k=−M+m+1

g(α)
k

u(xm−(k−1))

−
(

1+
α

12

) 1
hα

m−1∑

k=−M+m+1

g(α)
k

u(xm−k)+O(h4).

(2.129)

2.4.2 High-Order Algorithms (II)

In the above subsection, a new kind of second-order scheme and two classes of
fourth-order schemes were established. In this subsection, we continue to construct
much higher-order schemes. Next, we show how to build much higher-order numer-
ical schemes for the Riesz derivative.

Define

Hθu(x) =
∞∑

k=−∞
g(α)

k
u(x− (k+ θ)h), θ ∈ χ = {0,±1,±2,±3, . . .} ,

where

g(α)
k
=

(−1)kΓ(α+1)

Γ
(
α
2 − k+1

)
Γ
(
α
2 + k+1

) .

Let
∂αu(x)
∂|x|α =

1
hα

∑

θ∈χ
Zθ,pHθu(x)+O(hp), p ≥ 2,

where Zθ,p are coefficients determined by the Fourier transform method. Obviously,
in view of the above equation, we can obtain arbitrary order difference schemes by
choosing various combination of θ values.

In this subsection, we give two different high-order difference schemes via the
following theorem:

Theorem 7 Suppose that u(x) ∈C11(R) and all the derivatives of u(x) up to order 11
belong to L1(R), then we have

∂αu(x)
∂|x|α =

Dα
s u(x)
hα

+O(h6), (2.130)
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and

∂αu(x)
∂|x|α =

Dα
e u(x)
hα

+O(h8), (2.131)

where
Dα

s u(x) = A1H−2u(x)+A2H−1u(x)+A3H0u(x)

+A2H1u(x)+A1H2u(x),

Dα
e u(x) = B1H−3u(x)+B2H−2u(x)+B3H−1u(x)+B4H0u(x)

+B3H1u(x)+B2H2u(x)+B1H3u(x),

A1 = −
(
α

1152
+

11
2880

)

α,A2 =

(
α

288
+

41
720

)

α,A3 = −
(
α2

192
+

17α
160
+1

)

,

B1 =

(
α2

82944
+

11α
69120

+
191

362880

)

α, B2 = −
(

α2

13824
+

7α
3840

+
211

30240

)

α,

B3 =

(
5α2

27648
+

3α
512
+

7843
120960

)

α, B4 = −
(

5α3

20736
+

29α2

3456
+

5297α
45360

+1
)

.

Proof. Applying the Fourier transform to the difference operator
Dα

s u(x, t)
hα

with
respect to x yields

F
{

Dα
s u(x)
hα

;ω
}

=
1
hα

⎡
⎢⎢⎢⎢⎢⎢⎣A1

∞∑

k=−∞
g(α)

k
e−i(k−2)ωh +A2

∞∑

k=−∞
g(α)

k
e−i(k−1)ωh

+A3

∞∑

k=−∞
g(α)

k
e−ikωh +A2

∞∑

k=−∞
g(α)

k
e−i(k+1)ωh

+A1

∞∑

k=−∞
g(α)

k
e−i(k+2)ωh

⎤
⎥⎥⎥⎥⎥⎥⎦ û(ω)

=
1
hα

[2A1 cos(2ωh)+2A2 cos(ωh)+A3]

⎛
⎜⎜⎜⎜⎜⎜⎝

∞∑

k=−∞
g(α)

k
eikωh

⎞
⎟⎟⎟⎟⎟⎟⎠ û(ω).

(2.132)

Note that the generating function of the coefficients g(α)
k

is

∣∣∣∣∣∣
2sin

(
ωh
2

)∣∣∣∣∣∣

α

, that is to

say [119] ∣∣∣∣∣∣
2sin

(
ωh
2

)∣∣∣∣∣∣

α

=

∞∑

k=−∞
g(α)

k
eikωh.
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According to Euler’s formula exp(ix) = cos(x)+ isin(x), we easily obtain

|ξ|α =
1

2cos
(
πα
2

)

[

|ξ|α exp
(

i
πα

2
sign(ξ)

)

+ |ξ|α exp
(

−i
πα

2
sign(ξ)

)]

=
1

2cos
(
πα
2

)
[
(iξ)α+ (−iξ)α

]
.

Let ξ =
2sin

(
ωh
2

)

ωh
, ω ∈ R, then the above equation becomes

∣∣∣∣∣∣∣∣

2sin
(
ωh
2

)

ωh

∣∣∣∣∣∣∣∣

α

=
1

2cos
(
πα
2

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

2sin
(
ωh
2

)

ωh
i

⎞
⎟⎟⎟⎟⎟⎟⎠

α

+

⎛
⎜⎜⎜⎜⎜⎜⎝−

2sin
(
ωh
2

)

ωh
i

⎞
⎟⎟⎟⎟⎟⎟⎠

α⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
iα+ (−i)α

2cos
(
πα
2

)

[

1− α

24
(ωh)2+

(
1

1920
+
α−1
1152

)

α(ωh)4

−
(

1
322560

+
α−1
46080

+
(α−1)(α−2)

82944

)

α(ωh)6+O(ωh)8
]

=

[

1− α

24
(ωh)2+

(
1

1920
+
α−1
1152

)

α(ωh)4

−
(

1
322560

+
α−1
46080

+
(α−1)(α−2)

82944

)

α(ωh)6+O(ωh)8
]

.

At this moment, one can rewrite (2.132) as

F
{

Dα
s u(x)
hα

;ω
}

=
1
hα

[2A1 cos(2ωh)+2A2 cos(ωh)+A3]

∣∣∣∣∣∣
2sin

(
ωh
2

)∣∣∣∣∣∣

α

û(ω)

= |ω|α [2A1 cos(2ωh)+2A2 cos(ωh)+A3]

∣∣∣∣∣∣∣∣

2sin
(
ωh
2

)

ωh

∣∣∣∣∣∣∣∣

α

û(ω)

= |ω|α
(
−1+O(ωh)6

)
û(ω).

From [49], one has

F
{
∂αu(x)
∂|x|α ;ω

}

= −|ω|αû(ω).

Let

δ̂(ω,h) = F
{

Dα
s u(x)
hα

;ω
}

−F
{
∂αu(x)
∂|x|α ;ω

}

. (2.133)

Since u(x) ∈C11(R) and its partial derivatives up to order eleven belong to L1(R),
there exists a positive constant Ĉ1 such that
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∣∣∣̂u(ω)
∣∣∣ ≤ Ĉ1 (1+ |ω|)−11 . (2.134)

So, using (2.132) and (2.133) leads to

∣∣∣∣̂δ(ω,h)
∣∣∣∣ ≤ Ĉ2h6 |ω|6+α

∣∣∣̂u(ω)
∣∣∣ ≤ Ĉ2h6 (1+ |ω|)6+α

∣∣∣̂u(ω)
∣∣∣

≤ Ĉ3h6 (1+ |ω|)α−5 ,
(2.135)

where Ĉ3 = Ĉ1Ĉ2.
Furthermore, taking the inverse Fourier transform in both sides of (2.133) and

combining with (2.135) give
∣∣∣∣∣
∂αu(x)
∂|x|α −

Dα
s u(x)
hα

∣∣∣∣∣ = |δ(ω,h)| = 1
2π

∣∣∣∣∣

∫

R

δ̂(ω,h)eiωhdω
∣∣∣∣∣

≤ 1
2π

∫

R

∣∣∣∣̂δ(ω,h)
∣∣∣∣dω ≤ Ĉ3

2π

(∫

R

(1+ |ω|)α−5 dω
)

h6

= Ĉh6,

i.e.,
∂αu(x)
∂|x|α =

Dα
s u(x)
hα

+O(h6),

where Ĉ =
Ĉ3

(4−α)π
.

Let

δ(ω,h) = F
{

Dα
e u(x)
hα

;ω
}

−F
{
∂αu(x)
∂|x|α ;ω

}

.

Similarly, we can obtain

δ(ω,h) = |ω|α
{[

2(B1+B2+B3)+B4− (9B1+4B2+B3) (ωh)2

+

(
27
4
B1+

4
3
B2+

1
12
B3

)

(ωh)4 −
(
81
40
B1+

8
45
B2+

1
360
B3

)

(ωh)6

+O(ωh)8
]
∣∣∣∣∣∣∣∣

2sin
(
ωh
2

)

ωh

∣∣∣∣∣∣∣∣

α

+1

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

u(ω)

=
(
|ω|α+8 u(ω)

)
O(h8).

It immediately follows that

∂αu(x)
∂|x|α =

Dα
e u(x)
hα

+O(h8).

Thus all this finishes the proof. �
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If u∗ is defined by

u∗(x) =
{

u(x), x ∈ [a,b],
0, x � [a,b].

such that u∗ ∈C11(R), and all derivatives up to order 11 belong to L1(R), then (2.130)
and (2.131) at point (xm, tn) can be rewritten as

∂αu(xm)
∂|x|α =

1
hα

⎧
⎪⎪⎨
⎪⎪⎩
A1

m−2∑

k=−M+m+2

g(α)
k

u(xm−(k−2))+A2

m−2∑

k=−M+m+2

g(α)
k

u(xm−(k−1))

+A3

m−2∑

k=−M+m+2

g(α)
k

u(xm−k)+A2

m−2∑

k=−M+m+2

g(α)
k

u(xm−(k+1))

+A1

m−2∑

k=−M+m+2

g(α)
k

u(xm−(k+2))

⎫
⎪⎪⎬
⎪⎪⎭
+O(h6),

(2.136)

and

∂αu(xm)
∂|x|α =

1
hα

⎧
⎪⎪⎨
⎪⎪⎩
B1

m−3∑

k=−M+m+3

g(α)
k

u(xm−(k−3))+B2

m−3∑

k=−M+m+3

g(α)
k

u(xm−(k−2))

+B3

m−3∑

k=−M+m+3

g(α)
k

u(xm−(k−1))+B4

m−3∑

k=−M+m+3

g(α)
k

u(xm−k, tn)

+B3

m−3∑

k=−M+m+3

g(α)
k

u(xm−(k+1))+B2

m−3∑

k=−M+m+3

g(α)
k

u(xm−(k+2))

+B1

m−3∑

k=−M+m+3

g(α)
k

u(xm−(k+3))

⎫
⎪⎪⎬
⎪⎪⎭
+O(h8),

(2.137)

respectively.

Remark 2.4.1 In fact, we can use almost the same method to construct much higher-
order difference schemes for the Riesz derivative, such as, 10th-order, 12th-order
schemes, . . . , and so on; for more details see [39].

2.4.3 High-Order Algorithms (III)

Although higher-order schemes can be constructed as above, we still think that
it is necessary to reconsider the pth order schemes (p = 2,3, · · · ,6) with new meth-
ods due to the fact that such cases are mostly noticed. In [104], the asymptotical
properties of the coefficients of the higher-order schemes for the Riemann–Liouville
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integrals (also derivatives) were given. In this subsection, we not only explicitly ex-
press these coefficients of the higher-order methods for Riesz derivatives, but also
study their monotonicity.

If f (k)(a+) = 0 (k = 0,1, . . . , p − 1), then it follows from [104] that the left
Riemann–Liouville derivative has the following approximations

RLDα
a,x f (x) =

1
hα

∞∑

�=0

�(α)
p,� f (x− �h)+O(hp), (2.138)

in which h is the stepsize. Here we only show interests in p = 2,3,4,5,6.
The convolution (or weight) coefficients �(α)

p,� in the above equations are those of

the Taylor series expansions of the corresponding generating functions W(α)
p (z),

W(α)
p (z) =

∞∑

�=0

�(α)
p,�z

�, α ∈ (0,2),

where

W(α)
2 (z) =

(
3
2
−2z+

1
2

z2
)α

,

W(α)
3 (z) =

(
11
6
−3z+

3
2

z2 − 1
3

z3
)α

,

W(α)
4 (z) =

(
25
12
−4z+3z2− 4

3
z3 +

1
4

z4
)α

,

W(α)
5 (z) =

(
137
60
−5z+5z2− 10

3
z3+

5
4

z4 − 1
5

z5
)α

,

W(α)
6 (z) =

(
147
60
−6z+

15
2

z2 − 20
3

z3 +
15
4

z4 − 6
5

z5 +
1
6

z6
)α

.

By tedious but direct calculations, one has

�(α)
2,� =

(
3
2

)α �∑

�1=0

(
1
3

)�1

�(α)
1,�1

�(α)
1,�−�1

,

�
(α)
3,� =

(
11
6

)α �∑

�1=0

[
1
2 �1

]

∑

�2=0

(−1)�2

(
7

11

)�1−�2
(

2
7

)�2 (�1− �2)!
�2!(�1−2�2)!

�
(α)
1,�−�1

�
(α)
1,�1−�2

,

�(α)
4,� =

(
25
12

)α �∑

�1=0

[
2
3 �1

]

∑

�2=0

[
1
2 �2

]

∑

�3=max{0,2�2−�1}
(−1)�2

(
23
25

)�1−�2
(

13
23

)�2−�3
(

3
13

)�3

×

(�1− �2)!
�3! (�2−2�3)! (�1+ �3−2�2)!

�(α)
1,�−�1

�(α)
1,�1−�2

,
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�(α)
5,� =

(
137
60

)α �∑

�1=0

[
3
4 �1

]

∑

�2=0

[
2
3 �2

]

∑

�3=max{0,2�2−�1}

[
1
2 �3

]

∑

�4=max{0,2�3−�2}
(−1)�2

(
163
137

)�1−�2
(
137
163

)�2−�3

×
(

63
137

)�3−�4
(

4
21

)�4 (�1− �2)!
�4! (�3−2�4)! (�1+ �3−2�2)! (�2+ �4−2�3)!

�(α)
1,�−�1

�(α)
1,�1−�2

,

and

�(α)
6,� =

(
147
60

)α �∑

�1=0

[
4
5 �1

]

∑

�2=0

[
3
4 �2

]

∑

�3=max{0,2�2−�1}

[
2
3 �3

]

∑

�4=max{0,2�3−�2}

[
1
2 �4

]

∑

�5=max{0,2�4−�3}

(−1)�2

(
213
147

)�1−�2
(
237
213

)�2−�3
(

163
237

)�3−�4
(

62
163

)�4−�5
(

5
31

)�5

×
(�1− �2)!

�5! (�4−2�5)! (�1+ �3−2�2)! (�2+ �4−2�3)! (�3+ �5−2�4)!
�(α)

1,�−�1
�(α)

1,�1−�2
,

� = 0,1, . . . .

Here �(α)
1, j is the first order coefficients defined by �(α)

1, j = (−1) j Γ(1+α)
Γ( j+1)Γ(1+α− j) , j =

0,1, · · · . If j ≥ 2, then �(α)
1, j−1 ≤�(α)

1, j for α ∈ (0,1) whilst �(α)
1, j−1 ≥�(α)

1, j for α ∈ (1,2).
See [78] for more details.

On the other hand, if f (k)(b−) = 0 (k = 0,1, . . . , p− 1), then one has the approxi-
mations below,

RLDα
x,b f (x) =

1
hα

∞∑

�=0

�(α)
p,� f (x+ �h)+O(hp), p = 2, · · · ,6, (2.139)

where h is also the stepsize.
Based on (2.138) and (2.139), if f (x), together with its derivatives, has homoge-

neous boundary value conditions, one easily gets

∂α f (x)
∂|x|α = −

1
2cos(πα/2)hα

∞∑

�=0

�(α)
p,� ( f (x− �h)+ f (x+ �h))+O(hp). (2.140)

Since α ∈ (0,2) is commonly used, we limit our interests in α ∈ (0,1) and α ∈ (1,2).
When α = 1, we often set ∂α f (x)

∂|x|α = f ′(x) which is the trivial case, so is omitted here.
The second-order coefficients have interesting properties some of which (for α ∈

(0,1)) have been studied in [78]. Here we have the further results.
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Theorem 8 The second-order coefficients �(α)
2,� (� = 0,1, . . .) satisfy

(1) �(α)
2,0 =

(
3
2

)α

> 0, �(α)
2,1 = −

4α
3

(
3
2

)α

< 0,

�
(α)
2,2 =

α (8α−3)
9

(
3
2

)α

> 0, �(α)
2,3 = −

4α (α−1)(8α−7)
81

(
3
2

)α

< 0,

�(α)
2,4 =

α (α−1)
(
64α2−176α+123

)

486

(
3
2

)α

,

...

(2) When 0 < α < 1, �(α)
2,� < 0 and �(α)

2,� < �
(α)
2,�+1 for � ≥ 4,

(3) When 1 < α < 2, �(α)
2,� > 0 and �(α)

2,� > �
(α)
2,�+1 for � ≥ 5.

Proof. (1) Direct calculations can finish it, so we omit the proof details.
(2) See [78] for details.
(3) Now we show the case α ∈ (1,2). We firstly show that �(α)

2, j > 0 for � ≥ 5. For
convenience, denote α = 1+γ, where 0 < γ < 1. Lengthy calculations give

�(α)
2,� =

(
3
2

)1+γ �∑

m=0

(
1
3

)m

�
(1+γ)
1,m �

(1+γ)
1,�−m

=

(
3
2

)1+γ [

�
(1+γ)
1,0 �

(1+γ)
1,� +

1
3
�

(1+γ)
1,1 �

(1+γ)
1,�−1 +

1
9
�(1+α)

1,2 �
(1+γ)
1,�−2

+

(
1
3

)�

�
(1+γ)
1,0 �

(1+γ)
1,� +

(
1
3

)�−1

�
(1+γ)
1,1 �

(1+γ)
1,�−1

⎤
⎥⎥⎥⎥⎥⎦

+

(
3
2

)1+γ �−2∑

m=3

(
1
3

)m

�
(1+γ)
1,m �

(1+γ)
1,�−m

=

(
3
2

)1+γ [

1− γ+1
3

�

(�−2−γ)
+
γ(γ+1)

18
�(�−1)

(�−2−γ)(�−3−γ)

+

(
1
3

)� (

1− 3�(γ+1)
(�−2−γ)

)⎤
⎥⎥⎥⎥⎥⎦�

(1+γ)
1,� +

(
3
2

)1+γ �−2∑

m=3

(
1
3

)m

�
(1+γ)
1,m �

(1+γ)
1,�−m

≥
(

3
2

)1−α [244
243
− 28(γ+1)

81
�

(�−2−γ)
+
γ(γ+1)

18
�(�−1)

(�−2−γ)2

]

�
(1+γ)
1,�

+

(
3
2

)1+γ �−2∑

m=3

(
1
3

)m

�
(1+γ)
1,m �

(1+γ)
1,�−m, � ≥ 5.

Let

F(x,γ) =
244
243
− 28(γ+1)

81
x

(x−2−γ)
+
γ(γ+1)

18
x(x−1)

(x−2−γ)2 , x ≥ 5,

and

G(x,γ) = 486(x−2−γ)2F(x,γ)
= 488(x−2−γ)2−168(γ+1)x(x−2−γ)+27γ(γ+1)x(x−1), x ≥ 5.
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Then

Gx(x,γ) = 976(x−2−γ)−168(γ+1)(2x−2−γ)+27γ(γ+1)(2x−1)

and
Gxx(x,γ) = 54γ2−282γ+640.

Obviously,
Gxx(x,γ) ≥ 0 for 0 < γ < 1,

it immediately follows that Gx(x,γ) is an increasing function and Gx(x,γ) ≥Gx(5,γ)
for x ≥ 5.

Note that

Gx(5,γ) = 411γ2−1909γ+1585> 0, 0 < γ < 1.

Hence G(x,γ) is an increasing function too, and G(x,γ) ≥ G(5,γ) if x ≥ 5. Simple
calculations yields

G(5,γ) = 1868γ2−3068γ+1872≥Gmin(5,γ) = g
(

5,
767
934

)

= 612
131
467

,

so, G(x,γ) ≥ 0. Therefore, the following inequality holds

F(x,γ) =
G(x,γ)

486(x−2−γ)2 ≥ 0,

which means �(1+γ)
2, j > 0 for � ≥ 5.

Next, we show that �(α)
2,� > �

(α)
2,�+1 for � ≥ 5. Note that

�(α)
2,� −�(α)

2,�+1 = (2+γ)
(

3
2

)1+γ (1
3

)� �∑

�1=0

3�1

�1+1
�

(1+γ)
1,�1

�
(1+γ)
1,�−�1

−
(

3
2

)1+γ (1
3

)�+1 (

1− 2+γ
�+1

)

�
(1+γ)
1,�

=

(
3
2

)1+γ (1
3

)�
⎡
⎢⎢⎢⎢⎢⎢⎢⎣
(2+γ)

�∑

�1=0

3�1

�1+1
�

(1+γ)
1,�1

�
(1+γ)
1,�−�1

− 1
3
�

(1+γ)
1,�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
2+γ
�+1

(
3
2

)1+γ (1
3

)�+1

�
(1+γ)
1,�

≥ (2+γ)
(

3
2

)1+γ (1
3

)�
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�∑

�1=0

3�1

�1+1
�

(1+γ)
1,�1

�
(1+γ)
1,�−�1

− 1
6
�

(1+γ)
1,�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
2+γ
�+1

(
3
2

)1+γ (1
3

)�+1

�
(1+γ)
1,�

= (2+γ)
(

3
2

)1+γ (1
3

)�

P(�,γ)�(1+γ)
1,� +

2+γ
�+1

(
3
2

)1+γ (1
3

)�+1

�
(1+γ)
1,�

+ (2+γ)
(

3
2

)1+γ (1
3

)� �−3∑

�1=3

3�1

�1+1
�

(1+γ)
1,�1

�
(1+γ)
1,�−�1

.
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Here

P(�,γ) =

[
5
6
− 3�(γ+1)

2(�−2−γ)
+

3γ(γ+1)�(�−1)
2(�−2−γ)(�−3−γ)

]

+
3�

�+1

[

1− (�+1)(γ+1)
3(�−2−γ)

+
γ(γ+1)�(�+1)

18(�−2−γ)(�−3−γ)

]

.

Obviously, the last two terms in the right-hand side of the last equality are both
nonnegative, so we only need to prove that the factor P(�,γ) in the first term is posi-
tive.

Let
P1(�,γ) =

5
6
− 3�(γ+1)

2(�−2−γ)
+

3γ(γ+1)�(�−1)
2(�−2−γ)(�−3−γ)

,

P2(�,γ) = 1− (�+1)(γ+1)
3(�−2−γ)

+
γ(γ+1)�(�+1)

18(�−2−γ)(�−3−γ)
,

then

P(�,γ) = P1(�,γ)+
3�

�+1
P2(�,γ).

If � = 5, then

P2(5,γ) = 1− 2(γ+1)
(3−γ)

+
5γ(γ+1)

3(3−γ)(2−γ)
> 0.

Now we consider the case � ≥ 6. Let

Q(x,γ) = 18(x−2−γ)(x−2.5−γ)P3(x,γ), x ∈ [6,∞),

where
P3(x,γ) = 1− (x+1)(γ+1)

3(x−2−γ)
+

γ(γ+1)x(x+1)
18(x−2−γ)(x−2.5−γ)

.

Then
Qxx(x,γ) = 2γ2−10γ+24> 0, 0 < γ < 1.

So Qx(x,γ) is an increasing function and

Qx(x,γ) ≥ Qx(6,γ) = 19γ2−80γ+72> 0, x ≥ 6, 0 < γ < 1.

It immediately follows that Q(x,γ) is an increasing function with respect to x and

Q(x,γ) ≥ Q(6,γ) = 102γ2−198γ+105> 0, 0 < γ < 1,

i.e., P3(x,γ) > 0. Noticing P2(�,γ) > P3(�,γ) yields

P2(�,γ) > 0, � ∈ [5,∞).
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Therefore,

P(�,γ) = P1(�,γ)+
3�

�+1
P2(�,γ) ≥ P1(�,γ)+

81
2

P2(�,γ)

=
124

3
− 3(γ+1)(10�+9)

2(�−2−γ)
+

3�γ(γ+1)(5�+1)
4(�−2−γ)(�−3−γ)

>
124

3
− 3(γ+1)(10�+9)

2(�−2−γ)
+

3�γ(γ+1)(5�+1)
4(�−2−γ)2 .

When � = 5, we easily know that P(�,γ) > 0 by direct calculation. Next, we dis-
cuss the case � ≥ 6. Let

P4(�,γ) =
124
3
− 3(γ+1)(10�+9)

2(�−2−γ)
+

3�γ(γ+1)(5�+1)
4(�−2−γ)2 ,

and
R(x,γ) = 12(x−2−γ)2P4(x,γ), x ≥ 6.

Differentiating twice with respect to x gives

Rxx(x,γ) = 90γ2−270γ+632,

which is positive when γ ∈ (0,1).
So, Rx(x,γ) is an increasing function and

Rx(x,γ) > Rx(6,γ) = 729γ2−2225γ+2006> 0.

Furthermore, R(x,γ) is an increasing function as well and

R(x,γ) > R(6,γ) = 3412γ2−6020γ+2968> 0, x ∈ [6,∞).

So, P4(�,γ) > 0 implies P(�,γ) > 0. It follows that �(α)
2,� ≥ �(α)

2,�+1 for � ≥ 5. The
proof is thus finished. �

The monotonicity of the second-order coefficients�(α)
2,� is often used to prove the

stability and convergence of the constructed algorithms for the time fractional differ-
ential equations. For the space fractional differential equations, we use the following
theorem instead of the monotonicity of the coefficients�(α)

p,� to show the stability and
convergence for the derived algorithms. Now we establish the following theorem.
Here we focus on studying the case α ∈ (0,1).

Theorem 9 For 0 < α < 1, then the following relation holds:

∞∑

�=0

�
(α)
p,� cos(�θ) ≥ 0, θ ∈ [−π,π], p = 2,3,5,6.

Proof. We only prove p = 2, the other cases can be almost similarly shown so are
left out here. Let

f1(α,θ) =
∞∑

�=0

�(α)
2,� cos(�θ),
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which can be expanded as

f1(α,θ) =
∞∑

�=0

�(α)
2,� cos(�θ) =

1
2

∞∑

�=0

�(α)
2,�
(
exp(i�θ)+ exp(−i�θ)

)

=
1
2

[
(
1− exp(iθ)

)α
(

3
2
− 1

2
exp(iθ)

)α

+
(
1− exp(−iθ)

)α
(

3
2
− 1

2
exp(−iθ)

)α]

.

Note that f1(α,θ) is a real-value and even function, so we need only consider θ ∈ [0,π].
Using the following equations

(
1− exp(±iθ)

)α =

(

2sin
θ

2

)α
exp

(

±iα
(
θ−π

2

))

and
(x− yi)α =

(
x2+ y2

) α
2 exp(iαφ) , φ = −arctan

y
x
.

Now we can rewrite f1(α,θ) as

f1(α,θ) =
(

2sin
θ

2

)α (
λ2

1(θ)+μ2
1(θ)

) α
2 cosα

(
θ−π

2
+φ1

)

,

where
λ1(θ) = 3− cosθ, μ1(θ) = sinθ, φ1 = −arctan

μ1(θ)
λ1(θ)

.

Let
z(θ) =

θ−π
2
+φ1, 0 ≤ θ ≤ π.

Then

z′(θ) =
(
θ−π

2
+φ1

)′
=

3sin2
(
θ
2

)

1+3sin2
(
θ
2

) ≥ 0.

Hence z(θ) is an increasing function in [0,π] and

zmin(θ) = z(0) = −π
2
, zmax(θ) = z(π) = 0.

It is simple to see that α ∈ (0,1) and θ ∈ [0,π] imply cosα
(
θ−π

2 +φ1
)
≥ 0, so one has

f1(α,θ) =
(

2sin
θ

2

)α (
λ2

1(θ)+μ2
1(θ)

) α
2 cosα

(
θ−π

2
+φ1

)

≥ 0.

All this ends the proof. �

For p = 4, α can not be very close to 1. But we have the following theorem.

Theorem 10 If 0 < α ≤ π

π− arccos 1
5 +2arctan 191

√
6

317

≈ 0.8439, then the following

relation holds: ∞∑

�=0

�(α)
4,� cos(�θ) ≥ 0, θ ∈ [−π,π].

 



Chapter 2 Numerical Methods for Fractional Integral and Derivatives 79

Proof. Let f2(α,θ) =
∞∑
�=0

�(α)
4,� cos(�θ). By almost the same reasoning as that of

Theorem 9, we can get

f2(α,θ) =
(

2sin
θ

2

)α (
λ2

2(θ)+μ2
2(θ)

) α
2 cosα

(
θ−π

2
+φ2

)

,

where
λ2(θ) = 25−23cosθ+13cos2θ−3cos3θ,

μ2(θ) = 23sinθ−13sin2θ+3sin3θ, φ2 = −arctan
μ2(θ)
λ2(θ)

.

Since

λ2(θ) = 14
(

cos(θ)− 1
2

)2

+24cos2(θ) sin2
(
θ

2

)

+
17
2
> 0,

and

μ2(θ) =

⎡
⎢⎢⎢⎢⎢⎣12

(

cos(θ)− 13
12

)2

+
71
24

⎤
⎥⎥⎥⎥⎥⎦sin(θ) ≥ 0,

so φ2 ∈ [− π2 ,0]. We need only consider 0 ≤ θ ≤ π, therefore −π ≤ α
(
θ−π

2 +φ2
)
≤ 0.

Obviously, if cosα
(
θ−π

2 +φ2
)
≥ 0, then f2(α,θ) ≥ 0. A sufficient condition for

cosα
(
θ−π

2 +φ2
)
≥ 0 is

−π
2
≤ min
θ∈[0,π]

α
(
θ−π

2
+φ2

)

≤ 0,

i.e.,

0 < α ≤ min
θ∈[0,π]

{
π

π− θ−2φ2

}

.

Let y(θ) = π− θ−2φ2, then

y′(θ) =
1920(5cosθ−1)sin4

(
θ
2

)

a2
2(θ)+b2

2(θ)
.

It is clear that θ = arccos 1
5 is a unique maximum point of y(θ) when θ ∈ [0,π], so

ymax (θ) = ymax

(

arccos
1
5

)

= π− arccos
1
5
+2arctan

191
√

6
317

,

it follows that

min
θ∈[0,π]

{
π

π− θ−2φ2

}

=
π

π− arccos 1
5 +2arctan 191

√
6

317

≈ 0.8439,

i.e.,
0 < α ≤ 0.8439.

This finishes the proof. �

Now we again return to discuss the properties of the other high-order coefficients.
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Remark 2.4.2 The monotonicity of the coefficients �(α)
2,� with respect to � (see Theo-

rems 8) are often used for stability and convergence analysis for the time fractional
differential equations.

Although it is not facile to prove the monotonicity of the coefficients �(α)
p,�, p =

3, · · · ,6, we can explicitly write their expressions; see the beginning part of this sub-
section for more details. The coefficients are explicitly expressed which are beneficial
for numerical calculations. Besides, through numerical simulations, one can find the
monotonicity of the coefficients �(α)

p,�, p = 3, 4, 5.

0 5 10 15 20 25 30 35 40 45
−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

l

ϖ
3,

l
(0
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FIGURE 2.1: The values of coefficient �(α)
3,� (� = 4,5, · · ·) for α = 0.4.

Figs. 2.1 and 2.2 show the monotonicity of the coefficients �(α)
3,� for α ∈ (0,1),

Figs. 2.3 and 2.4 for α ∈ (1,2). Figs. 2.5 and 2.6 display the monotonicity of the
coefficients �(α)

4,� for α ∈ (0,1), Figs. 2.7 and 2.8 for α ∈ (1,2). Figs. 2.9 and 2.10

present the monotonicity of the coefficients�(α)
5,� for α ∈ (0,1), and Figs. 2.11 and 2.12

for α ∈ (1,2). But through the numerical simulations, �(α)
6,� , α ∈ (0,1) and α ∈ (1,2)

seem not to have the monotonicity.
In the following, we provide a conjecture which is seemingly primary but is hard

to prove.

Conjecture 2.4.1

(1) If 0 < α < 1, then �(α)
3,� ≤�(α)

3,�+1 f or � ≥ 4, �(α)
4,� ≤�(α)

4,�+1 f or � ≥ 7,
and �(α)

5,� ≤�(α)
5,�+1 f or � ≥ 12.

(2) If 1 < α < 2, then �(α)
3,� ≥�(α)

3,�+1 f or � ≥ 7, �(α)
4,� ≥�(α)

4,�+1 f or � ≥ 12,
and �(α)

5,� ≥�(α)
5,�+1 f or � ≥ 16.
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FIGURE 2.2: The values of coefficient �(α)
3,� (� = 4,5, · · ·) for α = 0.8.
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FIGURE 2.3: The values of coefficient �(α)
3,� (� = 7,8, · · ·) for α = 1.2.
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FIGURE 2.4: The values of coefficient �(α)
3,� (� = 7,8, · · ·) for α = 1.6.
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FIGURE 2.5: The values of coefficient �(α)
4,� (� = 7,8, · · ·) for α = 0.4.
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FIGURE 2.6: The values of coefficient �(α)
4,� (� = 7,8, · · ·) for α = 0.8.
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FIGURE 2.7: The values of coefficient �(α)
4,� (� = 10,11, · · ·) for α = 1.2.
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FIGURE 2.8: The values of coefficient �(α)
4,� (� = 10,11, · · ·) for α = 1.6.
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FIGURE 2.9: The values of coefficient �(α)
5,� (� = 12,13, · · ·) for α = 0.4.
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FIGURE 2.10: The values of coefficient �(α)
5,� (� = 12,13, · · ·) for α = 0.8.
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FIGURE 2.11: The values of coefficient �(α)
5,� (� = 16,17, · · ·) for α = 1.2.
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FIGURE 2.12: The values of coefficient �(α)
5,� (� = 16,17, · · ·) for α = 1.6.

These properties of high-order coefficients are generally suitable for stability and
convergence analysis of the designed algorithms for the time-fractional partial differ-
ential equations.

2.4.4 Numerical Examples

Now we test the higher-order schemes for Riesz derivatives.

Example 1 Consider the function fp(x) = xp(1− x)p, x ∈ [0,1], p = 2,3,4,5,6.
The Riesz derivative of the above function is analytically expressed as

∂α fp(x)
∂|x|α = − 1

2cos(πα/2)

p∑

�=0

(−1)�
p!(p+ l)!

�!(p− l)!Γ(p+ �+1−α)

[
xp+�−α+ (1− x)p+�−α] .

We first verify the convergence orders for numerical scheme (2.120) and (2.121).
The computational results are showed in Tables 2.1–2.2. These computational results
confirm the second-order and fourth-order of the numerical formulas (2.120) and
(2.121), respectively.

Then, we numerically solve the Riesz derivative of fp(x) by using numerical
scheme (2.140). The numerical results are presented in Tables 2.3–2.7. From these ta-
bles, the experimental orders are in line with the theoretical orders p (p = 2,3,4,5,6).
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TABLE 2.1: The absolute error, convergence order of Example 1 by numerical
scheme (2.120) with p = 2.

α 1/h L∞-error Order
0.2 10 3.630966e−03

20 9.120270e−04 1.9932
40 2.285315e−04 1.9967
80 5.719787e−05 1.9984

0.4 10 5.124542e−03
20 1.289681e−03 1.9904
40 3.234889e−04 1.9952
80 8.100606e−05 1.9976

0.6 10 4.629914e−03
20 1.164707e−03 1.9910
40 2.920982e−04 1.9954
80 7.314118e−05 1.9977

0.8 10 2.652282e−03
20 6.653815e−04 1.9950
40 1.666617e−04 1.9973
80 4.170691e−05 1.9986

1.2 10 2.371107e−03
20 5.878877e−04 2.0119
40 1.464631e−04 2.0050
80 3.655831e−05 2.0023

1.4 10 3.614913e−03
20 8.891952e−04 2.0234
40 2.207491e−04 2.0101
80 5.500869e−05 2.0047

1.6 10 3.311900e−03
20 8.088550e−04 2.0337
40 2.001866e−04 2.0145
80 4.981273e−05 2.0068

1.8 10 1.748268e−03
20 4.265789e−04 2.0350
40 1.055454e−04 2.0149
80 2.625954e−05 2.0069
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TABLE 2.2: The absolute error, convergence order of Example 1 by numerical
scheme (2.121) with p = 4.

α 1/h L∞-error Order
0.2 20 1.571776e−08

40 9.923695e−10 3.9854
80 6.218021e−11 3.9963

160 3.888658e−12 3.9991
0.4 20 6.255711e−08

40 3.955450e−09 3.9833
80 2.479333e−10 3.9958

160 1.550707e−11 3.9990
0.6 20 1.660570e−07

40 1.051535e−08 3.9811
80 6.593628e−10 3.9953

160 4.124394e−11 3.9988
0.8 20 3.501076e−07

40 2.219986e−08 3.9792
80 1.392502e−09 3.9948

160 8.711096e−11 3.9987
1.2 20 7.029869e−07

40 4.446255e−08 3.9828
80 2.787163e−09 3.9957

160 1.743236e−10 3.9990
1.4 20 4.372243e−08

40 3.985260e−09 3.4556
80 2.690303e−10 3.8888

160 1.712778e−11 3.9734
1.6 20 3.751536e−06

40 2.440706e−07 3.9421
80 1.540687e−08 3.9857

160 9.653215e−10 3.9964
1.8 20 1.592788e−05

40 1.034107e−06 3.9451
80 6.524548e−08 3.9864

160 4.087469e−09 3.9966
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TABLE 2.3: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 2.

α 1/h L∞-error Order
0.1 20 9.799438e−05

40 2.468338e−05 1.9892
80 6.158789e−06 2.0028

160 1.536039e−06 2.0034
320 3.834192e−07 2.0022

0.5 20 1.093549e−03
40 2.557319e−04 2.0963
80 6.143944e−05 2.0574

160 1.503151e−05 2.0312
320 3.715825e−06 2.0162

0.9 20 6.874862e−03
40 1.269052e−03 2.4376
80 2.603644e−04 2.2851

160 5.793868e−05 2.1679
320 1.358819e−05 2.0922

TABLE 2.4: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 3.

α 1/h L∞-error Order
0.2 40 3.146678e−07

60 1.576085e−07 1.7052
80 7.991483e−08 2.3608

100 4.501080e−08 2.5726
120 2.761993e−08 2.6786

0.5 40 1.015756e−05
60 3.330915e−06 2.7499
80 1.470163e−06 2.8430

100 7.721886e−07 2.8856
120 4.542595e−07 2.9100

0.9 40 3.110547e−04
60 9.436636e−05 2.9418
80 4.020332e−05 2.9659

100 2.069282e−05 2.9764
120 1.201409e−05 2.9821
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TABLE 2.5: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 4.

α 1/h L∞-error Order
0.2 20 3.254967e−06

25 1.421712e−06 3.7121
30 7.061638e−07 3.8381
35 3.863551e−07 3.9123
40 2.279637e−07 3.9509

0.5 20 2.352556e−05
25 9.541773e−06 4.0441
30 4.506623e−06 4.1143
35 2.379569e−06 4.1429
40 1.366626e−06 4.1531

0.8 20 1.466022e−04
25 5.460563e−05 4.4258
30 2.420431e−05 4.4625
35 1.216174e−05 4.4647
40 6.707129e−06 4.4568

TABLE 2.6: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 5.

α 1/h L∞-error Order
0.3 80 2.498729e−10

100 1.091359e−10 3.7122
120 5.108016e−11 4.1641
140 2.599689e−11 4.3816
160 1.423638e−11 4.5096

0.6 80 5.385482e−09
100 1.900398e−09 4.6680
120 7.985621e−10 4.7554
140 3.806168e−10 4.8071
160 1.994064e−10 4.8412

0.9 80 9.315443e−08
100 3.135150e−08 4.8803
120 1.279618e−08 4.9150
140 5.979648e−09 4.9353
160 3.088216e−09 4.9484
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TABLE 2.7: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 6.

α 1/h L∞-error Order
0.3 20 1.224183e−07

40 5.170505e−09 4.5654
80 8.866763e−11 5.8658

160 1.345871e−12 6.0418
320 2.028938e−14 6.0517

0.6 20 1.564617e−06
40 3.647148e−08 5.4229
80 5.062291e−10 6.1708

160 6.799919e−12 6.2181
320 9.539537e−14 6.1555

0.9 20 2.577647e−05
40 3.796038e−07 6.0854
80 3.895063e−09 6.6067

160 4.007447e−11 6.6028
320 4.600099e−13 6.4449

2.5 Matrix Approach
This approach is based on using a triangular strip matrix to discretize the dif-

ferentiation and integration operators with arbitrary order (integer and noninteger)
[125, 126]. Using this technique one can obtain all the numerical solutions at the
mesh grids at once, avoiding the traditional step-by-step method by moving from the
previous time layer to the next one. The matrix approach is quite simple to put into
implementation.

The matrices with the special structure such as the triangular strip type are intro-
duced in order to describe this approach. The following two kinds of triangular strip
matrices are needed:
Lower triangular strip matrices

LN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 0 0 0 · · · 0
ω1 ω0 0 0 . . . 0
ω2 ω1 ω0 0 . . . 0
. . .

. . .
. . .

. . . . . . . . .

ωN−1
. . . ω2 ω1 ω0 0

ωN ωN−1
. . . ω2 ω1 ω0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.141)
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and upper triangular strip matrices

UN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 ω1 ω2 . . . ωN−1 ωN

0 ω0 ω1
. . .

. . . ωN−1

0 0 ω0
. . . . . . ωN−2

0 0
. . .

. . .
. . . . . .

. . . . . . . . . . . . ω0 ω1
0 0 0 . . . 0 ω0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.142)

Denote by u(α)
n =

([
RLDα

0,t f (t)
]

t=tn
,
[
RLDα

0,t f (t)
]

t=tn−1
, · · · ,

[
RLDα

0,t f (t)
]

t=t0

)T
, and

let ωk = (−1)k
(
α
k

)
in (2.141), we get

u(α)
n ≈B(α)

N
[
u(t0), · · · ,u(tN−1),u(tN)

]T , (2.143)

where B(α)
N =

LN
Δtα . (2.143) is just another representation of the Grünwald–Letnikov

formula for the left Riemann–Liouville derivative. In fact, B(α)
n can be seen as a kind

of fractional differential matrix . If α = 1, B(α)
n is just the differential matrix for the

classical first-order derivative corresponding to the first-order backward difference.
The right Riemann–Liouville (or Caputo) derivative can be approximated in a

similar way, where the upper triangular strip matrix (2.142) is used accordingly. The
symmetric Riesz derivative can also be approximated by this approach, while the
fractional differential matrix is different from the Riemann–Liouville or Caputo case;
refer to [126] for details.

In [125, 126], this approach is successfully adopted to solve the classical differ-
ential equations such as classical diffusion equations, and the FDEs such as diffusion
equations with time-fractional derivatives, diffusion equations with spatial deriva-
tives in the Riesz sense, general diffusion equations with time-space fractional deriva-
tives and fractional diffusion equations with delay. This method can also be extended
to the cases of nonlinear problems, see [125, 126] for more details.

2.6 Short Memory Principle
Unlike the classical differential operator, the fractional differential operator is not

a local one. From the definitions of the fractional Grünwald–Letnikov, Riemann–
Liouville and Caputo derivatives, one can easily find that these fractional derivatives
of a given function f (t) depend on the whole interval (0, t), which means the frac-
tional derivatives of f (t) depend on the “historical” behavior of the function f (t)
[124]. However, it follows from the expressions of the coefficients {ω(α)

j } in the

Grünwald–Letnikov definition (1.3) that for large j, ω(α)
j is reduced to zero (In fact,
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TABLE 2.8: Variation of Grünwaldian expansion
coefficients with different α

j α = 0.5 α = 1.5 α = 2.5
1 1.0000e+00 1.0000e+00 1.0000e+00
2 -5.0000e−01 -1.5000e+00 -2.5000e+00
3 -1.2500e−01 3.7500e−01 1.8750e+00
4 -6.2500e−02 6.2500e−02 -3.1250e−01
5 -3.9063e−02 2.3438e−02 -3.9063e−02

10 -1.0910e−02 2.1820e−03 -8.3923e−04
50 -8.2880e−04 2.6172e−05 -1.4071e−06

100 -2.8747e−04 4.4226e−06 -1.1458e−07
500 -2.5326e−05 7.6361e−08 -3.8449e−10
1000 -8.9374e−06 1.3440e−08 -3.3717e−11

{
|ω(α)

j |
}

is a monotone decreasing sequence for j≥ Jα, Jα is a positive integer only

dependent on α). Table 2.8 gives the coefficients ω(α)
j with different α. We can find

that |ω(α)
j | decreases rapidly when α increases.

Actually, ω(α)
j = O( j−α−1) [104] for any α > 0, which means that for large j, the

behavior of function f (t) near the lower terminal (t = a in (1.3)) can be neglected
under certain conditions. Those observations lead to the formulation of the “short
memory” principle, which takes into account the behavior of f (t) only in the “recent
past.” For the Grünwald–Letnikov definition (1.3), it means that there exists a positive
integer Nα, such that [120]

[
GLDα

0,t f (t)
]

t=tN
≈Δt−α

Nα∑

j=0

ω(α)
j f (tN− j). (2.144)

Denote by

R(N,Nα) = Δt−α
N∑

j=0

ω(α)
j f (tN− j)−Δt−α

Nα∑

j=0

ω(α)
j f (tN− j) = Δt−α

N∑

j=Nα+1

ω(α)
j f (tN− j).

Noticing that ω(α)
j = O( j−α−1), i.e. |ω(α)

j |≤C j−α−1, we have

|R(N,Nα)| =
∣∣∣∣∣∣∣∣
Δt−α

N∑

j=Nα+1

ω(α)
j f (tN− j)

∣∣∣∣∣∣∣∣
≤Δt−α

N∑

j=Nα+1

∣∣∣∣ω
(α)
j

∣∣∣∣
∣∣∣ f (tN− j)

∣∣∣

≤CΔt−α max
Nα+1≤ j≤N

∣∣∣ f (tN− j)
∣∣∣

N∑

j=Nα+1

j−α−1.

(2.145)

For the fixed Δt, when Nα is big enough, |R(N,Nα)| can be small enough for α > 0.
Next, we discuss the “short memory” principle for the Riemann–Liouville deriva-

tive, which gives the theoretical standard to determine Nα in (2.144). The Riemann–
Liouville derivative can be written in the form of a finite-part integral (see [124]
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p.194)

RLDα
a,t f (t) =

1
Γ(−α)

p. f .
∫ t

a
(t− s)−α−1 f (s)ds. (2.146)

Let L be a positive number, denote by

R(t,L) = RLDα
a,t f (t)− RLDα

t−L,t f (t).

Using (2.146) leads to

|R(t,L)| = |RLDα
a,t f (t)− RLDα

t−L,t f (t)|≤ ML−α

|Γ(1−α)| , a+ L≤ t≤b, (2.147)

where | f (t)|≤M,M > 0. For any ε > 0, letting

|R(t,L)|≤ε,
one has

L≥
(

M
ε|Γ(1−α)|

)1/α

,

which means that
RLDα

t−L,t f (t)=RLDα
a,t f (t)−R(t,L)

with |R(t,L)|≤ε when L≥
(

M
ε |Γ(1−α)|

)1/α
. Here, L is also called the “memory length.”

Therefore, Nα can be chosen as

Nα =

⌈ L
Δt

⌉

, L≥
(

M
ε|Γ(1−α)|

)1/α

.

Deng [22] considered this approach to solve time fractional differential equations.
Up to now, the short memory principal has not been thoroughly studied so is seldom
used in the real applications.

2.7 Other Approaches
In [159], Yuan and Agrawal proposed a method to calculate the Caputo derivative

of order α (0 < α < 1), in which the weakly singular kernel is removed. Using the
definition of the gamma function and the formula of complement variable below

Γ(α)Γ(1−α) =
π

sin(πα)
,

they transformed the Caputo derivative into the following equivalent form

CDα
a,t f (t) =

2sin(πα)
π

∫ ∞

0
y2α−1

(∫ t

0
e−(t−s)y2

f ′(s)ds
)

dy. (2.148)
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Denote by

φ(y, t) = y2α−1
(∫ t

0
e−(t−s)y2

f ′(s)ds
)

.

Then, the integral
∫ ∞

0 φ(y, t)dy is approximated by the Laguerre integral formula [21]

∫ ∞

0
φ(y, t)dy ≈

N∑

i=1

wieyiφ(yi, t),

where wi and yi, i= 1,2, · · · ,N ∈N are Laguerre weights and node points, respectively.
Therefore,

CDα
a,t f (t) ≈ 2sin(πα)

π

N∑

i=1

wieyiφ(yi, t). (2.149)

Obviously, φ(yi, t) can be integrated by the standard integration method, and the nu-
merical calculation for CDα

a,t f (t) is accomplished.

Remark 2.7.1 The case of 1 < α < 2 is considered in [147], where the equivalent
form of the αth Caputo derivative is given by

CDα
a,t f (t) =

2sin(π(α−1))
π

∫ ∞

0
y2α−3

(∫ t

0
e−(t−s)y2

f ′′(s)ds
)

dy. (2.150)

There exist other methods to approximate the fractional integrals and derivatives.
The algorithm based on Haar wavelet approximation theory for the fractional inte-
grals was proposed in [57]. The definitions of variable-order derivatives and their
numerical approximations were investigated in [143, 149, 177]. The Grünwald for-
mula for vector fractional derivatives was developed in [110].

 



Chapter 3
Numerical Methods for Fractional
Ordinary Differential Equations

In the previous chapter, various kinds of numerical methods for fractional integrals
and fractional derivatives are displayed. In the present chapter, we focus on introduc-
ing numerical methods for fractional ordinary differential equations. Since Riemann–
Liouville derivatives can be changed into the Caputo ones (see Eq. (1.11)) under
suitable conditions, we study only the Caputo-type ordinary differential equations.

3.1 Introduction
In this chapter, we study the numerical methods for the typical initial-value prob-

lem below. ⎧
⎪⎪⎨
⎪⎪⎩

CDα
0,tu(t) = f (t,u(t)), m−1 < α < m ∈ Z+,

u( j)(0) = u j
0, j = 0,1, · · · ,m−1.

(3.1)

The following Theorems 11 and 12 of existence and uniqueness for initial-value
problems (3.1) can be found in [29].

Theorem 11 (existence) Assume that D := [0,χ∗]× [u0
0−δ,u0

0+δ] with some χ∗ > 0
and some δ > 0, and let the function f : D → R be continuous. Furthermore, define
χ :=min

{
χ∗, (δΓ(α+1)/‖ f ‖∞)1/α}. Then, there exists a function u : [0,χ]→R, solving

the initial value problem (3.1).

Theorem 12 (uniqueness) Assume D := [0,χ∗]× [u0
0−δ,u0

0+δ] with χ∗ > 0 and δ >
0. Furthermore, let the function f : D → R be bounded on D and fulfill a Lipschitz
condition with respect to the second variable, i.e.,

| f (t, x)− f (t,y)|≤L|x− y| (3.2)

with constant L > 0 independent of t, x and y. Then, denoting χ as in Theorem 11,
there exists at most one function u : [0,χ]→ R solving the initial value problem (3.1).

If the initial value problem (3.1) has a unique solution u(t), and f (t,u(t)) satisfies
some smooth conditions, then one can obtain the following properties of the solution
u(t), see [32].

97
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Theorem 13 (a) Assume f ∈ C2(G). Define ν̂ = �1/α�−1. Then there exist functions
ψ ∈ C1[0,T ] and c1, · · · ,cν̂ ∈ R such that the solution u(t) of (3.1) can be expressed
in the form

u(t) = ψ(t)+
ν̂∑

ν=1

cνtνα.

(b) Assume that f ∈ C3(G). Define ν̂ = �2/α� − 1 and ν̃ = �1/α� − 1. Then there
exists a functionψ ∈ C2[0,T ], c1, · · · ,cν̂ ∈ R, and d1, · · · ,dν̃ ∈ R such that the solution
u(t) of (3.1) can be expressed in the form

u(t) = ψ(t)+
ν̂∑

ν=1

cνtνα +
ν̃∑

ν=1

dνt1+να.

There are several ways to discretize equation (3.1); the most often used two tech-
niques are based on the following ideas:

• Discretizing the Caputo derivative directly to get the numerical schemes.

• Transforming the original fractional equation (3.1) into the fractional integral
equation, then applying the corresponding numerical methods to discretize the
fractional integral to get the numerical schemes.

In the following, we introduce the typical numerical methods for equation (3.1).

3.2 Direct Methods
In the section, we discretize the Caputo derivative operator directly to get the

numerical schemes for equation (3.1). Obviously, we can use the numerical methods
for Caputo derivative operator developed in Section 2.4. Next, we just list some of
numerical methods, and we do not give the stability and convergence analysis, which
will be discussed in the following section.

• L1 Method

For 0 < α < 1, L1 method (2.81) is often used to discreteize the Caputo derivative. L1
method for the initial value problem (3.1) is

n−1∑

j=0

bn− j−1(u j+1−u j) = f (tn,un), (3.3)

where un is the approximate solution of u(tn), and b j =
Δt−α
Γ(2−α) [( j+1)1−α− j1−α], see

(2.81) for more details.

 



Chapter 3 Numerical Methods for FODEs 99

• Product Trapezoidal Method

This approach is based on the fact that the Riemann–Liouville derivative is equivalent
to the Hadamard finite-part integral [26, 48, 124], i.e.,

RLDα
0,tu(t) =

1
Γ(−α)

p.f.
∫ t

0

u(s)
(t− s)α+1 ds, α � 0,1,2, · · · . (3.4)

For 0<α< 1, the above quadrature is approximated by the first-degree compound
quadrature formula [25, 26, 34], which is given by

1
Γ(−α)

p.f.
∫ tn

0

u(s)
(tn− s)α+1 ds≈

n∑

j=0

a j,nu(tn− j), (3.5)

where

a j,n =
Δt−α

Γ(2−α)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = 0,
( j+1)1−α−2 j1−α+ ( j−1)1−α, 0 < j < n,
(1−α)n−α−n1−α+ (n−1)1−α, j = n.

(3.6)

Using the relationship

RLDα
0,t[u(t)−u(0)]= CDα

0,tu(t), 0 < α < 1,

we get the numerical scheme for (3.1) as follows

n∑

j=0

a j,n(un− j−u0) = f (tn,un), (3.7)

where un is the approximate solution of u(tn).
In [25], when f (t,u) = βu(t)+ f (t), β ≤ 0, the error estimate for the above method

(3.7) is given by
|u(tn)−un| ≤ CΔt2−α. (3.8)

• Grünwald–Letnikov Formula

One knows that the Riemann–Liouville derivative can be approximated by the
Grünwald–Letnikov formula (2.51)

RLDα
0,tu(t)|t=tn ≈

1
Δtα

n∑

j=0

ω(α)
j u(tn− j), ω(α)

j = (−1) j
(
α

j

)

.

By the relationship

RLDα
0,t

[
u(t)−

m∑

k=0

tk

k!
u(k)(0)

]
= CDα

0,tu(t),
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one gets the following method for the initial value problem (3.1) as

1
Δtα

n∑

j=0

ω
(α)
n− j

[
u j −

m∑

k=0

uk
0

k!
tkj
]
= f (tn,un). (3.9)

Of course, one can use the shifted Grünwald–Letnikov formula (2.52) to approx-
imate the Caputo derivative.

The above method (3.9) is valid for any α > 0. One can construct high-order (pth-
order, p = 1,2, · · · ,6) methods of the form (3.9), where {ω(α)

j } are coefficients of the
Taylor series expansions of the following generating functions [28, 87]

w(α)
p (z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p∑

j=1

1
j
(z−1) j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

α

.

3.3 Integration Methods
Consider the classical ordinary differential equation (ODE)

⎧
⎪⎨
⎪⎩

u′ = f (t,u),
u(0) = η.

(3.10)

If we integrate (3.10) on the interval [tn, tn+1], we can get

u(tn+1)−u(tn) =
∫ tn+1

tn
f (s,u(s))ds. (3.11)

Therefore, the classical numerical methods (such as the rectangular formula, the
trapezoidal rule, and Simpson’s formula, etc.) for the integral

∫ tn+1
tn

f (s,y(s))ds can
be used to derive the corresponding numerical methods for the ODE (3.10).

This idea can be adopted for the numerical solution of the FODE (3.1). Similarly,
if we apply D−α0,t on the both sides of (3.1), we can obtain the following equivalent
Volterra integral equation [32]

u(t) =
m−1∑

j=0

t j

j!
u( j)

0 +
1
Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds =

m−1∑

j=0

t j

j!
u( j)

0 +D−α0,t f (t,u(t)). (3.12)

Next, we adopt the numerical methods developed in Section 2.2 for the fractional
operator D−α0,t to derive the numerical methods for (3.1) or (3.12).

• Fractional Euler Methods
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(1) Fractional forward Euler method:
[
D−α0,t f (t,u(t))

]

t=tn+1
is approximated by the

left fractional rectangular formula (2.6)

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +Δtα
n∑

j=0

b j,n+1 f (t j,u j), (3.13)

where
b j,n+1 =

1
Γ(α+1)

[(n− j+1)α− (n− j)α]. (3.14)

(2) Fractional backward Euler method:
[
D−α0,t f (t,u(t))

]

t=tn+1
is approximated by

the right fractional rectangular formula (2.8)

un+1 =

m−1∑

j=0

t j
n+1

j!
y( j)

0 +Δtα
n∑

j=0

b j,n+1 f (t j+1,u j+1), (3.15)

where b j,n+1 is defined by (3.14).

(3) Fractional weighted difference method:
[
D−α0,t f (t,u(t))

]

t=tn+1
is approximated

by the weight fractional rectangular formula (2.9)

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +Δtα
n∑

j=0

b j,n+1[θ f (t j,u j)+ (1− θ) f (t j+1,u j+1)], (3.16)

where b j,n+1 is defined by (3.14).

Remark 3.3.1 If α = 1, the methods (3.13), (3.15), and (3.16) with θ = 1/2 are re-
duced to the classical forward Euler method, the backward Euler method, and the
trapezoidal formula for the classical ODE (3.10), respectively.

Next, we investigate the stability and convergence of the methods (3.13), (3.15)
and (3.16). The following generalized discretized Gronwall’s inequality [42, 87]
plays a crucial role in the stability and convergence analysis for numerical methods
for the FODEs.

Lemma 3.3.1 ([87]) Suppose that b j,n = (n− j)α−1 ( j = 1,2, · · · ,n− 1) and b j,n = 0

for j≥n, α,Δt,M,T > 0, kΔt≤T and k is a positive integer. Let
n∑

j=m
b j,n|e j| = 0 for

m>n≥1. If

|en|≤MΔtα
n−1∑

j=1

b j,n|e j|+ |η0|, n = 1,2, · · · ,k, (3.17)

then
|ek|≤C |η0|, k = 1,2, · · · . (3.18)

where C is a positive constant independent of Δt and k.
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Remark 3.3.2 If α≥1, Lemma 3.3.1 is reduced to the commonly discretized Gron-
wall inequality, and the bound in (3.18) can be determined by C = exp(MTα).

Now, we consider the stability of the fractional forward Euler method (3.13).
The stability here means that if there are perturbations in the initial conditions,

then the small changes would not cause large errors in the numerical solutions.
For instance, the fractional forward Euler method (3.13) is stable if u j and v j, ( j =

1,2, ..,n) are two solutions of the method (3.13); then there exists a positive constant
C independent of Δt and n, such that

|un− vn|≤C|u0− v0|.
Suppose that u(i)

0 (i = 0,1, · · · ,m−1) and u j ( j = 0,1, · · · ,k+1) have perturbations

ũ(i)
0 and ũ j, respectively. Denote by η0 = max

0≤k≤N

{∑m−1
j=0

T j

j! |ũ( j)
0 |+ LΔtαbk

Γ(α+1) |ũ0|
}
. Then we

get the perturbation equation as follows

un+1+ ũn+1 =

m−1∑

j=0

t j
n+1

j!
(u( j)

0 + ũ( j)
0 )+Δtα

n∑

j=0

bn+1, j f (t j,u j + ũ j), (3.19)

We also suppose that f (t,u) satisfies the following Lipschitz condition

| f (t,u)− f (t,v)|≤L|u− v|, L > 0. (3.20)

By (3.13), (3.19), and (3.20), one has

|ũn+1| = |
m−1∑

j=0

t j
n+1

j!
ũ( j)

0 +Δtα
n∑

j=0

b j,n+1( f (t j,u j+ ũ j)− f (t j,u j))|

≤η0+Δtα
n∑

j=1

b j,n+1| f (t j,u j+ ũ j)− f (t j,u j)|

≤η0+ LΔtα
n∑

j=1

b j,n+1|ũ j|.

(3.21)

Applying Lemma 3.3.1 yields
|ũk+1|≤Cη0.

Therefore, we get the theorem below.

Theorem 14 Suppose that u j ( j = 1,2, · · · ,n+ 1) are the solutions of the fractional
forward Euler method (3.13), f (t,y) satisfies the Lipschitz condition with respect to
the second argument u with a Lipschitz constant L on the existing interval of its
unique solution. Then the fractional forward Euler method (3.13) is stable.

By almost the same reasoning, we can prove that the methods (3.15) and (3.16)
are stable too.
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Remark 3.3.3 In Theorem 14, we have supposed that f satisfies the global Lipschitz
condition, which is a little strong. In fact, if f (t,u) satisfies the local Lipschitz condi-
tion with a Lipschitz constant L (or | ∂ f

∂u |≤L) on the suitable domain, then Theorem
14 still holds. One can refer to [87] for more details.

Next, we investigate the convergence of the methods (3.13), (3.15) and (3.16).
We first consider the fractional forward Euler method (3.15).

Theorem 15 Assume that u(t) is the solution of (3.12), f (t,u) satisfies the Lipschitz
condition with respect to u with a Lipschitz constant L, and f (t,u(t)),u(t)∈C1[0,T ],
u j (1≤ j≤N) are the solutions of the fractional forward Euler method (3.13). Then
we have

|u(tk+1)−uk+1|≤CΔt, k = 0,1, · · · ,N −1, (3.22)

where C is a positive constant independent of Δt and k.

Proof. Denote by en = u(tn)− un (n = 0,1, · · · ,k,k+ 1). By (2.20) (see also Theo-
rem 2.4 in [32]), we get

∣∣∣∣∣Δtα
n∑

j=0

b j,n+1 f (t j,u(t j))− 1
Γ(α)

∫ tn+1

0
(tn+1− s)α−1 f (s,u(s))ds

∣∣∣∣∣≤CΔt. (3.23)

By (3.12) and (3.13), we get the error equation

u(tn+1)−un+1 =
1
Γ(α)

∫ tn+1

0
(tn+1− t)α−1 f (t,u(t))dt−Δtα

n∑

j=0

b j,n+1 f (t j,y j).

Therefore

|en+1| =
∣∣∣∣

1
Γ(α)

∫ tn+1

0
(tn+1− t)α−1 f (t,u(t))dt−Δtα

k∑

j=0

b j,k+1 f (t j,u j)
∣∣∣∣

≤
∣∣∣∣

1
Γ(α)

∫ tn+1

0
(tn+1− t)α−1 f (t,u(t))dt−Δtα

n∑

j=0

b j,n+1 f (t j,u(t j))
∣∣∣∣

+Δtα
n∑

j=1

b j,n+1| f (t j,u(t j))− f (t j,u j)|

≤CΔt+ LΔtα
n∑

j=1

b j,n+1|e j|

≤CΔt+CΔtα
n∑

j=1

(n+1− j)α−1|e j|.

(3.24)

Applying Lemma 3.3.1 leads to the desired result. The proof is completed. �

By similar reasoning, one can prove that the methods (3.15) and (3.16) are con-
vergent of order one.
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• Fractional Adams Method

If
[
D−α0,t f (t)

]

t=tn+1
is approximated by the fractional trapezoidal formula (2.12), the

following fractional trapezoidal rule is derived

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n+1∑

j=0

a j,n+1 f (t j,u j), (3.25)

where

a j,n+1 =
Δtα

Γ(α+2)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

nα+1− (n−α)(n+1)α, j = 0,
(n− j+2)α+1−2(n− j+1)α+1+ (n− j)α+1, 1 ≤ j ≤ n,
1, j = n+1.

(3.26)

The above scheme (3.25) is implicit, which needs much more computation. On
one hand, we can use an approximation method to get un+1 in (3.25), such as the
Newton iterative method, the Adomian decomposition method [83], and so on. On
the other hand, similar to the predictor-corrector method for the ODEs, we first use
(3.13) to get uP

n+1 (predictor), then we use (3.25) to get un+1 (corrector) by replacing
un+1 with uP

n+1 on the right-hand side of (3.25), which leads to the fractional Adams
method [27, 31, 32, 33, 82]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uP
n+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

j=0

b j,n+1 f (t j,u j),

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

j=0

a j,n+1 f (t j,u j)+an+1,n+1 f (tn+1,uP
n+1).

(3.27)

Remark 3.3.4 If α = 1, the fractional Adams method (3.27) is reduced to the classi-
cal predictor-corrector method for (3.10)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uP
n+1 = un+Δt f (tn,un),

un+1 =
Δt
2

(

f (tn,un)+ f (tn+1,uP
n+1)

)

.
(3.28)

Remark 3.3.5 In [117], a predictor-corrector algorithm was presented based on the
generalized Taylor’s formula, which is similar to (3.27), except that the predictor is
chosen as

uP
n+1 = un+

Δtα

Γ(α+1)
f (tn,un).

Remark 3.3.6 The detailed error analysis of the fractional Adams method is inves-
tigated in [30] and [82], where the error estimates were proved by the mathematical
induction method for the small enough T . Using Lemma 3.3.1, one can easily get
the error bounds for the fractional Adams method (3.27). The stability of the method
(3.27) can be also proved similarly to that of the fractional Euler method, see [87]
for more information.
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• High Order Methods

Based on the polynomial interpolation, one can theoretically construct high order
methods for FODEs (3.1) [13, 69, 73, 165].

Consider the discretization of the fractional integral

D−α0,t f (t) =
∫ t

0
(t− s)α−1 f (s)ds. (3.29)

We first let t = tn+1 in (3.29), which yields from (2.16)

[
D−α0,t f (t)

]

t=tn+1
=

n+1∑

k=0

ck,n+1 f (tk)+
n∑

k=0

ĉk,n+1 f (tk+ 1
2
)+O(Δt3), (3.30)

where ck,n+1 and ĉk,n+1 are defined by (2.17) and (2.18), respectively.
Then, we choose t = tk+ 1

2
in (3.29), which leads to

[
D−α0,t f (t)

]

t=t
n+ 1

2

=
1
Γ(α)

∫ t
n+ 1

2

0
(tn+ 1

2
− s)α−1 f (s)ds,

=
1
Γ(α)

n−1∑

j=0

∫ t j+1

t j

(tn+ 1
2
− s)α−1 f (s)ds

+
1
Γ(α)

∫ t
n+ 1

2

tn
(tn+ 1

2
− s)α−1 f (s)ds.

(3.31)

On each subinterval [t j, t j+1], j = 0,1, · · · ,n− 1, f (t) is approximated by the quadric
polynomials defined on the nodes {t j, t j+ 1

2
, t j+1}. On the interval [tn, tn+ 1

2
], f (t) is

approximated by the quadric polynomial defined on the nodes {tn, tn+ 1
4
, tn+ 1

2
} with

tn+ 1
4
= (tn+ tn+ 1

2
)/2. Let S j

1 = { j, j+ 1
2 , j+1} and S n

2 = {n,n+ 1
4 ,n+

1
2 }, we obtain

f (t) ≈ f̃ (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

k∈S j
1

f (tk)ϕ j,k(t), t ∈ [t j, t j+1]

∑

k∈S n
2

f (tk)ψn,k(t), t ∈ [tn, tn+ 1
2
]

(3.32)

where
ϕ j,k(t) =

∏

i∈S j
1, i�k

t− ti
tk − ti

, k∈S j
1,

and
ψn,k(t) =

∏

i∈S n
2, i�k

t− ti
tk − ti

, k∈S n
2.

Substituting f (t) for f̃ (t) in (3.31), we have

[
D−α0,t f (t)

]

t=t
n+ 1

2

=

n−1∑

j=0

∑

k∈S j
1

dn
j,k f (tk)+

∑

k∈S n
2

d̂n
k f (tk)+O(Δt3), (3.33)
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in which

dn
j,k =

1
Γ(α)

∫ t j+1

t j

(tn+ 1
2
− s)α−1ϕ j,k(s)ds,

and

d̂n
k =

1
Γ(α)

∫ t
n+ 1

2

tn
(tn+ 1

2
− s)α−1ψn,k(s)ds.

Note that we have used the value f (tn+ 1
4
). We find that

f (tn+ 1
4
) =

3
8

f (tn)+
3
4

f (tn+ 1
2
)− 1

8
f (tn+1)+O(Δt3).

Therefore, we get the following approximation of
[
D−α0,t f (t)

]

t=t
n+ 1

2

[
D−α0,t f (t)

]

t=t
n+ 1

2

=

n−1∑

j=0

∑

k∈S j
1

dn
j,k f (tk)+ d̂n

n f (tn)+ d̂n
n+ 1

2
f (tn+ 1

2
)

+ d̂n
n+ 1

4

[3
8

f (tn)+
3
4

f (tn+ 1
2
)− 1

8
f (tn+1)

]

+O(Δt3).

(3.34)

Suppose that u j, j = 0,1, · · · ,n and u j+ 1
2
, j = 0,1, · · · ,n− 1 are known. Then, by

(3.30), (3.12), and (3.34), we derive the following high order numerical scheme
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+ 1
2
=

m−1∑

j=0

t j
n+ 1

2

j!
u( j)

0 +

n−1∑

j=0

∑

k∈S j
1

dn
j,k f (tk)+ d̂n

n f (tn,un)+ d̂n
n+ 1

2
f (tn+ 1

2
,un+ 1

2
)

+ d̂n
n+ 1

4

[3
8

f (tn,un)+
3
4

f (tn+ 1
2
,un+ 1

2
)− 1

8
f (tn+1,un+1)

]

,

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n+1∑

k=0

ck,n+1 f (tk,uk)+
n∑

k=0

ĉk,n+1 f (tk+ 1
2
,uk+ 1

2
).

(3.35)

Obviously, the method (3.35) is implicit and nonlinear, which can be solved by
the iteration method. It needs more computational time to get un+1 and un+ 1

2
from

the nonlinear system (3.35). The predictor-corrector method is a good approach to
present the explicit high order method to solve the nonlinear equation as (3.12),
which costs less computational time.

One simple way is to use the fractional Adams method to obtain uP
n+1 as a pre-

dictor of un+1 based on the grid points {t0, t1, · · · , tn, tn+1}. The predictor uP
n+ 1

2
of un+ 1

2

can be similarly derived by the fractional Adams method based on the grid points
{t0, t 1

2
, · · · , tn− 1

2
, tn+ 1

2
}. So, un+1 and un+ 1

2
can be calculated from (3.35) by replacing

un+1 and un+ 1
2

on the right-hand side of (3.35) with uP
n+1 and uP

n+ 1
2
.

Next, we introduce another predictor-corrector method [73] based on the frac-
tional Simpson’s formula (2.16) for (3.1) or (3.12).
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Let t = tn+1 in (3.12). By (2.16), one gets the following implicit method

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n+1∑

k=0

ck,n+1 f (tk,uk)+
n∑

k=0

ĉk,n+1 f (tk+ 1
2
,uk+ 1

2
), (3.36)

where ck,n+1 and ĉk,n+1 are defined by (2.17) and (2.18), respectively.
In order to get un+1 from (3.29), the nonlinear equation about un+1 needs to be

solved. One way to solve this problem is to use the fractional rectangular formula
(2.8) to get the predictor of un+1, which is given by

uP
n+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

k=0

bn−k f (tk,uk), (3.37)

where bk =
Δtα
Γ(α+1) [(k+1)α− kα] is defined by (2.5).

Noticing that un+ 1
2

is unknown, one can also use the fractional rectangular for-
mula (2.8) to approximate un+ 1

2
, which reads as

un+ 1
2
=

m−1∑

j=0

t j
n+ 1

2

j!
u( j)

0 +

n∑

k=0

b̂n−k f (tk,uk), (3.38)

where b̂n−k =
Δtα
Γ(α+1) [(n+ 1

2 − k)α− (n− 1
2 − k)α].

Hence, we get the initial predictor-corrector method developed in [73] as follows

un+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

k=0

ck,n+1 f (tk,uk)+ cn+1,n+1 f (tn+1,uP
n+1)

+

n∑

k=0

ĉk,n+1 f (tk+ 1
2
,uk+ 1

2
), (3.39)

uP
n+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

k=0

bn−k f (tk,uk), (3.40)

un+ 1
2
=

m−1∑

j=0

t j
n+ 1

2

j!
u( j)

0 +

n∑

k=0

b̂n−k f (tk,uk). (3.41)

The error estimate of the above method (3.39)–(3.41) is similar to that of the frac-
tional Adams method. In fact, the implicit method (3.36) has higher order accuracy
due to the quadric interpolation of f if f is smooth enough. If the accuracy of the
predictors uP

n+1 and un+ 1
2

in the method (3.39)–(3.41) is improved, then one can get

the higher order method. It is easy to prove that the predictor uP
n+1 and un+ 1

2
in (3.39)–

(3.41) have first-order accuracy. An improved algorithm with high-order predictors
is described below.
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Improved algorithm

Step 1: Use the fractional Simpson’s formula to get the implicit method (3.36) based
on the nodes {tk, tk+ 1

2
,k= 0,1, · · · ,n−1}∪{tn+ 1

2
}. Replace un+1 on the right-hand

side of (3.36) by the predictor uP
n+1, which leads to (3.39).

Step 2: Use the fractional Adams method (3.27) based on the grid nodes {tk,k =
0,1, · · · ,n+1} to get the approximate value of un+1, which is denoted by uP

n+1
that is given below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vP
n+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

j=0

b j,n+1 f (t j,u j),

uP
n+1 =

m−1∑

j=0

t j
n+1

j!
u( j)

0 +

n∑

j=0

a j,n+1 f (t j,u j)+an+1,n+1 f (tn+1,vP
n+1).

(3.42)

Step 3: Use the fractional Adams method (3.27) based on the grid nodes {tk,k =
0,1, · · · ,n}∪ {tn+ 1

2
} to get the approximate value of un+ 1

2
, which is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+ 1
2
=

m−1∑

j=0

t j
n+ 1

2

j!
u( j)

0 +

n∑

k=0

ek,n+1 f (tk,uk)+ en+1,n+1 f (tn+ 1
2
,uP

n+ 1
2
),

uP
n+ 1

2
=

m−1∑

j=0

t j
n+ 1

2

j!
u( j)

0 +

n∑

k=0

b̂n−k f (tk,uk),

(3.43)

where

ek,n+1 =
Δtα

Γ(α+2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n+ 1

2

)α+1 −
(
n+ 1

2

)α(
n− 1

2 −α
)
, k = 0,

(
n− k+ 3

2

)α+1 −2
(
n− k+ 1

2

)α+1
+
(
n− k− 1

2

)α+1
, 1 ≤ k < n,

(
3
2

)α+1−3
(

1
2

)α+1
, k = n,

(
1
2

)α
, k = n+1.

(3.44)
Therefore, (3.39), (3.42) and (3.43) give the improved algorithm.

If f (t,u) satisfies the Lipschitz condition (3.20) and f (t,u(t)) is suitably smooth,
one can easily prove that the predictor-corrector method (3.39)–(3.41) is convergent
of order O(Δt1+σ(α)), where σ(α) = 1 for α ≥ 1, and σ(α) = α for 0 < α < 1. The
Improved Algorithm is convergent of order O(Δt1+2σ(α)) for the suitably smooth
f (t,u(t)), and the high order method (3.35) is convergent of order O(Δt3) for suitably
smooth f (t,u(t)).

Remark 3.3.7 According to Lemma 3.3.1, if we want to prove the stability of (3.39)–
(3.41), we just need to prove

max
0≤k≤n

{
|ck,n+1|, |ĉk,n+1|, |bn−k|, |b̂n−k|

}
≤C(n+1− k)α−1, (3.45)
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TABLE 3.1: The absolute errors at t = 1 for Example 2 by the fractional forward
Euler method (3.13).

1/Δt α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
10 6.9223e−02 6.2373e−02 5.6086e−02 5.1208e−02 4.7865e−02
20 3.7760e−02 3.1940e−02 2.8002e−02 2.5684e−02 2.4474e−02
40 1.9692e−02 1.5838e−02 1.3749e−02 1.2762e−02 1.2359e−02
80 9.9614e−03 7.7267e−03 6.7202e−03 6.3292e−03 6.2062e−03

160 4.9498e−03 3.7476e−03 3.2891e−03 3.1418e−03 3.1085e−03
320 2.4367e−03 1.8175e−03 1.6155e−03 1.5622e−03 1.5552e−03
640 1.1944e−03 8.8363e−04 7.9654e−04 7.7798e−04 7.7776e−04

EOC 1.0287 1.0404 1.0202 1.0057 0.9997

where C is independent of n and k. Obviously, (3.45) holds by the simple calculation.
The stability of the Improved Algorithm ((3.39), (3.42) and (3.43)) can be proved
similarly. Of course, this is also true for the high order method (3.35).

3.3.1 Numerical Examples

This subsection gives some numerical results for the numerical methods in this
section.

Example 2 Consider the following nonlinear FODE

CDα
0,ty(t)+ y2(t) = f (t), 0 < α < 2, t > 0, (3.46)

where

f (t) =
Γ(6)
Γ(6−α)

t5−α − 3Γ(5)
Γ(5−α)

t3−α+
Γ(5)
Γ(4−α)

t3−α+ (t5−3t4+2t3)2.

The exact solution is y(t) = t5 −3t4+2t3 with the following initial conditions:

0 < α < 1, y(0) = 0.

In this example, we test the fractional forward Euler method (3.13) and the
Adams method (3.27), respectively. The results are shown in Tables 3.1–3.2 . We
can find that the experimental order of convergence (EOC) of the fractional forward
Euler method (3.13) and the fractional Adams method (3.27) are 1 and 2 respec-
tively, which are in line with the theoretical analysis. The EOC here is computed by
the formula: log2

E(Δt,T )
E(Δt/2,T ) , where E(Δt,T ) = |y(T )− yT/Δt |.

Table 3.3 displays the long-term integration of the two methods (3.13) and (3.27),
where the step size Δt = 1e− 5 (10000 steps). We can see that the satisfactory and
reliable results are obtained for the three methods in this example.
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TABLE 3.2: The absolute errors at t = 1 for Example 2 by the fractional Adams
method (3.27).

1/Δt α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
10 5.4721e−03 4.1744e−03 3.6407e−03 3.4025e−03 3.2901e−03
20 1.4456e−03 9.7613e−04 8.5514e−04 8.1615e−04 8.0180e−04
40 3.4634e−04 2.2288e−04 2.0346e−04 1.9890e−04 1.9779e−04
80 7.7788e−05 5.0421e−05 4.8993e−05 4.8957e−05 4.9099e−05

160 1.6044e−05 1.1214e−05 1.1877e−05 1.2118e−05 1.2228e−05
320 2.7132e−06 2.3899e−06 2.8839e−06 3.0090e−06 3.0508e−06
640 1.5675e−07 4.5897e−07 6.9794e−07 7.4833e−07 7.6184e−07

EOC 4.1135 2.3805 2.0468 2.0075 2.0016

TABLE 3.3: The absolute errors at t = 1 for Example 2 with Δt = 1e−5.

Methods α = 0.2 α = 0.5 α = 0.8
Forward Euler method (3.13) 5.7566e-05 4.9565e-05 4.9614e-05
Adams method (3.27) 1.7998e-08 2.1195e-09 3.0764e-09

Example 3 Consider the following fractional differential equation

C Dα
0,ty(t) = −y(t)+

t4−α

Γ(5−α)
, 0 < α < 1, y(0) = 0, t > 0.

Its exact solution is
y(t) = t4Eα,5(−tα),

where Eα,β(z) =
∑∞

k=0 zk/Γ(αk+β) is the two-parameter Mittag–Leffler function.

We also apply the fractional forward Euler method (3.13) and the fractional
Adams method (3.27) to get the numerical solutions; the results are shown in Tables
3.4–3.5. The numerical results show good agreement with the exact solution.

The long-term integration (10000 steps) is still tested in this example; the results
are shown in Table 3.6, which shows good agreement with the analytical solutions.

3.4 Fractional Linear Multistep Methods
The fractional linear multistep method (FLMM) for fractional calculus was first

studied by Lubich [102, 103, 104], which can be seen as the generalization of the
linear multistep method (LMM) for classical calculus.
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TABLE 3.4: The absolute errors at t = 1 for Example 3 by the fractional forward
Euler method (3.13).

1/Δt α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
10 4.1205e−03 4.1397e−03 4.2821e−03 4.5571e−03 4.9388e−03
20 2.0192e−03 1.9788e−03 2.0515e−03 2.2207e−03 2.4550e−03
40 9.8557e−04 9.4634e−04 9.8894e−04 1.0892e−03 1.2222e−03
80 4.8052e−04 4.5427e−04 4.8032e−04 5.3731e−04 6.0937e−04

160 2.3428e−04 2.1912e−04 2.3490e−04 2.6625e−04 3.0416e−04
320 1.1429e−04 1.0623e−04 1.1553e−04 1.3235e−04 1.5192e−04
640 5.5794e−05 5.1741e−05 5.7071e−05 6.5923e−05 7.5914e−05

TABLE 3.5: The absolute errors at t = 1 for Example 3 by the fractional Adams
method (3.27).

1/Δt α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
10 8.3901e−03 2.8610e−03 1.4115e−03 8.3648e−04 5.6869e−04
20 4.0702e−03 1.0375e−03 4.4345e−04 2.3463e−04 1.4543e−04
40 1.7756e−03 3.7406e−04 1.4182e−04 6.7031e−05 3.7535e−05
80 7.4735e−04 1.3656e−04 4.6334e−05 1.9468e−05 9.7498e−06

160 3.1280e−04 5.0689e−05 1.5430e−05 5.7295e−06 2.5432e−06
320 1.3159e−04 1.9114e−05 5.2187e−06 1.7035e−06 6.6531e−07
640 5.5820e−05 7.3069e−06 1.7863e−06 5.1041e−07 1.7440e−07

TABLE 3.6: The absolute errors at t = 1 for Example 3 with Δt = 1e−5.

Methods α = 0.2 α = 0.5 α = 0.8
Forward Euler method (3.13) 3.0345e-06 3.5706e-06 4.5247e-06
Adams method (3.27) 5.0991e-07 2.7219e-08 1.8964e-09
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In this section, we introduce the FLMMs for the FODE (3.1). For simplicity, we
consider the case of 0 < α < 1, i.e.,

CDα
0,tu(t) = f (t,u(t)), u(0) = u0. (3.47)

The equivalent form of (3.47) reads

u(t) = u0+
1
Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds. (3.48)

If α = 1, the FODE (3.47) is reduced to the classical ODE as

u′(t) = f (t,u(t)), u(0) = u0. (3.49)

It is well known that the p-step LMM for (3.49) has the form

p∑

k=0

αkun+k = Δt
p∑

k=0

βk f (tn+k,un+k), n = 0,1, · · · . (3.50)

The first and second character polynomials of the LMM (3.50) read as

ρ(ξ) =
p∑

k=0

αkξ
k, σ(ξ) =

p∑

k=0

βkξ
k.

Denote by

w(ξ) =
σ(1/ξ)
ρ(1/ξ)

. (3.51)

It is also known that the equivalent form of (3.50) can be written as

un−u0 = Δt
n∑

j=0

ω
(1)
n− j f (t j,u j)+Δt

s∑

j=0

w(1)
n, j f (t j,u j), (3.52)

where {ω(1)
j } are the coefficients of the Taylor expansions of the generating function

ω(ξ) defined by (3.51). In fact, Δt
∑n

j=0ω
(1)
n− j f (t j,u(t j))+Δt

∑s
j=0 w(1)

n, j f (t j,u(t j)) is just

the pth-order approximation of
∫ tn

0 f (s,u(s)) =
[
D−1

0,t f (t,u(t))
]

t=tn
.

One can also easily obtain

Δtw(e−Δt) = 1+O(Δtp),

which yields (
Δtw(e−Δt)

)α
=
(
1+O(Δtp)

)α
= 1+O(Δtp). (3.53)

The following theorem states that the FLMM for (3.48) has a similar form as
(3.52).
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Theorem 16 ([104]) Let ρ(ξ) and σ(ξ) denote the first and second character poly-
nomials of the pth-order LMM (3.50). Assume that the zeros of σ(ξ) have absolute
value less than 1. Let {ω(α)

k } denote the Taylor expansions of the generating function

w(α)(ξ) =
(
σ(1/ξ)
ρ(1/ξ)

)α
. Then the convolution quadrature

Δtα
n∑

j=0

ω
(α)
n− j f (t j)+Δtα

s∑

j=0

w(α)
n, j f (t j)

is convergent of order p with respect to D−α0,t = RLD−α0,t , i.e.,

[
RLD−α0,t f (t)

]

t=tn
=
[
D−α0,t f (t)

]

t=tn
= Δtα

n∑

j=0

ω(α)
n− j f (t j)+Δtα

s∑

j=0

w(α)
n, j f (t j)+O(Δtp),

(3.54)
where w(α)

n, j are starting weights such that the above equation is exact for f (t) = tμ,μ <
p.

By Theorem 16 one can construct the pth-order FLMMs for (3.48) as follows

un−u0 = Δtα
n∑

j=0

ω(α)
n− j f (t j,u j)+Δtα

s∑

j=0

w(α)
n, j f (t j,u j), (3.55)

where w(α)
n, j are the starting weights that are chosen such that the asymptotic behavior

of the function f (t,u(t)) near the origin is taken into account [28, 104], and ω(α)
j can

be the coefficients of the Taylor expansion of the following generating functions

w(α)(ξ) =
(
σ(1/ξ)
ρ(1/ξ)

)α

. (3.56)

In fact, w(α)(z) can be also other generating functions; we just list some often
used generating functions (see also (2.43)–(2.45)) and their convergence orders as
follows

w(α)(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1
2

1+ξ
1−ξ

)α
, order 2,

⎛
⎜⎜⎜⎜⎝

p∑

j=1

1
j (1− ξ) j

⎞
⎟⎟⎟⎟⎠

−α
, order p,

(1− ξ)−α
(
γ0+γ1(1− ξ)+ · · ·+γp−1(1− ξ)p−1

)
, order p,

(3.57)

where γi satisfies
∞∑

i=0

γi(1− ξ)i =

(
lnξ
ξ−1

)−α
.

Remark 3.4.1 The fractional order α in (3.56) and (3.57) can be negative. In such
a case, the convolution quadrature (3.54) is just the pth-order approximation of the
(−α)th-order Riemann–Liouville fractional derivative operator.
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It is known that ω(α)
n =O(nα−1) and w(α)

n, j =O(nα−1) when the generating functions
(3.56) or (3.57) are used [104]. So the convergence of the FLMM (3.55) can be
easily obtained by using the generalized Gronwall’s inequality from Lemma 3.3.1.
See [87, 95, 102] for more details.

Next, we investigate the stability properties of the FLMMs (3.55). For simplicity,
we consider the following linear model problem

⎧
⎪⎪⎨
⎪⎪⎩

CDα
0,tu(t) = λu(t), 0 < α < 1,

u(0) = u0.
(3.58)

The above FODE (3.58) is equivalent to the following Abel integral equation of the
second kind

u(t)−u0 =
λ

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, 0 < α < 1. (3.59)

The more general form of the Abel integral equation of the second kind reads

u(t) = g(t)+
λ

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, 0 < α < 1. (3.60)

The equation (3.59) can be seen as a special case of (3.60). Here we mainly study the
FLMM for (3.60), which reads

un = gn+Δtαλ
n∑

j=0

ω(α)
n− ju j, n > s. (3.61)

Here ω(α)
n− j are the Taylor expansions of the generating functions defined by (3.56) or

(3.57), gn = g(tn)+Δtαλ
s∑

j=0
w(α)

n, j u j, u0,u1, · · · ,us are given starting values which are

usually computed by a different method.

Theorem 17 ([103]) Consider the integral equation (3.60) with g∈C[0,∞) and
|argλ−π|<(1− 1

2α)π. Then there exists a unique solution u∈C[0,∞) which satisfies
(a) u(t)→ 0 as t→∞ when g(t) has a finite limit as t→∞.
(b) u(t) is bounded on [0,∞) when g(t) is bounded.

In the following, we introduce several concepts of stability based on Theorem 17
which extend the classical stability concepts [103].

Definition 12 The FLMM (3.61) is called A-stable if the numerical solution un given
by (3.61) satisfies

un→ 0 as n→∞ whenever {gn} has a finite limit

for every stepsize Δt and for all λ in |argλ− π|<(1− 1
2α)π, the analytical stability

region of (3.60).
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Definition 13 The stability region S of the FLMM (3.61) is the set of all complex
z = Δtαλ for which the numerical solution {un} given by (3.61) satisfies

un→ 0 as n→∞ whenever {gn} has a finite limit.

The method is called strongly stable, if for any λ with |argλ− π|<(1− 1
2α)π there

exists h0(λ) > 0 such that Δtαλ is constrained in S for all 0 < Δt≤h0(λ). The method
is called A(θ)-stable if S contains the sector |argλ−π| < θ.
Theorem 18 ([103]) If ω(α)

n is the coefficients of the Taylor expansions of w(α)(ξ)
with

ω
(α)
n =

nα−1

Γ(α)
+ vn (n≥1) with

∞∑

n=1

|vn| <∞, (3.62)

then the stability region of the FLMMs (3.61) is

C \ {1/w(α)(ξ) : |ξ|≤1}.
Proof. In order to prove this theorem, we need the following two properties.

(a) (Wiener’s inversion theorem) If {an} is in �1 and a(ξ)=
∞∑

n=0
anξ

n � 0 for |ξ|≤1,

then the coefficients of the Taylor expansions of 1/a(ξ) is again in �1.

(b) Assume that the coefficients of the Taylor expansions of a(ξ) is in �1. Let
|ξ0|≤1. Then the coefficients of the Taylor expansions of

b(ξ) =
a(ξ)−a(ξ0)
ξ− ξ0

converge to zero.

Let z = Δtαλ. Since 0 is neither contained in the stability region S nor in S̃ = C \
{1/w(−α)(ξ) : |ξ|≤1}, we can from now on assume z� 0. In terms of the corresponding
power series we can rewrite (3.61) as

u(ξ) = g(ξ)+ zw(α)(ξ)u(ξ),

or equivalently,

u(ξ) =
g(ξ)

1− zw(α)(ξ)
=

(1− ξ)αg(ξ)
(1− ξ)α[1− zw(α)(ξ)]

, (3.63)

where

u(ξ) =
∞∑

n=0

unξ
n, g(ξ) =

∞∑

n=0

gnξ
n.

Next, we prove that S̃ ⊂ S . By the property (a), the sequence of the coefficients of
the Taylor expansions of (1− ξ)α[1− zw(α)(ξ)] is in �1. If z∈ S̃ , we have

1− zw(α)(ξ) � 0 for |ξ|≤1 with ξ � 1.
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Since

(−1)n
(−α

n

)

=
nα−1

Γ(α)
[1+O(n−1)], (3.64)

the condition (3.62) is equivalent to

ω(α)
n =

nα−1

Γ(α)
+ vn (n≥0) with

∞∑

n=1

|vn| <∞. (3.65)

Hence

w(α)(ξ) = (1− ξ)−α+ v(ξ), v(ξ) =
∞∑

n=0

vnξ
n. (3.66)

Therefore, (1− ξ)α[1− zw(α)(ξ)] = (1− ξ)α[1− zv(ξ)]− z, which leads to

(1− ξ)α[1− zw(α)(ξ)] � 0 for ξ � 1.

Wiener’s inversion theorem now yields that the sequence of the coefficients of the
Taylor expansions of

1
(1− ξ)α[1− zw(α)(ξ)]

is in �1. (3.67)

Let g̃n = gn−g∞, so that we can write

g(ξ) =
g∞

1− ξ + g̃(ξ).

We now show that the coefficient sequence of

(1− ξ)αg(ξ) = (1− ξ)α−1 f∞+ (1− ξ)αg̃(ξ)

converges to zero. By (3.64), the coefficient sequence of (1− ξ)α−1 tends to zero.
Also the coefficient sequence of (1− ξ)αg̃(ξ) converges to zero, since the coefficient
sequence of (1− ξ)α is in �1 and

�1 ∗C0 ⊆ C0, (3.68)

where ∗ denotes convolution, and C0 is the space of sequences convergent to 0; for-
mula (3.68) is a result of dominated convergence (see [121]): for {ln} and {dn} ∈ C0
we have

lim
n→∞

n∑

j=0

l jdn− j = 0.

Using (3.63), (3.67), and (3.68) we can finally conclude that the coefficient sequence
{un} of u(ξ) tends to zero. Hence z ∈ S .

In order to prove that S is exhausted by S̃ we assume that

1− zw(ξ0) = 0 for some |ξ0|≤1. (3.69)
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By assumption (3.66) we have ξ0 � 1. We show that z � S . We choose

u(ξ) =
(1− ξ)α
ξ− ξ0

=
(1− ξ)α− (1− ξ0)α

ξ− ξ0
+

(1− ξ0)α

ξ− ξ0
. (3.70)

The coefficient sequence of the first expression of the sum tends to zero by the prop-
erty (b) whereas the coefficient sequence of

1
ξ− ξ0

= −
∞∑

n=0

ξ−n−1
0 ξn

diverges. Hence {un} also diverges. From (3.63), (3.69), and (3.70) we obtain

g(ξ) =[1− zw(α)(ξ)]u(ξ) = (1− ξ)α[1− zw(α)(ξ)](1− ξ)−αu(ξ)

=
(1− ξ)α[1− zw(α)(ξ)]− (1− ξ0)α[1− zw(α)(ξ0)]

ξ− ξ0
.

Now the property (b) yields gn→ 0, but, as we have seen before, un� 0. Hence
z � S . �

Corollary 3.4.1 If the FLMM (3.61) with the condition (3.62) is used, and Δtαλ∈S ,
then

{un} is bounded whenever {gn} is bounded. (3.71)

Conversely, if (3.71) holds, then Δtαλ∈S is contained in the closure of S .

Corollary 3.4.2 The FLMM (3.61) with the condition (3.62) is strongly stable.

In [103], Lubich proved that there is the order barrier for the A-stable method
(3.55), which is the same as that of the LMM for ODEs [20]. The result is given in
the following theorem.

Theorem 19 ([103]) The order, p, of an A-stable FLMM (3.61) with the condition
(3.62) and (3.53) can not exceed 2.

Remark 3.4.2 Obviously, Theorems 18 and 19, Corollaries 3.4.1 and 3.4.2 hold for
FLMM (3.55) when f (t,u) = λu(t).

As is known, the backward Euler method and the trapezoidal rule are two A-
stable numerical methods for the ODE u′(t) = λu(t), Re(λ) < 0, u(0) = u0. Next, we
study the corresponding methods for the FODE (3.58). Let us first introduce two
lemmas.

Lemma 3.4.1 ([104]) If y(t) = tν−1, ν > 0, then

D−α0,t y(t)
∣∣∣
t=tn
= τα

n∑

k=0

ω(α)
n−ky(tk)+O(Δtp)+O(Δtν),

where ω(α)
k can be the coefficients of the Taylor series of the generating functions

defined as (3.56) or (3.57).
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Lemma 3.4.2 ([168]) Denote by

un = Δtα
n∑

k=0

ω(α)
n−kG(tk,uk), (3.72)

where {ω(α)
k } are the coefficients of Taylor expansions of the generating function

w(α)(z) defined by (3.56) or (3.57). Then, (3.72) is equivalent to the following equa-
tion

n∑

k=0

ωkun−k = Δtα
n∑

k=0

θn−kG(tk,uk) (3.73)

where ωk and θk are the coefficients of the Taylor expansions of α(z) and θ(z) satisfy-
ing w(α)(z) = θ(z)/ω(z).

Proof. We first rewrite w(α)(z) = θ(z)/ω(z) into the following form

( ∞∑

k=0

ωkzk
)( ∞∑

k=0

ω
(α)
k zk

)
=

∞∑

k=0

θkzk,

which yields

θm =

m∑

k=0

ω(α)
k ωm−k, m = 0,1, · · · ,n. (3.74)

By (3.72), one obtains um = Δtα
m∑

k=0
ω

(α)
m−kG(tk,uk). Hence, we have

n∑

m=0

ωn−mum =

n∑

m=0

ωn−m

[

Δtα
m∑

k=0

ω
(α)
m−kG(tk,uk)

]

. (3.75)

Rearranging the right-hand side of (3.75) and using (3.74) yield the desired result.
The proof is completed. �

Using Lemma 3.4.2, the FLMM (3.61) can be written in the following equation

n∑

k=0

ωn−kuk = Δtαλ
n∑

j=0

θn− ju j+Δtαλ
n∑

k=0

ωn−k

s∑

j=0

w(α)
k, j u j +

n∑

k=0

ωn−kg(tk). (3.76)

Denote by

w(α)
1 (ξ) = (1− ξ)−α; (3.77)

w(α)
2 (ξ) =

(
1
2

1+ ξ
1− ξ

)α

; (3.78)

w(α)
3 (ξ) = (1− ξ)−α

[

1− α
2
+
α

2
ξ
]

. (3.79)

Next, we study these three cases of generating functions w(α)
i (z), i = 1,2,3, which

yields the absolute stable numerical methods for (3.58).
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By Lemma 3.4.2, we obtain the equivalent form of (3.61) as follows

n∑

k=0

ωk(un−k−gn−k) = λΔtα
n∑

k=0

θn−kuk. (3.80)

Hence, one can obtain the FLMM for (3.58) as

n∑

k=0

ωk(un−k−u0) = λΔtα
n∑

k=0

θn−kuk. (3.81)

• Case (1): If the generating function (3.77) is used in (3.61), then ω(ξ) and θ(ξ)
in Lemma 3.4.2 are chosen as ω(ξ) = (1− ξ)α and θ(ξ) = 1. Thus, ω j and θ j in
(3.81) are given by ω j = (−1) j

(
α
j

)
and θ0 = 1, θ j = 0, j > 0.

• Case (2): If the generating function (3.78) is used in (3.61), then ω(ξ) and θ(ξ)
in Lemma 3.4.2 are chosen as ω(ξ) = (1− ξ)α and θ(ξ) = 1. Thus, ω j and θ j in

(3.81) are given by ω j = (−1) j
(
α
j

)
and θ j =

(−1) j

2α ω j.

• Case (3): If the generating function (3.77) is used in (3.61), then ω(ξ) and θ(ξ)
in Lemma 3.4.2 are chosen as ω(ξ) = (1− ξ)α and θ(ξ) = 1. Thus, ω j and θ j in
(3.81) are given by ω j = (−1) j

(
α
j

)
and θ0 = 1− α

2 , θ1 =
α
2 , θ j = 0, j > 1.

Obviously, the method (3.81) is reduced to the classical Euler method for the
classical ODE under the condition of Case (1) with α = 1. And the method (3.81) is
reduced to the classical trapezoidal rule under the condition of Case (2) or Case (3)
with α = 1. We can directly prove that the method (3.81) is absolutely stable under
the condition in Case (1), Case (2), or Case (3).

Lemma 3.4.3 ([55]) Let ωk = (−1)k
(
α
k

)
,0 < α < 1. Then we have

ω0 = 1, ωn < 0, |ωn+1| < |ωn|, n = 1,2, · · · ,

ω0 = −
∞∑

k=1

ωk > −
n∑

k=1

ωk > 0, n = 1,2, · · · ,

bn−1 =

n−1∑

k=0

ωk =
Γ(n−α)
Γ(1−α)Γ(n)

=
n−α

Γ(1−α)
+O(n−1−α), n suitably large.

(3.82)

Furthermore, bn−bn−1 = ωn < 0 for n > 0, i.e., bn≤bn−1.

Theorem 20 Let un be the solution to the method (3.81) under the condition in Case
(1), Case (2) or Case (3), gk = u0, and λ < 0. Then

|uk|≤ |u0|. (3.83)

Proof. We only prove |uk|≤ |g|∞ under the condition of Case (2), the other two
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cases are very similar so are omitted here. Under the condition of Case (2) and
Lemma 3.4.3, we can rewrite (3.81) as the following form

un =
1

1−λΔtα2−α

⎧
⎪⎪⎨
⎪⎪⎩

n∑

k=1

(bk−1−bk)
[
1−λΔtα(−1)k2−α

]
un−k+bnu0

⎫
⎪⎪⎬
⎪⎪⎭
. (3.84)

Note that if ωk = bk −bk−1≤0 and λ < 0, one has

|un|≤
n∑

k=1

(bk−1−bk)|un−k|+bnu0. (3.85)

Next, we use the mathematical induction method to prove (3.83). Let n = 1 in (3.85)
yields |u1|≤ (b0−b1)|u0|+b1|u0| = |u0|. Suppose that (3.83) holds for 0 < n <m. Next,
one needs to prove that (3.83) holds for n = m. From (3.85)

|um|≤
m∑

k=1

(bk−1−bk)|um−k|+bn|u0|≤
m∑

k=1

(bk−1−bk)|u0|+bm|u0| = |u0|. (3.86)

Hence, (3.83) holds for any n > 0. The proof is completed. �

Next, we consider the convergence of the FLMM (3.81) applied to the FODE of
the form

CDα
0,tu(t) = f (t,u(t)) = λu(t)+g(t), u(0) = u0. (3.87)

Assume that the analytical solution u(t) to (3.87) is suitably smooth. We first trans-
form the FODE (3.87) into the following integral equation

u(t)−u(0)= D−α0,t f (t,u(t)) = λD−α0,t u(t)+D−α0,t g(t). (3.88)

For u(t) ∈C2([0,T ]), one has CDα
0,tu(t)= u′(0)

Γ(2−α) t1−α+D−(2−α)
0,t u

′′
(t). Using Lemma

3.4.1 yields

u(tn)−u(0)=
[
D−α0,t f (t,u(t))

]

t=tn
= Δtα

n∑

k=0

ω(α)
n−k f (tk,u(tk))+ R̂n, (3.89)

where R̂n = O(t1−p
n Δtp)+O(tα−1

n Δt2−α) for p = 1 with the generating function (3.77),
and p = 2 with the generating function (3.78) or (3.79).

Applying Lemma 3.4.2 yields the equivalent form of (3.89) as

1
Δtα

n∑

k=0

ωn−k(u(tk)−u(0))=
n∑

k=0

θn−k f (tk,u(tk))+
1
Δtα

n∑

k=0

ωn−kR̂k. (3.90)

Whether or not the generating function (3.77), (3.78), or (3.79) is used, we always
have ωk = (−1)k

(
α
k

)
, and

Rn =
1
Δtα

n∑

k=0

ωn−kR̂k = Δtp−α
n∑

k=1

ωn−kO(k1−p)+Δt
n∑

k=1

ωn−kO(kα−1). (3.91)
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Exactly speaking, Rn has the following expression

Rn =

⎧
⎪⎪⎨
⎪⎪⎩

O(n−αΔt1−α), p = 1 with (3.77) used,

O(n−1Δt1−α), p = 2 with (3.78) or (3.79) used,
(3.92)

where we have used the following relation [104]

n∑

k=1

ωn−kkγ−1 = O(nγ−1−α)+O(n−α−1), γ � −1,−2, · · · . (3.93)

Let uk be the approximate solution of u(tk). Then we can obtain the numerical
methods for (3.87) as follows

1
Δtα

n∑

k=0

ωn−k(uk−u0) =
n∑

k=0

θn−k f (tk,uk), (3.94)

where ωk = (−1)k
(
α
k

)
, and

θ0 = 1, θk = 0,k > 0, p = 1 with (3.77) used, (3.95)

θk =
1
2α

(−1)kωk,k ≥ 0, p = 2 with (3.78) used, (3.96)

θ0 = 1− α
2
, θ1 =

α

2
, θk = 0,k > 1, p = 2 with (3.79) used. (3.97)

Similar to the proof of Theorem 20, one can prove that the FLMM (3.94) is
unconditionally stable under condition (3.95), (3.96), or (3.97) if f (t,u(t)) = λu(t)+
g(t). And the global convergence rate is O(Δt1−α).

Theorem 21 Let u ∈C2([0,T ]) be the solution of (3.87), and uk,k > 0 be the solution
of (3.94) with condition (3.95), (3.96), or (3.97). Then there exists a positive constant
C independent of n such that

|u(tn)−un|≤CΔt1−α. (3.98)

Proof. We only prove the error estimate for (3.94) with the condition (3.95); the
other two cases are almost the same. Let ek = u(tk)−uk. Then we can derive the error
equation below

n∑

k=0

ωn−kek = λΔtαen+ΔtαRn, (3.99)

By Lemma 3.4.3, we can rewrite the above equation into

en =
1

1−λΔtα

n∑

k=1

(bk−1−bk)en−k +
Δtα

1−λΔtα
Rn. (3.100)

Next, we use the mathematical induction method to prove that

|en|≤C|R|∞ = C max
0<k≤nT

|Rk|. (3.101)

 



122 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

For n = 1, by e0 = 0 and λ < 0, one has from (3.100) |e1|≤Δtα|R1|≤C|R|∞. Suppose
that (3.101) holds for 0 < n < m. For n = m one has

|em|≤ 1
1−λΔtα

m∑

k=1

(bk−1−bk)|em−k|+ Δtα

1−λΔtα
|Rm|

≤
m∑

k=1

(bk−1−bk)|em−k|+Cbm|R|∞

≤
m∑

k=1

(bk−1−bk)C|R|∞+Cbm|R|∞ =C|R|∞.

(3.102)

Hence (3.101) holds for any 0 < n ≤ nT . Hence |en|≤C max0<k≤nT |Rk|≤CΔt1−α. The
proof is completed. �

It is known that the Euler method and the trapezoidal method for the classical
ODE are of first-order and second-order accuracy for the smooth solutions. Next, we
can construct the corresponding schemes for the FODE (3.87). We just need to make
an improvement of (3.94) to get the desired schemes.

• Improved algorithms I:

From (3.88), we have

u(t)−u(0)= λD−α0,t (u(t)−u(0))+
λu(0)tα

Γ(α+1)
+D−α0,t g(t). (3.103)

Applying Lemma 3.4.1 to (3.103) yields

u(tn)−u(0)=λ
[
D−α0,t (u(t)−u(0))

]

t=tn
+
λu(0)tαn
Γ(α+1)

+
[
D−α0,t g(t)

]

t=tn

=λΔtα
n∑

k=0

ω(α)
n−k(u(tk)−u(0))+

λu(0)tαn
Γ(α+1)

+Gn+ R̂n,

(3.104)

where Gn =
[
D−α0,t g(t)

]

t=tn
R̂n = O(t1+α−p

n Δtp)+O(tα−1
n Δt2) for p = 1 if the generating

function (3.77) is used, and p = 2 if the generating function (3.78) or (3.79) is used.
Applying Lemma 3.4.2 yields the equivalent form of (3.104) as

1
Δtα

n∑

k=0

ωn−k(u(tk)−u0) = λ
n∑

k=0

θn−ku(tk)+λBnu0+
1
Δtα

n∑

k=0

ωn−kGk +Rn, (3.105)

in which ωk = (−1)k
(
α
k

)
, and θk is defined as in (3.95)–(3.97), Bn is defined by

Bn =
1

Γ(1+α)

n∑

k=0

ωn−kkα−
n∑

k=0

θk, (3.106)
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and Rn is given by

Rn =
1
Δtα

n∑

k=0

ωn−kR̂k = Δt
n∑

k=1

ωn−kO(k1+α−p)+Δt
n∑

k=1

ωn−kO(kα−1). (3.107)

By (3.93), we can obtain

Rn =

⎧
⎪⎪⎨
⎪⎪⎩

O(Δt), p = 1 with (3.77) used,

O(n−1Δt), p = 2 with (3.78) or (3.79) used,
(3.108)

From (3.105), we derive the improved algorithms for (3.87)

1
Δtα

n∑

k=0

ωn−kuk = λ

n∑

k=0

θn−kuk+λBnu0+
1
Δtα

n∑

k=0

ωn−kGk. (3.109)

Note that Bn = O(n−1). Similar to the proofs of Theorems 20 and 21, we can
prove that the improved algorithm (3.109) is unconditionally stable and convergent
of order 1. In the real computations, one can find that the improved algorithm (3.109)
can attain second-order accuracy if the generating function (3.78) or (3.79) is used,
since the local truncation error Rn = O(n−1Δt) has second-order accuracy when n is
big enough. One surprising finding is that the average error satisfies

√√

Δt
n∑

k=0

|u(tk)−uk|2 = O(Δt1.5)

when the generating function (3.78) or (3.79) is used.

• Improved algorithms II:

Now we introduce another two improved algorithms for (3.87) such that the conver-
gence rate is of order two when the solutions are smooth enough.

We still consider the discretization of (3.103). We use the FLMM (3.54) to dis-
cretize D−α0,t (u(t)−u(0)) in (3.103), which gives

[
D−α0,t (u(t)−u(0))

]

t=tn
= Δtα

n∑

k=0

ω(α)
n−k(u(tk)−u(0))+Δtαw(α)

n,1(u(t1)−u(0))+O(tαnΔt2),

(3.110)
where ω(α)

k are the coefficients of the Taylor expansion of the generating function
(3.78) or (3.79), w(α)

n,1 is the starting weight such that (3.110) is exact for u(t) = t,
which is given by

w(α)
n,1 =

Γ(2)
Γ(2+α)

n1+α−
n∑

k=1

ω
(β)
n−kk = O(nα−1). (3.111)

 



124 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

From (3.103) and (3.111), we can derive the following discretization

u(tn)−u(0) =λ
[
D−α0,t (u(t)−u(0))

]

t=tn
+
λu(0)tαn
Γ(α+1)

+
[
D−α0,t g(t)

]

t=tn

=λΔtα
n∑

k=0

ω(α)
n−k(u(tk)−u(0))+λΔtαw(α)

n,1(u(t1)−u(0))

+
λu(0)tαn
Γ(α+1)

+Gn+ R̂n,

(3.112)

where Gn =
[
D−α0,t g(t)

]

t=tn
, R̂n =O(tαnΔt2), and the generating function (3.78) or (3.79)

is utilized.
Applying Lemma 3.4.2 yields the equivalent form of (3.112)

1
Δtα

n∑

k=0

ωn−k(u(tk)−u0) =λ
n∑

k=0

θn−ku(tk)+λBnu0+λCn(u(t1)−u0)

+
1
Δtα

n∑

k=0

ωn−kGk +Rn,

(3.113)

in which ωk = (−1)k
(
α
k

)
, and θk is defined as in (3.96)–(3.97), Bn is defined by (3.106),

Cn is defined by

Cn =

n∑

k=0

ωn−kw(α)
k,1 =

Γ(2)
Γ(α+2)

n∑

k=0

ωn−kkα+1 −
n∑

k=1

θn−kk = O(n−1), (3.114)

and Rn is given by

Rn =
1
Δtα

n∑

k=0

ωn−kR̂k = Δt2
n∑

k=1

ωn−kO(kα) = O(Δt2). (3.115)

From (3.113), we obtain the improved algorithm for (3.87) below

1
Δtα

n∑

k=0

ωn−k(uk−u0) =λ
n∑

k=0

θn−kuk +λBnu0+λCn(u1−u0)

+
1
Δtα

n∑

k=0

ωn−kGk,

(3.116)

where ωk = (−1)k
(
α
k

)
, θk is defined as in (3.95)–(3.97), and Bn and Cn are defined by

(3.106) and (3.114), respectively.
Since Bn and Cn in (3.116) satisfy Bn = O(n−1) and Cn = O(n−1). So one can

similarly prove that the improved algorithm (3.116) is unconditionally stable and
convergent of order two.

Other related works on the linear stability of the model problem (3.58) can be
found in [53, 54, 55, 58, 59], where the linear stability with the stability region of
the explicit Adams multistep methods, the fractional Adams–Moulton methods, and
the predictor-corrector algorithms were investigated. The implicit Adams product
quadrature rules and their stability properties were studied in [103].

 



Chapter 4
Finite Difference Methods for Fractional
Partial Differential Equations

In this chapter, several kinds of finite difference methods are derived for fractional
evolutional equations, including time-fractional equations in one space dimension,
space-fractional equations in one space dimension, time-space fractional equations
in one space dimension, and fractional partial differential equations in two space
dimensions. Numerical examples are presented which are in line with the theoretical
analysis.

4.1 Introduction
This chapter is divided into four sections. In the first section, we investigate the

finite difference methods for the time-fractional equation in one spatial dimension,
for example see [11, 35]. In the second section, we construct the finite difference
methods for the space-fractional equations in one spatial dimension, e.g. [145]. In
the following section, we derive the finite difference methods for time-space frac-
tional equations in one space dimension, say, [10, 101]. In the last section of this
chapter, we establish the finite difference methods for the two-dimensional case, for
example, see [4]. Some other topics, such as the homotopy perturbation method for
solving fractional differential equations [93], inverse problems for fractional differ-
ential equations [153], etc., are not going to be presented in this book.

4.2 One-Dimensional Time-Fractional Equations
Denote by I = (a,b). Let Δt be the time step size and nT be a positive integer

with Δt = T/nT and tn = nτ for n = 0,1, · · · ,nT . Denote by tn+ 1
2
= (tn + tn+1)/2 for

n = 0,1, · · · ,nT −1. One can define the space step size Δx = (b−a)/N, N is a positive
integer. The space grid point xi is given by xi = a+ iΔx, i = 0,1, · · · ,N. Let xi+ 1

2
=

125
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(xi + xi+1)/2. For the function U(x, t)∈C(I × [0,T ]), denote by Un = Un(·) = U(·, tn)
and Un

i = U(xi, tn).
Next, we introduce the following notations that will be used in the description of

the numerical schemes.

δxUn
i+ 1

2
=

Un
i+1−Un

i

Δx
, δ2

xUn
i =

Un
i+1−2Un

i +Un
i−1

Δx2 . (4.1)

δtU
n+ 1

2
i =

Un+1
i −Un

i

Δt
. (4.2)

Next, we list some formulas for the discretization of the Riemann–Liouville
derivatives and Caputo derivatives.

• The γth-order (γ > 0) Riemann–Liouville derivative of U(t), t∈ (0,T ] at t = tn
can be discretized by the Grünwald–Letnikov formula

GLδ
(γ)
t Un =

1
Δtγ

n∑

k=0

ω
(γ)
n−kUk, ω

(γ)
k = (−1)k

(
γ

k

)

. (4.3)

• The γth-order (0 < γ < 1) Riemann–Liouville derivative of U(t), t∈ (0,T ] at
t = tn can be discretized by the L1 method as

L1
RLδ

(γ)
t Un =

1
Δtγ

⎛
⎜⎜⎜⎜⎜⎜⎝

n−1∑

k=0

b(γ)
n−k−1(Uk+1−Uk)+

n−γ

Γ(1−γ)
U0

⎞
⎟⎟⎟⎟⎟⎟⎠ , b(γ)

k =
(k+1)1−γ− k1−γ

Γ(2−γ)
.

(4.4)

The γth-order (0 < γ < 1) Caputo derivative of U(t), t∈ (0,T ] at t = tn can be
discretized by the L1 method as

L1
C δ

(γ)
t Un =

1
Δtγ

⎛
⎜⎜⎜⎜⎜⎜⎝

n−1∑

k=0

b(γ)
n−k−1(Uk+1−Uk)

⎞
⎟⎟⎟⎟⎟⎟⎠ , b(γ)

k =
(k+1)1−γ− k1−γ

Γ(2−γ)
. (4.5)

• The γth-order (γ > 0) Riemann–Liouville derivative of U(t), t∈ (0,T ] at t = tn
can be discretized by the fractional backward difference formula (BDF) as

B
pδ

(γ)
t Un =

1
Δtγ

n∑

k=0

ω
(−γ)
n−k Uk, (4.6)

where ω(−γ)
k are coefficients of the Taylor expansions of the generating func-

tions w(−γ)
p (z) defined by

w(−γ)
p (z) =

(
wp(z)

)γ
, wp(z) =

p∑

j=1

1
j
(1− z) j, p = 1,2, · · · ,6. (4.7)
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• The αth-order (α > 0) left Riemann–Liouville derivative of U(x), x∈ (a,b) at
x = xi can be discretized by the Grünwald–Letnikov formula as follows

Lδ
(α)
x Ui =

1
Δxα

i∑

j=0

ω(α)
j Ui− j, ω(α)

j = (−1) j
(
α

j

)

. (4.8)

• The αth-order (α > 0) right Riemann–Liouville derivative of U(x), x∈ (a,b) at
x = xi can be discretized by the Grünwald–Letnikov formula as

Rδ
(α)
x Ui =

1
Δxα

N−i∑

j=0

ω(α)
j Ui+ j, ω(α)

j = (−1) j
(
α

j

)

. (4.9)

4.2.1 Riemann–Liouville Type Subdiffusion Equations

Consider the following type of time-fractional diffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tU = RLD1−γ
0,t

(
Kγ∂

2
xU

)
+ f (x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = Ua(t), U(b, t) = Ub(t), t ∈ (0,T ],

(4.10)

where Kγ > 0 and 0 < γ < 1.
Clearly, if γ→ 1, the above equation is reduced to the classical diffusion equation.

It is known that there are many numerical techniques to solve such an equation, such
as the forward and backward Euler methods, the Crank–Nicolson method, etc. For
the subdiffusion equation (4.10), there also exist several analogs such as the forward
and backward Euler methods, and the Crank–Nicolson methods.

Since the spatial direction is the classical second-order differential operator, al-
most all the classical numerical methods (such as the finite difference method, the
finite element method, the spectral method, the discontinuous Galerkin method, etc.)
can be used to discretize the space derivative of (4.10). Here we mainly focus on the
time discretization of (4.10). In the following, the second-order spatial derivative in
(4.10) is discretized by the second-order central difference method for brevity.

4.2.1.1 Explicit Euler Type Methods

The explicit method is particularly of interest because of its simplicity, easy im-
plementation, and low cost in real computation. Like the explicit Euler method for
the heat equation (γ = 1 in (4.10)), we can present the corresponding explicit method
for the fractional subdiffusion equation (4.10), which can be seen as an extension of
the forward Euler method.

Letting (x, t) = (xi, tn) in (4.10) leads to

∂tU(xi, tn) = Kγ

(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn)+ f (xi, tn). (4.11)

The integer-order time derivative and fractional derivative in (4.11) are discretized
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by the forward Euler method and the Grünwald–Letnikov formula, i.e.,

∂tU(xi, tn) =
U(xi, tn+1)−U(xi, tn)

Δt
+O(Δt) = δtU

n+ 1
2

i +O(Δt), (4.12)
(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn) = GLδ

(1−γ)
t (∂2

xUn(xi))+O(Δt), (4.13)

where GLδ
(1−γ)
t is defined by (4.3), and the space is discretized by the central differ-

ence scheme, i.e.,

∂2
xU(xi, tn) = ∂2

xUn(xi) = δ2
xUn

i +O(Δx2). (4.14)

Hence, one can obtain

δtU
n+ 1

2
i = Kγ

GLδ
(1−γ)
t δ2

xUn
i + f n

i +O(Δt+Δx2). (4.15)

Replacing Un
i by un

i and neglecting the truncation error in the above equation, one
can get the following explicit Euler method for (4.10) as: Find un+1

i (i = 1,2, · · · ,N −
1,n = 0,1, · · · ,nT −1), such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = Kγ

GLδ
(1−γ)
t (δ2

xun
i )+ f n

i , i = 1,2, · · · ,N −1, n = 0,1, · · · ,nT −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.16)

where GLδ
(1−γ)
t is defined by (4.3).

Of course, the fractional derivative can be approximated by other methods such
as the fractional BDF methods (see [104], GLδ

(1−γ)
t in (4.16) is replaced by B

pδ
(1−γ)
t

defined by (4.6)) or the L1 method (see Eq. (2.63), GLδ
(1−γ)
t in (4.16) is replaced by

L1
RLδ

(1−γ)
t defined in (4.4)), which lead to the different schemes that have similar forms

as (4.16); we do not list these methods here.
If γ→ 1, method (4.16) is reduced to the classical forward Euler method.
Let μ = KγΔtγ

Δx2 . Then method (4.16) can be written as

un+1
i = un

i +μ

n∑

k=0

ω
(1−γ)
n−k (uk

i+1−2uk
i +uk

i−1)+Δt f n
i . (4.17)

Therefore, the unknowns un+1
i can be solved if uk

i (k = 0,1, · · · ,n) and f n
i are given.

Next, we analyze the stability of the explicit method (4.16). There are several
methods for the stability analysis, such as the energy method [56], the Fourier method
(also called the fractional von Neumann analysis) [18, 24, 160, 161], and the matrix
method [98]. The Fourier method is relatively simple, which is suitable for the linear
equations with constant coefficients. Therefore, we first use the Fourier method for
the stability analysis for scheme (4.16).

The fractional von Neumann analysis for the stability analysis of scheme (4.16)
is illustrated below.
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Let f n
i = 0 and uk

i = ρke jσiΔx( j2 = −1). Inserting uk
i into (4.17) yields

ρn+1 = ρn −4μsin2
(
σΔx

2

) n∑

k=0

ω
(1−γ)
n−k ρk. (4.18)

According to the von Neumann method [24, 161], we can first assume that ρn+1 =

ξ(σ)ρn and ξ(σ) is independent of time. Then (4.18) implies a closed equation for the
amplification factor ξ as:

ξ = 1−4μsin2
(
σΔx

2

) n∑

k=0

ω
(1−γ)
k ξ−k. (4.19)

If |ξ| > 1 for some σ, ρn grows to infinity and the method is unstable. Considering the
extreme value ξ = −1, we obtain from (4.19) the following stability bound on μ:

μsin2
(
σΔx

2

)

≤ 1

2
n∑

k=0
ω

(1−γ)
k (−1)−k

≡S γ,n. (4.20)

The bound defined by (4.20) depends on the number n of iterations. Nevertheless, this
dependence is weak: S γ,n approaches S γ = lim

n→∞S γ,n in the form of oscillations with

small decaying amplitudes [161]. Since
∑∞

k=0ω
(1−γ)
k z−k = (1− z−1)1−γ = w(1−γ)

1 (z−1)
(see the first equation in (2.43)). Therefore, we find that the explicit method (4.16) is
stable as long as

μsin2
(
σΔx

2

)

≤S γ =
1

2w(1−γ)
1 (−1)

. (4.21)

Since sin2
(
σΔx

2

)
≤1, we can give a more conservative but simple bound: the explicit

method (4.16) is stable when

μ =
KγΔtγ

Δx2 ≤S γ =
1

2w(1−γ)
1 (−1)

=
1

22−γ . (4.22)

Obviously, the stability bound in (4.22) is reduced to that of the forward Euler
method if γ→ 1.

If the fractional derivative is discretized by the fractional backward difference for-
mula (see (4.6)), i.e., GLδ

(1−γ)
t in (4.16) is replaced by B

pδ
(1−γ)
t , one can obtain a series

of explicit methods. For example, for p = 2 with w(1−γ)
2 (z) = (3/2−2z+ z2/2)1−γ, one

can obtain that the explicit method (4.16) is stable when

μ =
KγΔtγ

Δx2 ≤S γ =
1

2w(1−γ)
2 (−1)

=
1

43/2−γ . (4.23)

Next, we consider the convergence. Let en
i = U(xi, tn)− un

i . Then one can derive
the error equation from (4.15) and (4.16) as

en+1
i = en+μ

n−1∑

k=0

ω
(1−γ)
n−k (ek

i+1−2ek
i + ek

i−1)+ΔtRn
i . (4.24)
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Let en
i = η

ne jσiΔx, Rn
i = rne jσiΔx, and μ∗ = 4μsin2

(
σΔx

2

)
. Then one has

ηn+1 = ηn−μ∗
n∑

k=0

ω
(1−γ)
n−k ηk +Δtrn. (4.25)

From (4.15), we find that the local truncation error of the method (4.16) is
O(Δt(Δt+Δx2)). It is a little difficult to prove the global truncation error. In the fol-
lowing sections, some techniques will be introduced to prove the convergence of the
numerical schemes for the subdiffusion equation (4.10).

4.2.1.2 Implicit Euler Type Methods

The idea for constructing the backward Euler method can be extended to establish
the corresponding method for the subdiffusion equation (4.10).

In (4.11), if the integer time derivative, the Riemann–Liouville derivative, and
the space derivative are approximated by the backward Euler formula, the Grünwald–
Letnikov formula, and the central difference method, respectively, i.e.,

∂tU(xi, tn) =
U(xi, tn)−U(xi, tn−1)

Δt
+O(Δt) = δtU

n− 1
2

i +O(Δt), (4.26)
(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn) = GLδ

(1−γ)
t (∂2

xUn(xi))+O(Δt), (4.27)

∂2
xU(xi, tn) = δ2

xUn
i +O(Δx2), (4.28)

where GLδ
(1−γ)
t is defined by (4.3), then one can obtain

δtU
n− 1

2
i = Kγ

GLδ
(1−γ)
t (δ2

xUn
i )+ f n

i +O(Δt+Δx2). (4.29)

Removing the truncation error O(Δt+Δx2) in (4.29), and replacing Uk
i with uk

i ,
we can obtain the backward Euler method for (4.10) as: Find un

i (i= 1,2, · · · ,N−1,n=
1, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = Kγ

GLδ
(1−γ)
t δ2

xun
i + f n

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.30)

where GLδ
(1−γ)
t is given by (4.3).

Next, we give a simple implementation of the method (4.30). We first rewrite the
scheme (4.30) as

un
i = un−1

i +μ

n∑

k=0

ω
(1−γ)
n−k (uk

i+1−2uk
i +uk

i−1)+Δt f n
i , (4.31)
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where μ = KγΔtγ/Δx2. Denote EN ∈RN×N as the identity matrix, and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
...

...
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N−1)×2

, (4.32)

S N−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N−1)×(N−1)

. (4.33)

Let un = (un
1, · · · ,un

N−1)T , un
b = (un

0,u
n
N)T = (Ua(tn),Ub(tn))T , and fn = ( f n

1 , · · · , f n
N−1)T .

Then the matrix representation of (4.31) can be written as

(EN−1−μS N−1)un =un−1+μ
n−1∑

k=0

ω
(1−γ)
n−k (S N−1 uk)+μ

n∑

k=0

ω
(1−γ)
n−k (Buk

b)+ fn.

We consider the stability of the finite difference scheme (4.30). The Fourier
method and energy method are two powerful tools for the stability and con-
vergence analysis of the numerical methods for fractional differential equations
[18, 160, 161, 183]. We mainly focus on the stability analysis, and the convergence
analysis is somewhat equivalent to the stability analysis for the linear problems.

• Fourier method

We first use the Fourier method [18, 160, 161] for the stability analysis of the method
(4.30).

Let us rewrite the scheme (4.30) as the following form

un
i = un−1

i +μ
n∑

k=0

ω
(1−γ)
n−k (uk

i+1−2uk
i +uk

i−1)+Δt f n
i , (4.34)

where μ = KγΔtγ/Δx2. Supposing that un
i has perturbation ũn

i , we can obtain the
perturbation equation as follows

ũn
i = ũn−1

i +μ

n∑

k=0

ω
(1−γ)
n−k (ũk

i+1−2ũk
i + ũk

i−1). (4.35)

Letting ũn
i = ρne jσiΔx( j2 = −1) and inserting ũn

i into (4.35), one gets
(

1+4μsin2
(
σΔx

2

))

ρn = ρn−1 −4μsin2
(
σΔx

2

) n∑

k=1

ω
(1−γ)
k ρn−k. (4.36)

Next, we introduce a lemma which is useful to prove that |ρn|≤ |ρ0| from (4.36).
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Lemma 4.2.1 ([18]) Let ω(1−γ)
k = (−1)k

(
1−γ

k

)
,0 < γ < 1. Then one has

ω
(1−γ)
0 = 1, ω

(1−γ)
k < 0, k > 0;

∞∑

k=0

ω
(1−γ)
k = 0, −

n∑

k=1

ω
(1−γ)
k < 1, n∈N. (4.37)

Based on the above lemma, we give the following stability theorem.

Theorem 22 The finite difference method (4.30) is unconditionally stable.

Proof. We use the mathematical induction to complete the proof. Let μ∗ =
4μsin2

(
σΔx

2

)
. Then we have from (4.36)

ρn =
1

1+μ∗
ρn−1− μ∗

1+μ∗
n∑

k=1

ω
(1−γ)
k ρn−k. (4.38)

For n = 1, it follows from (4.38) and Lemma 4.2.1 that

|ρ1| =
|1−μ∗ω(1−γ)

1 |
1+μ∗

|ρ0| = 1+μ∗(1−γ)
1+μ∗

|ρ0|≤ |ρ0|. (4.39)

Suppose that |ρk|≤ |ρ0| (0≤k≤n−1). For k = n, we get from (4.38) and Lemma 4.2.1

|ρn|≤ 1
1+μ∗

|ρn−1|+ μ∗

1+μ∗
n∑

k=1

|ω(1−γ)
n−k ||ρn−k|

≤ 1
1+μ∗

|ρ0|+ μ∗

1+μ∗
n∑

k=1

|ω(1−γ)
n−k ||ρ0|

=
1

1+μ∗
|ρ0|+ μ∗

1+μ∗

⎛
⎜⎜⎜⎜⎜⎜⎝−

n∑

k=1

ω
(1−γ)
n−k

⎞
⎟⎟⎟⎟⎟⎟⎠ |ρ0|

≤ 1
1+μ∗

|ρ0|+ μ∗

1+μ∗
|ρ0| = |ρ0|.

(4.40)

Therefore, |ρn|≤ |ρ0|. The proof is completed. �

• Energy method

Now we introduce the energy method to prove the stability of the scheme (4.30). Let
u = (u0,u1, · · · ,uN)T and un = (un

0,u
n
1, · · · ,un

N)T . Denote by the discrete inner product
(·, ·)N and the norm ‖ · ‖N as

(u,v)N = Δx
N−1∑

i=0

uivi, u,v ∈R(N+1)×1
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and
‖u‖N =

√
(u,u)N . (4.41)

For brevity, we also introduce the following notations

(δxu, δxv)N =Δx
N−1∑

i=0

δxui+ 1
2
δxvi+ 1

2
,

(δ2
xu,v)N =Δx

N−1∑

i=1

(δ2
xui)vi,

|u|1,N =
√

(δxu, δxu)N .

(4.42)

Lemma 4.2.2 Let u = (u0,u1, · · · ,uN)T and v = (v0,v1, · · · ,vN)T . If u0 = uN = v0 =

vN = 0, then
(δ2

xu,v)N = (u, δ2
xv)N = −(δxu, δxv)N .

Proof. It is easy to calculate

(δ2
xu,v)N =Δx

N−1∑

i=1

viδ
2
xui =

N−1∑

i=1

vi(δxui+ 1
2
− δxui− 1

2
)

=

N−1∑

i=1

viδxui+ 1
2
−

N−2∑

i=0

vi+1δxui+ 1
2

=

N−1∑

i=0

viδxui+ 1
2
−

N−1∑

i=0

vi+1δxui+ 1
2

=−
N−1∑

i=0

(vi+1− vi)δxui+ 1
2
= −(δxu, δxv)N .

One can similarly get (u, δ2
xv)N = −(δxu, δxv)N , which ends the proof. �

Lemma 4.2.3 ([183]) Let u = (u0,u1, · · · ,uN)T . If u0 = uN = 0, then there exists a
positive constant C such that

‖u‖N ≤C|u|1,N .
Next, we use the energy method to prove that the scheme (4.30) is unconditionally

stable.

Theorem 23 Let un = (un
0,u

n
1, · · · ,un

N)T be the solutions to the finite difference scheme
(4.30), un

0 = un
N = 0, and fn = ( f0, f n

1 , · · · , f n
N)T . Then there exists a positive constant

C independent of n, Δt and Δx, such that

‖un‖2N ≤‖u0‖2N +ΔtγKγ |u0|21,N +C max
0≤k≤nT

‖fk‖2N .
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Proof. We rewrite the scheme (4.30) in the form below

un
i = un−1

i +ΔtγKγ

n∑

k=0

ω
(1−γ)
n−k δ2

xuk
i +Δt f n

i . (4.43)

From (4.43), one can immediately get

(un,un)N=(un−1,un)N +ΔtγKγ

n∑

k=0

ω
(1−γ)
n−k (δ2

xuk,un)N +Δt(fn,un)N

=(un−1,un)N −ΔtγKγ

n∑

k=0

ω
(1−γ)
n−k (δxuk, δxun)N +Δt(fn,un)N ,

(4.44)

where Lemma 4.2.2 is used. Denote by

bn =

n∑

k=0

ω
(1−γ)
k =

Γ(n+γ)
Γ(γ)Γ(n+1)

=
(n+1)γ−1

Γ(γ)
+O((n+1)−2+γ).

Then one has bn−bn−1 = ω
(1−γ)
n and bn satisfies C0bnΔtγ≤Δt≤C1bnΔtγ, C0, C1 are

positive constants independent of n [183].
Using the Cauchy–Schwarz inequality, one obtains

‖un‖2N +ΔtγKγ |un|1,N

≤ 1
2

(‖un−1‖2N + ‖un‖2N)+
ΔtγKγ

2

n−1∑

k=0

(bn−k−1−bn−k)(|uk|21,N + |un|21,N)

+Δt(ε‖un‖2N +
1
4ε
‖fn‖2N),

where ε is a suitable positive constant. Denote

En = ‖un‖2N +ΔtγKγ

n∑

k=0

bn−k|uk |21,N .

Then one gets

En +ΔtγKγbn|un|1,N ≤En−1+Δt
(

1
2ε
‖fn‖2N +2ε‖un‖2N

)

≤En−1+Δt
(

1
2ε
‖fn‖2N +2C2ε‖un‖2N

)

,

(4.45)

where Lemma 4.2.3 is utilized. Choosing suitable ε = Kγ
2C1C2

satisfies

2C2εΔt≤2C2εC1bnΔtγ≤KγbnΔtγ.
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Therefore, one obtains

En≤En−1+CΔt‖fn‖2N ≤E0+CΔt
n∑

k=1

‖uk‖2N

=‖u0‖2N +ΔtγKγ |u0|21,N +CΔt
n∑

k=1

‖fk‖2N .
(4.46)

By the definition of En, we have

‖un‖2N ≤‖u0‖2N +ΔtγKγ |u0|21,N +C max
0≤k≤nT

‖fk|2N . (4.47)

The proof is completed. �

Remark 4.2.1 If ω(1−γ)
k in (4.44) satisfies ω(1−γ)

0 > 0 and
∑n

k=1 |ω(1−γ)
k | ≤ ω(1−γ)

0 , then
the inequality (4.47) holds.

Next, we consider the convergence analysis for (4.30). From Theorem 23, we can
obtain the error bounds for the method (4.30).

Theorem 24 Let U(x, t) and un
i (i = 0, 1, 2, · · · ,N, n = 1, 2, · · · , nT ) be solutions to

equations (4.10) and (4.30), respectively. Denote by en
i = un

i −U(xi, tn) and en =

(en
0,e

n
1, · · · ,en

N)T . Then there exists a positive constant C independent of n,Δt and
Δx, such that

‖en‖N ≤C(Δt+Δx2).

Proof. One can get the error equation as follows

en
i = en−1

i +ΔtγKγ

n∑

k=0

ω
(1−γ)
n−k δ2

xek
i +ΔtRn

i , (4.48)

in which Rn
i is the truncation error satisfying Rn

i = O(Δt+Δx2) from (4.29).
By Theorem 23, we only need to estimate

‖e0‖2N +ΔtγKγ |e0|21,N +C max
0≤k≤nT

‖Rk‖2N

to get the error bound, where Rn = (Rn
0,R

n
1, · · · ,Rn

N)T with Rn
i = O(Δt + Δx2). Ob-

viously, ‖e0‖N = |e0|1,N = 0, and ‖Rk‖N ≤C(Δt + Δx2). Hence ‖en‖N ≤C(Δt + Δx2),
which ends the proof. �

Obviously, the time fractional derivative in (4.10) can be discretized by different
methods, which yield different backward Euler type methods. For example, the time
fractional derivative in (4.10) can be discretized by the L1 method (4.4), the fractional
backward difference method (4.6).

In (4.30), if the time-fractional derivative in (4.10) is approximated by the L1
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method (4.4), one has the following implicit scheme: Find un
i (i = 1,2, · · · ,N −1,n =

1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = Kγ

L1
RLδ

(1−γ)
t δ2

xun
i + f n

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.49)

where L1
RLδ

(1−γ)
t is given by (4.4).

Using the Fourier method or the energy method, we can similarly prove that
the finite difference method (4.49) is unconditionally stable and convergent of order
O(Δt+Δx2); readers can refer to [71, 86] for more information.

If γ = 1, then the two methods (4.30) and (4.49) are reduced to the backward
Euler method. The two methods (4.30) and (4.49) have only first-order accuracy in
time for γ∈ (0,1).

Cui [19] proposed a compact finite difference scheme to solve (4.10), in which the
time discretization is the same as the method (4.30), while the space was discretized
by the fourth-order compact finite difference scheme. In [17], the explicit and implicit
finite difference methods were presented to solve the fractional reaction-subdiffusion
equation. The implicit method is similar to (4.30), which is unconditionally stable
and convergent of order O(Δt+Δx2). The explicit method is also similar to (4.30),
except that the integer-order time derivative was discretized by the forward Euler

method, i.e., δtu
n− 1

2
i in (4.30) is replaced by δtu

n+ 1
2

i .

4.2.1.3 Crank–Nicolson Type Methods

We know that the Crank–Nicolson (CN) method for the classical equation (See
(4.10) with γ= 1) has second-order accuracy in time. The CN method for the classical
diffusion equation can be constructed by the following direct methods:

• Method I: Letting t = tn+ 1
2

in (4.10) with γ = 1 yields

∂tU(tn+ 1
2
) = μ∂2

xU(tn+ 1
2
)+ f (tn+ 1

2
).

Note that ∂tU(tn+ 1
2
) = δtUn+ 1

2 +O(Δt2) and U(tn+ 1
2
) = Un+ 1

2 +O(Δt2), one has

δtUn+ 1
2 = μ∂2

xUn+ 1
2 + f (tn+ 1

2
)+O(Δt2).

Letting x = xi and using ∂2
xUn = δ2

xUn
i +O(Δx2), we have

δtU
n+ 1

2
i = μδ2

xU
n+ 1

2
i + f (xi, tn+ 1

2
)+O(Δt2+Δx2).

Neglecting the truncation error and letting un
i = Un

i yields the classical CN
method below:

δtu
n+ 1

2
i = μδ2

xu
n+ 1

2
i + f (xi, tn+ 1

2
). (4.50)
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• Method II: Letting x = xi, t = tk,k = n,n+1 in (4.10) with γ = 1 gives

∂tU(xi, tn) = μ∂2
xU(xi, tn)+ f (xi, tn), (4.51)

∂tU(xi, tn+1) = μ∂2
xU(xi, tn+1)+ f (xi, tn+1). (4.52)

Adding the two equations leads to

∂tU(xi, tn)+∂tU(xi, tn+1) = μ(∂2
xU(xi, tn+1)+∂2

xU(xi, tn))+ f (xi, tn)+ f (xi, tn+1).
(4.53)

Noting that ∂tU(xi, tn) + ∂tU(xi, tn+1) = 2δtUn+ 1
2 +O(Δt2) and ∂2

xU(xi, tn) =
2δ2

xUn+ 1
2 +O(Δx2), one has

δtU
n+ 1

2
i = μδ2

xU
n+ 1

2
i + f

n+ 1
2

i +O(Δt2+Δx2).

Dropping the truncation error and letting un
i = Un

i yields the following CN
method:

δtu
n+ 1

2
i = μδ2

xu
n+ 1

2
i + f

n+ 1
2

i . (4.54)

For the classical diffusion equation, the two methods (4.50) and (4.54) are uncon-
ditionally stable and convergent of order 2 for the suitably smooth solutions. For
the fractional subdiffusion equation (4.10), we can use similar techniques to derive
the Crank–Nicolson type methods, which yield different properties of the desired
scheme.

Similar to (4.50), we first let (x, t) = (xi, tn− 1
2
) in (4.10), which gives

∂tU(xi, tn− 1
2
) = Kγ

(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn− 1

2
)+ f (xi, tn− 1

2
). (4.55)

Clearly, the first-order time derivative in (4.55) is discretized by the central difference
method, and the space derivative can be discretized by the cental difference scheme.
Now we should adopt a technique to discretize the fractional operator RLD1−γ

0,t at
t = tn− 1

2
such that higher accuracy can be obtained. Fortunately, we indeed have a

method, named the modified L1 method (2.70), with (1+ γ)th-order accuracy to ap-
proximate RLD1−γ

0,t at t = tn− 1
2
. Hence, we have

δtU
n− 1

2
i = Kγδ

(1−γ)
t δ2

xU
n− 1

2
i + f (xi, tn− 1

2
)+ (Δt1+γ +Δx2), (4.56)

where δ(1−γ)
t is defined by

δ
(1−γ)
t U

n− 1
2

i =
1
Δt1−γ

⎡
⎢⎢⎢⎢⎢⎢⎣b0U

n− 1
2

i −
n−1∑

k=1

(bn−1−k−bn−k)U
k− 1

2
i − (bn−1−Bn−1)U

1
2
i −An−1U0

i

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(4.57)
in which An = Bn− γ(n+1/2)γ−1

Γ(1+γ) , bn and Bn are defined by

bn =
1

Γ(1+γ)
[
(n+1)γ−nγ

]
, Bn =

2
Γ(1+γ)

[
(n+1/2)γ−nγ

]
. (4.58)
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Therefore, the first CN type method is given by:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = Kγδ

(1−γ)
t δ2

xu
n− 1

2
i + f (xi, tn− 1

2
), i = 1,2, · · · ,N −1, n = 1,2, · · · ,nT ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.59)

where δ(1−γ)
t is defined by (4.57).

The CN type method (4.59) is reduced to the classical CN method (4.50) if γ→ 1.
Of course, one can also use

1
2

[(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn)+

(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn−1)

]

to replace
(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn− 1

2
) in (4.55) as in the classical CN method (4.50). Then

the appropriate discretization for the time fractional derivative operator RLD1−γ
0,t at

t = tn, tn−1 is applied. So we can derive the following CN type method
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i =

Kγ

2

[
δ

(1−γ)
t δ2

xun−1
i + δ

(1−γ)
t δ2

xun
i

]
+ f (xi, tn+ 1

2
),

i = 1,2, · · · ,N −1, n = 1,2, · · · ,nT ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.60)

where δ(1−γ)
t is the approximate operator of the time fractional derivative operator

RLD1−γ
0,t .

It is known that 1
2

([
RLD1−γ

0,t u(t)
]

t=tn−1
+
[
RLD1−γ

0,t u(t)
]

t=tn

)

is not a good approxima-

tion to
[
RLD1−γ

0,t u(t)
]

t=t
n− 1

2

. For example, u(t) = tν,ν ≥ 0, so we can derive

1
2

([
RLD1−γ

0,t u(t)
]

t=tn−1
+
[
RLD1−γ

0,t u(t)
]

t=tn

)

−
[
RLD1−γ

0,t u(t)
]

t=t
n− 1

2

=
Γ(ν+1)

2Γ(ν+γ)

(

tν+γ−1
n−1 + tν+γ−1

n −2tν+γ−1
n− 1

2

)

= O(Δt2tν+γ−3
n ).

(4.61)

Clearly, if (ν+ γ) is not a positive integer or the noninteger number (ν+ γ) is small,
then the error introduced in (4.61) is of order O(Δtν+γ−1) for small n. For example, ν
is a nonnegative integer and γ � 1, which implies that the smooth enough u(t) can not
guarantee second-order approximation. Hence, even if the high-order method is used
to discretize the time fractional operator RLD1−γ

0,t , we can not obtain the satisfactory
numerical solutions when n is small.

Next, we adopt the second technique used in (4.54) to construct the correspond-
ing CN method for (4.10), which can avoid using (4.61) in the construction of the
numerical algorithm.
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Letting (x, t) = (xi, tn) and (x, t) = (xi, tn−1) in (4.10) leads to

∂tU(xi, tn) = Kγ

(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn)+ f (xi, tn), (4.62)

∂tU(xi, tn−1) = Kγ

(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn−1)+ f (xi, tn−1). (4.63)

Adding (4.62) to (4.63), one has

∂tU(xi, tn)+∂tU(xi, tn−1)

=Kγ

[(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn)+

(
RLD1−γ

0,t ∂
2
xU

)
(xi, tn−1)

]
+ f (xi, tn)+ f (xi, tn−1).

(4.64)

If the high-order method is used to discretize RLD1−γ
0,t ∂

2
xU(x, t) at t = tn, then we

can get more accurate numerical algorithms than the Euler type methods introduced
before. One choice is to use L1 method to discretize RLD1−γ

0,t ∂
2
xU(x, t) at t = tn−1 and

t = tn, which gives

δtU
n− 1

2
i =

Kγ

2

[
L1
RLδ

(1−γ)
t δ2

xUn
i +

L1
RLδ

(1−γ)
t δ2

xUn−1
i

]

+
1
2

( f n
i + f n−1

i )+O(Δt1+γ +Δx2), n > 1,
(4.65)

where L1
RLδ

(1−γ)
t is defined by (4.4). When U(x, t) is smooth in time, f (xi, t0) may be

unbounded. Therefore, for n = 1, one can use the following relation

δtU
1
2
i = Kγ

L1
RLδ

(1−γ)
t δ2

xU1
i + f 1

i +O(Δt+Δx2). (4.66)

Removing the truncation error in (4.65) and (4.66), and replacing Un
i with un

i , we can
get the following CN type method

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
1
2
i = Kγδ

(1−γ)
t δ2

xu1
i + f 1

i , i = 1,2, · · · ,N −1,

δtu
n− 1

2
i =

Kγ

2

(
L1
RLδ

(1−γ)
t δ2

xun
i +

L1
RLδ

(1−γ)
t δ2

xun−1
i

)
+

1
2

( f n
i + f n−1

i ),

i = 1,2, · · · ,N −1, n = 2,3, · · · ,nT ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.67)

where L1
RLδ

(1−γ)
t is defined by (4.4).

If γ→ 1, the CN type method (4.60) is reduced to the classical CN method (4.50).
For the CN type method (4.67), the classical CN method (4.54) can not be recovered
when γ→ 1 and n = 1.

Next, we consider the stability and convergence of the three CN methods (4.59),
(4.60), and (4.67).

Lemma 4.2.4 ([166]) Let bn,Bn be defined by (4.58), An = Bn− γ(n+1/2)γ−1

Γ(1+γ)Δt1−γ , 0 < γ≤1.
Then we have

0≤bn≤bn−1, Bn≤bn−1, n ≥ 1;
An≤Bn, bn≤Bn, n ≥ 0,

(4.68)
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and
n∑

j=1

A j≤ 2γΔtγ−1

Γ(1−γ)
. (4.69)

Theorem 25 Let un = (un
0,u

n
1, · · · ,un

N)T be the solution to the finite difference scheme

(4.59), un
0 = un

N = 0, and fn− 1
2 = (0, f

n− 1
2

1 , · · · , f
n− 1

2
N−1 ,0)T . Then

‖un+1‖2N ≤2‖u0‖2N +C1Δtγ |u0|21,N +C2Δt
n∑

j=0

‖fk+ 1
2 ‖2N ,

where C1 is a positive constant independent of n,h, τ and T , and C2 is a positive
constant independent of n,h and τ.

Proof. Let δtun+ 1
2 = (δtu

n+ 1
2

0 , δtu
n+ 1

2
1 , · · · , δtu

n+ 1
2

N )T and un+ 1
2 = (u

n+ 1
2

0 , · · · ,un+ 1
2

N )T .
Then from (4.59) and Lemma 4.2.2 we have

(δtun+ 1
2 ,un+ 1

2 )N = μ
[

−b0(δxun+ 1
2 , δxun+ 1

2 )N +

n−1∑

j=2

(bn− j−bn+1− j)(δxu j− 1
2 , δxun+ 1

2 )N

+ (bn−1−Bn)(δxu
1
2 , δxun+ 1

2 )N +An(δxu0, δxun+ 1
2 )N

]

+ (fn+ 1
2 ,un+ 1

2 )N .

(4.70)
Using Cauchy–Schwarz inequality and Lemma 4.2.4 brings about

(δtun+ 1
2 ,un+ 1

2 )N

≤ μ
2

[

−2b0|un+ 1
2 |21,N +

n−1∑

j=2

(bn− j−bn+1− j)(|u j− 1
2 |21,N + |un+ 1

2 |21,N)

+ (bn−1−Bn)(|u 1
2 |21,N + |un+ 1

2 |21,N)+An(|u0|21,N + |un− 1
2 |21,N)

]

+ (fn+ 1
2 ,un+ 1

2 )N

=
μ

2

[

(−b0−Bn+An)|un+ 1
2 |21,N +

n−1∑

j=2

(bn− j−bn+1− j)|u j− 1
2 |21,N

+ (bn−1−Bn)|u 1
2 |21,N +An|u0|21,N

]

+ (fn+ 1
2 ,un+ 1

2 )N

≤ μ
2

[

−b0|un+ 1
2 |21,N +

n−1∑

j=1

(bn− j−bn+1− j)|u j− 1
2 |21,N +An|u0|21,N

]

+ (fn+ 1
2 ,un+ 1

2 )N .

(4.71)
Rewriting (4.71) leads to

‖un+1‖2N +μΔt
n+1∑

j=1

bn+1− j|u j− 1
2 |21,N

≤‖un‖2N +μΔt
n∑

j=1

bn− j|u j− 1
2 |21,N +μΔtAn|u0|21,N +2Δt(fn+ 1

2 ,un+ 1
2 )N .

(4.72)
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Denote by

En+1 = ‖un+1‖2N +μΔt
n+1∑

j=1

bn+1− j|u j− 1
2 |21,N .

Then, one can obtain from (4.72) that

En+1≤En+μΔt|u0|21,NAn+2Δt(fn+ 1
2 ,un+ 1

2 )N

≤En−1+μΔt|u0|21,N(An+An−1)+2Δt
[

(fn+ 1
2 ,un+ 1

2 )N + (fn− 1
2 ,un− 1

2 )N

]

≤E1+μΔt|u0|21,N
n∑

j=1

An +2Δt
n∑

k=1

(fn+ 1
2 ,uk+ 1

2 )N

≤E1+μΔt|u0|21,N
n∑

j=1

An + εμΔt
n+1∑

j=1

bn+1− j|u j− 1
2 |21,N +

n+1∑

j=1

Δt
εμbn+1− j

‖f j− 1
2 ‖2N .

Here we have used the Cauchy–Schwarz inequality and ε‖u j− 1
2 ‖2N ≤|u j− 1

2 |21,N from

Lemma 4.2.3. ε is a suitable positive constant independent of j,h, τ and u j
h. Therefore,

we have

‖un+ 1
2 ‖2N ≤E1+μΔtγ‖u0‖2

n∑

j=1

An +CΔt
n+1∑

j=1

‖f j− 1
2 ‖2N , (4.73)

where 1/bn≤Cγn1−γΔt1−γ≤CγT 1−γ, Cγ only depends on γ.
E1 can be estimated in the following way. Letting n = 0 in (4.70) and using the

Cauchy–Schwarz inequality gives

‖u1‖2N +μΔtB0|u 1
2 |21,N

=‖u0‖2N +μΔtA0(δxu
1
2 , δxu0)N +2Δt(f

1
2 ,u

1
2 )N

≤‖u0‖2N +μΔtA0

(

ε1|u 1
2 |21,N +

1
4ε1
|u0|21,N

)

+2Δt
(

1
4ε2
‖f 1

2 ‖2N + ε2‖u
1
2 ‖2N

)

,

(4.74)

where ε1, ε2 > 0 are suitable constants such that

ε1μA0|u 1
2 |21,N +2ε2‖u 1

2 ‖2N ≤
1
2
μB0|u 1

2 |21,N .

Therefore, we obtain

E1 =‖u1‖2N +μΔtB0|u 1
2 |21,N ≤2‖u1‖2N +μΔtB0|u 1

2 |21,N
≤2‖u0‖2N +

μΔtA0

2ε1
|u0|21,N +

Δt
ε2
‖f 1

2 ‖2N .
(4.75)

Combining (4.73) and (4.75) yields

‖un+1‖2N ≤2‖u0‖2N +C1Δtγ |u0|21,N +C2Δt
n∑

j=0

‖fk+ 1
2 ‖2N , (4.76)
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in which C1 is independent of n,h, τ and T , and C2 is independent of n,h and τ. The
proof is completed. �

Theorem 25 states that the CN type method (4.59) is unconditionally stable.
Let en

i = U(xi, tn)−un
i . Then we can derive the error equation of (4.59) as

δte
n− 1

2
i = Kγδ

(1−γ)
t δ2

xe
n− 1

2
i +Rn

i , (4.77)

where Rn
i = O(Δt1+γ +Δx2) and en

0 = en
N = 0 and e0

i = 0, i = 0,1, · · · ,N. Denote en =

(en
0,e

n
1, · · · ,en

N)T and Rn = (Rn
0,R

n
1, · · · ,Rn

N)T . Then from (4.77) and Theorem 25, we
can easily obtain

‖en+1‖2N ≤2‖e0‖2N +C1Δtγ |e0|21,N +C2Δt
n∑

k=0

‖Rk‖2N ≤C(Δt1+γ +Δx2). (4.78)

In a similar manner, we can show that the CN type method (4.67) is uncondition-
ally stable and convergent of order O(Δtmin{2−γ/2,1+γ}+Δx2). This result was derived
in [173]. For the CN type method (4.60), one can prove that it is unconditionally sta-
ble if the time fractional operator is discretized by the Grünwald–Letnikov formula
(see (4.3)). But the convergence rate is not very satisfactory for the smooth enough
solutions; see (4.61). We can see that the CN type method (4.59) is more natural than
the other two CN methods (4.60) and (4.67).

The CN type method (4.60) can be seen as a special case of the following
weighted average finite difference method

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = Kγ

[
(1− θ)δ(1−γ)

t δ2
xun

i + θδ
(1−γ)
t δ2

xun−1
i

]
+ f (xi, tn− 1

2
),

i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.79)

where 0≤θ≤1, and the operator δ(1−γ)
t can be defined by any approximation operator

to the time fractional derivative operator RLD1−γ
0,t .

If θ = 1
2 , the method (4.79) is reduced to (4.60). The stability was studied by

using the fractional von Neumann analysis in [160] when δ(1−γ)
t = B

pδ
(1−γ)
t is defined

by (4.6). The method (4.79) is unconditionally stable for 0≤θ≤ 1
2 , and stable for

1
2<θ≤1 under the condition KγΔtγ

Δx2 ≤ 1
2(2θ−1)w(γ−1)(−1) , where w(γ−1)(z) is defined by

(4.7). If θ = 0 (or θ = 1), the explicit (or implicit) Euler type method (4.16) (or (4.30))
is recovered.

4.2.1.4 Integration Methods

Next, we introduce an indirect method (or the integration method) to discretize
the subdiffusion equation (4.10).
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Letting x = xi and integrating both sides of (4.10) on the interval [tn−1, tn] in time
direction, one can obtain

U(xi, tn) =U(xi, tn−1)+Kγ

{[
D−(1−γ)

0,t ∂2
xU(xi, t)

]

t=tn
−
[
D−(1−γ)

0,t ∂2
xU(xi, t)

]

t=tn−1

}

+Fn
i ,

(4.80)
where Fn

i =
∫ tn

tn−1
f (xi, s)ds.

The fractional integral
[
D−(1−γ)

0,t ∂2
xU(xi, t)

]

t=tn
can be discretized by different meth-

ods which lead to different numerical schemes. We can naturally think of using the
left fractional rectangular formula (2.6), the right fractional rectangular formula (2.8),
or the fractional trapezoidal formula (2.12) to approximate the time fractional inte-
gral operator in (4.80).

If the left fractional rectangular formula (2.6) is used to discretize D−(1−γ)
0,t ∂2

xU(xi, t)
at t = tn, tn−1 in (4.80), and the space is discretized by the central difference, then one
has the following explicit method

Un
i = Un−1

i +ΔtγKγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=1

b(1−γ)
n−k δ2

xUk−1
i −

n−1∑

k=1

b(1−γ)
n−k−1δ

2
xUk−1

i

⎤
⎥⎥⎥⎥⎥⎥⎦+Fn

i +O(Δt(Δt+Δx2)),

(4.81)
where b(1−γ)

k = 1
Γ(1+γ) [(k+1)γ− kγ].

Replacing Un
i with un

i and removing the truncation error, one obtains the follow-
ing explicit method
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
i = un−1

i +ΔtγKγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=1

b(1−γ)
n−k δ2

xuk−1
i −

n−1∑

k=1

b(1−γ)
n−k−1δ

2
xuk−1

i

⎤
⎥⎥⎥⎥⎥⎥⎦+Fn

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.82)

where b(1−γ)
k = 1

Γ(1+γ) [(k+1)γ− kγ].
Similarly, if the right fractional rectangular formula (2.8) is used in (4.80), we

can derive the following implicit method
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
i = un−1

i +ΔtγKγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=1

b(1−γ)
n−k δ2

xuk
i −

n−1∑

k=1

b(1−γ)
n−k−1δ

2
xuk

i

⎤
⎥⎥⎥⎥⎥⎥⎦+Fn

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.83)

where b(1−γ)
k = 1

Γ(1+γ) [(k+1)γ− kγ].
If the fractional trapezoidal formula (2.12) is used in (4.80), we can obtain the

 



144 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

following algorithm
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
i = un−1

i +ΔtγKγ

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑

k=0

ak,nδ
2
xuk

i −
n−1∑

k=0

ak,n−1δ
2
xuk

i

⎞
⎟⎟⎟⎟⎟⎟⎠+Fn

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.84)

where an,k is defined by

ak,n =
1

Γ(γ+2)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n−1)γ+1− (n−1−γ)nγ, k = 0,

(n− k+1)γ+1+ (n−1− k)γ+1−2(n− k)γ+1, 1 ≤ k ≤ n−1,
1, k = n.

If γ→ 1, these three methods (4.82), (4.83), and (4.84) are reduced to the for-
ward Euler method, the backward Euler method, and the CN method, respectively. If
U(x, t) is smooth enough in time, the truncation errors of the three methods (4.82),
(4.83), and (4.84) are O(Δt+Δx2), O(Δt+Δx2), and O(Δt2+Δx2), respectively, which
can be derived from (2.20).

One can prove by the Fourier method that the explicit method (4.82) is stable
if KγΔtγ

Δx2 ≤ 1
4 , and the implicit method (4.83) is unconditionally stable. One can also

refer to [183], where the unconditional stability and the convergence of the implicit
method (4.83) were proved by the energy method. The convergence of method (4.84)
can be found in [158].

The integration technique can be used to solve other fractional equations, such as
the fractional Fokker–Planck equation [154]

∂tU = RLD1−γ
0,t

(
∂x (d(x)∂xU)+ f (x, t)

)
,

the fractional cable equation [62, 99]

∂tU = RLD1−γ1
0,t

(
K1∂

2
xU

)
−K2RLD1−γ2

0,t U + f (x, t), 0 < γ1,γ2 < 1,

and the Stokes’ first problem for a heated generalized second grade fluid with frac-
tional derivative [16]

∂tU = RLD1−γ1
0,t

(
K1∂

2
xU

)
+K2RLD1−γ2

0,t U + f (x, t), 0 < γ1,γ2 < 1.

4.2.1.5 Numerical Examples

We present numerical examples to illustrate the effectiveness of the numerical
methods in this subsection.

Example 4 Consider the time-fractional subdiffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu = RLD1−γ
0,t u+ f (x, t), (x, t) ∈ (0,π)× (0,1],

u(x,0) = 0, x ∈ [0,π],
u(0, t) = 0, u(π, t) = 0, t ∈ [0,1],

(4.85)
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where f =
(
2.5t1.5+ Γ(3.5)

Γ(3.5−α) t2.5−α
)
sin(x). The above equation (4.85) has the analyti-

cal solution u(x, t) = t2.5 sin(x).

Next, we check the stability and convergence of the explicit type Euler methods
(4.16) and (4.82), the implicit methods (4.30), (4.59), (4.83), and (4.84). The maxi-
mum L2 error is defined as follows

max
0≤n≤nT

‖u −Un‖N = max
0≤n≤nT

√√√

Δx
N−1∑

j=0

(U(x j, tn)−un
j)

2.

We first test the stability of the explicit Euler type methods (4.16) and (4.82), the
maximum L2 errors are shown in Tables 4.1 and 4.2, respectively. From (4.22), one
finds that the method (4.16) is stable when Δtγ

Δx2 ≤ 2γ−2 for solving (4.85), which is

illustrated in Table 4.1, where “NaN” means that the stability condition Δtγ

Δx2 ≤ 2γ−2 is
not satisfied. Table 4.2 shows the similar results as Table 4.1.

Obviously, the explicit methods (4.16) and (4.82) need strict restriction on Δtγ

Δx2 in
the stability. When the space step size Δx is reduced, the much smaller time step size
Δt is needed in order to keep the methods (4.16) and (4.82) stable, which requires
large storage in the real computation.

Next, we test the stability and convergence of implicit methods such as (4.30),
(4.59), (4.83), and (4.84), which show better stability than the explicit methods (4.16)
and (4.82). Tables 4.3–4.6 display the maximum L2 errors of the implicit methods
(4.30), (4.59), (4.83), and (4.84) for Example 4, which show good performances,
and the observed experimental convergence orders are in line with the theoretical
analysis.

TABLE 4.1: The maximum L2 error of the explicit Euler type method (4.16),
Δt = 1/40000.

N γ = 0.2 Δtγ

Δx2 2γ−2 γ = 0.5 Δtγ

Δx2 2γ−2 γ = 0.8 γ = 0.95
10 NaN 1.22 3.7919e−3 0.05 2.9621e−3 2.5676e−3
20 NaN 4.87 9.8971e−4 0.20 7.8085e−4 6.8137e−4
30 NaN 10.95 0.29 NaN 0.46 0.35 3.7647e−4 3.3157e−4
40 NaN 19.47 NaN 0.81 2.3491e−4 2.0911e−4
50 NaN 30.42 NaN 1.27 1.6938e−4 1.5242e−4

TABLE 4.2: The maximum L2 error of the explicit
Euler type method (4.82), Δt = 1/40000.

N γ = 0.2 γ = 0.5 γ = 0.8 γ = 0.95
10 NaN 3.7998e−3 2.9649e−3 2.5682e−3
20 NaN 9.9768e−4 7.8359e−4 6.8199e−4
30 NaN NaN 3.7921e−4 3.3219e−4
40 NaN NaN 2.3765e−4 2.0973e−4
50 NaN NaN 1.7212e−4 1.5304e−4
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TABLE 4.3: The maximum L2 error of the implicit Euler type method
(4.30), N = 1000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
8 1.8195e−1 1.5777e−1 1.4051e−1

16 8.9917e−2 1.0169 7.8387e−2 1.0092 7.0388e−2 0.9973
32 4.4687e−2 1.0087 3.9064e−2 1.0048 3.5224e−2 0.9988
64 2.2275e−2 1.0045 1.9499e−2 1.0025 1.7619e−2 0.9994

128 1.1120e−2 1.0022 9.7410e−3 1.0012 8.8112e−3 0.9997

TABLE 4.4: The maximum L2 error of the Crank–Nicolson type
method (4.82), N = 1000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
8 4.2600e−2 9.6759e−3 2.6338e−3

16 2.0452e−2 1.0586 4.4424e−3 1.1231 4.8959e−4 2.4275
32 9.3682e−3 1.1264 1.8185e−3 1.2886 9.4388e−5 2.3749
64 4.1927e−3 1.1599 7.0398e−4 1.3692 1.8835e−5 2.3252

128 1.8536e−3 1.1775 2.6416e−4 1.4141 8.4538e−6 1.1558

TABLE 4.5: The maximum L2 error of the implicit Euler type method
(4.83), N = 1000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
8 2.2569e−1 2.4567e−1 2.4628e−1

16 1.1822e−1 0.9328 1.2830e−1 0.9372 1.2735e−1 0.9515
32 6.1127e−2 0.9516 6.5855e−2 0.9622 6.4805e−2 0.9746
64 3.1352e−2 0.9633 3.3465e−2 0.9767 3.2703e−2 0.9867

128 1.5994e−2 0.9710 1.6904e−2 0.9852 1.6431e−2 0.9930

TABLE 4.6: The maximum L2 error of the implicit method (4.84),
N = 1000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
8 4.0242e−3 3.1760e−3 3.0590e−3

16 9.8681e−4 2.0279 7.8837e−4 2.0103 7.7210e−4 1.9862
32 2.4196e−4 2.0280 1.9645e−4 2.0047 1.9479e−4 1.9868
64 5.9575e−5 2.0220 4.9238e−5 1.9963 4.9222e−5 1.9846

128 1.4937e−5 1.9958 1.2563e−5 1.9706 1.2582e−5 1.9680

4.2.2 Caputo Type Subdiffusion Equations

If U(x, t) is suitably smooth in time, and one applies the fractional integral D−(1−γ)
0,t

to both sides of (4.10), one can obtain the following Caputo type time-fractional
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diffusion equation [56, 113]
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDγ
0,tU = Kγ∂

2
xU +g(x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = Ua(t), U(b, t) = Ub(t), t ∈ (0,T ],

(4.86)

where g(x, t) = Dγ−1
0,t f (x, t).

If 0< γ < 1 and the solution U(x, t) is suitably smooth in time, then CDγ
0,tU(x, t) =

RLDγ
0,t(U(x, t)−U(x,0)). Hence, a natural way to discretize the Caputo derivative in

(4.86) is to use the Grünwald–Letnikov approximation, or the L1 method, or the
fractional linear multistep method, etc., and the space is discretized by the classical
methods such as the central difference method or the compact difference method
[47, 56, 62, 176].

4.2.2.1 Explicit Euler Type Methods

Here, we only introduce two explicit methods that are reduced to the classical
Euler methods when γ→ 1.

Let (x, t) = (xi, tn) in (4.86). Then one has

CDγ
0,tU(xi, tn) = Kγ∂

2
xU(xi, tn)+gn

i = Kγ∂
2
xU(xi, tn−1)+gn

i +O(Δt). (4.87)

The Caputo derivative in (4.87) can be discretized by the known methods, i.e., the
Grünwald–Letnikov formula, the L1 method, or the FLMM, etc.; the space direction
is discretized by the central difference method. One has

δ
(γ)
t Un

i = Kγδ
2
xUn−1

i +gn
i +O(Δt+Δx2), (4.88)

where δ(γ)
t is the approximate operator in time that is to be defined.

Next, we provide two ways for the discretization of the Caputo derivative.
The Caputo derivative is discretized by the Grünwald–Letnikov formula and the

space direction is discretized by the central difference method, one can get the finite
difference method for (4.86) as: Find un

i (i = 1,2, · · · ,N−1,n= 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
(γ)
t (un

i −u0
i ) = Kγδ

2
xun−1

i +gn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.89)

where δ(γ)
t (un

i −u0
i ) is defined by

δ
(γ)
t (un

i −u0
i ) =

1
Δtγ

n∑

k=0

ω
(γ)
n−k(uk

i −u0
i ), ω

(γ)
k = (−1)k

(
γ

k

)

.

The Caputo derivative is discretized by the L1 method with the space direction
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approximated by the central difference scheme; one can derive the method for (4.86)
as: Find un

i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
(γ)
t un

i = Kγδ
2
xun−1

i +gn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.90)

where δ(γ)
t is defined by

δ
(γ)
t un

i =
1
Δtγ

n−1∑

k=0

b(γ)
n−k−1(uk+1

i −uk
i ) =

1
Δtγ

⎡
⎢⎢⎢⎢⎢⎢⎣b0un

i −
n−1∑

k=0

(b(γ)
n−k−1−b(γ)

n−k)uk
i −bnu0

i

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

b(γ)
k =

1
Γ(2−γ)

[
(k+1)1−γ− k1−γ] .

Now, we discuss the stability of the two methods (4.89) and (4.90).

Theorem 26 Suppose that un
i (i = 1,2, · · · ,N −1,n = 0,1,2, · · · ,nT ) is the solution to

(4.89). Let μ = KγΔtγ/Δx2. If μ≤γ/2, then the method (4.89) is stable.

Proof. Suppose that un
i (i = 1,2, · · · ,N − 1) and gn

i (i = 1,2, · · · ,N − 1) have per-
turbations ũn

i (i = 1,2, · · · ,N − 1) and g̃n
i (i = 1,2, · · · ,N − 1), respectively. Denote by

ũn = (ũn
1, ũ

n
2, · · · , ũn

N−1)T , g̃n = (g̃n
1, g̃

n
2, · · · , g̃n

N−1)T , and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(γ)
1 +2μ −μ 0 · · · 0 0
−μ ω

(γ)
1 +2μ −μ · · · 0 0

0 −μ ω
(γ)
1 +2μ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ω
(γ)
1 +2μ −μ

0 0 0 · · · −μ ω
(γ)
1 +2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N−1)×(N−1)

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−2μ μ 0 · · · 0 0
μ 1−2μ μ · · · 0 0
0 μ 1−2μ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1−2μ μ
0 0 0 · · · μ 1−2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N−1)×(N−1)

.

Expand the equation (4.89) in the following form

n∑

k=0

ω
(γ)
n−k(ũk

i − ũ0
i ) = μũn−1

i (ũn−1
i+1 −2ũn−1

i + ũn−1
i−1 )+Δtγg̃n

i . (4.91)

Then the matrix representation of the perturbation equation (4.91) can be expressed
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as ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũ1 = Bũ0+Δtγg̃1, n = 1,

ũn = −Aũn−1−
n−2∑

k=1

ω
(γ)
n−kũk +

n∑

k=1

ω
(γ)
n−kũ0+Δtγg̃n, n > 1.

(4.92)

Since 2μ≤γ =−ω(γ)
1 , it is easy to obtain ‖A‖≤ −ω(γ)

1 and ‖B‖≤1 by the Greschgorin’s
theorem. Here ‖A‖ denotes the spectral norm (or 2-norm ) of the matrix A, which is
equal to the absolute largest eigenvalue of A when A is symmetric.

For convenience, we also denote it by

bn−1 =

n−1∑

k=0

ω
(γ)
k =

Γ(n−γ)
Γ(1−γ)Γ(n)

=
n−γ

Γ(1−γ)
+O(n−1−γ).

Then one can easily prove that Δtγ≤Cbn−1, C is a positive constant only dependent
on γ and T . Next, we prove that

‖ũn‖≤‖ũ0‖+C max
1≤n≤nT

‖g̃n‖ = E, (4.93)

where ‖ · ‖ is the discrete L2 norm for the vector, which is defined by

‖u‖ =
⎛
⎜⎜⎜⎜⎜⎜⎝

N−1∑

i=1

u2
i

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

, u = (u1,u2, · · · ,uN−1)T ∈RN−1.

We use the mathematical induction method to prove (4.93). For n = 1, one has
from (4.92)

‖ũ1‖= ‖Bũ0+Δtγg̃1‖≤‖B‖‖ũ0‖+Cb0‖g̃1‖≤‖ũ0‖+C‖g̃1‖≤E.

Suppose that ‖ũn‖≤E,n = 1,2, · · · ,m−1. For n = m, one has from (4.92)

‖ũm‖≤‖Aũm−1‖−
m−2∑

k=1

ω
(γ)
m−k‖ũk‖+

m∑

k=1

ω
(γ)
m−k‖ũ0‖+Δtγ‖g̃m‖

≤‖A‖E−
m−2∑

k=1

ω
(γ)
m−kE+bm−1‖ũ0‖+Δtγ‖g̃m‖

≤ −ω(γ)
1 E−

m−2∑

k=1

ω
(γ)
m−kE+bm−1E

=b0E−
m−1∑

k=0

ω
(γ)
1 E+bm−1E = E.

(4.94)

Hence, ‖ũm‖≤E. Therefore, (4.93) holds for all n > 0, which ends the proof. �

From Theorem 26, we can obtain that the explicit method (4.89) is convergent
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with order O(Δt+Δx2) if KγΔtγ

Δx2 ≤ − 1
2ω

(γ)
1 =

γ
2 . The convergence of the explicit method

(4.89) was also proved by Gorenflo and Abdel–Rehim [60] in the Fourier–Laplace
domain.

One can similarly prove that the explicit method (4.90) is conditionally stable

and convergent with order O(Δt+Δx2) if KγΔtγ

Δx2 ≤ b(γ)
0 −b(γ)

1
2 = 1−2−γ

Γ(2−γ) .
Obviously, the two explicit methods (4.89) and (4.90) are reduced to the explicit

Euler method if γ = 1. When γ is small, the time step Δt is sufficiently small in order
to meet the stability condition; this may need more iterations to get the numerical
solutions. Generally speaking, implicit methods have a larger stability region, which
has a weaker restriction on the step size in time; and the implicit methods may have
higher accuracy than the explicit ones.

4.2.2.2 Implicit Euler Type Methods

Next, we introduce the typical implicit methods. Let (x, t)= (xi, tn) in (4.86). Then
one has

CDγ
0,tU(xi, tn) = Kγ∂

2
xU(xi, tn)+gn

i . (4.95)

The time derivative in (4.95) is discretized by the Grünwald–Letnikov formula,
and the space derivative is discretized by the central difference method. One can
obtain the following finite difference method for (4.86), which is given by: Find
un

i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
(γ)
t (un

i −u0
i ) = Kγδ

2
xun

i +gn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.96)

where δ(γ)
t (un

i −u0
i ) is defined by

δ
(γ)
t (un

i −u0
i ) =

1
Δtγ

n∑

k=0

ω
(γ)
n−k(un

i −u0
i ), ω

(γ)
k = (−1)k

(
γ

k

)

.

The L1 method can be used to discretize the Caputo derivative in (4.86) or (4.95),
and the space derivative is discretized by the central difference. The corresponding
method is given by: Find un

i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
(γ)
t un

i = Kγδ
2
xun

i +gn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.97)

where δ(γ)
t is defined by

δ
(γ)
t un

i =
1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

i −uk
i ),

b(γ)
k =

1
Γ(2−γ)

[
(k+1)1−γ− k1−γ] .
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It is easy to prove that the two difference methods (4.96) and (4.97) are uncondi-
tionally stable using the Fourier method or the energy method, and are convergent of
order O(Δt+Δx2) and O(Δt2−γ +Δx2), respectively.

Next, we just give the stability and convergence analysis for (4.97); the stabil-
ity and convergence for (4.96) is very similar. The Fourier method and the energy
method are also illustrated in the proof.

Theorem 27 The finite difference method (4.97) is unconditionally stable.

Proof. We first use the Fourier method. Suppose that gn
i = 0 and un

i =

ρne jσiΔx( j2 = −1). Inserting un
i into (4.97) yields

(
b(γ)

0 +4μ∗
)
ρn =

n−1∑

k=1

(b(γ)
n−k−1−b(γ)

n−k)ρk +b(γ)
n ρ0, (4.98)

where μ∗ = Δtγ

Δx2 Kγ sin2
(
σΔx

2

)
. Next, we use the mathematical induction method to

prove that |ρn|≤ |ρ0|. It is easy to verify that 0≤b(γ)
k+1≤b(γ)

k ,k = 0,1, · · · .
If n = 1, one can get

|ρ1| =
b(γ)

1

b(γ)
0 +4μ∗

|ρ0|≤ |ρ0|.

Hence, |ρ1|≤ |ρ0|. Suppose that |ρk|≤ |ρ0|,n = 1,2, · · · ,m−1. For n = m, one has

|ρm|≤ 1

b(γ)
0 +4μsin2 σΔx

2

m−1∑

k=1

(b(γ)
m−k−1−b(γ)

m−k)|ρk|+
b(γ)

n−1

b(γ)
0 +4μ∗

|ρ0|

≤ 1

b(γ)
0 +4μ∗

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∑

k=1

(b(γ)
m−k−1 −b(γ)

m−k)+b(γ)
m−1

⎞
⎟⎟⎟⎟⎟⎟⎠ |ρ0|

=
b(γ)

0

b(γ)
0 +4μ∗

|ρ0|≤ |ρ0|.

(4.99)

Therefore, |ρm|≤ |ρ0|, so that |ρn|≤ |ρ0| for all 0≤n≤nT . �

Next, we use the energy method to prove Theorem 27. We first introduce a
lemma.

Lemma 4.2.5 Let uk = (uk
0,u

k
1, · · · ,uk

N) and gk = (gk
0,g

k
1, · · · ,gk

N). The series {bk} satis-
fies b0 > 0,

∑∞
k=1 |bk| ≤ b0, bk =O(k−γ), Bn =O(n−γ), and Δtγ ≤Cbn, C is independent

of n and Δt. If

b0(un,un)N ≤
n−1∑

k=1

bn−k(uk,un)N +Bn(u0,un)N +Δtγ(gn,un)N , (4.100)

then
‖un‖2N ≤Cγ‖u0‖2N +C1 max

0≤k≤nT
‖gk‖2N , (4.101)

where Cγ is only dependent on γ and C1 is independent of n,Δt.
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Proof. Denote by μ = Δtγ/b(γ)
0 and ck = bk/b0 = O(k−γ), so c0 = 1, |ck| ≤ 1 and

∑∞
k=1 |ck| ≤ 1. From (4.100) and the Cauchy inequality, one has

‖un‖2N ≤
1
2

n−1∑

k=1

|cn−k|(‖uk‖2N + ‖un‖2N)

+
|cn|
4
‖un‖2N +

B2
n

b0|cn| ‖u
0‖2N +

|cn|
4
‖un‖2N +

μ2

|cn| ‖g
n‖2N .

(4.102)

One can immediately get from (4.102)

‖un‖2N ≤
n−1∑

k=1

|cn−k| ‖uk‖2N +
2B2

n

b0|cn| ‖u
0‖2N +

2μ2

|cn| ‖g
n‖2N

≤
n−1∑

k=1

|cn−k| ‖uk‖2N + |cn|
(
C0‖u0‖2N +C1‖gn‖2N

)
,

(4.103)

where we have used 2B2
n

b2
0 |cn | ≤ Cγ |cn| and μ2

c2
n
≤C, here Cγ is only dependent on γ, and

C1 is independent of Δt and n.
Now, we use the mathematical induction method to prove that

‖u1‖2N ≤Cγ‖u0‖2N +C1 max
0≤k≤nT

‖gk‖2N = E. (4.104)

For n = 1, one has from (4.103)

‖u1‖2N ≤|c1|
(
C0‖u0‖2N +C1‖g0‖2N

)
≤ E. (4.105)

Hence, (4.104) holds for n = 1. Suppose that (4.104) holds for n = 1,2, · · · ,m−1. For
n = m, one has from (4.103)

‖un‖2N ≤
n−1∑

k=1

|cn−k| ‖uk‖2N + |cn|E ≤ E
n∑

k=1

|ck| ≤ c0E = E. (4.106)

Therefore, ‖un‖2N ≤E holds for all n. The proof is completed. �

Remark 4.2.2 If Bn in (4.100) satisfies |Bn| ≤ |bn|, then Cγ = 2. If bn−k = b(γ)
n−k−1−b(γ)

n−k

and Bn = b(γ)
n−1, 0 ≤ b(γ)

k+1 ≤ b(γ)
k ,k = 0,1, · · · , then Cγ = 2.

Proof. Here we use the energy method to prove it. Expanding the equation (4.97)
yields

b(γ)
0 un

i −
n−1∑

k=1

(b(γ)
n−k−1−b(γ)

n−k)uk
i −b(γ)

n−1u0
i = KγΔtγδ2

xun
i +Δtγgn

i . (4.107)
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Assume that un
0 = un

N = 0. Like Eq. (4.44) in Theorem 23, one can easily get

b(γ)
0 (un,un)N ≤b(γ)

0 (un,un)N +KγΔtγKγ(δxun, δxun)N

=

n−1∑

k=1

(b(γ)
n−k−1−b(γ)

n−k)(uk,un)N +b(γ)
n−1(u0,un)N +Δtγ(gn,un)N ,

(4.108)

where un = (un
0,u

n
1, · · · ,un

N)T and gn = (gn
0,g

n
1, · · · ,gn

N)T . Applying Lemma 4.2.5 and
Remark 4.2.2 yields

‖un‖2N ≤2‖u0‖2N +C max
0≤k≤nT

‖gk‖2N . (4.109)

The proof is finished. �

Theorem 28 Let U(xi, tn) and un
i (i = 0,1, · · · ,N,n = 1,2, · · · ,nT ) are the solutions

to the equations (4.86) and (4.97), respectively. Denote by en
i = U(xi, tn)− un

i and
en = (en

0,e
n
1, · · · ,en

N)T . Then there exists a positive constant C independent of n,Δt
and Δx, such that

‖en‖N ≤C(Δt2−γ +Δx2).

Proof. One can get the error equation as follows

b(γ)
0 en

i −
n−1∑

k=1

(b(γ)
n−k−1−b(γ)

n−k)ek
i −b(γ)

n−1e0
i = KγΔtγδ2

xen
i +ΔtγRn

i ,

where |Rn
i |≤C(Δt2−γ +Δx2). By (4.109), one has

‖en‖2N ≤Cγ‖e0‖2N +C max
0≤k≤nT

‖Rk‖2N ≤C(Δt2−γ +Δx2).

The proof is completed. �

4.2.2.3 FLMM Finite Difference Methods

In this subsection, we introduce the fractional linear multistep methods for the
time discretization of the equation (4.10).

Consider the following fractional ordinary differential equation (FODE)

CDγ
0,ty(t) = λy(t)+g(t), y(0) = y0, 0 < γ < 1. (4.110)

From (3.105), (3.108), and (3.109), we have the discretization for (4.110)

1
Δtγ

n∑

k=0

ωn−k(y(tk)−y0)= λ
n∑

k=0

θ(m)
n−ky(tk)+λB(m)

n y0+
1
Δtγ

n∑

k=0

ωn−kGk+Rn, (4.111)
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where ωn = (−1)n
(
γ
n

)
, Gn =

[
Dγ

0,tg(t)
]

t=tn
, Rn =O(n−1Δt), and θ(m)

n ,m = 1,2 are defined
by

θ
(1)
n =

1
2γ

(−1)nωn, (4.112)

θ
(2)
0 = 1− γ

2
, θ

(2)
1 =

γ

2
, θ

(2)
n = 0, n > 1, (4.113)

and B(m)
n , m = 1,2 is given by

B(m)
n =

1
Γ(1+γ)

n∑

k=0

ωn−kkγ −
n∑

k=0

θ(m)
k = O(n−1). (4.114)

Letting x = xi, t = tn in (4.86) and using (4.111), we have

1
Δtγ

n∑

k=0

ωn−k(Uk
i −U0

i ) = λ
n∑

k=0

θ(m)
n−kδ

2
xUk

i +λB(m)
n δ2

xU0
i +

1
Δtγ

n∑

k=0

ωn−kGk
i +Rn

i ,

(4.115)
where Rn

i = O(n−1Δt+Δx2).
From (4.115), we can obtain two types of fractional linear multistep finite differ-

ence methods for (4.86) as follows.

• FLMM-FDM I: Find un
i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=0

ωk(un−k
i −u0

i )

⎤
⎥⎥⎥⎥⎥⎥⎦ =

Kγ

2γ

n∑

k=0

(−1)kωkδ
2
xun−k

i +KγB(1)
n δ2

xu0
i

+
1
Δtγ

n∑

k=0

ωn−kGn−k
i ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.116)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
D−γ0,t g(xi, t)

]

t=tn
, and B(1)

n is defined by (4.114) with
m = 1.

• FLMM-FDM II: Find un
i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=0

ωk(un−k
i −u0

i )

⎤
⎥⎥⎥⎥⎥⎥⎦ = Kγ

[

(1− γ
2

)δ2
xun

i +
γ

2
δ2

xun−1
i

]

+KγB(2)
n δ2

xu0
i

+
1
Δtγ

[

(1− γ
2

)Gn
i +

γ

2
Gn−1

i

]

,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.117)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
D−γ0,t g(xi, t)

]

t=tn
, and B(2)

n is defined by (4.114) with
m = 2.
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From (4.115), we know that the truncation errors of the two methods (4.116) and
(4.117) are O(n−1Δt+Δx2), which show first-order accuracy when n is small. In real
computation, the two methods (4.116) and (4.117) show second-order accuracy when
the exact solutions of (4.86) are smooth enough. In the following, we will show that
the two methods are unconditionally stable and convergent of order O(Δt+Δx2).

For the classical case of diffusion equation (4.86) with γ = 1, there exists the
Crank–Nicolson method for such an equation, which is unconditionally stable and
convergent of order O(Δt2 +Δx2). Next, we construct the corresponding algorithms
for (4.86) with unconditional stability and convergence of order O(Δt2 +Δx2).

We can use the time discretization (3.113) for (4.86), which reads

1
Δtγ

n∑

k=0

ωn−k(Uk
i −U0

i ) =Kγ

n∑

k=0

θ(m)
n−kδ

2
xUk

i +KγB(m)
n δ2

xU0
i +KγC

(m)
n δ2

x(U1
i −U0

i )

+
1
Δtγ

n∑

k=0

ωn−kGk
i +Rn

i ,

(4.118)
where Rn

i = O(Δt2 +Δx2), ωn and θ(m)
n are defined in (4.115), and C(m)

n (m = 1,2) is
defined by

C(m)
n =

Γ(2)
Γ(α+2)

n∑

k=0

ωn−kkγ+1−
n∑

k=1

θ(m)
n−kk = O(n−1). (4.119)

We can see from (4.115) and (4.118) that the term KγC
(m)
n δ2

x(U1
i −U0

i ) is added
to the right-hand side of (4.115), which ensures that the method (4.118) has second-
order accuracy for all time level n, which is inline with the classical Crank–Nicolson
method, while in the time discretization (4.115), the method has first-order accuracy
when time level n is small.

From (4.118), we can derive two improved FLMM finite difference methods for
(4.86) as follows.

• Improved FLMM-FDM I: Find un
i (i= 1,2, · · · ,N−1,n= 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=0

ωk(un−k
i −u0

i )

⎤
⎥⎥⎥⎥⎥⎥⎦ =

Kγ

2γ

n∑

k=0

(−1)kωkδ
2
xun−k

i +KγB(1)
n δ2

xu0
i

+KγC
(1)
n δ2

x(u1
i −u0

i )+
1
Δtγ

n∑

k=0

ωn−kGn−k
i ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.120)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
Dγ

0,tg(xi, t)
]

t=tn
, B(1)

n is defined by (4.114) with m =

1, and C(1)
n is defined by (4.119) with m = 1.
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• Improved FLMM-FDM II: Find un
i (i = 1,2, · · · ,N − 1,n = 1,2, · · · ,nT ), such

that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=0

ωk(un−k
i −u0

i )

⎤
⎥⎥⎥⎥⎥⎥⎦ = Kγ

[

(1− γ
2

)δ2
xun

i +
γ

2
δ2

xun−1
i

]

+KγB(2)
n δ2

xu0
i

+KγC
(2)
n δ2

x(u1
i −u0

i )+
1
Δtγ

[

(1− γ
2

)Gn
i +

γ

2
Gn−1

i

]

,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.121)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
Dγ

0,tg(xi, t)
]

t=tn
, B(2)

n is defined by (4.114) with m =

2, and C(2)
n is defined by (4.119) with m = 2.

Remark 4.2.3 If γ = 1, the four schemes (4.116), (4.117), (4.120), and (4.121) are
reduced to the typical Crank–Nicolson finite difference method for the classical PDE
(4.86) with γ = 1.

Next, we will find that the four FLMM FDMs (4.116), (4.117), (4.120), and
(4.121) are all unconditionally stable. The methods (4.116) and (4.117) are conver-
gent of order O(Δt+Δx2), and the improved methods (4.120) and (4.121) are conver-
gent of order O(Δt2+Δx2). We list the stability and convergence results below.

Theorem 29 Suppose that un
i (i = 1,2, · · · ,N − 1,n = 1,2, · · · ,nT ) is the solution of

(4.116), (4.117), (4.120) or (4.121), un = (un
0,u

n
1, · · · ,un

N)T . Then

‖un‖2N +KγΔtγ(1/2)|un|1,N ≤C1(‖u0‖2N +Δtγ |u0|1,N)+C2 max
0≤k≤nT

‖gn‖2N , (4.122)

where C1 is independent of n,Δt,Δx and T , and C2 is independent of n,Δt,Δx.

Theorem 30 Suppose that un
i (i = 1,2, · · · ,N − 1,n = 1,2, · · · ,nT ) is the solution of

(4.116) or (4.117), U(x, t) is the exact solution of (4.86), U∈C2(0,T ; H(I)), I = (a,b).
Then there exists a positive constant C independent of n, Δx, and Δt, such that

‖un −Un‖N ≤C(Δt+Δx2)

and √√

Δt
n∑

k=0

‖uk −Uk‖2N ≤C(Δt1.5 +Δx2),

where un = (un
0,u

n
1, · · · ,un

N)T and Un = (Un
0 ,U

n
1 , · · · ,Un

N)T .

Theorem 31 Suppose that un
i (i = 1,2, · · · ,N − 1,n = 1,2, · · · ,nT ) is the solution of

(4.120) or (4.121), U(x, t) is the exact solution of (4.86), U∈C2(0,T ; H(I)), I = (a,b).
Then there exists a positive constant C independent of n, Δx, and Δt, such that

‖un −Un‖N ≤C(Δt2+Δx2),

where un = (un
0,u

n
1, · · · ,un

N)T and Un = (Un
0 ,U

n
1 , · · · ,Un

N)T .
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TABLE 4.7: The maximum L2 error of the method (4.97), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 1.0205e−4 8.2444e−4 4.3359e−3
32 3.1317e−5 1.7043 2.9980e−4 1.4594 1.9158e−3 1.1784
64 9.5398e−6 1.7149 1.0806e−4 1.4721 8.4078e−4 1.1882

128 2.9211e−6 1.7075 3.8756e−5 1.4794 3.6766e−4 1.1934
256 9.2947e−7 1.6520 1.3880e−5 1.4814 1.6048e−4 1.1960

TABLE 4.8: The maximum L2 error of the scheme (4.116), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 1.2264e−3 1.1742e−3 3.5197e−4
32 6.9022e−4 0.8292 6.7594e−4 0.7967 1.4258e−4 1.3036
64 3.5544e−4 0.9575 3.1157e−4 1.1174 6.1553e−5 1.2119

128 1.7656e−4 1.0094 1.3176e−4 1.2416 2.0892e−5 1.5589
256 8.6224e−5 1.0340 5.3113e−5 1.3107 6.5110e−6 1.6820

Theorems 30 and 31 can be directly deduced from Theorem 29. For the de-
tailed proofs, readers can refer to [168, 169]. The FLMM difference methods used in
(4.116)–(4.117) and (4.120)–(4.120) have also been extended to the time-fractional
diffusion wave equation in [163]. The numerical methods based the second-order
fractional backward difference method to solve the time-fractional diffusion and dif-
fusion/wave equations can be found in some literatures, see e.g. [36, 63, 67, 156].

4.2.2.4 Numerical Examples

This subsection provides the numerical examples to verify the finite difference
schemes in Section 4.2.2.

Example 5 Consider the following subdiffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDγ
0,tU = ∂

2
xU + f (x, t), (x, t) ∈ (0,1)× (0,1], 0 < γ ≤ 1,

U(x,0) = 2sin(πx), x ∈ [0,1],
U(0, t) = U(1, t) = 0, t ∈ [0,1].

(4.123)

Choose the suitable right-hand side function f (x, t) such that the above equation
(4.123) has the exact solution U(x, t) = (t2+γ + t+2)sin(πx).

We use the methods (4.97) and (4.116)–(4.121) to solve this problem, the numerical
results are shown in Tables 4.7–4.13. It is shown that about (2−γ)th-order experimen-
tal accuracy is observed in Table 4.7, which is in line with the theoretical analysis.
In Tables 4.8 and 4.9, a little better numerical results than the theoretical analyses
are shown. Tables 4.10 and 4.11 also show a little better numerical results. In Tables
4.12 and 4.13, we present the L2 errors at t = 1, which show second-order accuracy.
It is better than the theoretical result presented in Theorem 30.

 



158 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

TABLE 4.9: The maximum L2 error of the scheme (4.117), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 7.9954e−5 5.3590e−4 7.2152e−4
32 7.2395e−5 0.1433 6.6261e−5 3.0157 1.1475e−4 2.6525
64 5.7008e−5 0.3447 1.1206e−5 2.5639 2.1759e−5 2.3988

128 3.2334e−5 0.8181 5.3558e−6 1.0651 4.9059e−6 2.1490
256 1.6649e−5 0.9576 2.3970e−6 1.1599 1.2455e−6 1.9778

TABLE 4.10: The maximum L2 error of the scheme (4.120), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 3.8041e−4 6.2221e−4 6.2077e−4
32 8.1801e−5 2.2174 1.0391e−4 2.5820 9.0134e−5 2.7839
64 1.7541e−5 2.2214 2.2495e−5 2.2077 2.2715e−5 1.9884

128 3.7303e−6 2.2334 5.7013e−6 1.9803 5.7557e−6 1.9806
256 7.6683e−7 2.2823 1.4901e−6 1.9359 1.5035e−6 1.9366

TABLE 4.11: The maximum L2 error of the scheme (4.121), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 3.8041e−4 6.2221e−4 6.2077e−4
32 8.1801e−5 2.2174 1.0391e−4 2.5820 7.9829e−5 2.9591
64 1.7541e−5 2.2214 1.7223e−5 2.5930 1.0414e−5 2.9384

128 3.7303e−6 2.2334 2.8273e−6 2.6068 1.8163e−6 2.5194
256 7.6682e−7 2.2823 4.5046e−7 2.6500 5.1733e−7 1.8119

TABLE 4.12: The L2 error at t = 1 for the scheme (4.116), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 1.8973e−5 2.6723e−4 3.5197e−4
32 5.2333e−6 1.8582 7.9187e−5 1.7547 9.0025e−5 1.9671
64 1.7679e−6 1.5657 2.1478e−5 1.8824 2.2755e−5 1.9842

128 6.7348e−7 1.3923 5.6189e−6 1.9345 5.7706e−6 1.9794
256 2.8699e−7 1.2306 1.4885e−6 1.9165 1.5076e−6 1.9364

TABLE 4.13: The L2 error at t = 1 for the scheme (4.117), N = 5000.

1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
16 2.9439e−5 6.3211e−5 1.0855e−4
32 8.1144e−6 1.8592 1.6493e−5 1.9383 2.7600e−5 1.9756
64 2.1149e−6 1.9399 4.2104e−6 1.9698 6.9926e−6 1.9807

128 5.8476e−7 1.8547 1.1142e−6 1.9180 1.8138e−6 1.9468
256 2.0685e−7 1.4992 3.4069e−7 1.7094 5.1661e−7 1.8118
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4.3 One-Dimensional Space-Fractional Differential Equations
In this section, we consider finite difference methods for the one-dimensional

space-fractional partial differential equations. These equations include the space frac-
tional diffusion equation [136, 138, 145, 151], the fractional advection-dispersion
equation [24, 100, 111], fractional advection-diffusion equation [137, 141], the space
fractional Fokker–Planck equation [97], the fractional partial differential equations
with Riesz space fractional derivatives [14, 40, 157], and so on.

4.3.1 One-Sided Space-Fractional Diffusion Equation

We consider the following space-fractional diffusion equation with Dirichlet
boundary conditions [112]

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tU = d(x)RLDα
a,xU +g(x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = Ua(t), U(b, t) = Ub(t), t ∈ (0,T ],

(4.124)

where 1 < α≤2 and d(x) > 0.
Since the time derivative is the classical one, all the classical numerical meth-

ods for time discretization can be used. Therefore, we mainly focus on the space
discretization for (4.124).

Since the Grünwald–Letnikov derivative of a given function is convergent to the
Riemann–Liouville derivative when the function is smooth, a natural way to dis-
cretize the space-fractional Riemann–Liouville derivative is to use the definition of
the Grünwald–Letnikov formula (2.51)

(
RLDα

a,xU
)
(xi, t) =

1
Δxα

i∑

j=0

ω(α)
j U(t, xi− j)+O(Δx). (4.125)

The first-order time derivative in (4.124) can be discretized by the classical meth-
ods such as the explicit Euler method, the implicit Euler method and the Crank–
Nicolson method, etc. Unfortunately, the explicit Euler method, the implicit Euler
method, and the Crank–Nicolson method based on the standard Grünwald–Letnikov
formula for (4.124) are often unstable [111].

Proposition 4.3.1 ([111]) The explicit Euler method solution to Eq. (4.124), based
on the Grünwald–Letnikov approximation (4.125) to the fractional derivative, is un-
stable.

Proof. Let un
i be the approximate solutions to (4.124). Then the explicit Euler

method on the Grünwald–Letnikov approximation (4.125) for (4.124) is given by

un+1
i −un

i

Δt
=

di

Δxα

i∑

j=0

ω(α)
j un

i− j+gn
i , i = 1,2, · · · ,N −1, (4.126)
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where ω(α)
j = (−1) j

(
α
j

)
. un+1

i in (4.126) can be explicitly expressed as

un+1
i = un

i +
Δt
Δxα

di

i∑

j=0

ω
(α)
j un

i− j +Δtgn
i . (4.127)

Assume that u0
i is the only term that has an error, so the perturbed value is u0

i = u0
i +ε

0
i .

This perturbation produces a perturbed value for u1
i given by u1

i = u1
i +ε

1
i . So (4.127)

yields

u1
i = μiu0

i +
Δt
Δxα

di

i∑

j=1

ω(α)
j u0

i− j+Δtg0
i = μiε

0
i +u1

i , (4.128)

where the factor
μi = 1+

Δt
Δxα

di.

Therefore we have ε1
i = μiε

0
i . That is, the error is amplified by the factor μi when the

finite difference equation is advanced by one timestep. After n timesteps, one may
write εn

i = μ
n
i ε

0
i . We refer to μi as the amplification factor (or magnification factor).

In order for the explicit Euler method to be stable, it is necessary that μi≤1 for all Δx
sufficiently small. Obviously, |μi|>1. Hence, although it is true that the errors may not
grow for larger values of Δx, the method is not stable as Δx is refined, and therefore
the numerical solution does not converge to the exact solution of the differential
equation. �

Proposition 4.3.2 ([111]) The implicit Euler method solution to Eq. (4.124), based
on the Grünwald–Letnikov approximation (4.125) to the fractional derivative, is un-
stable.

Proof. Let un
i be the approximate solutions to (4.124). Then the implicit Euler

method for (4.124) is given by

un+1
i −un

i

Δt
=

di

Δxα

i∑

j=0

ω(α)
j un+1

i− j +gn+1
i , i = 1,2, · · · ,N −1, (4.129)

where ω(α)
j = (−1) j

(
α
j

)
. Similar to Proposition 4.3.1, we can get εn

i = μ
n
i ε

0
i , where

the amplification factor μi =
1

1− Δt
Δxα di

> 1 for all Δx. So the implicit Euler method is

unstable in this case, and hence its numerical solution does not converge to the exact
solution of the differential equation. �

One can similarly prove that the Crank–Nicolson method solution to Eq. (4.124),
based on the Grünwald–Letnikov approximation (4.125) to the fractional derivative,
is unstable [111]. To remedy this situation, the shifted Grünwald formula (2.52) can
be used to overcome this drawback.
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The shifted Grünwald formula with p shifts is defined as

(
RLDα

a,xU
)
(xi, t) =

1
Δxα

i+p∑

j=0

ω(α)
j U(t, xi− j + pΔx)+O(Δx). (4.130)

In [111], the error bound for the shifted Grünwald formula (4.130) was proved
with the following form

C(p−α/2)Δx+O(Δx2),

where C is independent of Δx. Therefore, the best performance comes from minimiz-
ing |p−α/2|. For 1 < α≤2, the optimal choice is p = 1. If α = 2, then this coincides
with the centered second difference estimator of the second derivative.

From Eq. (4.8), we know that the right-shifted Grünwald formula with p shifts
for the αth-order left Riemann–Liouville derivative of U(x), x∈ [a,b] at x = xi can be
expressed by

Lδ
(α)
x Ui+p =

1
Δxα

i+p∑

j=0

ω(α)
j Ui+p− j, U j = U(x j).

Next, we introduce the Euler method and the Crank–Nicolson method based on
the shifted Grünwald formula for (4.124).

(1) The explicit Euler method solution to Eq. (4.124), based on the shifted (1
shift) Grünwald–Letnikov approximation (4.130) to the fractional derivative,
is given by: Find un

i (i = 1,2, · · · ,N −1,n = 0,1,2, · · · ,nT −1), such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = diLδ

(α)
x un

i+1+gn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.131)

where Lδ
(α)
x un

i+1 =
1
Δxα

∑i+1
j=0ω

(α)
j un

i+1− j, ω
(α)
j = (−1) j

(
α
j

)
.

(2) The implicit Euler method solution to Eq. (4.124), based on the shifted (1
shift) Grünwald–Letnikov approximation (4.130) to the fractional derivative,
is given by: Find un

i (i = 1,2, · · · ,N −1,n = 0,1,2, · · · ,nT −1), such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = diLδ

(α)
x un+1

i+1 +gn+1
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.132)

where Lδ
(α)
x un

i+1 =
1
Δxα

∑i+1
j=0ω

(α)
j un

i+1− j, ω
(α)
j = (−1) j

(
α
j

)
.

(3) The Crank–Nicolson method solution to Eq. (4.124), based on the shifted (1
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shift) Grünwald–Letnikov approximation (4.130) to the fractional derivative,
is given by: Find un

i (i = 1,2, · · · ,N −1,n = 0,1,2, · · · ,nT −1), such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = diLδ

(α)
x u

n+ 1
2

i+1 +g(xi, tn+ 1
2
), i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.133)

where Lδ
(α)
x un

i+1 =
1
Δxα

∑i+1
j=0ω

(α)
j un

i+1− j, ω
(α)
j = (−1) j

(
α
j

)
.

In order to simply give the matrix representations of (4.131)–(4.133), we intro-
duce some notations. We adopt the symbol ‘.∗’ used in MATLAB to express

(A. ∗B)i, j = ai, jbi, j, (4.134)

where (A)i, j = ai, j and (B)i, j = bi, j are the matrices with the same sizes.
Denote by the matrix S (α)

N−1 as

S (α)
N−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω(α)
1 ω(α)

0 0 · · · 0
ω(α)

2 ω(α)
1 ω(α)

0 · · · 0
...

...
...

. . .
...

ω
(α)
N−2 ω

(α)
N−3 ω

(α)
N−4 · · · ω

(α)
0

ω(α)
N−1 ω(α)

N−2 ω(α)
N−3 · · · ω(α)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N−1)×(N−1)

. (4.135)

Define the two vectors B(α)
L and B(α)

R as

B(α)
L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω(α)
2

ω(α)
3
...

ω(α)
N−1
ω

(α)
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N−1)×1

, B(α)
R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
ω(α)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N−1)×1

. (4.136)

Next, we give the matrix representation of the three methods (4.131)–(4.133).

(1) Matrix representation of the explicit Euler method (4.131):

un+1 = (E+μS )un+Δtgn +μ(BLun
0+BRun

N), (4.137)

where μ = Δt
Δxα , un = (un

1, · · · ,un
N−1)T , gn = (gn

1, · · · ,gn
N−1)T , E is an (N − 1)×

(N−1) identity matrix,

S = DN−1S (α)
N−1, DN−1 = diag(d1,d2, · · · ,dN−1)

and

BL = B(α)
0 . ∗d, BR = B(α)

N . ∗d, d = (d1, · · · ,dN−1)T . (4.138)
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(2) Matrix representation of the implicit Euler method (4.132):

(E−μS )un+1 = un+Δtgn+1+μ(BLun+1
0 +BRun+1

N ), (4.139)

where μ,E,S ,BL,BR are defined as in (4.137).

(3) Matrix representation of the Crank–Nicolson method (4.133):

(E− μ
2

S )un+1 = (E+
μ

2
S )un+

Δt
2

(gn +gn+1)+μ(BLu
n+ 1

2
0 +BRu

n+ 1
2

N ), (4.140)

where μ,E,S ,BL,BR are defined as in (4.137).

Next, we investigate the stability of the explicit Euler method (4.131), the implicit
Euler method (4.132), and the Crank–Nicolson method (4.133). From (4.135) and
(4.138), and the Gerschgorin theorem, we can obtain that the eigenvalues λ of the
matrix S satisfy

|λ−diω
(α)
1 |≤diω

(α)
0 +di

i∑

j=2

ω(α)
j ≤ −diω

(α)
1 ,

which implies
−2αdmax = 2dmaxω

(α)
1 ≤2diω

(α)
1 ≤λ<0,

where dmax = max
0≤ i≤N

di.

Therefore, the eigenvalue of the matrix (E +μS ) lies in [1−2μαdmax,1], and the
eigenvalue of the matrix (E−μS ) lies in [1,1+2μαdmax].

From (4.137), we can obtain that the explicit Euler method (4.131) is stable if

1−2μαdmax≥ −1 ⇐⇒ Δt
Δxα
= μ≤ 1

αdmax
.

From (4.139), we obtain

un+1 = (E−μS )−1un + (E−μS )−1(Δtgn+1+μ(BLun+1
0 +BRun+1

N )). (4.141)

Since the eigenvalues of the matrix (E − μS ) are all equal to or greater than 1, the
eigenvalues of (E −μS )−1 are not greater than 1. Hence, the implicit Euler method
(4.132) is unconditionally stable.

For the Crank–Nicolson method (4.133), we have from (4.140)

un+1 = (E− μ
2

S )−1(E+
μ

2
S )un+bn, (4.142)

where bn = Δt(E − μ
2 S )−1

(
1
2 (gn+gn+1)+μ(BLu

n+ 1
2

0 +BRu
n+ 1

2
N )

)

. It is known that if λ

is the eigenvalue of S , then 2−μλ
2+μλ is the eigenvalue of (E − μ

2 S )−1(E + μ
2 S ). Since

λ has negative real part, so we have |2−μλ||2+μλ| < 1. Hence the Crank–Nicolson method
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(4.133) is unconditionally stable. For more detailed information, one can refer to
[111, 112, 145].

From (4.130), one knows that the truncation errors of the explicit Euler method,
the implicit Euler method, and the Crank–Nicolson method are O(Δt +Δx), O(Δt+
Δx), and O(Δt2 +Δx), respectively, the proof of which is almost the same as that of
the classical methods, i.e., α = 2 in (4.131)–(4.132).

The explicit Euler method (4.131), the implicit Euler method (4.132) and the
Crank–Nicolson method (4.133) can be seen as the special cases of the following
weighted difference methods [41]:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = di

[
(1− θ)Lδ

(α)
x un+1

i+1 + θLδ
(α)
x un

i+1

]
+ (1− θ)gn+1

i + θgn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.143)

where 0≤θ≤1, and where Lδ
(α)
x un

i+1 =
1
Δxα

∑i+1
j=0ω

(α)
j un

i+1− j, ω
(α)
j = (−1) j

(
α
j

)
.

The weighted difference methods (4.143) can be derived in the following way.
Letting (x, t) = (xi, tn+ 1

2
) in (4.124) yields

∂tU(xi, tn+ 1
2
) = d(x)(RLDα

a,xU)(xi, tn+ 1
2
)+g(xi, tn+ 1

2
). (4.144)

The right-hand side of (4.144) is evaluated by the weighted average values of U(x, t)
at the time levels n and (n+1), which leads to

∂tU(xi, tn+ 1
2
) =d(xi)

[
(1− θ)(RLDα

a,xU)(xi, tn+1)+ θ(RLDα
a,xU)(xi, tn)

]

+ (1− θ)gn+1
i + θgn

i + R̃
n+ 1

2
i .

(4.145)

The time derivative is discretized by the central difference, and the space fractional
derivative is discretized by the right-shifted (1 shift) Grünwald–Letnikov approxima-
tion (4.130), so one has

δtU
n+ 1

2
i =di

[
(1− θ)Lδ

(α)
x Un+1

i+1 + θLδ
(α)
x Un

i+1

]

+ (1− θ)g(xi, tn+1)+ θg(xi, tn)+R
n+ 1

2
i .

(4.146)

Dropping the truncation error R
n+ 1

2
i and replacing Un

i by un
i in (4.146) yields the

weighted finite difference method (4.143).
Obviously, the weighted finite difference method (4.143) is reduced to the ex-

plicit Euler method (4.131) if θ= 1, the implicit Euler method (4.132) if θ= 0, and the
Crank–Nicolson method (4.133) if θ= 1/2. One can similarly prove that the weighted
finite difference methods (4.143) are unconditionally stable when 0≤θ≤1/2, condi-
tionally stable when 1/2<θ≤1 and Δt

Δxα ≤ 1
αdmax(2θ−1) .

In Chapter 2, we introduced the L2 and L2C methods for the discretization of
the αth-order Riemann–Liouville derivative, see (2.73) and (2.78), which can yield
a series of finite difference methods as (4.131)–(4.133) and (4.143). The explicit and
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implicit methods similar to (4.131) and (4.132) based on the L1 and L2C methods for
the space discretization can be found in [105]. Readers can also refer to [136, 157]
for the related information.

It is known that the methods (4.131)–(4.133) and (4.143) have second-order ac-
curacy if α = 2. Next, we introduce the second-order approximation to the left and
right Riemann–Liouville derivative operators.

Lemma 4.3.1 ([111]) Suppose that f (x)∈L1(R), RLDα+2−∞,x f (x) and its Fourier trans-
form belong to L1(R), and let

Lδ
(α)
Δx,p f (x) =

1
Δxα

∞∑

k=0

ω(α)
k f (x− (k− p)Δx), ω(α)

k =
1
Γ(−α)

Γ(k−α)
Γ(k+1)

,

where p is a nonnegative integer. Then

Lδ
(α)
Δx,p f (x) = RLDα−∞,x f (x)+C

(

p− α
2

)

Δx+O(Δx2), (4.147)

where C is a constant independent of p.

From Lemma 4.3.1, we can get that

α

2 Lδ
(α)
Δx,1 f (x)+ (1− α

2
)Lδ

(α)
Δx,0 f (x) = RLDα−∞,x f (x)+O(Δx2). (4.148)

Hence, α2 Lδ
(α)
Δx,1 f (x)+ (1− α

2 )Lδ
(α)
Δx,0 f (x) has second-order accuracy for approximating

RLDα−∞,x f (x); see also (2.58) and (2.59).
A more general second-order discretization of the left Riemann–Liouville opera-

tor was developed in [146], which can be given as

α−2q
2(p−q) Lδ

(α)
Δx,p f (x)+

2p−α
2(p−q) Lδ

(α)
Δx,q f (x) = RLDα−∞,x f (x)+O(Δx2), (4.149)

where p and q are integers. Eq. (4.149) can be also derived from Lemma 4.3.1 by
eliminating Δx from (4.147) through setting p = p,q. Obviously, Eq. (4.149) is re-
duced to (4.148) when p = 1 and q = 0.

Let

Rδ
(α)
Δx,p f (x) =

1
Δxα

∞∑

k=0

ω(α)
k f (x+ (k− p)Δx), ω(α)

k =
1
Γ(−α)

Γ(k−α)
Γ(k+1)

.

Then we can similarly get the following second-order discretization for the right
Riemann–Liouville operator [146]

α−2q
2(p−q)Rδ

(α)
Δx,p f (x)+

2p−α
2(p−q)Rδ

(α)
Δx,q f (x) = RLDα

x,∞ f (x)+O(Δx2), (4.150)

where p and q are integers.
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Let f (x) be well defined on the interval [a,b]. If f (a) = 0, then the left Riemann–
Liouville operator RLDα

a,x at x = xi can be discretized by the following formula

[
RLDα

a,x f (x)
]

x=xi
=

α−2q
2(p−q) Lδ

(α)
x fi+p +

2p−α
2(p−q) Lδ

(α)
x fi+q +O(Δx2), (4.151)

where f j = f (x j) and the operator Lδ
(α)
x is defined by (4.8).

If f (b) = 0, then the right Riemann–Liouville operator RLDα
x,b at x = xi can be

similarly discretized as
[
RLDα

x,b f (x)
]

x=xi
=

α−2q
2(p−q)Rδ

(α)
x fi−p +

2p−α
2(p−q)Rδ

(α)
x fi−q +O(Δx2), (4.152)

where f j = f (x j) and the operator Rδ
(α)
x is defined by (4.9).

We are interested in the two cases of (p,q), in which (4.151) and (4.152) are
reduced to the central difference when α = 2.

• Case I: (p,q) = (1,0), the left and right Riemann–Liouville derivatives
RLDα

a,x f (x) and RLDα
x,b f (x) at x = xi can be discretized by the following

weighted shifted Grünwald formulas

Lδ
(α,1)
x fi =

α

2 Lδ
(α)
x fi+1 +

2−α
2 Lδ

(α)
x fi =

i+1∑

j=0

g(α,1)
j fi+1− j, (4.153)

and

Rδ
(α,1)
x fi =

α

2 Rδ
(α)
x fi−1 +

2−α
2 Rδ

(α)
x fi =

N−i+1∑

j=0

g(α,1)
j fi−1+ j, (4.154)

respectively, where

g(α,1)
0 =

α

2
ω(α)

0 , g(α,1)
k =

α

2
ω(α)

k +
2−α

2
ω(α)

k−1, k≥1. (4.155)

• Case II: (p,q) = (1,−1), the left and right Riemann–Liouville derivatives
RLDα

a,x f (x) and RLDα
x,b f (x) at x = xi can be discretized by the following

weighted shifted Grünwald formula

Lδ
(α,2)
x fi =

2+α
4 Lδ

(α)
x fi+1 +

2−α
4 Lδ

(α)
x fi−1 =

i+1∑

j=0

g(α,2)
j fi+1− j, (4.156)

and

Rδ
(α,2)
x fi =

2+α
4 Rδ

(α)
x fi−1 +

2−α
4 Rδ

(α)
x fi+1 =

N−i+1∑

j=0

g(α,2)
j fi−1+ j, (4.157)

respectively, where

g(α,2)
0 =

2+α
4

ω(α)
0 , g(α,2)

1 =
2+α

4
ω(α)

1 , g(α,2)
k =

2+α
4

ω(α)
k +

2−α
4

ω(α)
k−2, k≥1.

(4.158)
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Lemma 4.3.2 ([146]) The coefficients defined by (4.155) and (4.158) satisfy the fol-
lowing properties for 1 < α≤2:

(1) Case I: (p,q) = (1,0)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(α,1)
0 =

α

2
, g(α,1)

1 =
2−α−α2

2
< 0, g(α,1)

2 =
α(α2+α−4)

4
,

1≥g(α,1)
0 ≥g(α,1)

3 ≥g(α,1)
4 ≥ · · · ≥0,

∞∑

k=0

g(α,1)
k = 0,

∞∑

k=m

g(α,1)
k < 0, m≥2.

(4.159)

(2) Case II: (p,q) = (1,−1)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(α,2)
0 =

2+α
4

, g(α,2)
1 = −2α+α2

4
< 0,

g(α,2)
2 =

α3 +α2−4α+4
8

> 0, g(α,2)
3 =

α(α−2)(α2+α−8)
6

,

1≥g(α,2)
0 ≥g(α,2)

2 ≥g(α,2)
4 ≥g(α,2)

5 ≥ · · · ≥0,
∞∑

k=0

g(α,2)
k = 0,

∞∑

k=m

g(α,2)
k < 0, m = 1 or m≥3.

(4.160)

Lemma 4.3.3 ([146]) Let g(α,1)
k and g(α,2)

k be defined by (4.155) and (4.158), respec-
tively, 1 < α≤2, and

S (m,α)
N−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(α,m)
1 g(α,m)

0 0 · · · 0
g(α,m)

2 g(α,m)
1 g(α,m)

0 · · · 0
...

...
...

. . .
...

g(α,m)
N−2 g(α,m)

N−3 g(α,m)
N−4 · · · g(α,m)

0
g(α,m)

N−1 g(α)
N−2 g(α,m)

N−3 · · · g(α,m)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N−1)×(N−1)

. (4.161)

Then the real part of the eigenvalue λ of S (m,α)
N−1 is negative, and the eigenvalues of

S (m,α)
N−1 + (S (m,α)

N−1 )T are negative.

From (4.143), (4.153), and (4.156), we can obtain the following finite difference
methods for (4.124)
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = di

[
(1− θ)Lδ

(α,m)
x un+1

i + θLδ
(α,m)
x un

i

]
+ (1− θ)gn+1

i + θgn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),
(4.162)

where 0≤θ≤1, and Lδ
(α,m)
x is defined by (4.153) for m = 1 or by (4.156) for m = 2.
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If Ua(t) =Ub(t) = 0, then the method (4.162) has second-order accuracy in space,
the matrix representation of which is given by

(E−μ(1− θ)S (m))un+1 = (E+ θμS (m))un+Δt
(
(1− θ)gn+ θgn+1

)
, (4.163)

where μ=Δt/Δxα, un = (un
1, · · · ,un

N−1)T , gn = (gn
1, · · · ,gn

N−1)T , E is an (N−1)×(N−1)
identity matrix, S (m) is given by

S (m) = diag(d1,d2, · · · ,dN−1)S (m,α)
N−1 .

in which S (m,α)
N−1 is defined by (4.161).

From Lemma 4.3.2, one knows that g(α,1)
0 +

∑n
k=2 g(α,1)

k < −g(α,1)
1 for

√
17−1
2 ≤α ≤ 2.

In such a case, the matrix S (1) has eigenvalues with negative parts. So we can easily
prove that the method (4.124) with m= 1 is unconditionally stable for 0≤θ≤1/2, and
conditionally stable for 1/2<θ≤1.

Assume that di = d is a constant. Using Lemma 4.3.3, we can easily prove that
weighted finite difference method (4.162) is unconditionally stable for 0≤θ≤1/2,
and conditionally stable for 1/2<θ≤1 by the energy method. For θ = 1/2, the method
(4.162) has second order accuracy both in time and space [146].

4.3.2 Two-Sided Space-Fractional Diffusion Equation

In this subsection, we consider the finite difference methods for two-sided space-
fractional partial differential equations. A class of two-sided space-fractional partial
differential equations can be written as
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tU = c(x, t)RLDα
a,xU +d(x, t)RLDα

x,bU +g(x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = U(b, t) = 0, t ∈ (0,T ],

(4.164)

where 1 < α < 2 and c(x, t),d(x, t)≥0.
We can similarly construct the explicit Euler method, the implicit Euler method,

the Crank–Nicolson method, and the weighted average method for (4.164) as those
for (4.124), see (4.143) and (4.162).

If the left and right Riemann–Liouville fractional derivative operators are re-
spectively discretized by the right and left shifted formulas with one shift, then the
weighted average method for (4.164) is given by: Find un

i (i = 1,2, · · · ,N − 1,n =
0,1,2, · · · ,nT −1), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i =

[
(1− θ)cn+1

i Lδ
(α)
x un+1

i+1 + θc
n
i Lδ

(α)
x un

i+1

]

+
[
(1− θ)dn+1

i Rδ
(α)
x un+1

i−1 + θd
n
i Rδ

(α)
x un

i−1

]

+ (1− θ)gn+1
i + θgn

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.165)
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where Lδ
(α)
x and Rδ

(α)
x are defined by (4.8) and (4.9), respectively.

Let μ = Δt
Δxα , μn

c,i = μcn
i , and μn

d,i = μdn
i . Then (4.165) can be written as

un+1
i − (1− θ)

[
μn+1

c,i Lδ
(α)
x un+1

i +μn+1
d,i Rδ

(α)
x un+1

i

]

=un
i + θ

[
μn

c,i Lδ
(α)
x un

i +μ
n
d,iRδ

(α)
x un

i

]
+Δt

[
(1− θ)gn+1

i + θgn
i

]
, i = 1,2, · · · ,N −1.

(4.166)
Hence, the matrix representation of (4.166) (or (4.165)) can be given below

[
E− (1− θ)μS n+1

]
un+1 =(E+ θμS n)un+Δt

[
(1− θ)gn+1+ θgn

]
, (4.167)

where E is an (N −1)× (N−1) identity matrix and

S n = diag(cn
1,c

n
2, · · · ,cn

N−1)S (α)
N−1+diag(dn

1,d
n
2, · · · ,dn

N−1)(S (α)
N−1)T . (4.168)

Next, we consider the stability of the weighted finite difference methods (4.165).
For simplicity, we suppose that c(x, t) and d(x, t) are time independent. And we de-
note that by cmax = max

0≤ i≤N
c(xi), dmax = max

0≤ i≤N
d(xi). Therefore, the matrix S n is inde-

pendent of n, so we denote it by S = S n.
According to the Gerschgorin’s theorem, one has

∣∣∣∣λ−ω(α)
1 (ci+di)

∣∣∣∣ ≤ci

i∑

j=0, j�1

|ω(α)
j |+di

N−i∑

j=0, j�1

|ω(α)
j |.

Noticing that ω(α)
j > 0, j � 1, and

∞∑
j=0
ω

(α)
j = 0, one has

∑N
j=0, j�1ω

(α)
j ≤ −ω(α)

1 . Hence,

∣∣∣∣λ−ω(α)
1 (ci+di)

∣∣∣∣ ≤ −ω(α)
1 (ci+di).

The eigenvalues λ of the matrix S satisfy

−2α(cmax+dmax)≤2ω(α)
1 (ci+di)≤λ≤0.

Next, we are in a position to estimate the eigenvalues of the following matrix
[
E−μ(1− θ)A]−1 (E+μθS ).

Suppose that λ is the eigenvalue of the matrix S . Then the eigenvalue of
[
E−μ(1− θ)S ]−1 (E+μθS ) is 1+μθλ

1−μ(1−θ)λ .

If 0≤θ≤1/2, then we always have | 1+μθλ
1−μ(1−θ)λ |≤1, so the weighted finite dif-

ference method (4.165) is unconditionally stable. If 1/2<θ≤1, we deduce from
−1≤ 1+μθλ

1−μ(1−θ)λ ≤1 that μ = Δt
Δxα ≤ 1

α(cmax+dmax)(2θ−1) . Hence the weighted finite differ-
ence method (4.165) is conditionally stable for 1/2<θ≤1 and Δt

Δxα ≤ 1
α(cmax+dmax)(2θ−1) .

Obviously, the first-order method is used in the space discretization in (4.165).
As in (4.162), we can use the second-order discretization in space.

Replacing the operators Lδ
(α)
x and Rδ

(α)
x in (4.165) by Lδ

(α,m)
x and Rδ

(α,m)
x , m = 1,2,
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respectively, we can get the following difference method for (4.124): Find un
i (i =

1,2, · · · ,N −1,n = 0,1,2, · · · ,nT −1), such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i =

[
(1− θ)cn+1

i Lδ
(α,m)
x un+1

i+1 + θc
n
i Lδ

(α,m)
x un

i+1

]

+
[
(1− θ)dn+1

i Rδ
(α,m)
x un+1

i−1 + θd
n
i Rδ

(α,m)
x un

i−1

]

+ (1− θ)gn+1
i + θgn

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = Ua(tn), un

N = Ub(tn),

(4.169)

where 0≤θ≤1, Lδ
(α,m)
x is defined by (4.153) for m = 1 or by (4.156) for m = 2, and

Rδ
(α,m)
x is defined by (4.154) for m = 1 or by (4.157) for m = 2.
If θ = 1/2, method (4.169) is reduced to the CN method with second-order accu-

racy both in time and space.
As in method (4.162), we can easily obtain that for

√
17−1
2 ≤α ≤ 2, the method

(4.169) with m = 1 is unconditionally stable for 0≤θ≤1/2, and conditionally stable
for 1/2<θ≤1.

If 0 ≤ θ ≤ 1/2 and c(x, t) = d(x, t) = K, K > 0, then method (4.169) is uncondition-
ally stable, which can be proved by the energy method. Readers can refer to [146]
for related information.

4.3.3 Riesz Space-Fractional Diffusion Equation

This subsection considers finite difference methods for the fractional differential
equations with Riesz space fractional derivatives. For simplicity, we consider the
following fractional diffusion equation

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tU = RZDα
x U +g(x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = U(b, t) = 0, t ∈ (0,T ],

(4.170)

where 1 < α≤2, d(x) > 0, and RZDα
x is the Riesz space fractional derivative defined

by
RZDα

x U = −cα(RLDα
a,xU +RL Dα

x,bU), (4.171)

in which cα = 1
2cos(απ/2) .

Obviously, the Riesz space fractional derivative can be seen as the linear combina-
tion of the left and right Riemann–Liouville derivatives. Therefore, equation (4.170)
can be solved by the difference methods (4.165) or (4.169) by letting cn

i = dn
i = cα.

For the Riesz derivative operator, there exists a special discretization method named
the fractional central difference method [14, 37, 38, 39].

The fractional central difference method is defined by

Dα
Δx f (x) =

∞∑

k=−∞

(−1)kΓ(α+1)
Γ(α/2− k+1)Γ(α/2+ k+1)

f (x− kΔx), α > −1. (4.172)
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Then

lim
Δx→0

Dα
Δx f (x)

Δxα
= lim
Δx→0

∞∑

k=−∞

(−1)kΓ(α+1)
Γ(α/2− k+1)Γ(α/2+ k+1)

f (x− kΔx) (4.173)

represents the Riesz derivative (4.171) for the case 1 < α≤2 with a = −∞ and b =∞.
Hence, (4.173) can be used as the discretization of the Riesz derivative.

Lemma 4.3.4 ([14]) Let gk =
(−1)kΓ(α+1)

Γ(α/2−k+1)Γ(α/2+k+1) be the coefficients of the centered
difference approximation (4.172) for k = 0,∓1,∓2, · · · , and α > −1. Then

g0≥0, g−k = gk≤0, |k| > 0, (4.174)

and ∞∑

k=−∞
gkeikz = |2sin(z/2)|α, i2 = −1. (4.175)

Lemma 4.3.5 ([14]) Let f ∈ C5(R) and all derivatives up to order five belong to
L1(R). Then

−Dα
Δx f (x)

Δxα
= RZDα

x f (x)+O(Δx2), (4.176)

where RZDα
x f (x) = −cα(RLDα−∞,x f (x)+RL Dα

x,∞ f (x)) and 1 < α≤2.

Suppose that f (a) = f (b) = 0. Then the Riesz derivative RZDα
x f (x) can be approx-

imated by

RZDα
x f (x) = − 1

Δxα

x−a
Δx∑

k=− b−x
Δx

gk f (x− kΔx)+O(Δx2). (4.177)

Similar to (4.169), we can give the following finite difference methods for (4.124):
Find un

i (i = 1,2, · · · ,N −1,n = 0,1,2, · · · ,nT −1), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = (1− θ) RZδ

(α)
x un+1

i + θRZδ
(α)
x un

i

+ (1− θ)gn+1
i + θgn

i , i = 1,2, · · · ,N −1, 0≤θ≤1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = 0, un

N = 0,

(4.178)

where

RZδ
(α)
x un

i = −
1
Δxα

i∑

k=−N+i

gkun
i−k, gk =

(−1)kΓ(α+1)
Γ(α/2− k+1)Γ(α/2+ k+1)

. (4.179)

For simplicity, we suppose un
0 = un

N = 0. In such a case, the matrix representation
of (4.178) is given as:

[
E− (1− θ)μS

]
un+1 = (E+μθS )un+Δt

[
(1− θ)gn+1+ θgn

]
, (4.180)
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where μ = Δt
Δxα , E is an (N−1)× (N−1) matrix, and S ∈R(N−1)×(N−1) satisfying

S = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0 g−1 g−2 · · · g−N+1
g1 g0 g−1 · · · g−N+2
...

...
...

. . .
...

gN−2 gN−3 gN−4 · · · g1
gN−1 gN−2 gN−3 · · · g0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.181)

By Gerschgorin’s circle theorem, Eqs. (4.174) and (4.175), we can get that the
eigenvalue λ of S satisfies

|λ+g0|≤μ
i−1∑

k=−N+i,k�0

|gk|≤g0,

which yields
−2g0≤λ≤0.

If 0≤θ≤1/2, then one can easily check that the eigenvalues 1+μθλ
1−μ(1−θ)λ of the

matrix [E− (1− θ)S ]−1 (E + θS ) satisfy
∣∣∣∣

1+μθλ
1−μ(1−θ)λ

∣∣∣∣ ≤ 1. Hence, method (4.178) is

unconditionally stable for 0≤θ≤1/2. For 1/2<θ≤1, we can have
∣∣∣∣

1+μθλ
1−μ(1−θ)λ

∣∣∣∣ ≤1 if

μ≤ 1
g0(2θ−1) . Therefore, method (4.178) is conditionally stable for 1/2<θ≤1 and

μ = Δt
Δxα ≤ 1

g0(2θ−1) .

4.3.4 Numerical Examples

Example 6 Consider the following space-fractional diffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tU = RLDα
0,xU + RLDα

x,1U +g(x, t), (x, t) ∈ (0,1)× (0,1],

U(x,0) = x4(1− x)4, x ∈ (0,1),
U(0, t) = U(1, t) = 0, t ∈ (0,1],

(4.182)

where 1 < α < 2. Choose the suitable g(x, t) such that Eq. (4.182) has the exact solu-
tion U(x, t) = cos(t)x4(1− x)4.

Propositions 4.3.1 and 4.3.2 show that the explicit Euler method and implicit
Euler method based on the standard Grünwald–Letnikov formula are unstable. We
test the Crank–Nicolson method (4.178) (θ = 1/2) based on the standard Grünwald–
Letnikov formula to solve the problem (4.182), the results are shown in Table 4.14.
From the computations, one can find that the numerical solutions blow up.

In Tables 4.15–4.18, we use the Crank–Nicolson method (see (4.165) with θ =
1/2) based on the shifted Grünwald–Letnikov formula, the Crank–Nicolson method
(4.169) (θ = 1/2) based on the weighted shifted Grünwald–Letnikov formulas (see
(4.153), (4.154), (4.156), and (4.157)), and the Crank–Nicolson method (4.178) (θ =
1/2) based on the fractional central difference method to solve (4.182). The numerical
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results are shown in Tables 4.15–4.18. We can see that the satisfactory numerical
results are obtained, which are in line with the theoretical analysis.

Note that we should rewrite RLDα
0,xU +RLDα

x,1U in (4.182) in the form RLDα
0,xU +

RLDα
x,1U = cαRZDα

x U, so that method (4.178) can be applied properly.

TABLE 4.14: The L2 error at t = 1 for the
Crank–Nicolson method (4.178) (θ = 1/2) based on
the standard Grünwald–Letnikov formula, Δt = 10−3.

N α = 1.2 α = 1.5 α = 1.8
8 7.9306e+017 8.8737e+046 2.7457e+112

16 1.9441e+048 4.6781e+149 NaN
32 9.7458e+119 NaN NaN
64 NaN NaN NaN
128 NaN NaN NaN

TABLE 4.15: The L2 error at t = 1 for the Crank–Nicolson method
(4.165) (θ = 1/2), Δt = 10−3.

N α = 1.2 order α = 1.5 order α = 1.8 order
8 6.4217e−4 1.9017e−4 6.5329e−5

16 4.0174e−4 0.6767 1.1500e−4 0.7256 1.2114e−5 2.4311
32 2.3453e−4 0.7765 6.3839e−5 0.8491 6.2524e−6 0.9542
64 1.2995e−4 0.8519 3.3688e−5 0.9222 3.9517e−6 0.6619

128 6.9087e−5 0.9114 1.7311e−5 0.9605 2.2292e−6 0.8259

TABLE 4.16: The L2 error at t = 1 for the Crank–Nicolson method
(4.169) (θ = 1/2) with m = 1, Δt = 10−3.

N α = 1.2 order α = 1.5 order α = 1.8 order
8 5.2424e−5 7.1713e−5 8.8409e−5

16 1.2433e−5 2.0761 1.6744e−5 2.0986 2.0355e−5 2.1188
32 3.0732e−6 2.0163 4.1248e−6 2.0213 5.0045e−6 2.0240
64 7.6635e−7 2.0037 1.0278e−6 2.0047 1.2464e−6 2.0054

128 1.9155e−7 2.0003 2.5686e−7 2.0006 3.1143e−7 2.0008

TABLE 4.17: The L2 error at t = 1 for the Crank–Nicolson method
(4.169) (θ = 1/2) with m = 2, Δt = 10−3.

N α = 1.2 order α = 1.5 order α = 1.8 order
8 1.5557e−4 1.6274e−4 1.3416e−4

16 3.9381e−5 1.9820 3.9862e−5 2.0295 3.1921e−5 2.0714
32 1.0054e−5 1.9697 1.0043e−5 1.9888 7.9320e−6 2.0087
64 2.5530e−6 1.9776 2.5338e−6 1.9868 1.9849e−6 1.9986

128 6.4422e−7 1.9866 6.3736e−7 1.9911 4.9703e−7 1.9977
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TABLE 4.18: The L2 error at t = 1 for the Crank–Nicolson method
(4.178) (θ = 1/2), Δt = 10−3.

N α = 1.2 order α = 1.5 order α = 1.8 order
8 8.9228e−5 1.5660e−4 1.4640e−4

16 3.5343e−5 1.3361 5.6465e−5 1.4717 4.1501e−5 1.8186
32 1.5504e−5 1.1888 1.6347e−5 1.7883 1.0880e−5 1.9315
64 4.7751e−6 1.6991 4.3544e−6 1.9085 2.7739e−6 1.9717

128 1.3052e−6 1.8713 1.1218e−6 1.9566 6.9973e−7 1.9870

4.4 One-Dimensional Time-Space Fractional Differential Equa-
tions

In this section, we numerically investigate the time-space fractional differential
equations, where the time derivative and the spatial derivative are both fractional.

4.4.1 Time-Space Fractional Diffusion Equation with Caputo Deriva-
tive in Time

We now consider the following time-space fractional diffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDγ
0,tU = (L(α)U)(x, t)+g(x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = 0, U(b, t) = 0, t ∈ (0,T ],

(4.183)

where L(α) = c(x, t)RLDα
a,x+d(x, t)RLDα

x,b, 0 < γ≤1,1 < α < 2, and c,d > 0.
Naturally, we can combine the time discretization techniques for the time-

fractional equation (4.86) and the space discretization techniques for the space-
fractional equation (4.164) to solve (4.183).

In order to illustrate the algorithms clearly and simply, we introduce the notation
L(α,n)
Δx,q defined by

L(α,n)
Δx,q Un

i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn
i Lδ

(α)
x Un

i+1+ cn
i Rδ

(α)
x Un

i−1, q = 1,

dn
i Lδ

(α,1)
x Un

i + cn
i Rδ

(α,1)
x Un

i , q = 2,

dn
i Lδ

(α,2)
x Un

i + cn
i Rδ

(α,2)
x Un

i , q = 3,

RZδ
(α)
x Un

i , q = 4,

(4.184)

where Lδ
(α)
x , Rδ

(α)
x , Lδ

(α,1)
x , Rδ

(α,1)
x , Lδ

(α,2)
x , and Rδ

(α,2)
x are defined by (4.8), (4.9),

(4.153), (4.154), (4.156), and (4.157), respectively; and RZδ
(α)
x is defined by (4.179)

with c = d = − 1
2cos(απ/2) .

It is known from the previous sections that

L(α,n)
Δx,q Un

i = (L(α)U)(xi, tn)+O(Δtp), (4.185)
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where

p =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, q = 1,
2, q = 2,3,

2, q = 4 with c(x, t) = d(x, t) = −(2cos(απ/2))−1.

(4.186)

• The time fractional derivative is discretized by the Grünwald–Letnikov for-
mula as in (4.96) and the space operator L(α) in (4.183) is discretized as in
(4.185); the fully discrete finite difference method for (4.183) is given by: Find
un

i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
(γ)
t (un

i −u0
i ) = L(α,n)

Δx,q un
i +gn

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.187)

where δ(γ)
t is defined as in (4.96) and L(α,n)

Δx,q is defined by (4.184).

• The time fractional derivative is discretized as in (4.97) and the space operator
L(α) in (4.183) is discretized as in (4.185); the fully discrete finite difference
method for (4.183) is given by: Find un

i (i = 1,2, · · · ,N − 1,n = 1,2, · · · ,nT ),
such that ⎧

⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L1
C δ

(γ)
t un

i = L(α,n)
Δx,q un

i +gn
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.188)

where L1
C δ

(γ)
t is defined by (4.5) and L(α,n)

Δx,q is defined by (4.184).

If the time direction of (4.183) is discretized by the FLMM as those in the FLMM
finite difference methods (4.116), (4.117), (4.120), or (4.121), and the space opera-
tor L(α) is discretized by (4.185), then we can similarly derive the corresponding
FLMM finite difference methods for (4.183). We only need to replace δ2

xun
i in (4.116),

(4.117), (4.120), or (4.121) with L(α,n)
Δx,q un

i defined by (4.184) to derive the correspond-
ing algorithms. We list these methods below:

• Find un
i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ωk(un−k
i −u0

i ) =
1
2γ

n∑

k=0

(−1)kωkL(α,n−k)
Δx,q un−k

i +B(1)
n L(α,0)
Δx,q u0

i

+
1
Δtγ

n∑

k=0

ωn−kGn−k
i ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.189)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
Dγ

0,tg(xi, t)
]

t=tn
, and B(1)

n is defined by (4.114) with
m = 1.
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• Find un
i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ωk(un−k
i −u0

i ) = (1− γ
2

)L(α,n)
Δx,q un

i +
γ

2
L(α,n−1)
Δx,q un−1

i

+B(2)
n L(α,0)
Δx,q u0

i +
1
Δtγ

[

(1− γ
2

)Gn
i +

γ

2
Gn−1

i

]

,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,
(4.190)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
Dγ

0,tg(xi, t)
]

t=tn
, and B(2)

n is defined by (4.114) with
m = 2.

• Find un
i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ωk(un−k
i −u0

i ) =
1
2γ

n∑

k=0

(−1)kωkL(α,n−k)
Δx,q un−k

i +B(1)
n L(α,0)
Δx,q u0

i

+C(1)
n (L(α,1)

Δx,q u1
i − L(α,0)

Δx,q u0
i )+

1
Δtγ

n∑

k=0

ωn−kGn−k
i ,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,
(4.191)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
Dγ

0,tg(xi, t)
]

t=tn
, B(1)

n is defined by (4.114) with m =

1, and C(1)
n is defined by (4.119) with m = 1.

• Find un
i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ωk(un−k
i −u0

i ) = (1− γ
2

)L(α,n)
Δx,q un

i +
γ

2
L(α,n−1)
Δx,q un−1

i

+B(2)
n L(α,0)
Δx,q u0

i +C(2)
n (L(α,1)

Δx,q u1
i − L(α,0)

Δx,q u0
i )

+
1
Δtγ

[

(1− γ
2

)Gn
i +

γ

2
Gn−1

i

]

,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.192)

where ωk = (−1)k
(
γ
k

)
, Gn

i =
[
Dγ

0,tg(xi, t)
]

t=tn
, B(2)

n is defined by (4.114) with m =

2, and C(2)
n is defined by (4.119) with m = 2.

Next, we present the stability analysis for the methods (4.187)–(4.188). For sim-
plicity, we suppose that c(x, t) = d(x, t) = constant. We first focus on the stability for
(4.188). The matrix representation of (4.188) is given by:

(
b(γ)

0 E−μS
)
un =

n−1∑

k=1

(b(γ)
n−k−1−b(γ)

n−k)uk +b(γ)
n u0 +Δtγgn, (4.193)
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where μ = Δtγ
Δxα , the matrix S is defined as that in (4.167), and E is an (N−1)× (N−1)

identity matrix. In the following, un and un means

un = (un
0,u

n
1, · · · ,un

N)T , un = (un
1,u

n
2, · · · ,un

N−1)T , n = 0,1, · · · .
gn,gn,en,en,G and Rn with gn

0 = gn
N = en

0 = en
N = Rn

0 = Rn
N = 0 have the same meaning.

It is known that all the eigenvalues of the matrix S defined in (4.193) (see
also (4.167)) have negative real parts. Therefore, for any vector u∈RN−1, we have
(S u,u) = uT S u≤0. Hence, we have from un

0 = u0
N = 0 and (4.193) that

b(γ)
0 ‖un‖2N ≤b(γ)

0 ‖un‖2N +μΔx(−S un,un)

=

n−1∑

k=1

(b(γ)
n−k−1−b(γ)

n−k)(uk,un)N +b(γ)
n (u0,un)N +Δtγ(gn,un)N .

(4.194)

Applying Lemma 4.2.5 (see Eq. (4.101)) yields

‖un‖2N ≤2‖u0‖2N +C max
1≤n≤nT

‖gn‖2N . (4.195)

For method (4.187), one can similarly obtain that the numerical solution of
(4.187) satisfies (4.195).

Next, we consider the convergence analysis. Let en
i =U(xi, tn)−un

i . Then one gets
the error equation for (4.188) as

L1
C δ

(γ)
t en

i = L(α,n)
Δx,q en

i +Rn
i , (4.196)

where Rn
i is the truncation error satisfying |Rn

i |≤C(Δt2−γ +Δxp). From (4.195), we
get

‖en‖2N ≤2‖e0‖2N +C max
1≤n≤nT

‖Rn‖2N ≤C(Δt2−γ +Δxp).

The error bounds for the method (4.187) can be similarly obtained, which is given
by

‖en‖2N ≤C(Δt+Δxp).

The stability and convergence analysis of methods (4.189)–(4.192) are a little
different from (4.187) and (4.188). If c(x, t) = d(x, t) = constant, the stability and
convergence analysis of methods (4.189)–(4.192) are similar to those of the schemes
(4.116)–(4.117) and (4.120)–(4.121).

We just analyze the stability and convergence for (4.189), which is the same as
those for (4.190)–(4.192). If c(x, t) = d(x, t) = Kγ > 0, then the matrix representation
of method (4.189) is given by:

n∑

k=0

ωk(un−k −u0) = Δtγμ
n∑

k=0

(−1)kωkS un−k +ΔtγB(1)
n S u0+

n∑

k=0

ωn−kGn−k, (4.197)

where μ = 1
2γΔxα and S is a negative symmetric matrix. Hence, we can define the

inner product
(u,v)S = −vT S u, u,v ∈ RN−1.
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with the norm ‖u‖S = √(u,u)S . We also have

(u,v)S ≤ ‖u‖S ‖v‖S ≤ ε‖u‖2S +
1
4ε
‖v‖2S , ε > 0.

Denote by ‖|u‖|1 =
√

‖u‖2 +Δtγμ‖u‖2S , ‖u‖ = √(u,u), with

(u,v) =
N−1∑

i=1

uivi, u,v ∈ R(N−1)×1.

Then we have from (4.197) that

‖|u‖|21 = (un,un)+Δtγμ(un,un)S

=

n∑

k=1

ωk
[
(un−k,un)−μΔtγ(−1)k(un−k,un)S

]

+bn(u0,un)−μΔtγB(1)
n (u0,un)S +

n∑

k=0

ωn−k(Gn−k,un).

(4.198)

Similar to Theorem 29, we can obtain

‖|un‖|21≤C1(‖|u0‖|21+Δtγ‖u0‖2S )+C2 max
0≤k≤nT

‖gn‖2, (4.199)

where C1 is independent of n,Δt,Δx and T , and C2 is independent of n,Δt,Δx.
Using the properties ‖un‖2N = Δx‖u‖2 and ‖gn‖2N = Δx‖g‖2 gives

‖un‖2N ≤C1
(
‖u0‖2N +ΔtγΔx‖u0‖2S

)
+C2 max

0≤k≤nT
‖gn‖2N . (4.200)

Next we consider the convergence. Let en
i = U(xi, tn)− un

i , un
i be the solution of

(4.189). Then the error equation of (4.189) is given by

1
Δtγ

n∑

k=0

ωk(en−k
i − e0

i ) =
1
2γ

n∑

k=0

(−1)kωkL(α,n−k)
Δx,q en−k

i +
1
Δtγ

Rn
i , (4.201)

where Rn
i = O(Δt+Δxp).

Hence, we have from (4.200) and (4.201) that

‖en‖2N ≤C1
(
‖e0‖2N +ΔtγΔx‖e0‖2S

)
+C2 max

0≤k≤nT
‖Rn‖2N = C2 max

0≤k≤nT
‖Rn‖2N

≤C(Δt+Δxp).
(4.202)

We can similarly derive that the solution un
i to (4.190), (4.191), or (4.192) satisfies

(4.200), the convergence order of (4.190) is (Δt+Δxp), and the convergence orders
of (4.191) and (4.192) are (Δt2+Δxp).
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4.4.2 Time-Space Fractional Diffusion Equation with Riemann–Liouville
Derivative in Time

Next, we consider the finite difference methods for the following time-space frac-
tional diffusion equation

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tU = RLD1−γ
0,t

(
L(α)U

)
+g(x, t), (x, t) ∈ (a,b)× (0,T ],

U(x,0) = φ0(x), x ∈ (a,b),
U(a, t) = U(b, t) = 0, t ∈ (0,T ],

(4.203)

where L(α) = c(x, t)RLDα
a,x+d(x, t)RLDα

x,b, 0 < γ≤1,1 < α < 2, and c,d > 0.
One can find that the subdiffusion equation (4.203) is similar to (4.10), except that

the second-order space derivative operator ∂2
x is replaced by the fractional derivative

operator L(α). Hence, the time discretization of (4.10) can be used for (4.203). The
space derivative is discretized as that of (4.183).

Next, we directly list several finite difference methods for (4.203).

• Explicit Euler type methods: The time direction is discretized as that in
(4.16), the space operator L(α) at t = tn is approximated by L(α,n)

Δx,q which is de-
fined as (4.184), and the fully discrete finite difference method for (4.203) is
given by: Find un

i (i = 1,2, · · · ,N −1,n = 0,1,2, · · · ,nT −1), such that
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n+ 1

2
i = GLδ

(1−γ)
t

(
L(α,n)
Δx,q un

i

)
+ f n

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.204)

where GLδ
(1−γ)
t is defined by (4.184).

The time fractional derivative in (4.203) can be discretized by the L1 method
or the fractional backward difference formula; we just need to replace GLδ

(1−γ)
t

in (4.204) by L1
RLδ

(1−γ)
t which is defined by (4.4) or B

pδ
(1−γ)
t defined by (4.6) to

obtain the corresponding algorithms.

• Implicit Euler type methods: The time direction is discretized as in (4.30),
the space is discretized as in (4.204), the fully implicit Euler type method for
(4.203) is given by: Find un

i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = GLδ

(1−γ)
t

(
L(α,n)
Δx,q un

i

)
+ f n

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.205)

where GLδ
(1−γ)
t is defined by (4.3) and L(α,n−k)

Δx,q is defined by (4.184). The op-

erator GLδ
(1−γ)
t in (4.205) can be replaced by L1

RLδ
(1−γ)
t or B

pδ
(1−γ)
t when the L1

method (see also (4.49)) or the fractional BDF method is used in the discretiza-
tion of the time fractional derivative, which yields various Euler type methods.

 



180 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

• Crank–Nicolson type methods: The time direction is discretized as that in the

CN method (4.59), the space operator L(α) at t = tn is approximated by L
(α,n− 1

2 )
Δx,q

given in (4.184), the fully discrete Crank–Nicolson type method for (4.203) is
given by: Find un

i (i = 1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = δ

(1−γ)
t

(

L
(α,n− 1

2 )
Δx,q u

n− 1
2

i

)

+ f n
i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.206)

where δ(1−γ)
t (L

(α,n− 1
2 )

Δx,q u
n− 1

2
i ) is defined by

δ
(1−γ)
t

(

L
(α,n− 1

2 )
Δx,q u

n− 1
2

i

)

=
1
Δt1−γ

[

b0L
(α,n− 1

2 )
Δx,q u

n− 1
2

i −
n−1∑

k=1

(bn−1−k−bn−k)L
(α,k− 1

2 )
Δx,q u

k− 1
2

i

− (bn−Bn)L
(α, 12 )
Δx,q u

1
2
i −AnL(α,0)

Δx,q u0
i

]

,

in which An = Bn − γ(n+1/2)γ−1

Γ(1+γ)Δt1−γ , Bn =
2Δtγ−1

Γ(1+γ) [(n+1/2)γ−nγ], bl =
1

Γ(1+γ) [(l +

1)γ − lγ], and L(α,n)
Δx,q is defined by (4.184).

If the time direction is discretized as that in (4.60) or (4.67), we can obtain
different CN type methods which are not listed here.

• Integration methods: The time direction is discretized the same as that in
(4.82), the space operator L(α) at t = tn is approximated by L(α,n)

Δx,q which is
defined in (4.184), the explicit method for (4.203) is given by: Find un

i (i =
1,2, · · · ,N −1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = δ

(1−γ)
t

(
L(α,n)
Δx,q un

i

)
+ f n

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.207)

where L(α,n)
Δx,q is defined by (4.184) and δ(1−γ)

t is defined by

δ
(1−γ)
t (L(α,n)

Δx,q un
i ) =

1

Δt1−γ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=1

b(1−γ)
n−k (L(α,k−1)

Δx,q uk−1
i )−

n−1∑

l=1

b(1−γ)
n−k−1(L(α,k−1)

Δx,q uk−1
i )

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

b(1−γ)
k =

1
Γ(1+γ)

[(k+1)γ− kγ].

If the time direction is discretized the same as that in (4.83), then we can obtain
the implicit method given by:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i = δ

(1−γ)
t

(
L(α,n)
Δx,q un

i

)
+ f n

i , i = 1,2, · · · ,N −1,

u0
i = φ0(xi), i = 0,1,2, · · · ,N,

un
0 = un

N = 0,

(4.208)
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where L(α,n)
Δx,q is defined by (4.184) and δ(1−γ)

t is defined by

δ
(1−γ)
t (L(α,n)

Δx,q un
i ) =

1
Δt1−γ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

k=1

b(1−γ)
n−k (L(α,k)

Δx,q uk
i )−

n−1∑

l=1

b(1−γ)
n−k−1(L(α,k)

Δx,q uk
i )

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

b(1−γ)
k =

1
Γ(1+γ)

[(k+1)γ− kγ].

If the time direction is discretized as that in (4.84), we can also derive the
corresponding implicit method, which is not listed here.

If γ→ 1 and α→ 2, the explicit methods (4.204) and (4.207) are reduced to the
classical forward Euler method, the implicit methods (4.205) and (4.208) are reduced
to the classical backward Euler method, and the Crank–Nicolson type method (4.206)
is reduced to the classical CN method.

The stability and convergence analyses of the methods (4.204)–(4.208) are more
complicated than their counterparts of the classical equations.

If c(x, t) = d(x, t) = Kγ > 0, then the implicit method (4.205), the CN type method
(4.206), and the integration method (4.208) are all unconditionally stable and are
convergent to order (Δt+Δxp), (Δt2−γ +Δxp), and (Δt+Δxp), respectively.

4.4.3 Numerical Examples

Example 7 Consider the following time-space fractional diffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDγ
0,tU = RLDα

0,xU + RLDα
x,1U +g(x, t), (x, t) ∈ (0,1)× (0,1],

U(x,0) = 2x4(1− x)4, x ∈ (0,1),
U(0, t) = U(1, t) = 0, t ∈ (0,1],

(4.209)

where 0 < γ < 1,1 < α < 2. Choose the suitable g(x, t) such that Eq. (4.209) has the
exact solution U(x, t) = (t2+γ + t+2)x4(1− x)4.

We first test method (4.188). The L2 error at t = 1 is shown in Table 4.19. We can
see that first-order accuracy for q = 1 in space and second-order accuracy for q =
2,3,4 in space are observed, which are in line with the theoretical analysis. For q =
4 in Table 4.19, RLDα

0,xU + RLDα
x,1U in (4.209) is written in the form of cαRZDα

x U
so that method (4.188) can be used properly, which is the same as in Tables 4.20–
4.23. Tables 4.20–4.21 give the L2 errors at t = 1 of methods (4.191) and (4.192),
respectively. Obviously, we get satisfactory numerical results.

Example 8 Consider the following space-fractional diffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tU = RLD1−γ
0,t

(
RLDα

0,xU + RLDα
x,1U

)
+g(x, t), (x, t) ∈ (0,1)× (0,1],

U(x,0) = 0, x ∈ (0,1),
U(0, t) = U(1, t) = 0, t ∈ (0,1],

(4.210)

where 0 < γ < 1,1 < α < 2. Choose the suitable g(x, t) such that Eq. (4.209) has the
exact solution U(x, t) = (t2.5 + t)x4(1− x)4.
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TABLE 4.19: The L2 error at t = 1 for method (4.188), γ = 0.8,Δt = 10−3.

q N α = 1.2 order α = 1.5 order α = 1.8 order
8 2.6218e−3 7.5458e−4 2.6271e−4

16 1.6674e−3 0.6529 4.6301e−4 0.7046 4.8195e−5 2.4465
1 32 9.7591e−4 0.7728 2.5856e−4 0.8405 2.4504e−5 0.9759

64 5.3754e−4 0.8604 1.3678e−4 0.9186 1.5648e−5 0.6470
128 2.8401e−4 0.9204 7.0337e−5 0.9595 8.8464e−6 0.8228

8 2.0521e−4 2.8394e−4 3.5194e−4
16 4.8876e−5 2.0699 6.6752e−5 2.0887 8.1674e−5 2.1074

2 32 1.2163e−5 2.0066 1.6502e−5 2.0161 2.0134e−5 2.0203
64 3.1149e−6 1.9653 4.1429e−6 1.9940 5.0316e−6 2.0005

128 8.9300e−7 1.8024 1.0696e−6 1.9535 1.2734e−6 1.9823
8 6.0945e−4 6.4575e−4 5.3546e−4

16 1.5473e−4 1.9777 1.5906e−4 2.0214 1.2818e−4 2.0626
3 32 3.9597e−5 1.9663 4.0155e−5 1.9859 3.1909e−5 2.0061

64 1.0126e−5 1.9672 1.0160e−5 1.9827 8.0018e−6 1.9956
128 2.6389e−6 1.9401 2.5858e−6 1.9742 2.0194e−6 1.9864

8 3.7015e−4 6.3728e−4 5.9009e−4
16 1.4568e−4 1.3453 2.2853e−4 1.4795 1.6719e−4 1.8194

4 32 6.1691e−5 1.2396 6.5678e−5 1.7989 4.3810e−5 1.9322
64 1.8924e−5 1.7048 1.7470e−5 1.9105 1.1180e−5 1.9704

128 5.2385e−6 1.8530 4.5247e−6 1.9490 2.8350e−6 1.9795

TABLE 4.20: The L2 error at t = 1 for method (4.191), γ = 0.5,Δt = 10−3.

q N α = 1.2 order α = 1.5 order α = 1.8 order
8 2.6125e−3 7.5259e−4 2.6266e−4

16 1.6639e−3 0.6509 4.6202e−4 0.7039 4.8193e−5 2.4463
1 32 9.7474e−4 0.7714 2.5810e−4 0.8400 2.4530e−5 0.9743

64 5.3713e−4 0.8597 1.3659e−4 0.9181 1.5686e−5 0.6451
128 2.8389e−4 0.9199 7.0287e−5 0.9585 8.8899e−6 0.8192

8 2.0451e−4 2.8378e−4 3.5187e−4
16 4.8650e−5 2.0717 6.6681e−5 2.0894 8.1640e−5 2.1077

2 32 1.2035e−5 2.0152 1.6456e−5 2.0187 2.0110e−5 2.0214
64 3.0014e−6 2.0036 4.1015e−6 2.0044 5.0102e−6 2.0049

128 7.5000e−7 2.0007 1.0247e−6 2.0009 1.2516e−6 2.0011
8 6.0724e−4 6.4530e−4 5.3535e−4

16 1.5419e−4 1.9776 1.5893e−4 2.0216 1.2813e−4 2.0628
3 32 3.9392e−5 1.9687 4.0093e−5 1.9870 3.1882e−5 2.0069

64 1.0002e−5 1.9776 1.0115e−5 1.9868 7.9797e−6 1.9983
128 2.5234e−6 1.9868 2.5438e−6 1.9915 1.9979e−6 1.9978

8 3.6988e−4 6.3601e−4 5.8985e−4
16 1.4535e−4 1.3476 2.2826e−4 1.4784 1.6712e−4 1.8194

4 32 6.1410e−5 1.2430 6.5588e−5 1.7992 4.3778e−5 1.9326
64 1.8765e−5 1.7104 1.7418e−5 1.9128 1.1156e−5 1.9723

128 5.1185e−6 1.8743 4.4816e−6 1.9585 2.8133e−6 1.9875
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TABLE 4.21: The L2 error at t = 1 for method (4.192), γ = 0.2,Δt = 10−3.

q N α = 1.2 order α = 1.5 order α = 1.8 order
8 2.6122e−3 7.5168e−4 2.6259e−4

16 1.6646e−3 0.6501 4.6155e−4 0.7036 4.8156e−5 2.4470
1 32 9.7537e−4 0.7712 2.5785e−4 0.8399 2.4505e−5 0.9746

64 5.3746e−4 0.8598 1.3647e−4 0.9180 1.5673e−5 0.6448
128 2.8405e−4 0.9200 7.0224e−5 0.9585 8.8836e−6 0.8191

8 2.0424e−4 2.8363e−4 3.5180e−4
16 4.8590e−5 2.0716 6.6645e−5 2.0894 8.1622e−5 2.1077

2 32 1.2020e−5 2.0151 1.6447e−5 2.0187 2.0105e−5 2.0214
64 2.9976e−6 2.0036 4.0992e−6 2.0044 5.0089e−6 2.0050

128 7.4894e−7 2.0009 1.0240e−6 2.0011 1.2512e−6 2.0012
8 6.0646e−4 6.4491e−4 5.3522e−4

16 1.5400e−4 1.9775 1.5884e−4 2.0215 1.2810e−4 2.0628
3 32 3.9344e−5 1.9687 4.0071e−5 1.9869 3.1874e−5 2.0069

64 9.9895e−6 1.9777 1.0110e−5 1.9868 7.9776e−6 1.9983
128 2.5202e−6 1.9869 2.5423e−6 1.9916 1.9973e−6 1.9979

8 3.7056e−4 6.3545e−4 5.8965e−4
16 1.4551e−4 1.3486 2.2812e−4 1.4780 1.6708e−4 1.8194

4 32 6.1359e−5 1.2457 6.5551e−5 1.7991 4.3766e−5 1.9326
64 1.8745e−5 1.7108 1.7409e−5 1.9128 1.1153e−5 1.9723

128 5.1123e−6 1.8744 4.4791e−6 1.9585 2.8125e−6 1.9875

If acting Dγ−1
0,t on both sides of equation (4.210), then it can be changed into a

time-space fractional equation. In this example, we test methods (4.206) and (4.208);
the L2 errors are shown in Tables 4.22 and 4.23. In Table 4.22, the L2 errors and the
corresponding convergence orders in space for method (4.206) are displayed. Table
4.23 shows the L2 errors and the corresponding convergence rates in time for method
(4.208). We can see that the numerical results fit well with the theoretical analysis.

4.5 Fractional Differential Equations in Two Space Dimensions
In this section, we introduce the finite difference methods for the fractional partial

differential equations in two spatial dimensions.
We focus on the discretization of several two–dimensional models, such as the

two-dimensional time-fractional diffusion equation [4, 5], two-dimensional space-
fractional diffusion equation [8], two-dimensional fractional advection-dispersion
equation [122], and some other models [150, 174].

 



184 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

TABLE 4.22: The L2 error at t = 1 for method (4.206), Δt = 10−3.

(γ,α) (γ,α) (γ,α)
q N = (0.2,1.2) order = (0.5,1.5) order = (0.8,1.8) order

8 1.2716e−3 3.6152e−4 1.3011e−4
16 8.0981e−4 0.6510 2.2321e−4 0.6957 2.3371e−5 2.4769

1 32 4.7454e−4 0.7710 1.2499e−4 0.8366 1.1761e−5 0.9908
64 2.6145e−4 0.8600 6.6209e−5 0.9167 7.5874e−6 0.6323
128 1.3805e−4 0.9214 3.4072e−5 0.9584 4.3156e−6 0.8140
8 1.0064e−4 1.4026e−4 1.7471e−4

16 2.4149e−5 2.0592 3.2964e−5 2.0891 4.0502e−5 2.1089
2 32 6.1760e−6 1.9672 8.1538e−6 2.0154 9.9729e−6 2.0219

64 1.7577e−6 1.8130 2.0527e−6 1.9899 2.4853e−6 2.0046
128 6.9293e−7 1.3429 5.3414e−7 1.9422 6.2181e−7 1.9989
8 2.9761e−4 3.1824e−4 2.6556e−4

16 7.5926e−5 1.9708 7.8473e−5 2.0198 6.3540e−5 2.0633
3 32 1.9605e−5 1.9534 1.9822e−5 1.9851 1.5808e−5 2.0070

64 5.1805e−6 1.9201 5.0220e−6 1.9808 3.9573e−6 1.9980
128 1.5276e−6 1.7618 1.2836e−6 1.9680 9.9178e−7 1.9964
8 1.7941e−4 3.0921e−4 2.9140e−4

16 7.1000e−5 1.3374 1.1228e−4 1.4615 8.2738e−5 1.8164
4 32 3.0397e−5 1.2239 3.2374e−5 1.7942 2.1694e−5 1.9313

64 9.4881e−6 1.6798 8.6250e−6 1.9082 5.5311e−6 1.9716
128 2.7937e−6 1.7640 2.2403e−6 1.9448 1.3959e−6 1.9863

TABLE 4.23: The L2 error at t = 1 for method (4.208), N = 1000.

(γ,α) (γ,α) (γ,α)
q 1/Δt = (0.2,1.2) order = (0.5,1.5) order = (0.8,1.8) order

8 6.9113e−4 7.8814e−4 8.3716e−4
16 3.6568e−4 0.9184 4.1360e−4 0.9302 4.3487e−4 0.9449

1 32 1.9555e−4 0.9030 2.1437e−4 0.9481 2.2202e−4 0.9699
64 1.0782e−4 0.8589 1.1097e−4 0.9499 1.1244e−4 0.9815
128 6.3099e−5 0.7730 5.8082e−5 0.9340 5.6807e−5 0.9850
8 6.7782e−4 7.8484e−4 8.3669e−4

16 3.5114e−4 0.9489 4.0996e−4 0.9369 4.3435e−4 0.9458
2 32 1.8028e−4 0.9618 2.1054e−4 0.9614 2.2148e−4 0.9717

64 9.2008e−5 0.9704 1.0704e−4 0.9760 1.1188e−4 0.9852
128 4.6767e−5 0.9763 5.4088e−5 0.9848 5.6242e−5 0.9923
8 6.7781e−4 7.8483e−4 8.3669e−4

16 3.5113e−4 0.9489 4.0995e−4 0.9369 4.3435e−4 0.9458
3 32 1.8027e−4 0.9619 2.1054e−4 0.9614 2.2147e−4 0.9717

64 9.1999e−5 0.9704 1.0703e−4 0.9760 1.1188e−4 0.9852
128 4.6759e−5 0.9764 5.4081e−5 0.9849 5.6238e−5 0.9923
8 6.7781e−4 7.8482e−4 8.3669e−4

16 3.5112e−4 0.9489 4.0994e−4 0.9369 4.3434e−4 0.9459
4 32 1.8026e−4 0.9619 2.1053e−4 0.9614 2.2147e−4 0.9717

64 9.1987e−5 0.9705 1.0702e−4 0.9761 1.1187e−4 0.9852
128 4.6746e−5 0.9766 5.4072e−5 0.9850 5.6234e−5 0.9924
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4.5.1 Time-Fractional Diffusion Equation with Riemann–Liouville
Derivative in Time

First consider the following time-fractional diffusion equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU =RL D1−γ
0,t

(
K1∂

2
xU +K2∂

2
yU

)
+ f (x,y, t), (x,y, t) ∈ (a,b)× (c,d)× (0,T ],

U(x,y,0) = φ0(x,y), (x,y) ∈ (a,b)× (c,d),
U(a,y, t) = Ua(y, t), U(b,y, t) = Ub(y, t), (y, t) ∈ (c,d)× (0,T ],
U(x,c, t) = Uc(x, t), U(x,d, t) = Ud(x, t), (x, t) ∈ (a,b)× (0,T ],

(4.211)
where K1,K2 > 0 and 0 < γ < 1.

Before giving the discretization of the subdiffusion equation (4.211), we intro-
duce some notations. Let Δt = T/nT , Δx = (b− a)/Nx and Δy = (d − c)/Ny be the
step sizes in time, x direction, and y direction, respectively, where nT ,Nx and Ny are
positive integers. The grid points tk, xi and y j are defined as tk = kΔt, xi = a+ iΔx
and y j = c+ jΔy, respectively with tk+ 1

2
= (tk + tk+1)/2. For the function U(x,y, t) de-

fined on the domain Ω = (a,b)× (c,d)× [0,T ], denote by Un = Un(·) = U(x,y, tn),
Un

i, j = U(xi,y j, tn), and

δxUn
i+ 1

2 , j
=

Un
i+1, j−Un

i, j

Δx
, δyUn

i, j+ 1
2
=

Un
i, j+1 −Un

i, j

Δy
, (4.212)

δ2
xUn

i, j =
Un

i+1, j −2Un
i, j+Un

i−1, j

Δx2 , δ2
yUn

i, j =
Un

i, j+1 −2Un
i, j+Un

i, j−1

Δy2 .(4.213)

δtU
n+ 1

2
i, j =

Un+1
i, j −Un

i, j

Δt
, U

n+ 1
2

i, j =
Un

i, j +Un+1
i, j

2
. (4.214)

All the finite difference methods for (4.10) can be directly extended to (4.211),
and the stability and convergence analyses are almost the same. We introduce the first
method for (4.211) that can be seen as an extension of (4.30) to a two-dimensional
problem.

• The Implicit Method

Letting (x,y, t) = (xi,y j, tn) in (4.211) yields

∂tU(xi,y j, tn) =
[
RLD1−γ

0,t

(
K1∂

2
xU +K2∂

2
yU

)]

(x,y,t)=(xi ,y j ,tn)
+ f (xi,y j, tn). (4.215)

The first-order time derivative, the time-fractional derivatives and the space
derivatives in (4.215) at (x,y, t) = (xi,y j, tn) are discretized by the backward Euler
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scheme, the Grunwald scheme, and the central difference methods, respectively, i.e.,

∂tU(xi,y j, tn) =
U(xi,y j, tn)−U(xi,y j, tn−1)

Δt
+O(Δt) = δtU

n− 1
2

i, j +O(Δt),
(
RLD1−γ

0,t ∂
2
xU

)
(xi,y j, tn) = GLδ

(1−γ)
t (∂2

xUn(xi,y j))+O(Δt),
(
RLD1−γ

0,t ∂
2
yU

)
(xi,y j, tn) = GLδ

(1−γ)
t (∂2

yUn(xi,y j))+O(Δt),

∂2
xU(xi,y j, tn) = δ2

xUn
i, j +O(Δx2),

∂2
yU(xi,y j, tn) = δ2

yUn
i, j +O(Δy2),

where GLδ
(1−γ)
t is defined by (4.3). Inserting the above equations into (4.215), we can

get

δtU
n− 1

2
i, j =

GLδ
(1−γ)
t (K1δ

2
xUn

i, j +K2δ
2
yUn

i, j)+ f n
i, j+O(Δt+Δx2+Δy2). (4.216)

Dropping the truncation error O(Δt + Δx2 + Δy2) in (4.216) and replacing Uk
i, j

with uk
i, j, we can obtain the finite difference scheme for (4.211) as: Find un

i, j (i =
1,2, · · · ,Nx −1, j = 1,2, · · · ,Ny−1,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j =

GLδ
(1−γ)
t (K1δ

2
xun

i, j +K2δ
2
yun

i, j)+ f n
i, j,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.217)

where GLδ
(1−γ)
t is defined by (4.3).

Next, we present the matrix representation of the method (4.217). Rewrite the
scheme (4.217) as the following form

un
i, j = un−1

i, j +

n∑

k=0

ω
(1−γ)
n−k

[
μ1(uk

i+1, j−2uk
i, j+uk

i−1, j)+μ2(uk
i, j+1−2uk

i, j+uk
i, j−1)

]
+Δt f n

i ,

(4.218)
where μ1 = K1Δtγ/Δx2 and μ2 = K2Δtγ/Δy2.

Denote by

un =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

un
1,1 un

1,2 · · · un
1,Ny−2 un

1,Ny−1
un

2,1 un
2,2 · · · un

2,Ny−2 un
2,Ny−1

...
...

. . .
...

...
un

Nx−1,1 un
Nx−1,2 · · · un

Nx−1,Ny−2 un
Nx−1,Ny−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Nx−1)×(Ny−1)

,

un
ab =

⎡
⎢⎢⎢⎢⎢⎣

un
0,1 un

0,2 · · · un
0,Ny−1

un
Nx,1

un
Nx,2

· · · un
Nx,Ny−1

⎤
⎥⎥⎥⎥⎥⎦
2×(Ny−1)

, un
cd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

un
1,0 un

1,Ny

un
2,0 un

2,Ny
...

...
un

Nx−1,0 un
Nx−1,Ny

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Nx−1)×2

.
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Let EN ∈RN×N be an identity matrix. The matrices BN,2 and S N are defined as

BN,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
...

...
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×2

, S N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

Then, the matrix representation of (4.218) can be rewritten as

un −
(
μ1S Nx−1un +μ2unS T

Ny−1

)
= RHS n, (4.219)

where

RHS n =un−1+

n−1∑

k=0

ω
(1−γ)
n−k

(
μ1S Nx−1uk +μ2ukS T

Ny−1

)

+

n∑

k=0

ω
(1−γ)
n−k

(
μ1BNx−1,2uk

ab+μ2uk
cd BT

Ny−1,2

)
+ΔtFn,

(Fn)i, j = f (xi,y j, tn), Fn∈R(Nx−1)×(Ny−1).

The matrix equation (4.219) can be solved by the iteration method or by using
the Kronecker product to transform (4.219) into the following equivalent system

Avec(un) = vec(RHS n). (4.220)

Here

A = ENy−1⊗ENx−1 −ω(1−γ)
0

(
μ1ENy−1⊗S Nx−1+μ2S Ny−1⊗ENx−1

)
,

in which the vec operator creates a column vector from a matrix M∈RI×J , i.e.,

vec(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1
m2
...

mJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M = (m1,m2, · · · ,mJ).

Next, we consider the stability and convergence for (4.217). We first introduce
some notations. Denote by N = (Nx,Ny), and define the discrete inner product (·, ·)N
and norm ‖ · ‖N as

(u,v)N = ΔxΔy
Nx−1∑

i=0

Ny−1∑

j=0

ui, jvi, j, ‖u‖N =
√

(u,u)N , (4.221)

where u,v ∈R(Nx+1)×(Ny+1), satisfying (u)i, j = ui, j and (v)i, j = vi, j.
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For convenience, we introduce also the following notations

(δxu, δxv)N = ΔxΔy
Nx−1∑

i=0

Ny−1∑

j=0

δxui+ 1
2 , j
δxvi+ 1

2 , j
,

(δyu, δyv)N = ΔxΔy
Nx−1∑

i=0

Ny−1∑

j=0

δyui, j+ 1
2
δyvi, j+ 1

2
,

(δ2
xu,v)N = ΔxΔy

Nx−1∑

i=1

Ny−1∑

j=0

vi, jδ
2
xui, j,

(δ2
yu,v)N = ΔxΔy

Nx−1∑

i=0

Ny−1∑

j=1

vi, jδ
2
yui, j,

‖u‖1,N =
√

(δxu, δxu)N + (δyu, δyu)N .

If ui,0 = ui,Ny = u j,0 = u j,Nx = 0 and vi,0 = vi,Ny = v j,0 = v j,Nx = 0, then one has

(δ2
xu,v)N = −(δxu, δxv)N , (4.222)

(δ2
yu,v)N = −(δyu, δyv)N. (4.223)

Similar to Theorem 23, we can easily get the following theorem.

Theorem 32 Let (un)i, j = un
i, j (i = 0,1, · · · ,Nx, j = 0,1, · · · ,Ny) be the solution to

the finite difference scheme (4.217), un
0, j = un

Nx, j
= un

i,0 = un
i,Ny
= 0, (Fn)i, j = f n

i, j
(i = 0,1, · · · ,Nx, j = 0,1, · · · ,Ny). Then there exists a positive constant C independent
of n, Δt and Δx, such that

‖un‖2N ≤‖u0‖2N +C max
0≤k≤nT

‖Fk‖2N .

The proof of Theorem 32 is almost the same as that of Theorem 23 with the help
of (4.222)–(4.223), which is omitted here.

From (4.216), one can easily get that the truncation error of the scheme (4.217)
is (Rn)i, j = Rn

i, j =O(Δt+Δx2+Δy2). Denote by (en)i, j = en
i, j =U(xi,y j, tn)−un

i, j. Then
the error equation of (4.217) is given by

δte
n− 1

2
i, j =

GLδ
(1−γ)
t (K1δ

2
xen

i, j +K2δ
2
yen

i, j)+Rn
i, j.

From Theorem 32, we can get

‖en‖2N ≤‖e0‖2N +C max
0≤k≤nT

‖Rk‖2N ≤C(Δt+Δx2 +Δy2).

We know that the numerical solution of (4.211) can be obtained by solving the
matrix equation (4.219) whose equivalent linear algebraic system is (4.220) with
large coefficient matrix A of size (Nx−1)(Ny−1)× (Nx−1)(Ny−1).
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Next, we mainly focus on the alternating direction implicit (ADI) finite differ-
ence methods for the discretization of (4.211). The ADI technique can transform the
computation of a two-dimensional problem to a series of one dimensional problems
that can be solved in parallel.

• Review of the classical ADI method

We recall the construction of the ADI finite difference methods for the classical equa-
tion in the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU = K1∂
2
xU +K2∂

2
yU + f (x,y, t), (x,y, t) ∈ (a,b)× (c,d)× (0,T ],

U(x,y,0) = φ0(x,y), (x,y) ∈ (a,b)× (c,d),
U(a,y, t) = Ua(y, t), U(b,y, t) = Ub(y, t), (y, t) ∈ (c,d)× (0,T ],
U(x,c, t) = Uc(x, t), U(x,d, t) = Ud(x, t), (x, t) ∈ (a,b)× (0,T ],

(4.224)

where K1,K2 > 0.
Denote by LxU = K1∂

2
xU and LyU = K2∂

2
yU. Then it follows from (4.224) that

∂tU = (Lx+ Ly)U(x,y, t)+ f (x,y, t), (4.225)

Letting t = tn− 1
2

in (4.225) yields

∂tU(tn− 1
2
) = (Lx+ Ly)U(tn− 1

2
)+ f (tn− 1

2
). (4.226)

By ∂tU(tn− 1
2
) = δtUn− 1

2 +O(Δt2) and U(tn− 1
2
) = Un− 1

2 +O(Δt2), one has

δtUn− 1
2 = (Lx+ Ly)Un− 1

2 + f (tn− 1
2
)+O(Δt2). (4.227)

In order to derive the ADI method, we add the perturbation term
(
Δt
2

)2
LxLyδtUn− 1

2 =

O(Δt2) to the left-hand side of (4.227), which yields

δtUn− 1
2 +

(
Δt
2

)2

LxLyδtUn− 1
2 = (Lx+ Ly)Un− 1

2 + f (tn− 1
2
)+O(Δt2). (4.228)

Rewrite (4.228) as the following form

(1− Δt
2

Lx)(1− Δt
2

Ly)Un = (1+
Δt
2

Lx)(1+
Δt
2

Ly)Un−1+Δt f (tn− 1
2
)+O(Δt3).

(4.229)
Denote by

LΔxUn
i, j = K1δ

2
xUn

i, j, LΔyUn
i, j = K2δ

2
yUn

i, j. (4.230)

Then

(LxUn)(xi,y j) = LΔxUn
i, j +O(Δx2), (LyUn)(xi,y j) = LΔyUn

i, j +O(Δy2).
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Hence, we can obtain

(1− Δt
2

LΔx)(1− Δt
2

LΔy)Un
i, j =(1+

Δt
2

LΔx)(1+
Δt
2

LΔy)Un−1
i, j

+Δt f (xi,y j, tn− 1
2
)+O(Δt(Δt2 +Δx2)).

(4.231)

Removing the truncation error O(Δt(Δt+Δx2)) and replacing Un
i, j with un

i, j in (4.231),
we can get the ADI difference method for (4.224) as

(1− Δt
2

LΔx)(1− Δt
2

LΔy)un
i, j = (1+

Δt
2

LΔx)(1+
Δt
2

LΔy)un−1
i, j +Δt f (xi,y j, tn− 1

2
).

(4.232)
There are two methods commonly used to solve (4.232), the first one that is called

PR factorization [123] which is given by

(1− Δt
2

LΔx)u∗i, j = (1+
Δt
2

LΔy)un−1
i, j +

Δt
2

f (xi,y j, tn− 1
2
), (4.233)

(1− Δt
2

LΔy)un
i, j = (1+

Δt
2

LΔx)u∗i, j +
Δt
2

f (xi,y j, tn− 1
2
). (4.234)

Eliminating the intermediate term u∗i, j from (4.233) and (4.234) yields (4.232).
From (4.233), we can find that if j is given, then we can solve the linear system

(4.233) to obtain u∗j = (u∗1, j,u
∗
2, j, · · · ,u∗Nx−1, j)

T , where the size of the coefficient matrix
derived from (4.233) is (Nx − 1)× (Nx −1), which is much smaller than that of the
system (4.220) (The size of the coefficient matrix of (4.220) is (Nx − 1)(Ny − 1)×
(Nx −1)(Ny−1)). Obviously, u∗j1 and u∗j2 for j1 � j2 can be computed in parallel. We
can similarly obtain un+1

i = (un+1
i,1 ,un+1

i,2 , · · · ,un+1
i,Ny−1) from (4.234) for a fixed i.

Eliminating f (xi,y j, tn− 1
2
) from (4.233) and (4.234), we can get

u∗i, j = u
n− 1

2
i, j −

Δt2

4
LΔyδtu

n− 1
2

i, j , (4.235)

Hence, the boundary conditions of u∗i, j needed in (4.233) can be taken as

u∗0, j = u
n− 1

2
0, j −

Δt2

4
LΔyδtu

n− 1
2

0, j , u∗Nx, j = u
n− 1

2
0, j −

Δt2

4
LΔyδtu

n− 1
2

Nx, j
.

Another factorization, called the D’Yakonov factorization, is given by

(1− Δt
2

LΔx)u∗i, j = (1− Δt
2

LΔx)(1+
Δt
2

LΔy)un−1
i, j +Δt f (xi,y j, tn− 1

2
),

i = 1,2, · · · ,Nx −1, (4.236)

(1− Δt
2

LΔy)un
i, j = u∗i, j, j = 1,2, · · · ,Ny −1. (4.237)

The system (4.236)–(4.237) can be similarly solved as (4.233)–(4.234). From (4.237),
we can obtain the boundary conditions for u∗i, j needed in (4.236) as

u∗0, j = (1− Δt
2

LΔy)un
0, j, u∗Nx, j = (1− Δt

2
LΔy)un

Nx, j.

 



Chapter 4 Finite Difference Methods for FPDEs 191

Generally speaking, the factorization (4.236)–(4.237) can be easily extended to
the three-dimensional or much higher dimensional fractional differential equations.

• The first ADI method for (4.211)

Next, we introduce the first ADI finite difference method for (4.211). From
(4.216), we can get

δtU
n− 1

2
i, j =

GLδ
(1−γ)
t (K1δ

2
xUn

i, j +K2δ
2
yUn

i, j)+ f n
i, j +O(Δt+Δx2+Δy2)

=Δtγ−1
n∑

k=0

ω
(1−γ)
n−k (LΔx+ LΔy)Uk

i, j + f n
i, j +O(Δt+Δx2 +Δy2)

=− (ω(1−γ)
0 Δtγ)2LΔxLΔyδtU

n− 1
2

i, j +O(Δt2γ)

+Δtγ−1
n∑

k=0

ω
(1−γ)
n−k (LΔx+ LΔy)Uk

i, j + f n
i, j +O(Δt+Δx2 +Δy2).

(4.238)

In fact, we add a perturbation term −(ω(1−γ)
0 Δtγ)2LΔxLΔyδtU

n− 1
2

i, j = O(Δt2γ) to the
right-hand side of (4.216) to obtain (4.238). Dropping the truncation error O(Δt +
Δx2+Δy2)+O(Δt2γ) in the above equation (4.238) and replacing Un

i, j with un
i, j, we get

the following ADI finite difference method for (4.211) as: Find un
i, j (i = 1,2, · · · ,Nx−

1, j = 1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j +K1K2(ω(1−γ)

0 Δtγ)2δ2
xδ

2
yδtu

n− 1
2

i, j =
GLδ

(1−γ)
t (K1δ

2
xun

i, j +K2δ
2
yun

i, j)+ f n
i, j,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.239)
where GLδ

(1−γ)
t is defined by (4.3).

Next, we give a brief illustration that (4.239) is the ADI algorithm. Rewrite
(4.239) in the following form

un
i, j −ω(1−γ)

0 Δtγ(K1δ
2
xun

i, j +K2δ
2
yun

i, j)+K1K2(ω(1−γ)
0 Δtγ)2δ2

xδ
2
yun

i, j

=un−1
i, j +K1K2(ω(1−γ)

0 Δtγ)2δ2
xδ

2
yun−1

i, j +Δtγ
n−1∑

k=0

ω
(1−γ)
n−k (K1δ

2
xuk

i, j +K2δ
2
yuk

i, j)+Δt f n
i, j.

(4.240)
Notice that

un
i, j −ω(1−γ)

0 Δtγ(K1δ
2
xun

i, j +K2δ
2
yun

i, j)+K1K2(ω(1−γ)
0 Δtγ)2(δ2

xδ
2
yun

i, j)

=(1−K1ω
(1−γ)
0 Δtγδ2

x)(1−K2ω
(1−γ)
0 Δtγδ2

y)un
i, j.

(4.241)

Hence,

(1−K1ω
(1−γ)
0 Δtγδ2

x)(1−K2ω
(1−γ)
0 Δtγδ2

y)un
i, j = (RHS )n

i, j, (4.242)
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where
(RHS )n

i, j =un−1
i, j +K1K2(ω(1−γ)

0 Δtγ)2(δ2
xδ

2
yun−1

i, j )

+Δtγ
n−1∑

k=0

ω
(1−γ)
n−k (K1δ

2
xuk

i, j +K2δ
2
yuk

i, j)+Δt f n
i, j.

Eq. (4.242) is equivalent to the following form

(1−K1ω
(1−γ)
0 Δtγδ2

x)u∗i, j = (RHS )n
i, j, i = 1,2, · · · ,Nx−1, (4.243)

(1−K2ω
(1−γ)
0 Δtγδ2

y)un
i, j = u∗i, j, j = 1,2, · · · ,Ny −1. (4.244)

From (4.244), we can get the boundary conditions for u∗i, j needed in (4.243),
which are taken as

u∗i,0 = (1−K2ω
(1−γ)
0 Δtγδ2

y)un
i,0, u∗i,Ny

= (1−K2ω
(1−γ)
0 Δtγδ2

y)un
i,Ny

. (4.245)

Next, we consider the stability and convergence for (4.239).

Lemma 4.5.1 Let (u)i, j = ui, j (i = 0,1, · · · ,Nx, j = 0,1, · · · ,Ny) be the grid functions
with u0, j = uNx, j = ui,0 = ui,Ny = 0. Then there exists a positive constant C such that

‖u‖N ≤C‖u‖1,N .
The following lemma illustrates that the ADI scheme (4.239) is unconditionally

stable.

Theorem 33 Let (u)i, j = un
i, j (i = 0,1, · · · ,Nx, j = 0,1, · · · ,Ny) be the solutions to the

ADI finite difference scheme (4.239), un
0, j = un

Nx, j
= un

i,0 = un
i,Ny
= 0, (fn)i, j = f n

i, j (i =
0,1, · · · ,Nx, j = 0,1, · · · ,Ny). Then there exists a positive constant independent of n,
Δt and Δx, such that

‖u‖2N ≤‖u0‖2N +Δtγ
(
K1‖δxu0‖2N +K2‖δyu0‖2N

)
+Δt2γ‖δxδyu0‖2N +C max

0≤k≤nT
‖fk‖2N .

Proof. From (4.239), one has

Nx−1∑

i=1

Ny−1∑

j=1

δtun
i, ju

n− 1
2

i, j +K1K2(ω(1−γ)
0 Δtγ)2

Nx−1∑

i=1

Ny−1∑

j=1

un
i, j(δ

2
xδ

2
yδtu

n− 1
2

i, j )

=GLδ
(1−γ)
t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
K1

Nx−1∑

i=1

Ny−1∑

j=1

un
i, jδ

2
xun

i, j +K2

Nx−1∑

i=1

Ny−1∑

j=1

un
i, jδ

2
yun

i, j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

Nx−1∑

i=1

Ny−1∑

j=1

un
i, j f n

i, j,

(4.246)

which implies

(un,un)N +K1K2(ω(1−γ)
0 Δtγ)2(δ2

xδ
2
yun,un)N

=(un,un−1)N +K1K2(ω(1−γ)
0 Δtγ)2(δxδyun, δxδyun−1)N

+Δtγ
n−1∑

k=0

ω
(1−γ)
n−k

(
K1(δ2

xuk,un)N +K2(δ2
yuk,un)N

)
+Δt(fn,un)N .

(4.247)
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Using (4.222), (4.223), and Cauchy inequality one has

‖un‖2N +Δtγω(1−γ)
0

(
K1‖δxun‖2N +K2‖δyun‖2N

)
+K1K2(ω(1−γ)

0 Δtγ)2‖δxδyun‖2N
=(un,un−1)N +K1K2(ω(1−γ)

0 Δtγ)2(δxδyun, δxδyun−1)N

−Δtγ
n−1∑

k=0

ω
(1−γ)
n−k

(
K1(δxuk, δxun)N +K2(δyuk, δyun)N

)
+Δt(fn,un)N

≤ 1
2

(‖un‖2N + ‖un−1‖2N)+
1
2

K1K2(ω(1−γ)
0 Δtγ)2(‖δxδyun‖2N + ‖δxδyun−1‖2N)

+
1
2
Δtγ

n−1∑

k=0

ω
(1−γ)
n−k

[
K1(‖δxuk‖2N + ‖δxun‖2N)+K2(‖δyuk‖2N + ‖δyun‖2N

]

+Δt(ε‖un‖2N +
1
4ε
‖fn‖2N).

(4.248)
For simplicity, we denote by

En =‖un‖2N +K1K2(b0Δtγ)2‖δxδyun‖2N +Δtγ
n∑

k=0

bn−k
(
K1‖δxuk‖2N +K2‖δyuk‖2N

)
,

where bn =
n∑

k=0
ω

(1−γ)
k =

Γ(n+γ)
Γ(γ)Γ(n+1) = O((n+1)γ−1). Then one has b0 = ω

(1−γ)
0 ,ω

(1−γ)
n =

bn−1−bn < 0,n > 0, and

En+Δtγbn
(
K1‖δxun‖2N +K2‖δyun‖2N

)
≤En−1+Δt(2C2ε‖un‖21,N +

1
2ε
‖fn‖2N),

(4.249)
where we have used Lemma 4.5.1. It easy to check that Δt≤C1bnΔtγ (C1 > 0) is
independent of n and Δt. Hence, we can choose a suitable ε = min{K1,K2}

2C2C1
such that

2εC2Δt‖un‖21,N ≤Δtγbn
(
K1‖δxun‖2N +K2‖δyun‖2N

)
.

Therefore,

En≤En−1+CΔt‖fn‖2N ≤E0+CΔt
n∑

k=1

‖fk‖2N , (4.250)

which yields the desired result. The proof is completed. �

Let (en)n
i, j = en

i, j = U(xi,y j, tn)− un
i, j. Then we can get the error equation of the

ADI difference method (4.239) as

δte
n− 1

2
i, j +K1K2(ω(1−γ)

0 Δtγ)2(δ2
xδ

2
yδte

n− 1
2

i, j ) = GLδ
(1−γ)
t (K1δ

2
xen

i, j +K2δ
2
yen

i, j)+Rn
i, j,

where (Rn)i, j = Rn
i, j is the truncation error satisfying |Rn

i, j|≤C(Δt+Δt2γ +Δx2+Δy2).
From Theorem 33, we derive

‖en‖2N ≤‖e0‖2N +Δtγ
(
K1‖δxe0‖2N +K2‖δye0‖2N

)
+Δt2γ‖δxδye0‖2N +C max

0≤k≤nT
‖Rk‖2N

≤C(Δt+Δt2γ +Δx2+Δy2).
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When 0 < γ < 1/2, the convergence order of the ADI scheme (4.239) is less than
one. We can use an extrapolation technique to improve the convergence order in time.
Let un,1

i, j be the numerical solution at time level n based on time step Δt. We use the

time step Δt/2 to compute the numerical solution u2n,2
i, j at time level 2n. Then one has

U(xi,y j, tn)−un,1
i, j (Δt) = CΔt2γ +O(Δt+Δx2+Δy2), (4.251)

U(xi,y j, tn)−un,2
i, j (Δt) = C(Δt/2)2γ+O(Δt+Δx2+Δy2). (4.252)

Eliminating Δt2γ from the above two equations yields

U(xi,y j, tn) =
un,2

i, j −2−2γun,1
i, j

1−2−2γ +O(Δt+Δx2+Δy2).

Hence, we can use

un
i, j =

un,2
i, j −2−2γun,1

i, j

1−2−2γ

as the numerical solution of the ADI scheme (4.239), which has first-order accuracy
in time.

Another remedy procedure is to use −(ω(1−γ)
0 Δtγ)2LΔxLΔy(δtU

n− 1
2

i, j − δtU
n− 3

2
i, j ) =

O(Δt2γ+1) to replace the perturbation term −(ω(1−γ)
0 Δtγ)2LΔxLΔy(δtU

n− 1
2

i, j ) = O(Δt2γ)

in (4.238). Thus the term K1K2(ω(1−γ)
0 Δtγ)2(δ2

xδ
2
yδtu

n− 1
2

i, j ) in (4.239) is replaced by

K1K2(ω(1−γ)
0 Δtγ)2δ2

xδ
2
y(δtu

n− 1
2

i, j − δtu
n− 3

2
i, j ) to get the improved ADI algorithm with

higher order local accuracy in time.

• More ADI Algorithms

We introduce a technique to derive the ADI methods from the non-ADI methods.
We know that almost all the numerical methods for the one-dimensional problem
(4.10) can be directly extended to a two-dimensional problem (4.211), which has the
following form

δtu
n− 1

2
i, j = δ

(1−γ)
t (LΔx+ LΔy)un

i, j +Fn
i, j = (LΔx+ LΔy)δ(1−γ)

t un
i, j +Fn

i, j, (4.253)

where δ(1−γ)
t is defined as the form

δ
(1−γ)
t un

i, j =
1
Δt1−γ

n∑

k=0

ak,nuk
i, j. (4.254)

For example, δ(1−γ)
t = L1

RLδ
(1−γ)
t and Fn

i, j = f n
i, j when the L1 method is used to dis-

cretize the time fractional derivative in (4.211) (see also (4.49) and (4.4)). If we apply
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the time discretization technique used in (4.59) to the time discretization of (4.211),
we have Fn

i, j = f (xi,y j, tn− 1
2
) and

δ
(1−γ)
t un

i, j = b0u
n− 1

2
i, j −

n−1∑

j=1

(bn−1− j−bn− j)u
j− 1

2
i, j − (bn−Bn)u

1
2
i, j−Anu0

i, j,

where An = Bn− γ(n+1/2)γ−1

Γ(1+γ)Δt1−γ , bn and Bn are defined by

bn =
Δtγ−1

Γ(1+γ)
[
(n+1)γ−nγ

]
, Bn =

2Δtγ−1

Γ(1+γ)
[
(n+1/2)γ−nγ

]
. (4.255)

We can choose other time discretization techniques such as (4.67), (4.79), (4.83),
or (4.84) to derive the corresponding methods, which are not listed here.

Next, we consider how to construct the ADI algorithms from (4.253). From
(4.253) and (4.254), we have

un
i, j −un−1

i, j = Δtγ
n∑

k=0

ak,n(LΔx+ LΔy)uk
i, j +ΔtFn

i, j, (4.256)

Rewrite the above equation as

un
i, j −Δtγan,n(LΔx+ LΔy)un

i, j+ (Δtγan,n)2LΔxLΔyun
i, j

=un−1
i, j + (Δtγan,n)2LΔxLΔyun

i, j +Δtγ
n−1∑

k=0

ak,n(LΔx+ LΔy)uk
i, j+ΔtFn

i, j

+ (Δtγan,n)2LΔxLΔy(un
i, j −un−1

i, j ).

(4.257)

Dropping the last term (Δtγan,n)2LΔxLΔy(un
i, j −un−1

i, j ) in the above equation yields the
desired ADI method

un
i, j −Δtγan,n(LΔx+ LΔy)un

i, j + (Δtγan,n)2LΔxLΔyun
i, j

=un−1
i, j + (Δtγan,n)2LΔxLΔyun

i, j +Δtγ
n−1∑

k=0

ak,n(LΔx+ LΔy)uk
i, j +ΔtFn

i, j.
(4.258)

Rewriting the above equation into the following equivalent form

δtu
n− 1

2
i, j + (Δtγan,n)2LΔxLΔyδtu

n− 1
2

i, j = (LΔx+ LΔy)δ(1−γ)
t un

i, j +Fn
i, j. (4.259)

One can find the ADI method (4.259) can be derived from the non-ADI method

(4.253) by adding the perturbation term (Δtγan,n)2LΔxLΔyδtu
n− 1

2
i, j to the left of (4.253).

Next, we illustrate that the method (4.258) or (4.259) is indeed the ADI method.
We also have the following equivalent form of (4.258) as

(1−Δtγan,nLΔx)(1−Δtγan,nLΔy)un
i, j = (RHS )n

i, j, (4.260)
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where

(RHS )n
i, j = un−1

i, j + (Δtγan,n)2LΔxLΔyun
i, j +Δtγ

n−1∑

k=0

ak,n(LΔx+ LΔy)uk
i, j+ΔtFn

i, j.

The scheme (4.260) can be solved by the following two steps:
Stage 1: For each j, j = 1,2, · · · ,Ny−1, solve

(1−Δtγan,nLΔx)u∗i, j = (RHS )n
i, j, i = 1,2, · · · ,Nx −1, (4.261)

to obtain u∗i, j with u∗0, j = (1−Δtγan,nLΔy)un
0, j and u∗Nx, j

= (1−Δtγan,nLΔy)un
Nx, j

.
Stage 2: For each i, i = 1,2, · · · ,Nx −1, solve

(1−Δtγan,nLΔy)un
i, j = u∗i, j, j = 1,2, · · · ,Ny−1, (4.262)

to obtain un
i, j with un

i,0 = Uc(xi, tn) and un
i,Ny
= Ud(xi, tn).

Next, we just list some non-ADI and ADI algorithms for (4.211) as follows:

• Non-ADI method (1): The time is discretized the same as that in (4.49); the
space is discretized by the central difference method in (4.217). So the finite
difference method for (4.211) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j =
1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j =

L1
RLδ

(1−γ)
t (K1δ

2
xun

i, j +K2δ
2
yun

i, j)+ f n
i, j,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.263)

where L1
RLδ

(1−γ)
t is defined by (4.4).

ADI method (1): From (4.259) and (4.263), we derive the corresponding
ADI method for (4.211) as: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j + (Δtγan,n)2K1K2δ

2
xδ

2
yδtu

n− 1
2

i, j =
L1
RLδ

(1−γ)
t (K1δ

2
xun

i, j +K2δ
2
yun

i, j)+ f n
i, j,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.264)
where an,n = b(1−γ)

0 = 1
Γ(1+γ) , see (4.4).

• Non-ADI method (2): The time is discretized the same as that in (4.59), the
space is discretized by the central difference methods as in (4.217). Then the
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finite difference method for (4.211) is given by: Find un
i, j (i= 1,2, · · · ,Nx−1, j=

1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j = δ

(1−γ)
t

(

K1δ
2
xu

n− 1
2

i, j +K2δ
2
yu

n− 1
2

i, j

)

+ f (xi,y j, tn− 1
2
), n = 2,3, · · · ,nT ,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.265)
where δ(1−γ)

t is defined by (4.57).
ADI method (2): From (4.265) and (4.259), we derive the corresponding
ADI method for (4.211) as: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j + (Δtγan,n)2K1K2δ

2
xδ

2
yδtu

n− 1
2

i, j = δ
(1−γ)
t

(

K1δ
2
xu

n− 1
2

i, j +K2δ
2
yu

n− 1
2

i, j

)

+ f (xi,y j, tn− 1
2
), n = 2,3, · · · ,nT ,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.266)
where an,n =

b0
2 =

1
2Γ(1+γ) for n > 1 and an,n =

1
2 B0 =

21−γ
Γ(1+γ) for n = 1, see (4.58).

• Non-ADI method (3): The time is discretized as in (4.83), the space is dis-
cretized by the central difference methods as in (4.217). Hence the finite
difference method for (4.211) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j =
1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
i, j = un−1

i, j +Δtγ
[ n∑

k=1

b(1−γ)
n−k (K1δ

2
xuk

i, j +K2δ
2
yuk

i, j)

−
n−1∑

k=1

b(1−γ)
n−k−1(K1δ

2
xuk

i, j +K2δ
2
yuk

i, j)
]

+Δt f n
i, j,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.267)

where b(1−γ)
k = 1

Γ(1+γ) [(k+1)γ− kγ].
ADI method (3): From (4.267) and (4.259), we derive the corresponding
ADI method for (4.211) as: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
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1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
i, j + (Δtγan,n)2K1K2δ

2
xδ

2
yδtu

n− 1
2

i, j = un−1
i, j +Δtγ

[ n∑

k=1

b(1−γ)
n−k (K1δ

2
xuk

i, j+K2δ
2
yuk

i, j)

−
n−1∑

k=1

b(1−γ)
n−k−1(K1δ

2
xuk

i, j +K2δ
2
yuk

i, j)
]

+Δt f n
i, j,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx,

(4.268)
where b(1−γ)

k = 1
Γ(1+γ) [(k+1)γ− kγ] and an,n = b(1−γ)

0 .

The stability and convergence of the above three non-ADI methods (4.263),
(4.265), and (4.267) are similar to those of their corresponding one-dimensional
problems, see (4.49), (4.59), and (4.83). The convergence orders of methods (4.263),
(4.265), and (4.267) are O(Δt+Δx2 +Δy2), O(Δt1+γ +Δx2 +Δy2), and O(Δt+Δx2 +

Δy2), respectively.
The above three ADI methods (4.264), (4.266), and (4.268) are also uncondi-

tionally stable, the proofs are similar to those of the first ADI method (4.239), the
convergence of which are O(Δt+Δt2γ+Δx2+Δy2), O(Δt1+γ+Δt2γ+Δx2+Δy2), and
O(Δt+Δt2γ +Δx2 +Δy2), respectively.

4.5.2 Time-Fractional Diffusion Equation with Caputo Derivative in
Time

In this subsection, we consider the ADI finite difference methods for the follow-
ing equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDγ
0,tU = K1∂

2
xU +K2∂

2
yU +g(x,y, t), (x,y, t) ∈ (a,b)× (c,d)× (0,T ],

U(x,y,0) = φ0(x,y), (x,y) ∈ (a,b)× (c,d),
U(a,y, t) = Ua(y, t), U(b,y, t) = Ub(y, t), (y, t) ∈ (c,d)× (0,T ],
U(x,c, t) = Uc(x, t), U(x,d, t) = Ud(x, t), (x, t) ∈ (a,b)× (0,T ],

(4.269)

where K1,K2 > 0 and 0 < γ < 1.
Next, we first consider the time discretization of (4.269). Rewrite (4.269) in the

following form
CDγ

0,tU = (Lx+ Ly)U +g(x,y, t), (4.270)

where LxU = K1∂
2
xU and LyU = K1∂

2
yU.

If we use the time discretization in (4.96), (4.97), (4.116), (4.117), (4.120), or
(4.121) to discretize (4.270) in time, then at each time level n, the time discretization
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of (4.270) has the following general form
n∑

k=0

αn,kUk = Δtγ
n∑

k=0

θn,k(Lx+ Ly)Uk+ΔtγGn +ΔtγRn, (4.271)

where Gn is related to g0,g1, · · · ,gn, and Rn is the truncation error.
Rearranging the above equation gives

Un− θn,nΔtγ

αn,n
(Lx+Ly)Un = −

n−1∑

k=0

αn,k

αn,n
Uk+

Δtγ

αn,n

n−1∑

k=0

θn,k(Lx+Ly)Uk+
ΔtγGn

αn,n
+
ΔtγRn

αn,n
.

(4.272)
Adding the perturbation term

(
θn,nΔtγ

αn,n

)2

LxLy(Un−Un−1) = O(Δt1+2γ)

to the left-hand side of (4.272) leads to

Un− θn,nΔtγ

αn,n
(Lx+ Ly)Un+

(
θn,nΔtγ

αn,n

)2

LxLy(Un−Un−1)

=−
n−1∑

k=0

αn,k

αn,n
Uk +

Δtγ

αn,n

n−1∑

k=0

θn,k(Lx+ Ly)Uk+
ΔtγGn

αn,n
+
ΔtγRn

αn,n
+O(Δt1+2γ).

(4.273)

The above equation is equivalent to the following form
(

1− θn,nΔtγ

αn,n
Lx

)(

1− θn,nΔtγ

αn,n
Ly

)

Un

=

(
θn,nΔtγ

αn,n

)2

LxLyUn−1−
n−1∑

k=0

αn,k

αn,n
Uk+

Δtγ

αn,n

n−1∑

k=0

θn,k(Lx+ Ly)Uk

+
ΔtγGn

αn,n
+
ΔtγRn

αn,n
+O(Δt1+2γ).

(4.274)

The space derivative of (4.274) is discretized by the central difference, i.e.,

(LxUn)(xi,y j) = LΔxUn
i, j +O(Δx2) = K1δ

2
xUn

i, j +O(Δx2),

(LyUn)(xi,y j) = LΔyUn
i, j +O(Δy2) = K2δ

2
yUn

i, j +O(Δx2),

we can get
(

1− θn,nΔtγ

αn,n
LΔx

)(

1− θn,nΔtγ

αn,n
LΔy

)

Un
i, j

=

(
θn,nΔtγ

αn,n

)2

LΔxLΔyUn−1
i, j −

n−1∑

k=0

αn,k

αn,n
Uk

i, j +
Δtγ

αn,n

n−1∑

k=0

θn,k(LΔx+ LΔy)Uk
i, j

+
ΔtγGn

i, j

αn,n
+
ΔtγRn

i, j

αn,n
+O(Δtγ(Δt1+γ +Δx2 +Δy2)).

(4.275)
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Removing the truncation error
ΔtγRn

i, j
αn,n
+O(Δtγ(Δt1+γ +Δx2 +Δy2)) and replacing

Uk
i, j by uk

i, j in the above equation gives

(

1− θn,nΔtγ

αn,n
LΔx

)(

1− θn,nΔtγ

αn,n
LΔy

)

un
i, j = (RHS )n

i, j, (4.276)

where

(RHS )n
i, j =

(
θn,nΔtγ

αn,n

)2

LΔxLΔyun−1
i, j −

n−1∑

k=0

αn,k

αn,n
uk

i, j

+
Δtγ

αn,n

n−1∑

k=0

θn,k(LΔx+ LΔy)uk
i, j+
ΔtγGn

i, j

αn,n
.

Eq. (4.276) has the following factorization
(

1− θn,nΔtγ

αn,n
LΔx

)

u∗i, j = (RHS )n
i, j, i = 1,2, · · · ,Nx −1, (4.277)

(

1− θn,nΔtγ

αn,n
LΔy

)

un
i, j = u∗i, j, j = 1,2, · · · ,Ny −1. (4.278)

From (4.278), we can obtain that the boundary conditions for u∗i, j are taken as

u∗0, j =
(

1− θn,nΔtγ

αn,n
LΔy

)

un
0, j, u∗Nx, j =

(

1− θn,nΔtγ

αn,n
LΔy

)

un
Nx, j. (4.279)

In order to illustrate the relationships between the ADI difference methods
(4.276) for two-dimensional subdiffusion equation (4.269) and the finite difference
methods for the one-dimensional subdiffusion equation (4.86), (4.276) can be rewrit-
ten as below

1
Δtγ

n∑

k=0

αn,kuk
i, j +

θ2
n,nΔt1+γ

αn,n
LΔxLΔyδtu

n− 1
2

i, j =

n∑

k=0

θn,k(LΔx+ LΔy)uk
i, j +Gn

i, j. (4.280)

We find that if we remove
θ2

n,nΔt1+γ

αn,n
LΔxLΔyu

n− 1
2

i, j in (4.280), we can get the non-ADI
algorithms for (4.269) as follows

1
Δtγ

n∑

k=0

αn,kuk
i, j =

n∑

k=0

θn,k(LΔx+ LΔy)uk
i, j +Gn

i, j. (4.281)

Next, we list some non-ADI and ADI algorithms. The non-ADI algorithms for
(4.269) can be seen as the direct extensions of the corresponding algorithms for a
one-dimensional problem (4.86) (see (4.96), (4.97), (4.116), (4.117), (4.120), and
(4.121)).
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• Non-ADI method (1): The time is discretized as in (4.96), the non-ADI
method for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
n−k(uk

i, j −u0
i, j) = (K1δ

2
x+K2δ

2
y)un

i, j+gn
i, j, (4.282)

where ω(γ)
k = (−1)k

(
γ
k

)
.

ADI method (1): From (4.280) and (4.282), the corresponding ADI method
for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (uk

i, j −u0
i, j)+K1K2Δt1+γδ2

xδ
2
yδtu

n− 1
2

i, j = (K1δ
2
x+K2δ

2
y)un

i, j +gn
i, j.

(4.283)
In such a case, αn,n and θn,n in (4.281) are chosen as: αn,n = ω

(γ)
0 = 1, θn,n = 1.

• Non-ADI method (2): The time is discretized as in (4.97), the non-ADI
method for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

i, j −uk
i, j) = (K1δ

2
x+K2δ

2
y)un

i, j+gn
i, j, (4.284)

where b(γ)
k =

1
Γ(2−γ)

[
(k+1)1−γ− k1−γ].

ADI method (2): From (4.280) and (4.282), the corresponding ADI method
for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

i, j −uk
i, j)+

K1K2Δt1+γ

b(γ)
0

δ2
xδ

2
yδtu

n− 1
2

i, j = (K1δ
2
x+K2δ

2
y)un

i, j +gn
i, j.

(4.285)
In such a case, αn,n and θn,n in (4.281) are chosen as: αn,n = b(γ)

0 , θn,n = 1.

• Non-ADI method (3): The time is discretized as in (4.116), the non-ADI
method for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) =

1
2γ

n∑

k=0

(−1)kω
(γ)
k (K1δ

2
x+K2δ

2
y)un−k

i, j

+B(1)
n (K1δ

2
x+K2δ

2
y)u0

i, j+

n∑

k=0

ω
(γ)
k Gn−k

i, j ,

(4.286)

where ω
(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, and B(1)

n is defined by
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(4.114) with m = 1.
ADI method (3): From (4.280) and (4.286), the corresponding ADI method
for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+2−2γK1K2Δt1+γδ2

xδ
2
yδtu

n− 1
2

i, j

=
1
2γ

n∑

k=0

(−1)kω
(γ)
k (K1δ

2
x+K2δ

2
y)un−k

i, j +B(1)
n (K1δ

2
x+K2δ

2
y)u0

i, j +

n∑

k=0

ω
(γ)
k Gn−k

i, j .

(4.287)
In such a case, αn,n and θn,n in (4.281) are chosen as: αn,n = 1, θn,n = 2−γ.

• Non-ADI method (4): The time is discretized as in (4.117), the non-ADI
method for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) = (1− γ

2
)(K1δ

2
x+K2δ

2
y)un

i, j +
γ

2
(K1δ

2
x+K2δ

2
y)un−1

i, j

+B(2)
n (K1δ

2
x+K2δ

2
y)u0

i, j + (1− γ
2

)Gn
i, j +

γ

2
Gn−1

i, j ,

(4.288)
where ω

(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, and B(1)

n is defined by
(4.114) with m = 2.
ADI method (4): From (4.280) and (4.288), the corresponding ADI method
for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+

(

1− γ
2

)2
K1K2Δt1+γδ2

xδ
2
yδtu

n− 1
2

i, j

=(1− γ
2

)(K1δ
2
x+K2δ

2
y)un

i, j+
γ

2
(K1δ

2
x+K2δ

2
y)un−1

i, j

+B(2)
n (K1δ

2
x+K2δ

2
y)u0

i, j + (1− γ
2

)Gn
i, j +

γ

2
Gn−1

i, j .

(4.289)

αn,n and θn,n in (4.281) are chosen as: αn,n = 1, θn,n = 1− γ
2 .

• Non-ADI method (5): The time is discretized as in (4.120), the non-ADI
method for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) =

1
2γ

n∑

k=0

(−1)kω
(γ)
k (K1δ

2
x+K2δ

2
y)un−k

i, j

+B(1)
n (K1δ

2
x+K2δ

2
y)u0

i, j+C(1)
n (K1δ

2
x+K2δ

2
y)(u1

i, j−u0
i, j)+

n∑

k=0

ω
(γ)
k Gn−k

i, j ,

(4.290)
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where ω(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, B(1)

n is defined by (4.114)

with m = 1, and C(1)
n is defined by (4.119) with m = 1.

ADI method (5): From (4.280) and (4.290), the corresponding ADI method
for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+ (2−γ+ δ1nC(1)

n )2K1K2Δt1+γδ2
xδ

2
yδtu

n− 1
2

i, j

=
1
2γ

n∑

k=0

(−1)kω
(γ)
k (K1δ

2
x+K2δ

2
y)un−k

i, j +B(1)
n (K1δ

2
x+K2δ

2
y)u0

i, j

+C(1)
n (K1δ

2
x+K2δ

2
y)(u1

i, j−u0
i, j)+

n∑

k=0

ω
(γ)
k Gn−k

i, j ,

(4.291)

where δ1n is the Kronecker delta, i.e., δ1n = 1 if n = 1 and δ1n = 0 if n > 1. In
this case, αn,n and θn,n in (4.281) are chosen as: αn,n = 1, θn,n = 2−γ for n > 1.
If n = 1, then θn,n = 2−γ +C(1)

1 .

• Non-ADI method (6): The time is discretized as in (4.121), the non-ADI
method for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) = (1− γ

2
)(K1δ

2
x+K2δ

2
y)un

i, j +
γ

2
(K1δ

2
x+K2δ

2
y)un−1

i, j

+B(2)
n (K1δ

2
x+K2δ

2
y)u0

i, j +C(2)
n (K1δ

2
x+K2δ

2
y)(u1

i, j−u0
i, j)

+ (1− γ
2

)Gn
i, j +

γ

2
Gn−1

i, j ,

(4.292)
where ω

(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, and B(2)

n is defined by

(4.114) with m = 2, C(2)
n is defined by (4.119) with m = 2.

ADI method (6): From (4.280) and (4.292), the corresponding ADI method
for (4.269) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+

(

1− γ
2
+ δ1nC(1)

n

)2
K1K2Δt1+γδ2

xδ
2
yδtu

n− 1
2

i, j

=(1− γ
2

)(K1δ
2
x+K2δ

2
y)un

i, j +
γ

2
(K1δ

2
x+K2δ

2
y)un−1

i, j +B(2)
n (K1δ

2
x+K2δ

2
y)u0

i, j

+C(2)
n (K1δ

2
x+K2δ

2
y)(u1

i, j −u0
i, j)+ (1− γ

2
)Gn

i, j +
γ

2
Gn−1

i, j .

(4.293)
In such a case, αn,n and θn,n in (4.281) are chosen as: αn,n = 1, θn,n = 1− γ

2 . If
n = 1, then θn,n = 1− γ

2 +C(2)
1 .
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The initial and boundary conditions for the ADI finite difference methods (4.282)-
(4.293) are taken as

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = Ua(y j, tn), un

Nx, j = Ub(y j, tn), j = 0,1,2, · · · ,Ny,

un
i,0 = Uc(xi, tn), un

i,Ny
= Ud(xi, tn), i = 0,1,2, · · · ,Nx.

(4.294)

4.5.3 Space-Fractional Diffusion Equation

Next, we study the ADI finite difference methods for the following space-
fractional differential equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU = d+(x,y, t)RLDα
a,xU +d−(x,y, t)RLDα

x,bU

+ c+(x,y, t)RLDα
c,yU + c−(x,y, t)RLDα

y,dU +g(x,y, t),

(x,y, t) ∈ (a,b)× (c,d)× (0,T ],
U(x,y,0) = φ0(x,y), (x,y) ∈ (a,b)× (c,d),
U(a,y, t) = U(b,y, t) = 0, (y, t) ∈ (c,d)× (0,T ],
U(x,c, t) = U(x,d, t) = 0, (x, t) ∈ (a,b)× (0,T ],

(4.295)

where 1 < α < 2 and c+(x,y, t),c−(x,y, t),d+(x,y, t),d−(x,y, t)≥0.
For simplicity, we introduce the notations

L(α)
x = d+(x,y, t)RLDα

a,x+d−(x,y, t)RLDα
x,b, (4.296)

L(α)
y = c+(x,y, t)RLDα

c,y + c−(x,y, t)RLDα
y,d . (4.297)

Then Eq. (4.295) can be written as

∂tU = (L(α)
x + L(α)

y )U +g(x,y, t). (4.298)

For simplicity, we denote by

L(α,k)
x = d+(x,y, tk)RLDα

a,x+d−(x,y, tk)RLDα
x,b, k = n,n− 1

2
,

L(α,k)
y = c+(x,y, tk)RLDα

c,y+ c−(x,y, tk)RLDα
y,d , k = n,n− 1

2
.

Letting t = tn− 1
2

in (4.298) yields

∂tU(tn− 1
2
) = (L

(α,n− 1
2 )

x + L
(α,n− 1

2 )
y )U(tn− 1

2
)+g(x,y, tn− 1

2
). (4.299)

Similar to (4.229), we can derive

(1− Δt
2

L
(α,n− 1

2 )
x )(1− Δt

2
L

(α,n− 1
2 )

y )Un =(1+
Δt
2

L
(α,n− 1

2 )
x )(1+

Δt
2

L
(α,n− 1

2 )
y )Un−1

+Δtg(x,y, tn− 1
2
)+O(Δt3).

(4.300)
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Next, we consider the discretization in space. Similar to (4.184), we can also
introduce the following operators

L(α,k)
Δx,q Un

i, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d+(xi,y j, tk)Lδ
(α)
x Un

i+1, j +d−(xi,y j, tk)Rδ
(α)
x Un

i−1, j, q = 1,

d+(xi,y j, tk)Lδ
(α,1)
x Un

i, j +d−(xi,y j, tk)Rδ
(α,1)
x Un

i, j, q = 2,

d+(xi,y j, tk)Lδ
(α,2)
x Un

i, j +d−(xi,y j, tk)Rδ
(α,2)
x Un

i, j, q = 3,

RZδ
(α)
x Un

i, j, q = 4, d+ = d− = c+ = c− = − 1
2cos(απ/2)

= cα,

(4.301)

where

Lδ
(α)
x Un

i, j =
1
Δxα

i∑

k=0

ω(α)
k Ui−k, j, Rδ

(α)
x Ui, j =

1
Δxα

Nx−i∑

k=0

ω(α)
k Ui+k, j, ω(α)

k = (−1)k
(
α

k

)

,

Lδ
(α,1)
x Un

i, j =
α

2 Lδ
(α)
x Un

i+1, j +
2−α

2 Lδ
(α)
x Un

i, j,

Rδ
(α,1)
x Un

i, j =
α

2 Rδ
(α)
x Un

i−1, j +
2−α

2 Rδ
(α)
x Un

i, j,

Lδ
(α,2)
x Un

i, j =
2+α

4 Lδ
(α)
x Un

i+1, j +
2−α

4 Lδ
(α)
x Un

i−1, j,

Rδ
(α,2)
x Un

i, j =
2+α

4 Rδ
(α)
x Un

i−1, j +
2−α

4 Rδ
(α)
x Un

i+1, j,

RZδ
(α)
x Un

i, j = −
1
Δxα

i∑

k=−Nx+i

gkun
i−k, gk =

(−1)kΓ(α+1)
Γ(α/2− k+1)Γ(α/2+ k+1)

.

We can similarly define the operator L(α,k)
Δy,q ,q = 1,2,3,4.

From (4.185), we can similarly have

L(α,k)
Δx,q Un

i, j − (L(α,k)
x Un)(xi,y j) = O(Δxp), L(α,k)

Δy,q Un
i, j − (L(α,k)

y Un)(xi,y j) = O(Δyp),

where p is given as in (4.186)

Replacing L(α)
x , L(α)

y , and Un in (4.300) with L
(α,n− 1

2 )
Δx,q and L

(α,n− 1
2 )

Δy,q , and Un
i, j, re-

spectively, we have

(1− Δt
2

L
(α,n− 1

2 )
Δx,q )(1− Δt

2
L

(α,n− 1
2 )

Δy,q )Un
i, j =(1+

Δt
2

L
(α,n− 1

2 )
Δx,q )(1+

Δt
2

L
(α,n− 1

2 )
Δy,q )Un−1

i, j

+Δtg(xi,y j, tn− 1
2
)+ΔtR

n− 1
2

i, j ,

(4.302)

where R
n− 1

2
i, j is the truncation error satisfying |Rn− 1

2
i, j |≤C(Δt2 +Δx+Δy) when q = 1,

and |Rn− 1
2

i, j |≤C(Δt2 +Δx2+Δy2) when q = 2,3,4.
Neglecting the truncation error Rn

i, j in (4.302) and replacing Un
i, j with un

i, j, we
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have

(1− Δt
2

L
(α,n− 1

2 )
Δx,q )(1− Δt

2
L

(α,n− 1
2 )

Δy,q )un
i, j =(1+

Δt
2

L
(α,n− 1

2 )
Δx,q )(1+

Δt
2

L
(α,n− 1

2 )
Δy,q )un−1

i, j

+Δtg(xi,y j, tn− 1
2
).

(4.303)

Similar to (4.233)-(4.234) and (4.236)-(4.237), we have two ways to solve
(4.303).

PR factorization:

(1− Δt
2

L
(α,n− 1

2 )
Δx,q )u∗i, j = (1+

Δt
2

L
(α,n− 1

2 )
Δy,q )un−1

i, j +
Δt
2

g(xi,y j, tn− 1
2
), (4.304)

(1− Δt
2

L
(α,n− 1

2 )
Δy,q )un

i, j = (1+
Δt
2

L
(α,n− 1

2 )
Δx,q )u∗i, j+

Δt
2

g(xi,y j, tn− 1
2
). (4.305)

From (4.304) and (4.305), we can also have

u∗i, j = u
n− 1

2
i, j −

Δt2

4
L

(α,n− 1
2 )

Δx,q L
(α,n− 1

2 )
Δy,q δtu

n− 1
2

i, j . (4.306)

So the boundary conditions for (4.304) are given by

u∗0, j = u
n− 1

2
0, j −

Δt2

4
L

(α,n− 1
2 )

Δx,q L(α,n)
Δy,q δtu

n− 1
2

0, j , (4.307)

u∗Nx, j = u
n− 1

2
Nx, j
− Δt2

4
L

(α,n− 1
2 )

Δx,q L(α,n)
Δy,q δtu

n− 1
2

Nx, j
. (4.308)

D’Yakonov factorization:

(1− Δt
2

L
(α,n− 1

2 )
Δx,q )u∗i, j = (1+

Δt
2

L
(α,n− 1

2 )
Δx,q )(1+

Δt
2

L
(α,n− 1

2 )
Δy,q )un−1

i, j

+Δtg(xi,y j, tn− 1
2
), (4.309)

(1− Δt
2

L
(α,n− 1

2 )
Δy,q )un

i, j = u∗i, j. (4.310)

So the boundary conditions for (4.309) are given by

u∗0, j = (1− Δt
2

L
(α,n− 1

2 )
Δy,q )un

0, j, u∗Nx, j = (1− Δt
2

L
(α,n− 1

2 )
Δy,q )un

Nx, j. (4.311)

Next, we consider the stability of (4.303). We first consider the case of q = 1 in
(4.303). For simplicity, we also suppose that d+ = d− = K1, c+ = c− = K2, K1 and K2
are positive constants, and un

0, j = un
Nx, j
= un

i,0 = un
i,Ny
= 0. Let un be defined as in (4.219)

and gn− 1
2 ∈ R(Nx−1)×(Ny−1) with (gn− 1

2 )i−1, j−1 = g(xi,y j, tn− 1
2
), i = 1,2, · · · ,Nx − 1, j =

1,2, · · · ,Ny−1.
Then, for q = 1,2,3,4, we always have the matrix representation of (4.303) as

(ENx−1+μ1S (α)
Nx−1)un(ENy−1 +μ2S (α)

Ny−1)T

=(ENx−1−μ1S (α)
Nx−1)un−1(ENy−1−μ2S (α)

Ny−1)T +Δtgn− 1
2 ,

(4.312)
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where μ1 =
K1Δt
2Δxα , μ2 =

K2Δt
2Δyα , EN is an N ×N identity matrix, S (α)

N−1 is a symmetric

positive definite matrix. For example, if q= 1, then S (α)
N−1 = S +S T , where S is defined

by

S = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω(α)
1 ω(α)

0 0 · · · 0
ω

(α)
2 ω

(α)
1 ω

(α)
0 · · · 0

...
...

...
. . .

...

ω
(α)
N−2 ω

(α)
N−3 ω

(α)
N−4 · · · ω

(α)
0

ω(α)
N−1 ω(α)

N−2 ω(α)
N−3 · · · ω(α)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N−1)×(N−1)

,ω
(α)
k = (−1)k

(
α

k

)

. (4.313)

Let A = (ENx−1 + μ1S (α)
Nx−1)−1(ENx−1 − μ1S (α)

Nx−1) and B = (ENy−1 + μ2S (α)
Ny−1)−1

(ENy−1 − μ2S (α)
Ny−1). Then A and B are symmetric matrices with spectral radius

ρ(Ak) < 1 and ρ(Bk) < 1. We can rewrite (4.312) into

un =Aun−1B+ΔtAgn− 1
2 B = A2un−2B2+ΔtA2gn− 3

2 B2+ΔtAgn− 1
2 B

=Anu0Bn+Δt
n∑

k=1

Akgn+ 1
2−kBk.

(4.314)

As in (4.220), we also have

vec(un) =(Bn⊗An)vec(u0)+Δt
n∑

k=1

(Bk⊗Ak)vec(gn+ 1
2−k). (4.315)

It immediately follows from (4.315) that

‖vec(un)‖2 ≤ ‖vec(u0)‖2 +Δt
n∑

k=1

‖vec(gn+ 1
2−k)‖2, (4.316)

where (un)i, j = un
i, j and (gn− 1

2 )i, j = f (xi,y j, tn− 1
2
).

Therefore, the ADI method (4.303) is unconditionally stable.

Let (en)i, j = U(xi,y j, tn) = un
i, j and (Rn− 1

2 )i, j = R
n− 1

2
i, j = O(Δt2 +Δxp +Δyp). Then

one has

‖vec(en)‖2 ≤ ‖vec(e0)‖2 +Δt
n∑

k=1

‖vec(Rn+ 1
2−k)‖2 ≤C(Δt2+Δxp+Δyp). (4.317)
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4.5.4 Time-Space Fractional Diffusion Equation with Caputo Deriva-
tive in Time

This subsection considers the non-ADI and ADI finite difference methods for a
two-dimensional time-space fractional diffusion equation in the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDγ
0,tU = d+(x,y, t)RLDα

a,xU +d−(x,y, t)RLDα
x,bU

+ c+(x,y, t)RLDα
c,yU + c−(x,y, t)RLDα

y,dU +g(x,y, t),

(x,y, t) ∈ (a,b)× (c,d)× (0,T ],
U(x,y,0) = φ0(x,y), (x,y) ∈ (a,b)× (c,d),
U(a,y, t) = U(b,y, t) = 0, (y, t) ∈ (c,d)× (0,T ],
U(x,c, t) = U(x,d, t) = 0, (x, t) ∈ (a,b)× (0,T ],

(4.318)

where 0 < γ≤1,1 < α < 2 and c+(x,y, t),c−(x,y, t),d+(x,y, t),d−(x,y, t)≥0.
Let L(α)

x = d+(x,y, t)RLDα
a,x + d−(x,y, t)RLDα

x,b and L(α)
y = c+(x,y, t)RLDα

c,y +

c−(x,y, t)RLDα
y,d . Then Eq. (4.318) can be written as

CDγ
0,tU = (L(α)

x + L(α)
y )U +g(x,y, t). (4.319)

The time in (4.319) is discretized as in Eq. (4.269) (see (4.276) or (4.280)), the
space derivatives are discretized as those in Eq. (4.295) (see the space discretization
L(α,n)
Δx,q defined by (4.301) and L(α,n)

Δy,q )), we can obtain the ADI finite difference schemes
for (4.318) as

1
Δtγ

n∑

k=0

αn,kuk
i, j+

θ2
n,nΔt1+γ

αn,n
L(α,n)
Δx,q L(α,n)

Δy,q δtu
n− 1

2
i, j =

n∑

k=0

θn,k(L(α,k)
Δx,q + L(α,k)

Δy,q )uk
i, j+Gn

i, j.

(4.320)
Eq. (4.320) is equivalent to the following form

(

1− θn,nΔtγ

αn,n
L(α,n)
Δx,q

)(

1− θn,nΔtγ

αn,n
L(α,n)
Δy,q

)

un
i, j = (RHS )n

i, j, (4.321)

where

(RHS )n
i, j =

(
θn,kΔtγ

αn,n

)2

L(α,n)
Δx,q L(α,n)

Δy,q un−1
i, j −

n−1∑

k=0

αn,k

αn,n
uk

i, j

+
Δtγ

αn,n

n−1∑

k=0

θn,k(L(α,n)
Δx,q + L(α,n)

Δy,q )uk
i, j +
ΔtγGn

i, j

αn,n
.

Eq. (4.321) has the following factorization
(

1− θn,nΔtγ

αn,n
L(α,n)
Δx,q

)

u∗i, j = (RHS )n
i, j, i = 1,2, · · · ,Nx−1, (4.322)

(

1− θn,nΔtγ

αn,n
L(α,n)
Δy,q

)

un
i, j = u∗i, j, j = 1,2, · · · ,Ny −1. (4.323)

Similarly to (4.282)–(4.293), we can also derive the corresponding non-ADI and
ADI algorithms for (4.318) below.
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• Non-ADI method (1): The time derivative is discretized as in (4.282), the
non-ADI method for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j =
1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
n−k(uk

i, j−u0
i, j) = (L(α,n)

Δx,q + L(α,n)
Δy,q )un

i, j +gn
i, j, (4.324)

where ω(γ)
k = (−1)k

(
γ
k

)
.

ADI method (1): From (4.320) and (4.324), the corresponding ADI method
for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (uk

i, j−u0
i, j)+

Δt1+γ

b(γ)
0

L(α,n)
Δx,q L(α,n)

Δy,q δtu
n− 1

2
i, j = (L(α,n)

Δx,q + L(α,n)
Δy,q )un

i, j+gn
i, j.

(4.325)
In such a case, αn,n and θn,n in (4.320) are chosen as: αn,n = ω

(γ)
0 = 1, θn,n = 1.

• Non-ADI method (2): The time derivative is discretized as same as that in
(4.284), the non-ADI method for (4.318) is given by: Find un

i, j (i= 1,2, · · · ,Nx−
1, j = 1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

i, j −uk
i, j) = (L(α,n)

Δx,q + L(α,n)
Δy,q )un

i, j+gn
i, j, (4.326)

where b(γ)
k =

1
Γ(2−γ)

[
(k+1)1−γ− k1−γ].

ADI method (2): From (4.320) and (4.326), the corresponding ADI method
for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

i, j −uk
i, j)+

Δt1+γ

b(γ)
0

L(α,n)
Δx,q L(α,n)

Δy,q δtu
n− 1

2
i, j = (L(α,k)

Δx,q + L(α,k)
Δy,q )un

i, j +gn
i, j.

(4.327)
In such a case, αn,n and θn,n in (4.320) are chosen as: αn,n = b(γ)

0 , θn,n = 1.

• Non-ADI method (3): The time is discretized as in (4.286), the non-ADI
method for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx−1, j= 1,2, · · · ,Ny,n=
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) =

1
2γ

n∑

k=0

(−1)kω
(γ)
k (L(α,n−k)

Δx,q + L(α,n−k)
Δy,q )un−k

i, j

+B(1)
n (L(α,0)

Δx,q + L(α,0)
Δy,q )u0

i, j+

n∑

k=0

ω
(γ)
k Gn−k

i, j ,

(4.328)

where ω
(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, and B(1)

n is defined by
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(4.114) with m = 1.
ADI method (3): From (4.320) and (4.328), the corresponding ADI method
for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+2−2γΔt1+γL(α,n)

Δx,q L(α,n)
Δy,q δtu

n− 1
2

i, j

=
1
2γ

n∑

k=0

(−1)kω
(γ)
k (L(α,n−k)

Δx,q + L(α,n−k)
Δy,q )un−k

i, j +B(1)
n (L(α,0)

Δx,q + L(α,0)
Δy,q )u0

i, j+

n∑

k=0

ω
(γ)
k Gn−k

i, j ,

(4.329)
αn,n and θn,n in (4.320) are chosen as: αn,n = 1, θn,n = 2−γ.

• Non-ADI method (4): The time derivative is discretized as in (4.288), the
non-ADI method for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j =
1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) = (1− γ

2
)(L(α,n)
Δx,q + L(α,n)

Δy,q )un
i, j +

γ

2
(L(α,n−1)
Δx,q + L(α,n−1)

Δy,q )un−1
i, j

+B(2)
n (L(α,0)

Δx,q + L(α,0)
Δy,q )u0

i, j + (1− γ
2

)Gn
i, j +

γ

2
Gn−1

i, j ,

(4.330)
where ω

(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, and B(1)

n is defined by
(4.114) with m = 2.
ADI method (4): From (4.320) and (4.330), the corresponding ADI method
for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+

(

1− γ
2

)2
Δt1+γ(L(α,n)

Δx,q L(α,n)
Δy,q )δtu

n− 1
2

i, j

=(1− γ
2

)(L(α,n)
Δx,q + L(α,n)

Δy,q )un
i, j +

γ

2
(L(α,n−1)
Δx,q + L(α,n−1)

Δy,q )un−1
i, j

+B(2)
n (L(α,n)

Δx,q L(α,n)
Δy,q )u0

i, j + (1− γ
2

)Gn
i, j +

γ

2
Gn−1

i, j .

(4.331)

In this case, αn,n and θn,n in (4.320) are chosen as: αn,n = 1, θn,n = 1− γ
2 .

• Non-ADI method (5): The time derivative is discretized as in (4.290), the
non-ADI method for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j =
1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) =

1
2γ

n∑

k=0

(−1)kω
(γ)
k (L(α,n−k)

Δx,q + L(α,n−k)
Δy,q )un−k

i, j

+B(1)
n (L(α,0)

Δx,q L(α,0)
Δy,q )u0

i, j+C(1)
n

(
L(α,1)
Δx,q L(α,1)

Δy,q u1
i, j− L(α,0)

Δx,q L(α,0)
Δy,q u0

i, j

)

+

n∑

k=0

ω
(γ)
k Gn−k

i, j ,

(4.332)
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where ω(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, B(1)

n is defined by (4.114)

with m = 1, and C(1)
n is defined by (4.119) with m = 1.

ADI method (5): From (4.320) and (4.332), the corresponding ADI method
for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+2−2γΔt1+γ(L(α,n)

Δx,q L(α,n)
Δy,q )δtu

n− 1
2

i, j

=
1
2γ

n∑

k=0

(−1)kω
(γ)
k (L(α,n−k)

Δx,q + L(α,n−k)
Δy,q )un−k

i, j +B(1)
n (L(α,0)

Δx,q L(α,0)
Δy,q )u0

i, j

+C(1)
n

(
L(α,1)
Δx,q L(α,1)

Δy,q u1
i, j − L(α,0)

Δx,q L(α,0)
Δy,q u0

i, j

)
+

n∑

k=0

ω
(γ)
k Gn−k

i, j .

(4.333)

In this situation, αn,n and θn,n in (4.320) are chosen as: αn,n = 1, θn,n = 2−γ for
n > 1. If n = 1, then θn,n = 2−γ +C(1)

1 .

• Non-ADI method (6): The time derivative is discretized as in (4.292), the
non-ADI method for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j =
1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j) = (1− γ

2
)(L(α,n)
Δx,q + L(α,n)

Δy,q )un
i, j +

γ

2
(L(α,n−1)
Δx,q + L(α,n−1)

Δy,q )un−1
i, j

+B(2)
n (L(α,0)

Δx,q + L(α,0)
Δy,q )u0

i, j+C(2)
n

(
L(α,1)
Δx,q L(α,1)

Δy,q u1
i, j − L(α,0)

Δx,q L(α,0)
Δy,q u0

i, j

)

+ (1− γ
2

)Gn
i, j +

γ

2
Gn−1

i, j ,

(4.334)
where ω

(γ)
k = (−1)k

(
γ
k

)
, Gn

i, j =
1
Δtγ

[
D−γ0,t g(xi,yi, t)

]

t=tn
, and B(2)

n is defined by

(4.114) with m = 2, C(2)
n is defined by (4.119) with m = 2.

ADI method (6): From (4.320) and (4.334), the corresponding ADI method
for (4.318) is given by: Find un

i, j (i = 1,2, · · · ,Nx − 1, j = 1,2, · · · ,Ny,n =
1,2, · · · ,nT ), such that

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

i, j −u0
i, j)+

(

1− γ
2

)2
Δt1+γL(α,n)

Δx,q L(α,n)
Δy,q δtu

n− 1
2

i, j

=(1− γ
2

)(L(α,n)
Δx,q + L(α,n)

Δy,q )un
i, j+

γ

2
(L(α,n−1)
Δx,q + L(α,n−1)

Δy,q )un−1
i, j +B(2)

n (L(α,0)
Δx,q + L(α,0)

Δy,q )u0
i, j

+C(2)
n

(
L(α,1)
Δx,q L(α,1)

Δy,q u1
i, j − L(α,0)

Δx,q L(α,0)
Δy,q u0

i, j

)
+ (1− γ

2
)Gn

i, j +
γ

2
Gn−1

i, j .

(4.335)
In such a case, αn,n and θn,n in (4.320) are chosen as: αn,n = 1, θn,n = 1− γ

2 . If
n = 1, then θn,n = 1− γ

2 +C(2)
1 .

If d+(x,y, t) = d−(x,y, t) = K1 and c+(x,y, t) = c−(x,y, t) = K2, K1 and K2 are posi-
tive constants, then the non-ADI methods (4.324), (4.326), (4.328), (4.330), (4.332),
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and (4.334) are unconditionally stable, which are the same for the corresponding
ADI methods (4.325), (4.327), (4.329), (4.331), (4.333), and (4.335).

The convergence of the above methods (4.324)–(4.335) in space are of order
O(Δxp +Δyp). The convergence for the non-ADI methods (4.324), (4.326), (4.328),
(4.330), (4.332), and (4.334) are of order O(Δt), O(Δt2−γ), O(Δt), O(Δt), O(Δt2),
and O(Δt2), respectively. For the ADI methods (4.325), (4.327), (4.329), (4.331),
(4.333), and (4.335), the convergence orders in time are O(Δt), O(Δt2−γ +Δt1+γ),
O(Δt), O(Δt), O(Δt1+γ), and O(Δt1+γ), respectively.

4.5.5 Time-Space Fractional Diffusion Equation with Riemann–Liouville
Derivative in Time

In this subsection, we study the following two-dimensional diffusion equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU = RLD1−γ
0,t

(
L(α)

x + L(α)
y

)
U +g(x,y, t), (x,y, t) ∈ (a,b)× (c,d)× (0,T ],

U(x,y,0) = φ0(x,y), (x,y) ∈ (a,b)× (c,d),
U(a,y) = U(b,y) = 0, (y, t) ∈ (c,d)× (0,T ],
U(x,c) = U(x,d) = 0, (x, t) ∈ (a,b)× (0,T ],

(4.336)

where L(α)
x = d+(x,y)RLDα

a,x + d−(x,y)RLDα
x,b, L(α)

y = c+(x,y)RLDα
c,y + c−(x,y)RLDα

y,d ,
0 < γ≤1, and 1 < α < 2,

We can apply the time discretization techniques for (4.224) to the time discretiza-
tion of (4.336), while the space derivatives can be approximated as those in (4.318).

Next, we introduce the Crank–Nicolson type method used in (4.265) to the time
discretization of (4.336) with the space discretized as in (4.318), which yields the
Crank–Nicolson type non-ADI method for (4.336) as: Find un

i, j (i = 1,2, · · · ,Nx −
1, j = 1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j = δ

(1−γ)
t (L(α,0)

Δx,q + L(α,0)
Δy,q )u

n− 1
2

i, j + f (xi,y j, tn− 1
2
), n = 2,3, · · · ,nT ,

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = un

Nx, j = 0, j = 0,1,2, · · · ,Ny,

un
i,0 = un

i,Ny
= 0, i = 0,1,2, · · · ,Nx,

(4.337)

where L(α,0)
Δx,q and L(α,0)

Δy,q are defined as in (4.303) with d±(x,y, t) = d±(x,y) and

c±(x,y, t) = c±(x,y), and δ(1−γ)
t is defined by

δ
(1−γ)
t u

n− 1
2

i, j =
1
Δt1−γ

⎡
⎢⎢⎢⎢⎢⎢⎣b0u

n− 1
2

i, j −
n−1∑

k=1

(bn−1−k−bn−k)u
k− 1

2
i, j − (bn−1−Bn−1)u

1
2
i, j −An−1u0

i, j

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

in which An = Bn− γ(n+1/2)γ−1

Γ(1+γ) , bn and Bn are defined by

bn =
1

Γ(1+γ)
[
(n+1)γ−nγ

]
, Bn =

2
Γ(1+γ)

[
(n+1/2)γ−nγ

]
.
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From (4.259), (4.266) and (4.337), we can obtain the corresponding ADI method
for (4.336) as: Find un

i, j (i = 1,2, · · · ,Nx−1, j = 1,2, · · · ,Ny,n = 1,2, · · · ,nT ), such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtu
n− 1

2
i, j +

(
an,nΔtγ

)2 L(α,0)
Δx,q L(α,0)

Δy,q δtu
n− 1

2
i, j = δ

(1−γ)
t (L(α,0)

Δx,q + L(α,0)
Δy,q )u

n− 1
2

i, j + f (xi,y j, tn− 1
2
),

u0
i, j = φ0(xi,y j), i = 0,1,2, · · · ,Nx, j = 0,1,2, · · · ,Ny,

un
0, j = un

Nx, j = 0, j = 0,1,2, · · · ,Ny,

un
i,0 = un

i,Ny
= 0, i = 0,1,2, · · · ,Nx,

(4.338)
where an,n =

b0
2 =

1
2Γ(1+γ) for n > 1 and an,n =

1
2 B0 =

21−γ
Γ(1+γ) for n = 1, see also (4.266).

We give the matrix representation of the ADI method (4.338) in the case of
d±(x,y, t) = K1 and c±(x,y, t) = K2 and q = 1 as follows

un−un−1+a2
n,nμ1μ2S (α)

Nx−1(un −un−1)S (α)
Ny−1

=−b0

(

μ1S (α)
Nx−1un− 1

2 +μ2un− 1
2 S (α)

Ny−1

)

+

n−1∑

k=1

(bn−1−k−bn−k)
(

μ1S (α)
Nx−1uk− 1

2 +μ2uk− 1
2 S (α)

Ny−1

)

+ (bn−1−Bn−1)
(

μ1S (α)
Nx−1u

1
2 +μ2u

1
2 S (α)

Ny−1

)

+An−1

(

μ1S (α)
Nx−1u0+μ2u0S (α)

Ny−1

)

,

(4.339)
where S (α)

N is defined as in (4.312), EN is an identity matrix, μ1 =
K1Δtγ

Δxα , and μ2 =
K2Δtγ

Δyα .
The above equation is equivalent to the following form

(

ENx−1+
μ1b0

2
S (α)

Nx−1

)

un
(

ENy−1 +
μ1b0

2
S (α)

Ny−1

)

=

(

ENx−1− μ1b0

2
S (α)

Nx−1

)

un−1
(

ENy−1− μ1b0

2
S (α)

Ny−1

)

+RHS n, n > 1,
(4.340)

where

RHS n =

n−1∑

k=1

(bn−1−k−bn−k)
(

μ1S (α)
Nx−1uk− 1

2 +μ2uk− 1
2 S (α)

Ny−1

)

+ (bn−1−Bn−1)
(

μ1S (α)
Nx−1u

1
2 +μ2u

1
2 S (α)

Ny−1

)

+An−1

(

μ1S (α)
Nx−1u0 +μ2u0S (α)

Ny−1

)

.

For n = 1, one has from (4.339) with an,n = B0

(

ENx−1 +
μ1B0

2
S (α)

Nx−1

)

u1
(

ENy−1+
μ1B0

2
S (α)

Ny−1

)

=

(

ENx−1 − μ1B0

2
S (α)

Nx−1

)

u0
(

ENy−1− μ1B0

2
S (α)

Ny−1

)

+A0

(

μ1S (α)
Nx−1u0+μ2u0S (α)

Ny−1

)

.

(4.341)
Clearly, the linear system (4.340) can be solved by the following two steps:

 



214 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

• Solve
(
ENx−1 +

μ1b0
2 S (α)

Nx−1

)
u∗ =

(
ENx−1 − μ1b0

2 S (α)
Nx−1

)
un−1

(

ENy−1 − μ1b0
2 S (α)

Ny−1

)

+

RHS n to obtain u∗;

• Solve
(

ENy−1 +
μ1B0

2 S (α)
Ny−1

)

(un)T = (u∗)T to obtain un.

It is easy to prove that the non-ADI method (4.337) and ADI method (4.338) are
unconditionally stable when d±(x,y) = K1 and c±(x,y) = K2. From (4.301) and (4.56)
we can derive that the truncation errors of the two methods (4.337) and (4.338) are
O(Δt1+γ +Δxp+Δyp) and O(Δt1+γ +Δt2γ +Δxp+Δyp), respectively.

If the time derivative is discretized as that of (4.30), (4.49), (4.67), or (4.83), we
can also get the corresponding non-ADI and ADI methods, which are unconditionally
stable too.

4.5.6 Numerical Examples

Example 9 Consider the following two-dimensional time-fractional equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDγ
0,tU = ΔU +g(x,y, t), (x,y, t) ∈ (0,1)× (0,1)× (0,1], 0 < γ < 1,

U(x,y,0) = sin(x+ y), (x,y) ∈ [0,1]× [0,1],

U(0,y, t) = (t2+ t+1)sin(y), U(1,y, t) = (t2 + t+1)sin(1+ y), (y, t) ∈ (0,1)× (0,1],

U(x,0, t) = (t2 + t+1)sin(x), U(x,1, t) = (t2 + t+1)sin(1+ x), (x, t) ∈ (0,1)× (0,1].
(4.342)

Choose the suitable right-hand side function g(x,y, t) such that Eq. (4.342) has the
analytical solution U(x,y, t) = (t2 + t+1)sin(x+ y).

Here, we just test the Non-ADI methods (4.290) and (4.292), and ADI methods
(4.291) and (4.293) for solving (4.342); the L2 errors at t = 1 are shown in Table 4.24.
It is found that the numerical results are in line with the theoretical analysis.

Example 10 Consider the following two-dimensional time-space fractional subdif-
fusion equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDγ
0,tU = (RLDα

0,x+ RLDα
x,1)U + (RLDα

0,y+ RLDα
y,1)U +g(x,y, t), 0 < γ < 1,

(x,y, t) ∈ (0,1)× (0,1)× (0,1],

U(x,y,0) = x4(1− x)4y4(1− y)4, (x,y) ∈ [0,1]× [0,1],
U(0,y, t) = U(1,y, t) = 0, (y, t) ∈ (0,1)× (0,1],
U(x,0, t) = U(x,1, t) = 0, (x, t) ∈ (0,1)× (0,1].

(4.343)
Choose the suitable right-hand side function g(x,y, t) such that Eq. (4.343) has the
analytical solution U(x,y, t) = (t2.5 + t+1)x4(1− x)4y4(1− y)4.

In this example, we simply use the ADI methods (4.333) and (4.335) to solve
(4.343), the L2 errors are shown in Tables 4.25 and 4.26, where the convergence
rates in space are also displayed, which is in line with the theoretical analysis.
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TABLE 4.24: The L2 error at t = 1 for Example 9, Nx = Ny = 400.

Method 1/Δt γ = 0.2 order γ = 0.5 order γ = 0.8 order
8 6.7379e−5 1.0877e−4 6.2100e−5

Non-ADI 16 1.7622e−5 1.934 2.6686e−5 2.027 1.5295e−5 2.021
(4.290) 32 4.5357e−6 1.958 6.6719e−6 1.999 3.9165e−6 1.965

64 1.2120e−6 1.904 1.7409e−6 1.938 1.0570e−6 1.889
8 4.3721e−3 1.7653e−3 6.4651e−4

ADI 16 2.2882e−3 0.934 6.8562e−4 1.364 1.9513e−4 1.728
(4.291) 32 1.0662e−3 1.101 2.5169e−4 1.445 5.7258e−5 1.768

64 4.7767e−4 1.158 9.0521e−5 1.475 1.6593e−5 1.786
8 2.0417e−5 3.2626e−5 1.7588e−5

Non-ADI 16 6.6979e−6 1.608 9.6653e−6 1.755 4.9231e−6 1.836
(4.292) 32 1.9191e−6 1.803 2.6386e−6 1.873 1.3474e−6 1.869

64 5.7330e−7 1.743 7.4970e−7 1.815 4.1547e−7 1.697
8 4.6235e−3 2.0422e−3 7.5212e−4

ADI 16 2.4396e−3 0.922 7.8811e−4 1.373 2.2467e−4 1.743
(4.293) 32 1.1392e−3 1.098 2.8766e−4 1.454 6.5421e−5 1.780

64 5.1063e−4 1.157 1.0301e−4 1.481 1.8848e−5 1.795

TABLE 4.25: The L2 error at t = 1 for method (4.333), γ = 0.8,
N = Nx = Ny, Δt = 10−3.

q N α = 1.2 order α = 1.5 order α = 1.8 order
8 4.7596e−6 1.2860e−6 4.9546e−7

16 3.1131e−6 0.6125 8.2419e−7 0.6419 7.9589e−8 2.6381
1 32 1.8470e−6 0.7532 4.6789e−7 0.8168 3.9719e−8 1.0027

64 1.0222e−6 0.8536 2.4942e−7 0.9076 2.7368e−8 0.5373
8 3.7728e−7 5.3728e−7 6.8465e−7

16 9.0740e−8 2.0558 1.2739e−7 2.0765 1.5982e−7 2.0989
2 32 2.2493e−8 2.0123 3.1436e−8 2.0187 3.9251e−8 2.0256

64 5.5972e−9 2.0067 7.7777e−9 2.0150 9.6470e−9 2.0246
8 1.1109e−6 1.2108e−6 1.0371e−6

16 2.8707e−7 1.9523 3.0289e−7 1.9991 2.5046e−7 2.0499
3 32 7.3656e−8 1.9625 7.6649e−8 1.9825 6.2291e−8 2.0075

64 1.8704e−8 1.9775 1.9296e−8 1.9899 1.5465e−8 2.0100
8 6.4331e−7 1.1712e−6 1.1338e−6

16 2.7603e−7 1.2207 4.3286e−7 1.4360 3.2506e−7 1.8024
4 32 1.1582e−7 1.2530 1.2524e−7 1.7892 8.5447e−8 1.9276

64 3.5216e−8 1.7175 3.3269e−8 1.9124 2.1678e−8 1.9788
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TABLE 4.26: The L2 error at t = 1 for method (4.335), γ = 0.8,
N = Nx = Ny, Δt = 10−3.

q N α = 1.2 order α = 1.5 order α = 1.8 order
8 4.7596e−6 1.2860e−6 4.9544e−7

16 3.1131e−6 0.6125 8.2420e−7 0.6418 7.9587e−8 2.6381
1 32 1.8470e−6 0.7532 4.6790e−7 0.8168 3.9735e−8 1.0021

64 1.0222e−6 0.8536 2.4943e−7 0.9076 2.7386e−8 0.5370
8 3.7728e−7 5.3727e−7 6.8463e−7

16 9.0738e−8 2.0558 1.2738e−7 2.0765 1.5980e−7 2.0991
2 32 2.2491e−8 2.0124 3.1429e−8 2.0190 3.9235e−8 2.0261

64 5.5951e−9 2.0071 7.7700e−9 2.0161 9.6307e−9 2.0264
8 1.1109e−6 1.2108e−6 1.0371e−6

16 2.8707e−7 1.9523 3.0289e−7 1.9992 2.5044e−7 2.0500
3 32 7.3654e−8 1.9626 7.6641e−8 1.9826 6.2275e−8 2.0077

64 1.8702e−8 1.9776 1.9289e−8 1.9904 1.5449e−8 2.0112
8 6.4331e−7 1.1712e−6 1.1338e−6

16 2.7603e−7 1.2207 4.3285e−7 1.4360 3.2504e−7 1.8025
4 32 1.1582e−7 1.2530 1.2523e−7 1.7893 8.5430e−8 1.9278

64 3.5214e−8 1.7176 3.3261e−8 1.9127 2.1661e−8 1.9796

Example 11 Consider the following two-dimensional time-space fractional subdif-
fusion equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU = (RLDα
0,x+ RLDα

x,1)U + (RLDα
0,y+ RLDα

y,1)U +g(x,y, t), 0 < γ < 1,

(x,y, t) ∈ (0,1)× (0,1)× (0,1],

U(x,y,0) = x2(1− x)2y2(1− y)2, (x,y) ∈ [0,1]× [0,1],
U(0,y, t) = U(1,y, t) = 0, (y, t) ∈ (0,1)× (0,1],
U(x,0, t) = U(x,1, t) = 0, (x, t) ∈ (0,1)× (0,1].

(4.344)

Choose the suitable right-hand side function g(x,y, t) such that Eq. (4.344) has the
analytical solution U(x,y, t) = cos(t)x2(1− x)2y2(1− y)2.

In this example, we apply the Crank–Nicolson ADI method (4.303) for solving
(4.344); the L2 errors at t = 1 are shown in Table 4.27. We find that the numerical
results fit well with the theoretical analysis.
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TABLE 4.27: The L2 error at t = 1 for the CN ADI method (4.303),
N = Nx = Ny,Δt = 10−3.

q N α = 1.2 order α = 1.5 order α = 1.8 order
8 3.7686e−4 7.8117e−5 3.3292e−5

16 2.4793e−4 0.6041 5.2218e−5 0.5811 4.1518e−6 3.0033
1 32 1.4452e−4 0.7787 2.9435e−5 0.8270 1.7310e−6 1.2621

64 7.8217e−5 0.8857 1.5516e−5 0.9238 1.5218e−6 0.1859
8 2.4268e−5 3.3437e−5 4.8765e−5

16 5.3571e−6 2.1795 7.5303e−6 2.1507 1.1589e−5 2.0731
2 32 1.2359e−6 2.1159 1.7218e−6 2.1288 2.7583e−6 2.0709

64 2.9686e−7 2.0577 4.0167e−7 2.0999 6.5887e−7 2.0657
8 6.3347e−5 6.3789e−5 6.5025e−5

16 1.5670e−5 2.0153 1.5406e−5 2.0498 1.5767e−5 2.0441
3 32 3.9095e−6 2.0029 3.7367e−6 2.0436 3.8143e−6 2.0474

64 9.8287e−7 1.9919 9.1273e−7 2.0335 9.2291e−7 2.0471
8 2.9385e−5 7.6134e−5 7.4103e−5

16 2.0318e−5 0.5323 2.2857e−5 1.7359 1.9482e−5 1.9274
4 32 6.7945e−6 1.5803 6.1342e−6 1.8976 4.9245e−6 1.9841

64 1.9107e−6 1.8303 1.5728e−6 1.9635 1.2212e−6 2.0116

 



Chapter 5
Galerkin Finite Element Methods for
Fractional Partial Differential
Equations

Generally speaking, the finite difference methods for FDEs may have less accuracy.
Even if the higher order difference schemes can be constructed, the strong smooth
conditions must be assumed. In order to weaken the smooth conditions, the Galerkin
finite element methods are established for fractional partial differential equations.

5.1 Mathematical Preliminaries
We first introduce some notations. Let (·, ·)L2(O) be the inner product defined on

the domain O, i.e.,

(u,v)L2(O) =

∫

O
uvdO, ∀u,v∈L2(O),

where O may stand for the finite domain Ω or infinite domain Rd , d is a positive
integer. The L2 norm ‖ · ‖L2(O) is defined as

‖u‖L2(O) =
√

(u,u)L2(O), ∀u∈L2(O).

The Sobolev space Hr(O),r≥0 is defined as a vector space of functions u∈L2(O)
such that all the distributional derivatives of u of order up to r belong to L2(O). In
short,

Hr(O) = {u∈L2(O) : Dαu∈L2(O), |α|≤k, k = 0,1, · · · ,r},
where O is a subset of Rd , Dα = ∂

α1
x1 ∂

α2
x2 · · ·∂αd

xd , α = (α1,α2, · · · ,αd) is a multi-index,
and α j is a non-negative integer with |α| = α1+α2+ · · ·+αd.

The semi-norm and norm associated with the Sobolev space Hr(O) are

|u|Hk(O) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

|α|=k

‖Dαu‖L2(O)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1/2

, ‖u‖Hk(O) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k∑

j=0

|u|2H j(O)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1/2

.

Next, we introduce several other spaces.

219
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Definition 14 ([131]) Let μ > 0 and Ω = (a,b). Define the semi-norm

|u|JμL(Ω) = ‖RLDμ
a,xu(x)‖L2(Ω)

and the norm

‖u‖JμL(Ω) =

(

‖u‖2L2(Ω)+ |u|2JμL(Ω)

)1/2
,

and denote JμL(Ω) (or JμL,0(Ω)) as the closure of C∞(Ω) (or C∞0 (Ω)) with respect to
‖ · ‖JμL(Ω), where C∞0 (Ω) is the space of smooth functions with compact support in Ω.

Definition 15 ([49]) Let μ > 0. Define the semi-norm

|u|JμR(Ω) = ‖RLDμ
x,bu(x,y)‖L2(Ω)

and the norm

‖u‖JμR(Ω) =

(

‖u‖2L2(Ω)+ |u|2JμR(Ω)

)1/2
,

and denote JμR(Ω) (or JμR,0(Ω)) as the closure of C∞(Ω) (or C∞0 (Ω)) with respect to
‖ · ‖JμR(Ω).

Definition 16 ([49]) Let μ > 0,μ�n−1/2,n∈N. Define the semi-norm

|u|JμS (Ω) = |(RLDμ
a,xu(x),RLDμ

x,bu(x))| 12

and the norm

‖u‖JμS (Ω) =

(

‖u‖2L2(Ω)+ |u|2JμS (Ω)

)1/2
,

and let JμS (Ω) (or JμS ,0(Ω)) denote the closure of C∞(Ω) (or C∞0 (Ω)) with respect to
‖ · ‖JμS (Ω).

The fractional Sobolev space Hμ(Ω) can be defined via the Fourier transform
approach [88, 116].

Definition 17 The Fourier transform of u∈L2(R) is defined as

û(ω) = F (u(x)) =
∫

R

e−iωxu(x)dx.

Definition 18 ([116, 131]) Let μ > 0. Define the semi-norm

|u|Hμ(R) = ‖ |ω|μû‖L2(R)

and the norm

‖u‖Hμ(R) =

(

‖u‖2L2(R) + |u|2Hμ(R)

)1/2
,

where û(R) is the Fourier transform of function u. And let Hμ(R) (or Hμ
0 (R)) be the

closure of C∞(R) (or C∞0 (R)) with respect to ‖ · ‖Hμ(R).
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The following lemma presents the properties of the Fourier transform that will be
used later on.

Lemma 5.1.1 ([49, 50]) Let μ > 0, u∈Lp(R), p≥1. The Fourier transform of the left
and right Riemann–Liouville fractional integral and derivatives satisfy:

F (RLD−μ−∞,xu(x)) = (iω)−μû, F (RLD−μx,∞u(x)) = (−iω)−μû, (5.1)

and
F (RLDμ

−∞,xu(x)) = (iω)μû, F (RLDμ
x,∞u(x)) = (−iω)μû, (5.2)

where
û(ω) = F (u(x)) =

∫

R

e−iωxu(x)dx.

Lemma 5.1.2 ([49]) Let μ > 0 be given. Then for a real valued function u(x)

(Dμu,Dμ∗u)L2(R) = cos(μπ)‖Dμu‖2L2(R), (5.3)

in which Dμu := RLDμ
−∞,xu(x), and Dμ∗u := RLDμ

x,∞u(x).

Proof. The following Fourier transform property (the overbar denotes complex
conjugate) is helpful in establishing this result:

∫

R

uv̄dx =
∫

R

û ¯̂vdω. (5.4)

One can observe that

(iω)μ =

⎧
⎪⎪⎨
⎪⎪⎩

exp(−iπμ)(iω)μ, ω≥0,

exp(iπμ)(iω)μ, ω < 0.
(5.5)

Thus,

(Dμu,Dμ∗u)L2(R) =

∫ ∞

−∞
(iω)μû(ω) (iω)μû(ω)dω

=

∫ 0

−∞
(iω)μû(ω) (−iω)μû(ω)dω+

∫ ∞

0
(iω)μû(ω) (−iω)μû(ω)dω.

(5.6)
Using (5.5) yields

(Dμu,Dμ∗u)L2(R)

=

∫ 0

−∞
(iω)μû(ω) exp(−iπμ)(iω)μû(ω)dω

+

∫ ∞

0
(iω)μû(ω) exp(iπμ)(iω)μû(ω)dω

=cos(μπ)
∫ ∞

−∞
(iω)μû(ω)(iω)μû(ω)dω

+ isin(μπ)
(∫ ∞

0
(iω)μû(ω)(iω)μû(ω)dω−

∫ 0

−∞
(iω)μû(ω)(iω)μû(ω)dω

)

.

(5.7)
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For real u(x) we have û(−ω) = û(ω). Hence
∫ ∞

0
(iω)μû(ω)(iω)μû(ω)dω =

∫ 0

−∞
(iω)μû(ω)(iω)μû(ω)dω. (5.8)

Combining (5.7) and (5.8) we obtain

(Dμu,Dμ∗u)L2(R) = cos(μπ)(Dμu,Dμu)L2(R) = cos(μπ)‖Dμu‖2L2(R). (5.9)

Thus the proof is completed. �

Lemma 5.1.3 ([49]) Let μ > 0 be given. The spaces JμL(R), JμR(R), and Hμ(R) are
equal with equivalent semi-norms and norms.

Proof. We first prove that a function u∈L2(R) belongs to JμL(R) if and only if

|ω|μû∈L2(R). (5.10)

Let u∈L2(R) be given. Then Dμu∈L2(R), and from (5.2)

F (Dμu) = F (RLDμ
−∞,xu(x)) = (iω)μû.

Using Plancherel’s theorem, we have
∫

R

|ω|2μ|û|dω =
∫

R

|Dμu|2 dx. (5.11)

Hence,
|u|Hμ(R) = ‖ |ω|μû‖L2(R) = |u|JμL(R). (5.12)

Therefore, the spaces JμL(R), and Hμ(R) are equal, with equivalent semi-norms and
norms. We similarly have that the spaces JμR(R), and Hμ(R) are equal with equivalent
semi-norms and norms. The proof is completed. �

By almost the same reasoning, one has the following results.

Lemma 5.1.4 For μ > 0,μ�n− 1/2,n∈N, the spaces JμL(R) and JμS (R) are equal,
with equivalent semi-norms and norms.

Lemma 5.1.5 Let μ > 0, μ�n− 1/2,n∈N. Then the spaces JμS ,0(Ω) and Hμ
0 (Ω) are

equal, with equivalent semi-norms and norms.

Lemma 5.1.6 Let μ > 0. Then the spaces JμL,0(Ω), JμR,0(Ω), and Hμ
0 (Ω) are equal.

Also, if μ�n−1/2,n∈N, the spaces JμL,0(Ω), JμR,0(Ω), JμS ,0(Ω), and Hμ
0 (Ω) have equiv-

alent semi-norms and norms.

Lemma 5.1.7 (Fractional Poincaré-Friedrichs [49]) For u∈ JμL,0(Ω), 0≤ s≤μ, one
has

‖u‖Js
L(Ω)≤C|u|JμLL(Ω), (5.13)

and for u∈ JμR,0(Ω),μ > 0, we have

‖u‖Js
R(Ω)≤C|u|JμRL(Ω). (5.14)
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Lemma 5.1.8 The left and right Riemann–Liouville fractional integral operators are
adjoints w.r.t. the inner product in L2(Ω),Ω = (a,b) , i.e.,

(D−μa,xu,v)L2(Ω) = (u,D−μx,bv)L2(Ω), u,v∈L2(Ω), μ > 0.

Proof. Interchanging the order of integration yields

(D−μa,xu,v)L2(Ω) =
1
Γ(μ)

∫ b

a

∫ x

a
(x− ξ)μ−1u(ξ)v(x)dξdx

=
1
Γ(μ)

∫ b

a
u(ξ)

∫ b

ξ
(x− ξ)μ−1v(x)dxdξ

=(u,D−μx,bv)L2(Ω).

(5.15)

The proof is completed. �

Lemma 5.1.9 ([64]) For 0 < β,γ < 1, if u(x) ∈ H1(Ω),Ω = (a,b), then

RLDβ
a,x RLDγ

a,xu(x) = RLDβ+γ
a,x u(x). (5.16)

Proof. By the definition of the Riemann–Liouville derivative,

RLDβ
a,x RLDγ

a,xu(x) =
1

Γ(1−β)
d
dx

∫ x

a
(x− s)−β

1
Γ(1−γ)

d
ds

∫ s

a
(s− τ)−γu(τ)dτds.

(5.17)
Interchanging the order of integration yields

RLDβ
a,x RLDγ

a,xu(x)

=
1

Γ(1−β)
1

Γ(1−γ)
d
dx

∫ x

a
(x− s)−β

[

(s−a)−γu(a)+
∫ s

a
(s− τ)−γu′(τ)dτ

]

ds

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
Γ(1−β−γ)

d
dx

∫ x

a
(x− τ)−β−γu(τ)dτ, 0 < β+γ < 1,

1
Γ(2−β−γ)

d2

dx2

∫ x

a
(x− τ)1−β−γu(τ)dτ, 1≤β+γ < 2

=RLDβ+γ
a,x u(x),

(5.18)

which completes the proof. �

Lemma 5.1.10 ([94, 171, 175]) Let 0 < β < 2, Ω = (a,b). Then for any u∈Hβ
0(Ω),

v∈Hβ/2
0 (Ω), we have

(RLDβ
a,xu,v)L2(Ω) = (RLDβ/2

a,x u,RLDβ/2
x,b v)L2(Ω),

(RLDβ
x,bu,v)L2(Ω) = (RLDβ/2

x,b u,RLDβ/2
a,x v)L2(Ω).
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Lemma 5.1.11 ([94, 175]) Let 0 < β < 1, Ω = (a,b). Then for any u∈Hβ(Ω),
v∈Hβ/2(Ω), u(a) = u(b) = 0, we have

(RLDβ
a,xu,v)L2(Ω) = (RLDβ/2

a,x u,RLDβ/2
x,b v)L2(Ω).

Lemma 5.1.12 (Gronwall’s inequality ) Let a(t),q(t) ∈ L[t0, t1], u(t),b(t), t ∈ [t0, t1]
be real valued continuous functions; b(t) and q(t) are nonnegative functions satisfy-
ing

u(t)≤a(t)+q(t)
∫ t

t0
b(s)u(s)ds, ∀t ∈ [t0, t1].

Then we have

u(t)≤a(t)+q(t)
∫ t

t0
a(s)b(s)exp

(∫ t

s
q(r)b(r)dr

)

ds, ∀t ∈ [t0, t1].

Lemma 5.1.13 (Discrete Gronwall’s inequality ) Let xn be real positive numbers,
H,C,Δt > 0, x0≤H. xn satisfies

xn≤CΔt
n−1∑

k=0

xk +H.

Then we have
xn≤H exp(CnΔt).

In the following sections, we introduce the Galerkin FEM for the fractional
differential equations. We mainly focus on stationary fractional advection disper-
sion equations [49, 152], space-fractional diffusion equations [178, 181, 182], time-
fractional differential equations [52, 167, 168], time-space fractional differential
equations [92, 179]. Other numerical methods such as Discontinuous Galerkin meth-
ods [23, 109, 180, 181] are not going to be presented in this book.

5.2 Galerkin FEM for Stationary Fractional Advection Disper-
sion Equation

This section deals with the following steady state fractional advection dispersion
equation [49]

Lu =−Da (pD−β0,x+qD−βx,1)Du+b(x)Du+c(x)u= f , x∈Ω= (xL, xR)= (0,1), (5.19)

with the boundary conditions
u = 0, x∈∂Ω, (5.20)

where D represents a single spatial derivative, 0≤β < 1, a > 0, b(x)∈C1(Ω̄),
c(x)∈C(Ω̄) with c −Db/2≥0, and p+ q = 1, 0≤ p,q≤1. The main results in this
section come from [49].
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5.2.1 Notations and Polynomial Approximation

In this subsection, we introduce some notations and lemmas that are needed in
the following sections.

Let Ω = (xL, xR) be a general finite domain, and denote by (·, ·) the inner product
on the space L2(Ω) with the L2 norm ‖·‖ and the maximum norm ‖·‖∞. Denote Hr(Ω)
and Hr

0(Ω) as the commonly used Sobolev spaces with the norm ‖ · ‖r and semi-norm
| · |r, respectively. Define Pr(Ω) as the space of polynomials defined on Ω with the
degree no greater than r, r∈Z+. Let S h be a uniform partition ofΩ, which is given by

xL = x0 < x1 < · · · < xN−1 < xN = xR, N ∈ Z+.

Denote by h = (xR− xL)/N = xi− xi−1 and Ωi = [xi−1, xi] for i = 1,2, · · · ,N. We define
the finite element space Xr

h as the set of piecewise polynomials with degree at most
r (r≥1) on the mesh S h, which can be expressed by

Xr
h = {v : v|Ωi ∈Pr(Ωi),v∈C(Ω)}.

Introduce the piecewise interpolation operator Ih : C(Ω̄)→ Xr
h as

Ihu
∣∣∣
Ωi
=

r∑

k=0

u(xi
k)Fi

k(x), u∈C(Ω̄),

where Fi
k(x) are Lagrangian basis functions defined by

Fi
k(x) =

r∏

l=0,l�k

x− xi
l

xi
k − xi

l

, i = 1,2, · · · ,N,

and {xi
k,k = 0,1, · · · ,r} are the interpolation nodes on the interval Ωi with xi

0 = xi−1

and xi
r = xi.

Define ϕi (i = 0,1, · · · ,N) and ϕi
k (k = 1,2, · · · ,r−1; i = 1,2, · · · ,N) as

ϕi
k(x) =

⎧
⎪⎪⎨
⎪⎪⎩

Fi
k(x), x∈ [xi−1, xi], k = 1,2, · · · ,r−1, i = 1, · · · ,N,

0, others,

ϕi(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fi
r(x), x∈ [xi−1, xi], i = 1, · · · ,N −1,

Fi+1
0 (x), x∈ [xi, xi+1], i = 1, · · · ,N −1,

0, others,

ϕ0(x) =

⎧
⎪⎪⎨
⎪⎪⎩

F1
0(x), x∈ [x0, x1],

0, others,

ϕN(x) =

⎧
⎪⎪⎨
⎪⎪⎩

FN
r (x), x∈ [xN−1, xN],

0, others.

Let Xr
h0 = Xr

h∩H1
0(Ω). Then the spaces Xr

h0 and Xr
h can be expressed as

Xr
h0 = span

{
ϕi

k,k = 1,2, · · · ,r−1, i = 1,2, · · · ,N
}
∪
{
ϕi, i = 1,2, · · · ,N −1

}
,

Xr
h = span

{
ϕi

k,k = 1,2, · · · ,r−1, i = 1,2, · · · ,N
}
∪
{
ϕi, i = 0,1, · · · ,N

}
.
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Denote by

φ j(x) =

⎧
⎪⎪⎨
⎪⎪⎩

ϕi
k(x), j = (i−1)r+ k, k = 1,2, · · · ,r−1, i = 1,2, · · · ,N,
ϕi(x), j = ir, i = 0,1, · · · ,N. (5.21)

Then

Xr
h0 = span

{
φ j, j = 1,2, · · · ,Nr−1

}
,

Xr
h = span

{
φ j, j = 0,1,2, · · · ,Nr

}
.

The orthogonal projection operator Π1,0
h : H1

0(Ω)→ Xr
h0 is defined as

(∂x(u−Π1,0
h u),∂xv) = 0, u∈H1

0(Ω),∀v∈Xr
h0. (5.22)

Next, we introduce the properties of the projectorΠ1,0
h and interpolation operator

Ih that will be used later on.

Lemma 5.2.1 ([9]) Let m,r∈Z+, r≥1, and u ∈ Hm(Ω)∩H1
0(Ω). If 1≤m≤r+1, then

there exists a positive constant C independent of h, such that

‖u−Π1,0
h u‖Hl(Ω)≤Chm−l‖u‖Hm(Ω), 0≤ l≤1.

Lemma 5.2.2 ([3]) Let m, l be nonnegative numbers, r∈Z+, r≥1, and u ∈ Hm(Ω). If
0≤ l≤m≤r+1, then there exists a positive constant C independent of h, such that

‖u− Ihu‖Hl(Ω)≤Chm−l‖u‖Hm(Ω), 0≤ l≤1.

5.2.2 Variational Formulation

In order to derive a variational form of the problem (5.19)-(5.20), we assume
that u is a sufficiently smooth solution of (5.19)-(5.20). We multiply by an arbitrary
v∈C∞0 (Ω) to obtain

∫

Ω

(
−D(apD−β0,x+aqD−βx,1)Du+b(x)Du+ c(x)u

)
vdx =

∫

Ω

f vdx.

Integrating by parts and noting that v = 0 on ∂Ω gives
∫

Ω

[
a(pD−β0,x+qD−βx,1)DuDv+b(x)Duv+ c(x)uv

]
dx =

∫

Ω

f vdx.

For convenience, when we are working on a fixed domain Ω, we often omit the
set in the notations and write simply (·, ·) = (·, ·)L2(Ω), ‖ · ‖ = ‖ · ‖L2(Ω), | · |r = | · |Hr(Ω),
and ‖ · ‖r = ‖ · ‖Hr(Ω).

For 0≤β < 1 and u = 0 on ∂Ω, we have

D−β0,xDu = RLD1−β
0,x u, DD−β0,xDu = RLD2−β

0,x u,
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D−βx,1Du = RLD1−β
x,1 u, DD−βx,1Du = RLD2−β

x,1 u.

Let α = 1−β/2. Then 1/2 < α≤1. Define the bilinear form A : Hα
0 (Ω)×Hα

0 (Ω)→
R as

A(u,v) = ap(D−β0,xu,Dv)+aq(D−βx,1Du,Dv)+ (bDu,v)+ (cu,v). (5.23)

For a given function f ∈H−α(Ω), we define the associated linear functional F :
Hα

0 (Ω)→ R as
F(v) = ( f ,v). (5.24)

Obviously, the duality pairing in (5.24) is well defined for u,v∈Hα
0 (Ω). Therefore,

we have
A(u,v) = F(v), v∈Hα

0 (Ω). (5.25)

Next, we prove that the variational form (5.25) has a unique solution in Hα
0 (Ω).

We need to introduce some concepts and conclusions.

Definition 19 ([3]) A linear space V together with an inner product (·, ·) is called an
inner-product space and is denoted by (V, (·, ·)).
Definition 20 ([3]) Let (V, (·, ·)) be an inner-product space. If the associated normed
linear space (V, ‖ · ‖V ) is complete, then (V, (·, ·)) is called a Hilbert space.

Definition 21 ([3]) A bilinear form A(·, ·) on a normed linear space H is said to be
bounded (or continuous) if there exists a positive constant C such that

A(v,w)≤C‖v‖H‖w‖H , v,w∈H,

and coercive on V ⊂ H if there exists a positive constant c0 such that

A(v,v)≥c0‖v‖2H , v∈V.

Theorem 34 (Lax-Milgram Theorem [3]) Given a Hilbert space (V, (·, ·)), a contin-
uous, coercive bilinear form A(·, ·) and a continuous linear functional F ∈V′, V′ is
the dual space of V, there exists a unique u∈V such that

A(u,v) = F(v), v∈V. (5.26)

From Theorem 34, we can obtain that there exists a unique solution to (5.25).

Theorem 35 There exists a unique solution u∈Hα
0 (Ω) to (5.25) satisfying

‖u‖Hα(Ω)≤C‖ f ‖H−α(Ω). (5.27)

Proof. In order to prove the uniqueness of the solution u to (5.25), we need to
prove that the bilinear form A(u,v) is continuous and coercive. We first prove the
coercivity. It is easy to obtain

A(u,u) =ap(D−β0,xDu,Du)+aq(D−βx,1Du,Du)+ (bDu,u)+ (cu,u)

=ap(D−β0,xDu,Du)+aq(D−βx,1Du,Du)+ ((c−Db/2)u,u)

≥ap(D−β0,xu,Du)+aq(D−βx,1Du,Du),
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where we have used (c−Db/2)≥0.
Noting that u = 0 on ∂Ω, and using Lemmas 5.1.8, 5.1.9, and 5.1.10, we have

(D−β0,xDu,Du) = (D−β/20,x Dα
0,xu,Du) = −(Dα

0,xu,Dα
x,1u),

(D−βx,1Du,Du) = −(Dα
x,1u,Dα

0,xu).

Therefore,
A(u,u)≥ −a(Dα

0,xu,Dα
x,1u) = a|u|2JαS (Ω).

The semi-norm equivalence of JαS ,0(Ω) and Hα
0 (Ω) (see Lemma 5.1.5) implies that

A(u,u)≥a|u|2JαS (Ω)≥C|u|2Hα(Ω).

Since u = 0 on ∂Ω, from fractional Poincaré–Friedrichs inequality (see Lemma 5.1.7)
and Lemma 5.1.6, we have

‖u‖2Hα(Ω)≤C|u|2Hα(Ω).

Therefore,
A(u,u)≥C0‖u‖2Hα(Ω). (5.28)

Next, we prove the continuity of A(u,v). From the definition of A(u,v) (see Eqs.
(5.24)) and (5.2.2) we have

|A(u,v)|≤ap|(D−β0,xDu,Dv)|+aq|(D−βx,1Du,Dv)|+ |(bDu,v)|+ |(cu,v)|
=ap|(Dα

0,xu,Dα
x,1v)|+aq|(Dα

x,1u,Dα
0,xv)|+ |(bDu,v)|+ |(cu,v)|

≤ap‖u‖JαL (Ω)‖v‖JαR (Ω) +aq‖u‖JαR(Ω)‖v‖JαL (Ω)

+C‖u‖Hα(Ω)‖v‖Hα(Ω)+ ‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤C‖u‖Hα(Ω)‖v‖Hα(Ω),

(5.29)

where we have used ‖bu‖Hα(Ω)≤C‖u‖Hα(Ω) for b∈C1(Ω̄) (see Lemma 3.2 in [49]).
For the linear functional F(v), we have

|F(v)| = |( f ,v)|≤‖ f ‖H−α(Ω)‖v‖Hα(Ω).

Therefore,
C‖u‖2Hα(Ω)≤|A(u,u)|≤C1‖ f ‖H−α(Ω)‖u‖Hα(Ω),

which yields (5.27).
From Theorem 34, we know that there exists a unique solution u∈Hα

0 (Ω) of
(5.25) satisfying (5.27). All this completes the proof. �
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5.2.3 Finite Element Solution and Error Estimates

From (5.25), we have the finite element solution to (5.19)-(5.20) as: Find uh∈Xr
h0,

such that
A(uh,v) = F(v), v∈Xr

h0. (5.30)

Theorem 36 (Cea’s lemma) Let u be the solution to (5.25). Then the finite element
solution uh to (5.30) satisfies

‖u−uh‖Hα(Ω)≤C‖u− v‖Hα(Ω), ∀v∈Xr
h0. (5.31)

Proof. From (5.25) and (5.30), we have

A(u−uh,v) = 0, ∀v∈Xr
h0.

From (5.28) and (5.29) we have for uh,vh∈Xr
h0

‖u−uh‖2Hα(Ω)≤
1

C0
A(u−uh,u−uh) =

1
C0

A(u−uh,u− vh+ vh−uh)

=
1

C0
A(u−uh,u− vh)≤ C

C0
‖u−uh‖Hα(Ω)‖u− vh‖Hα(Ω),

which yields (5.26). The proof is completed. �

Next, we discuss the error estimate.

Theorem 37 Let u∈Hα
0 (Ω)∩Hr(Ω),α≤r and uh be the solution to (5.25) and (5.30),

respectively. Then there exists a positive constant C independent of h such that

‖u−uh‖Hα(Ω)≤Chr−α‖u‖Hr(Ω). (5.32)

Proof. From Theorem 36 we have

‖u−uh‖Hα(Ω)≤C‖u− Ihu‖Hα(Ω)≤Chr−α‖u‖Hr(Ω), (5.33)

where we have used Lemma 5.1.12. All this ends the proof. �

Next, we apply the Aubin–Nitsche trick to obtain the error estimate in L2 norm.
Consider the following problem

⎧
⎪⎪⎨
⎪⎪⎩

−Da (pD−β0,x+qD−βx,1)Dw+b(x)Dw+ c(x)w = g, x∈Ω,
w = 0, x∈∂Ω.

(5.34)

Suppose that w is the solution to (5.34) with g = e = u−uh. Then w satisfies the
following variational form

A(w,v) = (e,v), v∈Hα
0 (Ω). (5.35)

According to [131], the solution w to (5.35) satisfies the following regularity

‖w‖H2α(Ω)≤C‖e‖L2(Ω), for α �
3
4
. (5.36)

Now, we give the following convergence estimate in the L2 norm.
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Theorem 38 Let u∈Hα
0 (Ω)∩Hr(Ω),3/4< α≤r and uh be the solutions to (5.25) and

(5.30), respectively. Then there exists a positive constant C independent of h such
that

‖u−uh‖L2(Ω)≤Chr‖u‖Hr(Ω). (5.37)

Proof. Substituting v = e = u−uh in (5.35), and applying Galerkin orthogonality
A(e,v) = 0,∀v∈Xr

h0, we have

‖e‖2L2(Ω) =A(e,w) = A(e,w− Ihw+ Ihw)

=A(e,w− Ihw)≤C‖e‖Hα(Ω)‖w− Ihw‖Hα(Ω)

≤Chα‖e‖Hα(Ω)‖w‖H2α(Ω)

≤Chα‖e‖Hα(Ω)‖e‖L2(Ω).

It follows that

‖u−uh‖L2(Ω)≤Chα‖u−uh‖Hα(Ω)≤Chr‖u‖Hr(Ω),

where we have used (5.32), which completes the proof. �

5.3 Galerkin FEM for Space-Fractional Diffusion Equation
In this section, we introduce the Galerkin FEM for the space-fractional partial

differential equations in one space dimension. For the case of two space dimensions,
see [6, 7, 8, 170].

Consider the following model of the space-fractional diffusion equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu = RZD2α
x u+ f (x, t), (x, t) ∈Ω× (0,T ],

u(x,0) = φ0(x), x ∈Ω,
u = 0, (x, t) ∈ ∂Ω× (0,T ],

(5.38)

where 1/2 < α≤1,Ω= (a,b), and RZD2α
x is the Riesz space fractional derivative oper-

ator of order 2α defined as

RZD2α
x u = −c2α(RLD2α

a,x+ RLD2α
x,b)u, c2α =

1
2cos(απ)

.

5.3.1 Semi-Discrete Approximation

We first write the variational formulation for (5.38). Multiplying v∈Hα
0 (Ω) on

both sides of (5.38) and integrating in space yield

(∂tu,v) =(RZD2α
x u,v)+ ( f ,v)

=− c2α(RLDα
a,xu,RLDα

x,bv)+ (RLDα
x,bu,RLDα

a,xv)+ ( f ,v),
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where Lemma 5.1.10 is used. Let

A(u,v) = c2α
[
(RLDα

a,xu,RLDα
x,bv)+ (RLDα

x,bu,RLDα
a,xv)

]
. (5.39)

Then we have
(∂tu,v)+A(u,v)= ( f ,v), ∀v∈Hα

0 (Ω). (5.40)

Therefore, the weak formulation of (5.38) reads as: Find U(t) = U(·, t)∈Hα
0 (Ω),

U(0) = u(0) such that

(∂tU,v)+A(U,v) = ( f ,v), ∀v∈Hα
0 (Ω). (5.41)

Now we give the following theorem.

Theorem 39 Let 1/2 < α < 1 and t∈ (0,T ]. Suppose that u(t)∈Hα
0 (Ω) is a solution

to (5.41). Then u is the unique solution to (5.41) satisfying

‖U(t)‖2+C
∫ t

0
‖U(s)‖2Hα(Ω) ds≤‖u(0)‖2+ 1

C

∫ t

0
‖ f (s)‖2 ds,

where C is a positive constant.

Proof. We show that A(u,v) defined by (5.39) is continuous and coercive. It is
easy to verify that

|A(u,v)|≤ − c2α
(
|(RLDα

a,xu,RLDα
x,bv)|+ |(RLDα

x,bu,RLDα
a,xv)|

)

≤ − c2α
(
|u|JαL (Ω)|v|JαR(Ω)+ |u|JαR(Ω)|v|JαL (Ω)

)

≤C‖u‖Hα(Ω)‖v‖Hα(Ω),

(5.42)

where Lemma 5.1.6 is used when u,v∈Hα
0 (Ω). Inequality (5.42) means that A(u,v) is

continuous. For coercivity, we have

A(u,u)=2c2α(RLDα
a,xu,RLDα

x,bu)=2c2α cos(απ)‖RLDα
a,xũ‖2L2(R)

=‖RLDα
a,xũ‖2L2(R) = |u|2Hα(Ω)

≥C‖u‖2Hα(Ω),

(5.43)

where ũ is the zero extension of u outside Ω.
Letting v = U in (5.41) yields

(∂tU,U)+A(U,U) =
1
2

d
dt
‖U(t)‖2 +A(U,U) = ( f ,U). (5.44)

From (5.43) and (5.44), we have

1
2

d
dt
‖U(t)‖2 +C0‖U(t)‖2Hα(Ω)≤

1
4ε
‖ f (t)‖2 + ε‖U(t)‖2

≤ 1
4ε
‖ f (t)‖2 + ε‖U(t)‖2Hα(Ω),

(5.45)
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where ε is a suitable positive constant. Choosing ε = C0
2 and integrating over (0, t),

we have

‖U(t)‖2 +C0

∫ t

0
‖U(s)‖2Hα(Ω) ds≤‖u(0)‖2+ 1

C0

∫ t

0
‖ f (s)‖2 ds. (5.46)

Next, we prove the uniqueness. Suppose that u,w are two solutions to (5.41). Let
e = u−w with e(0) = 0. Then we have

(∂te,v)+A(e,v)= 0. (5.47)

From (5.46), we have

‖e(t)‖2+C0

∫ t

0
‖e(s)‖2Hα(Ω) ds≤0,

which yields e(t) = 0, i.e., u = w. The proof is completed. �

Next, we give the semi-discrete approximation for (5.38), which reads as: Find
uh = uh(·, t)∈Xα

h0 such that

(∂tuh,v)+A(uh,v) = (Ih f ,v), ∀v∈Xα
h0 (5.48)

with initial condition uh(0) = Ihu(0).
Now, we give the matrix representation of (5.48). Suppose that uh(t)∈Xα

h0 has the
following representation

uh(t) = uh(x, t) =
Nr−1∑

j=1

c j(t)φ j(x), (5.49)

where φ j is defined by (5.21). Inserting uh(t) into (5.48) and letting v = φ j, j =
1,2, · · · ,Nr−1, we can obtain

M
dc(t)

dt
+S c(t) = F(t), (5.50)

in which c(t) = (c1(t),c2(t), · · · ,cNr−1(t))T , (F(t)) j = (Ih f (t),φ j), and

(M)i, j = (φi,φ j), (S )i, j = A(φi,φ j). (5.51)

Eq. (5.50) is a linear ordinary differential equation, which can be solved by using the
Euler method, the trapezoidal rule, or high order methods. The initial value c(0) can
be obtained from the initial condition φ0(x) in (5.38).

Similar to Theorem 39, we can prove that the semi-discrete approximation (5.48)
has a unique solution, which has the similar bound as that of (5.46).

Theorem 40 Let 1/2 < α < 1 and t∈ (0,T ]. Suppose that uh(t)∈Xr
h0 is a solution to

(5.48). Then uh is the unique solution to (5.48) satisfying

‖uh(t)‖2+C
∫ t

0
‖uh(s)‖2Hα(Ω) ds≤‖uh(0)‖2+ 1

C

∫ t

0
‖Ih f (s)‖2 ds,

where C is a positive constant.
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Next, we discuss the error estimate for the semi-discrete scheme (5.48). We first
introduce a projector Πα,0h : Hα

0 (Ω)→Xr
h0 as

A(Πα,0h u−u,v) = 0, u∈Hα
0 (Ω), ∀v∈Xr

h0, (5.52)

in which A(u,v) is defined by (5.39).

Lemma 5.3.1 Let u∈Hm(Ω)∩Hα
0 (Ω),α≤m≤r+1,1/2 < α < 1. Then there exists a

positive constant C independent of h such that

‖Πα,0h u−u‖Hα(Ω)≤Chm−α‖u‖Hm(Ω). (5.53)

Proof. We first prove (5.53). From (5.52), we have

A(Πα,0h u−u,Πα,0h u−u) =A(Πα,0h u−u,Πα,0h u− Ihu+ Ihu−u)

=A(Πα,0h u−u, Ihu−u)

≤C‖Πα,0h u−u‖Hα(Ω)‖Ihu−u‖Hα(Ω).

From the coercivity of A(u,v), we have

‖Πα,0h u−u‖2Hα(Ω)≤C0A(Πα,0h u−u,Πα,0h u−u)

≤C‖Πα,0h u−u‖Hα(Ω)‖Ihu−u‖Hα(Ω).

Canceling the factor ‖Πα,0h u−u‖Hα(Ω) in the above equation and using Lemma 5.1.12
yields

‖Πα,0h u−u‖Hα(Ω)≤C‖Ihu−u‖Hα(Ω)≤Chm−α‖u‖Hm(Ω). (5.54)

Hence, inequality (5.53) holds. �

Let u∗(t) = Πα,0h u(t), η(t) = u(t)−u∗(t) and e(t) = u∗(t)−uh(t). Then we can obtain
the error equation of the semi-discrete approximation (5.48) as

(∂te,v)+A(e,v)= −(∂tη,v)+ ( f − Ih f ,v), ∀v∈Xα
h0. (5.55)

Now we can get the following result.

Theorem 41 Let 1/2 < α < 1 and t∈ (0,T ]. Suppose that u(t)∈Hα
0 (Ω)∩Hr+1(Ω) is a

solution to (5.41), uh(t) is the solution to (5.48), and f (t)∈Hr+1(Ω). Then

(∫ t

0
‖u(s)−uh(s)‖2Hα(Ω) ds

)1/2

≤Chr+1−α,

where C is a positive constant.
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Proof. From (5.55) and Theorem 39, we have

‖e(t)‖2+C
∫ t

0
‖e(s)‖2Hα(Ω) ds

≤‖e(0)‖2+ 1
C

∫ t

0

(
‖∂sη(s)‖2+ ‖ f (s)− Ih f (s)‖2

)
ds

≤Ch2r+2‖u(0)‖2Hr+1(Ω)+Ch2r+2−2α
∫ t

0
‖∂su(s)‖2Hr+1(Ω) ds

+Ch2r+2
∫ t

0
‖ f (s)‖2Hr+1(Ω) ds

≤Ch2r+2−2α.

(5.56)

Hence,
∫ t

0
‖u(s)−uh(s)‖2Hα(Ω) ds≤

∫ t

0
‖e(s)‖2Hα(Ω) ds+

∫ t

0
‖η(s)‖2Hα(Ω) ds

≤Ch2r+2−2α.

(5.57)

The proof is completed. �

5.3.2 Fully Discrete Approximation

In the previous subsection, we investigate the semi-discrete approximation for
(5.41), where the space is approximated by the finite element method. In application,
the semi-discrete scheme is not suitable for real computations. In this subsection, we
discuss the fully discrete approximation for (5.41). The time discretization can be
accomplished in several possible ways, such as the Euler method, the trapezoidal
method, etc.

Next, we present the first fully discrete algorithm. The time direction is dis-
cretized by the backward Euler method, the space is discretized by the finite element
method, the fully discretized approximation for (5.41) reads as: Find un

h∈Xr
h0,n =

1,2, · · · ,nT , such that
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v)+A(un

h,v) = (Ih f n,v), ∀v∈Xα
h0,

u0
h = Ihφ0,

(5.58)

where

δtu
n− 1

2
h =

un
h−un−1

h

Δt
. (5.59)

If the time direction is discretized by the Crank–Nicolson method, we can obtain
the fully discrete approximation for (5.41) as: Find un

h∈Xr
h0,n= 1,2, · · · ,nT , such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v)+A(u

n− 1
2

h ,v) = (Ih f (tn− 1
2
),v), ∀v∈Xα

h0,

u0
h = Ihφ0,

(5.60)
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where

u
n− 1

2
h =

un
h+un−1

h

2
. (5.61)

We investigate the stability and convergence for (5.58).

Theorem 42 Let 1/2 < α < 1. Suppose that uk
h,k = 1,2, · · · ,nT is a solution to (5.58)

and f ∈C([0,T ],L2(Ω)). Then

‖uk
h‖2Hα(Ω)≤C‖u0

h‖2Hα(Ω)+CΔt
k∑

n=1

‖ f n‖2,

where C is a positive constant independent of n and h.

Proof. Letting v = δtu
n− 1

2
h in (5.58) yields

(δtu
n− 1

2
h , δtu

n− 1
2

h )+A(un
h, δtu

n− 1
2

h ) = (Ih f n, δtu
n− 1

2
h ). (5.62)

Using the Cauchy–Schwarz inequality and the coercivity of A(u,v) yields

A(un
h,u

n
h)−A(un−1

h ,un−1
h )≤ Δt

4
‖Ih f n‖2. (5.63)

Hence

A(un
h,u

n
h)≤A(u0

h,u
0
h)+CΔt

n∑

k=1

‖Ih f k‖2.

Summing n from 1 to k and using ‖Ih f n‖≤C‖ f n‖ lead to

A(un
h,u

n
h)≤A(u0

h,u
0
h)+CΔt

n∑

k=1

‖Ih f k‖2.

Applying (5.42) and (5.43) gives the desired result.
The proof is thus completed. �

Let un∗ = Π
α,0
h un, ηn = un−un∗ and en = un∗ −un

h. From (5.40) we have

(∂tu(tn),v)+A(u(tn),v) = ( f n,v), ∀v∈Hα
0 (Ω). (5.64)

Replacing uh in (5.60) with u∗ leads to

(δtu
n− 1

2∗ ,v)+A(un∗,v) = (Ih f (tn),v)+R. (5.65)

Eliminating R from (5.60), (5.64) and (5.65) yields

(δten− 1
2 ,v)+A(en,v) = (δtun∗ −∂tu(tn),v)+ ( f n− Ih f n,v), ∀v∈Xr

h0. (5.66)

Next we can obtain the following convergence result.
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Theorem 43 Let 1/2<α < 1, m≥r+1. Suppose that uk
h, k = 1,2, · · · ,nT is a solution

to (5.58), u is the solution to (5.38). If u∈H2([0,T ],Hm(Ω)∩H1
0(Ω)), φ0∈Hm(Ω), and

f ∈C([0,T ],Hm(Ω)), then

‖u(tk)−uk
h‖Hα(Ω)≤C(Δt+hr+1−α),

where C is a positive constant independent of k,Δt and h.

Proof. From Theorem 42, we have

‖ek‖2Hα(Ω)≤‖e0‖2Hα(Ω) +CΔt
k∑

n=1

(‖δtu
n− 1

2∗ −∂tu(tn)‖2+ ‖ f n − Ih f n‖2).

Noting that

‖e0‖ = ‖Ihφ0−φ0+φ0−Πα,0h φ0‖≤Chr+1−α‖φ0‖Hr+1(Ω),

‖ f n − Ih f n‖≤Chr+1−α‖ f n‖Hr+1(Ω),

and
‖δtu

n− 1
2∗ −∂tu(tn)‖2 = ‖− δtη

n− 1
2 + δtun− 1

2 −∂tu(tn)‖2

≤C
(

h2r+2Δt−1
∫ tn

tn−1

‖∂tu‖2Hr+1−α(Ω) dt+
∫ tn

tn−1

‖∂2
t u‖dt

)

,

we have ‖ek‖Hα(Ω)≤Chr+1−α. Using ‖u(tk)− uk
h‖Hα(Ω)≤‖ηk‖Hα(Ω) + ‖ek‖Hα(Ω) yields

the desired result. The proof is completed. �

Next, we analyze the method (5.60).

Theorem 44 Let 1/2 < α < 1. Suppose that uk
h,k = 1,2, · · · ,nT is a solution to (5.60)

and f ∈C([0,T ],L2(Ω)). Then one has

‖uk
h‖2Hα(Ω)≤C‖u0

h‖2Hα(Ω)+CΔt
k∑

n=1

‖ f (tn− 1
2
)‖2, (5.67)

where C is a positive constant independent of n,Δt and h.

Proof. Letting v = δtu
n− 1

2
h in (5.60) yields

(δtu
n− 1

2
h , δtu

n− 1
2

h )+A(u
n− 1

2
h , δtu

n− 1
2

h ) = (Ih f n− 1
2 , δtu

n− 1
2

h ). (5.68)

Using the Cauchy–Schwarz inequality yields

‖δtu
n− 1

2
h ‖2 +A(u

n− 1
2

h , δtu
n− 1

2
h )≤‖δtu

n− 1
2

h ‖2 +C‖Ih f (tn− 1
2
)‖2. (5.69)

Rearranging the above inequality and using the property A(u,v) = A(v,u) gives

A(un
h,u

n
h)≤A(un−1

h ,un−1
h )+CΔt‖Ih f (tn− 1

2
)‖2. (5.70)

 



Chapter 5 Galerkin Finite Element Methods for FPDEs 237

Summing n from 1 to k and using ‖Ih f n‖≤C‖ f n‖ lead to

A(uk
h,u

k
h)≤A(u0

h,u
0
h)+CΔt

k∑

n=1

‖ f (tn− 1
2
)‖2. (5.71)

Using the coercivity and continuity of A(u,v) yields (5.67).
The proof is completed. �

Next, we show the convergence of (5.60).

Theorem 45 Let 1/2< α < 1,m≥r+1. Suppose that uk
h,k = 1,2, · · · ,nT is solution of

(5.60), u is the solution to (5.38). If u∈H3([0,T ],Hm(Ω)∩H1
0(Ω)), φ0∈Hm(Ω), and

f ∈C([0,T ],Hm(Ω)), then

‖u(tk)−uk
h‖Hα(Ω)≤C(Δt2 +hr+1−α), (5.72)

where C is a positive constant independent of k,Δt and h.

Proof. The error equation of (5.66) can be written as

(δten− 1
2 ,v)+A(en− 1

2 ,v) = (δtu
n− 1

2∗ −∂tu(tn− 1
2
),v)+ ( f (tn− 1

2
)− Ih f (tn− 1

2
),v). (5.73)

From Theorem 44, we have

‖ek‖2Hα(Ω)≤‖e0‖2Hα(Ω)+CΔt
k∑

n=1

(‖δtu
n− 1

2∗ −∂tu(tn− 1
2
)‖2+ ‖ f (tn− 1

2
)− Ih f (tn− 1

2
)‖2).

(5.74)
For e0, we have

‖e0‖Hα(Ω) =‖Ihφ0−Πα,0h u0‖Hα(Ω)

≤‖Ihφ0−φ0‖Hα(Ω)+ ‖φ0−Πα,0h u0‖Hα(Ω)

≤Chr+1−α‖φ0‖Hr+1(Ω).

For ‖δtu
n− 1

2∗ −∂tu(tn− 1
2
)‖ and ‖ f (tn− 1

2
)− Ih f (tn− 1

2
)‖, we have

‖δtu
n− 1

2∗ −∂tu(tn− 1
2
)‖2≤‖δtu

n− 1
2∗ − δtun− 1

2 ‖2 + ‖δtun− 1
2 −∂tu(tn− 1

2
)‖2

≤CΔt−1h2r+2
∫ tn

tn−1

‖∂tu(t)‖Hr+1(Ω) dt+CΔt3
∫ tn

tn−1

‖∂3
t u(t)‖dt,

(5.75)
and

‖ f (tn− 1
2
)− Ih f (tn− 1

2
)‖≤Chr+1‖ f (t)‖Hr+1(Ω). (5.76)

Hence,
‖ek‖Hα(Ω)≤C(Δt2 +hr+1).

Using ‖u(tk)−uk
h‖Hα(Ω)≤‖u(tk)−Πα,0h u(tk)‖Hα(Ω)+ ‖Πα,0h u(tk)−uk

h‖Hα(Ω) = ‖ek‖Hα(Ω)+

‖Πα,0h u(tk) − uk
h‖Hα(Ω) and Lemma 5.3.1 give the desired result. The proof is thus

finished. �
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5.4 Galerkin FEM for Time-Fractional Differential Equations
In this section, we introduce the finite element method for the time-fractional

differential equations. These equations include time-fractional diffusion equations,
the time fractional cable equation, and the time fractional Fokker–Planck equation,
etc. In order to illustrate how to use the Galerkin finite element method to solve
time-fractional equations, we mainly investigate two kinds of model problems.

The Riemann–Liouville type time-fractional diffusion equation is given below:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu = RLD1−γ
0,t

(
Kγ∂

2
xu
)
+ f (x, t), (x, t) ∈Ω× (0,T ],

u(x,0) = φ0(x), x∈Ω,
u(x, t) = 0, (x, t)∈∂Ω× (0,T ],

(5.77)

where Ω = (a,b), Kγ > 0 and 0 < γ < 1.
The Caputo type time-fractional diffusion equation reads as:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDγ
0,tu = Kγ∂

2
xu+g(x, t), (x, t) ∈Ω× (0,T ],

u(x,0) = φ0(x), x ∈Ω,
u(x, t) = 0, (x, t)∈ ∂Ω× (0,T ],

(5.78)

where Ω = (a,b), Kγ > 0 and 0 < γ < 1.

5.4.1 Semi-Discrete Schemes

We first consider the semi-discrete approximations for (5.77) and (5.78). Multi-
plying by v ∈ H1

0(Ω) on both sides of (5.77) and integrating by parts, we obtain

(∂tu,v)+Kγ(RLD1−γ
0,t ∂xu,∂xv) = ( f ,v). (5.79)

From the above equation, we can derive the semi-discrete scheme for (5.77) as: Find
uh(t)∈Xr

h0, such that
⎧
⎪⎪⎨
⎪⎪⎩

(∂tuh,v)+Kγ(RLD1−γ
0,t ∂xuh,∂xv) = (Ih f ,v), v∈Xr

h0,

uh(0) = Π1,0
h φ0(x).

(5.80)

We can similarly give the semi-discrete scheme for (5.78) as: Find uh(t)∈Xr
h0,

such that ⎧
⎪⎪⎨
⎪⎪⎩

(CDγ
0,tuh,v)+Kγ(∂xuh,∂xv) = (Ihg,v), v∈Xr

h0,

uh(0) = Π1,0
h φ0(x).

(5.81)

Next, we present the matrix representations for (5.80) and (5.81). Suppose that
the solution to (5.80) or (5.81) has the expression as in (5.49). Denote by c(t) =
(c1(t),c2(t), · · · ,cNr−1(t))T , (F(t)) j = ( f (t),φ j), (G(t)) j = (g(t),φ j), and

(M)i, j = (φi,φ j), (S )i, j = (∂xφi,∂xφ j). (5.82)
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Then the matrix representation of (5.80) or (5.81) can be expressed as

M
dc(t)

dt
+KγS RLD1−γ

0,t c(t) = F(t), (5.83)

or
MCDγ

0,tc(t)+KγS c(t) =G(t). (5.84)

Eqs. (5.83) and (5.84) are fractional ordinary differential equations, so they can
be solved by the methods developed in the previous chapters. For example, Eq. (5.83)
can be solved by time discretization techniques as presented in Subsection 4.2.1 for
(4.10), and Eq. (5.84) can be solved by time discretization as derived in Subsection
4.2.2 for (4.86), or see the numerical methods used for FODE (3.1).

Next, we present the error estimate for (5.80) and (5.81). Let u∗(t) = Π1,0
h u(t),

η(t) = u(t)−u∗(t) and e(t) = u∗(t)−uh(t). We can obtain the error equation for (5.80)
as

⎧
⎪⎪⎨
⎪⎪⎩

(∂te,v)+Kγ(RLD1−γ
0,t ∂xe,∂xv) = −(∂tη,v)+ ( f − Ih f ,v), v∈Xr

h0,

e(0) = 0.
(5.85)

Theorem 46 Let 0 < γ < 1 and t∈ (0,T ]. Suppose that u∈C1(0,T ; Hr+1(Ω)∩H1
0(Ω))

is a solution to (5.77), and uh(t) is the solution to (5.80), f ∈L2(0,T ; Hr+1(Ω)). Then

‖uh(t)−u(t)‖2≤Ch2r+2‖u(t)‖2Hr+1(Ω)+Ch2r+2
∫ t

0

(

‖∂su(s)‖2Hr+1(Ω)+ ‖ f (s)‖2Hr+1(Ω)

)

ds,

where C is a positive constant.

Proof. Letting v = e in (5.85) and using the Cauchy–Schwarz inequality yield

1
2

d
dt
‖e‖2 +Kγ(RLD1−γ

0,t ∂xe,∂xe) =(∂te,e)+Kγ(RLD1−γ
0,t ∂xe,∂xe)

=(−∂tη+ f − Ih f ,e)

≤ 1
2

(
‖e‖2 + ‖−∂tη+ f − Ih f ‖2

)
.

(5.86)

Integrating on the interval (0, t] gives

‖e(t)‖2≤‖e(t)‖2+2Kγ

∫ t

0
(RLD1−γ

0,s ∂xe(s), ∂xe(s))ds

≤
∫ t

0
‖e(s)‖2 ds+

∫ t

0
‖−∂sη(s)+ f (s)− Ih f (s)‖2 ds,

(5.87)

where
∫ t

0 (RLD1−γ
0,t ∂xe(s), ∂xe(s))ds≥0 because of Lemmas 5.1.2 and 5.1.11. Applying

Gronwall’s inequality (see Lemma 5.1.12) yields

‖e(t)‖2≤C
∫ t

0
‖−∂sη(s)+ f (s)− Ih f (s)‖2 ds

≤C
∫ t

0
‖∂sη(s)‖2 ds+C

∫ t

0
‖ f (s)− Ih f (s)‖2 ds

≤Ch2r+2
∫ t

0

(

‖∂su(s)‖2Hr+1(Ω) + ‖ f (s)‖2Hr+1(Ω)

)

ds.

(5.88)
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Hence,

‖u(t)−uh(t)‖≤‖u(t)−u∗(t)‖+ ‖u∗(t)−uh(t)‖ = ‖e(t)‖+ ‖η(t)‖

≤Chr+1‖u(t)‖Hr+1(Ω) +Chr+1
[∫ t

0

(

‖∂su(s)‖2Hr+1(Ω)+ ‖ f (s)‖2Hr+1(Ω)

)

ds
]1/2

.
(5.89)

The proof is completed. �

We can similarly write the error equation for (5.81) as
⎧
⎪⎪⎨
⎪⎪⎩

(CDγ
0,te(t),v)+Kγ(∂xe,∂xv) = −(CDγ

0,tη(t),v)+ (g− Ihg,v), v∈Xr
h0,

e(0) = 0.
(5.90)

Theorem 47 Let 0 < γ < 1 and t∈ (0,T ]. Suppose that u(t)∈C1(0,T ; Hr+1(Ω) ∩
H1

0(Ω)) is a solution to (5.78), and uh(t) is the solution to (5.81), g(t)∈L2(0,T ; Hr+1(Ω)).
Then ∫ t

0
‖CDγ/2

0,s (uh(s)−u(s))‖2 ds≤Ch2r+2,

where C is a positive constant independent of h.

Proof. Letting v = e(t) in (5.90) yields

(CDγ
0,te(t),e(t))+Kγ(∂xe,∂xe) =− (CDγ

0,tη(t),e)+ (g− Ihg,e)

≤ε‖e(t)‖2 +C(‖CDγ
0,tη(t)‖2 + ‖g− Ihg‖2),

(5.91)

where ε is a suitable constant such that ε‖e(t)‖2≤Kγ‖∂xe‖2. So

(CDγ
0,te(t),e(t))≤C(‖CDγ

0,tη(t)‖2+ ‖g− Ihg‖2). (5.92)

Integrating on [0, t] yields
∫ t

0
(CDγ

0,se(s),e(s))ds≤C
∫ t

0
(‖CDγ

0,sη(s)‖2+ ‖g(s)− Ihg(s)‖2)ds

≤Ch2(r+1)
∫ t

0
(‖CDγ

0,su(s)‖2Hr+1(Ω)+ ‖g(s)‖2Hr+1(Ω))ds.
(5.93)

Since e(0) = 0, CDγ
0,te(t) = RLDγ

0,te(t). Using Lemmas 5.1.11, 5.1.2, and 5.1.6 yields

∫ t

0
‖CDγ/2

0,s e(s)‖2 ds≤Ch2(r+1). (5.94)

Applying ‖CDγ/2
0,s (uh(s)− u(s))‖2≤‖CDγ/2

0,s e(s)‖2 + ‖CDγ/2
0,s η(s)‖2 gives the desired re-

sult. The proof is finished. �
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5.4.2 Fully Discrete Schemes

In the present subsection, we present the fully discrete algorithms for the time-
fractional differential equations in forms of (5.77) and (5.78). As is known, we in-
troduce several finite difference schemes for Eqs. (5.77) and (5.78) in Chapter 4,
which can be directly extended to solve Eqs. (5.77) and (5.78), except that the space
is approximated by the finite element in this chapter. Here, we just present several
schemes to illustrate how to construct the fully discrete finite element schemes for
equations in forms of (5.77) and (5.78), and how to analyze the stability and conver-
gence.

• The fully discrete finite element methods for (5.77)

We first consider the fully discrete schemes for (5.77). For the first fully discrete
scheme, the integer time derivative and the Riemann–Liouville derivative are dis-
cretized by the backward Euler formula and the Grünwald–Letnikov formula (see
the time discretization for (4.30)), respectively. Therefore, the fully discrete finite
element method for (5.77) is given by: Find un

h∈Xr
h0 for n = 0,1, · · · ,nT −1, such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v)+Kγ(GLδ

(1−γ)
t ∂xun

h,∂xv) = (Ih f n,v), v∈Xr
h0,

u0
h = Π

1,0
h φ0,

(5.95)

where GLδ
(γ)
t ,0 < γ < 1 is defined by

GLδ
(γ)
t un

h =
1
Δtγ

n∑

k=0

ω
(γ)
n−kuk

h, ω
(γ)
k = (−1)k

(
γ

k

)

.

We can also construct the Crank–Nicolson finite element method for (5.77), in
which the time discretization of (5.77) is approximated as that of Eq. (4.10), see the
Crank–Nicolson finite difference method (4.59). The fully discrete Crank–Nicolson
finite element method for (5.77) is given by: Find un

h∈Xr
h0 for n = 0,1, · · · ,nT − 1,

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+ 1

2
h ,v) =

μ

τ1−β
[

−b0(∂xu
n+ 1

2
h ,∂xv)+

n∑

k=1

(bn−k−bn−k+1)(∂xu
k− 1

2
h ,∂xv)

+ (bn−Bn)(∂xu
1
2
h ,∂xv)+An(∂xu0

h,∂xv)
]

+ (Ih f (tn+ 1
2
),v), ∀v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.96)
where An = Bn− γ(n+1/2)γ−1

Γ(1+γ) , bn and Bn are defined by

bn =
1

Γ(1+γ)

[
(n+1)γ−nγ

]
, Bn =

2
Γ(1+γ)

[
(n+1/2)γ−nγ

]
.

In the following we analyze the stability and convergence for (5.95). We first give
the following theorem.
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Theorem 48 Let un
h be the solution to (5.95), and f ∈C(0,T ; L2(Ω)). Then there ex-

ists a positive constant C independent of n, Δt and h, such that

‖un
h‖2≤‖u0

h‖2+ΔtγKγ‖∂xu0
h‖2 +C max

0≤k≤nT
‖ f k‖2.

Proof. The proof is similar to that of Theorem 23. Letting v = un
h yields

(un
h,u

n
h)=(un−1

h ,un
h)−ΔtγKγ

n∑

k=0

ω
(1−γ)
n−k (∂xuk

h,∂xun
h)+Δt(Ih f n,un

h). (5.97)

Denote by

bn =

n∑

k=0

ω
(1−γ)
k =

Γ(n+γ)
Γ(γ)Γ(n+1)

=
(n+1)γ−1

Γ(γ)
+O((n+1)−2+γ).

Then one has bn − bn−1 = ω
(1−γ)
n and bn satisfies C0bnΔtγ≤Δt≤C1bnΔtγ, C0,C1 are

positive constants independent of n.
Using the Cauchy–Schwarz inequality, one obtains

‖un
h‖2 +ΔtγKγ‖∂xun

h‖2

≤ 1
2

(‖un−1
h ‖2+ ‖un

h‖2)+
ΔtγKγ

2

n−1∑

k=0

(bn−k−1−bn−k)(‖∂xuk
h‖2+ ‖∂xun

h‖2)

+Δt(ε‖un
h‖2+

1
4ε
‖Ih f n‖2),

(5.98)

where ε is a suitable positive constant. Denote by

En = ‖un
h‖2 +ΔtγKγ

n∑

k=0

bn−k‖∂xuk
h‖2.

Then one has

En+ΔtγKγbn‖∂xun
h‖≤En−1+Δt

(
1
2ε
‖Ih f n‖2 +2ε‖un

h‖2
)

≤En−1+Δt
(

1
2ε
‖Ih f n‖2 +2C2ε‖un

h‖2
)

,

(5.99)

where ‖un
h‖≤C‖∂xun

h‖ has been used. Choose suitable ε = Kγ
2C1C2

satisfying

2C2εΔt≤2C2εC1bnΔtγ≤KγbnΔtγ.

Therefore, one obtains

En≤En−1+CΔt‖Ih f n‖2≤E0+CΔt
n∑

k=1

‖ f k‖2

=‖u0
h‖2 +ΔtγKγ‖∂xu0

h‖2 +CΔt
n∑

k=1

‖ f k‖2.
(5.100)
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By the definition of En, one has

‖un
h‖2≤En≤‖u0

h‖2 +ΔtγKγ‖∂xu0
h‖2+C max

0≤k≤nT
‖ f k‖2.

The proof is completed. �

The error estimate for the scheme (5.95) is given in the following theorem.

Theorem 49 Let 0 < γ < 1 and t∈ (0,T ]. Suppose that u(t)∈C3(0,T ; Hr+1(Ω) ∩
H1

0(Ω)) is a solution to (5.78), and un
h is the solution to (5.95), f ∈C(0,T ; Hr+1(Ω)).

Then there exists a positive constant C such that

‖un
h−u(tn)‖≤C(Δt+hr+1).

Proof. We first write the error equation. Let u∗ = Π1,0
h u, ηn = un − un∗ and en =

un∗ −un
h. From (4.26), (4.27) and (4.29), we have

δtun− 1
2 = Kγ

GLδ
(1−γ)
t ∂2

xun+ f n+O(Δt). (5.101)

Replacing un
h in (5.95) with un∗, we have

(δtu
n− 1

2∗ ,v)+Kγ(GLδ
(1−γ)
t ∂xun∗,∂xv) = (Ih f n,v)+ rn. (5.102)

Removing rn from (5.95), (5.101) and (5.102) yields

(δten− 1
2 ,v)+Kγ(GLδ

(1−γ)
t ∂xen,∂xv) = (Rn,v), (5.103)

where (∂x(un−Π1,0
h u),∂xv) = 0 for v ∈ Xr

h0, and Rn = Rn
1+Rn

2+Rn
3 satisfies

Rn
1 = O(Δt), Rn

2 = f n −Π1,0
h f n, Rn

3 = −δtη
n−1/2. (5.104)

From (5.103) and Theorem 48, we only need to estimate

‖e0‖2 +ΔtγKγ‖∂xe0‖2 +C max
0≤k≤nT

‖Rk‖2

to derive the error bound. Obviously, e0 = 0 and

‖Rk‖≤‖Rn
1‖+ ‖Rn

2‖+ ‖Rn
3‖≤C(Δt+hr+1‖ f ‖C(0,T ;Hr+1(Ω)) +hr+1‖u‖C1(0,T ;Hr+1(Ω))).

Hence, ‖en‖≤C(Δt+hr+1). Using ‖un
h−u(tn)‖≤‖en‖+ ‖ηn‖ ends the proof. �

For the Crank–Nicolson finite element method (5.96), we have the similar result
as that of Theorem 48, and the convergence rate of (5.96) is O(Δt1+γ +hr+1).

Of course, all the finite difference methods (see for example, (4.49), (4.67), (4.79),
(4.83), and (4.84)) developed in Subsection 4.2.1 for (4.10) can be directly extended
to (5.77), except that the finite difference discretization in space is replaced by the
finite element discretization, and the stability and convergence are almost similar, so
we do not list all these methods here.
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• The fully discrete finite element methods for (5.78)

Next, we consider fully discrete approximations for (5.78). As is known in Sub-
section 4.2.2, the Caputo derivative in (5.78) (see also (4.86)) can be directly dis-
cretized by the Grünwald–Letnikov (see (4.96)) formula or the L1 method (see
(4.97)). The fractional linear multi-step methods can be used to discretize the time
direction of (5.78) (see (4.116) and (4.117)).

The first fully discrete finite element method for (5.78) with the time direction ap-
proximated by the L1 method (see also (4.97)) is given by: Find un

h (n = 1,2, · · · ,nT ),
such that ⎧

⎪⎪⎨
⎪⎪⎩

(δ(γ)
t un

h,v)+Kγ(∂xun
h,∂xv) = (Ihgn,v),

u0
h = Π

1,0
h φ0,

(5.105)

where δ(γ)
t is defined by

δ
(γ)
t un

h =
1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

h −uk
h), b(γ)

k =
1

Γ(2−γ)

[
(k+1)1−γ− k1−γ] .

The following theorem indicates that the scheme (5.105) is unconditionally sta-
ble.

Theorem 50 Let un
h be the solution to (5.105), and f ∈C(0,T ; L2(Ω)). Then there

exists a positive constant C independent of n, Δt and h, such that

‖un
h‖2≤2‖u0

h‖2 +2C max
0≤k≤nT

‖ f k‖2.

Proof. Denote by μ = Δtγ/b(γ)
0 and c(γ)

k = b(γ)
k /b(γ)

0 = (k+1)1−γ− k1−γ, so c(γ)
0 = 1.

Letting v = un
h in (5.105) yields

(un
h,u

n
h)+μKγ(δxun

h, δxun
h)

=

n−1∑

k=1

(c(γ)
n−k−1− c(γ)

n−k)(uk
h,u

n
h)+ c(γ)

n−1(u0
h,u

n
h)+μ(Ihgn,un

h).
(5.106)

Using the Cauchy inequality, one has

‖un
h‖2+Kγμ‖∂xun

h‖2≤
1
2

n−1∑

k=1

(c(γ)
n−k−1− c(γ)

n−k)(‖uk
h‖2 + ‖un

h‖2)

+
c(γ)

n−1

4
‖un

h‖2 + c(γ)
n−1‖u0

h‖2 +
c(γ)

n−1

4
‖un

h‖2N +
μ2

c(γ)
n−1

‖Ihgn‖2.
(5.107)

One immediately gets from (5.107) that

‖un
h‖2≤

n−1∑

k=1

(c(γ)
n−k−1− c(γ)

n−k)‖uk
h‖2 +2c(γ)

n−1‖u0
h‖2+

2μ2

c(γ)
n−1

‖gn‖2

≤
n−1∑

k=1

(c(γ)
n−k−1− c(γ)

n−k)‖uk
h‖2 + c(γ)

n−1

(
2‖u0

h‖2+2C‖gn‖2
)
,

(5.108)
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where the positive constant C is independent of n,Δt and Δx, but satisfies μ2

(c(γ)
n−1)2
≤C.

Next, we prove that

‖un
h‖2≤2‖u0

h‖2+2C max
0≤k≤nT

‖gk‖2 = E. (5.109)

We use the mathematical induction method in the proof of (5.109). For n = 1, one
has from (5.108) that

‖u1
h‖2N +Kγμ‖∂xu1

h‖2 = (u0
h,u

1
h)+μ(Ihg1,u1

h)≤ 1
2
‖u1

h‖2 + ‖u0
h‖2+μ2‖Ihg1‖2, (5.110)

which leads to

‖u1
h‖2≤2‖u0

h‖2+2μ2‖Ihg1‖2≤2‖u0
h‖2 +2C‖g1‖2≤E.

Hence, (5.109) holds for n = 1. Suppose that (5.109) holds for n = 1,2, · · · ,m−1. For
n = m, one has from (5.108)

‖um
h ‖2≤

m−1∑

k=1

(c(γ)
m−k−1 − c(γ)

m−k)‖uk
h‖2 + c(γ)

m−1E

≤
m−1∑

k=1

(c(γ)
m−k−1 − c(γ)

m−k)E+ c(γ)
m−1E = E.

(5.111)

Therefore, ‖un
h‖2≤2‖u0

h‖2 + 2C max
0≤k≤nT

‖gk‖2 holds for all n. The proof is thus com-

pleted. �

Next, we discuss the convergence for (5.105).

Theorem 51 Let 0 < γ < 1 and t∈ (0,T ]. Suppose that u(t)∈C3(0,T ; Hr+1(Ω) ∩
H1

0(Ω)) is a solution to (5.78), and un
h is the solution to (5.105), f ∈C(0,T ; Hr+1(Ω)).

Then there exists a positive constant C such that

‖un
h−u(tn)‖≤C(Δt2−γ +hr+1).

Proof. We first write the error equation. Let u∗ = Π1,0
h u, ηn = un − un∗ and en =

un∗ −un
h. From (4.97), we have

δ
(γ)
t un = Kγ∂

2
xun+gn+O(Δt2−γ). (5.112)

Replacing un
h in (5.95) with un∗, we have

(δ(γ)
t un∗, v)+Kγ(∂xun∗, ∂xv) = (Ihgn, v)+ rn. (5.113)

Removing rn from (5.105), one has

(δ(γ)
t en,v)+Kγ(∂xen,∂xv) = (Rn,v), (5.114)
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where (∂x(un−Π1,0
h u),∂xv) = 0 for v ∈ Xr

h0, and Rn = Rn
1+Rn

2+Rn
3 satisfies

Rn
1 = O(Δt2−γ), Rn

2 = gn−Π1,0
h gn, Rn

3 = −δ(γ)
t ηn. (5.115)

From (5.114) and Theorem 51, we need only to estimate

‖e0‖2 +C max
0≤k≤nT

‖Rk‖2

to derive the error bound. Obviously, e0 = 0 and

‖Rk‖≤‖Rn
1‖+ ‖Rn

2‖+ ‖Rn
3‖≤C(Δt2−γ +hr+1‖ f ‖C(0,T ;Hr+1(Ω))+hr+1‖u‖C1(0,T ;Hr+1(Ω))),

where ‖Rn
3‖ = ‖δ(γ)

t ηn‖≤‖[C Dγ
0,tη(t)]t=tn‖+O(Δt2−γ).

Hence, ‖en‖≤C(Δt2−γ + hr+1). Using ‖un
h − u(tn)‖≤‖en‖+ ‖ηn‖ yields the desired

result. The proof is completed. �

If the time derivative is approximated by the Grünwald formula as that of method
(4.96), we can derive the following finite element scheme:

⎧
⎪⎪⎨
⎪⎪⎩

(δ(γ)
t (un

h−u0
h),v) = Kγ(∂xun

h,∂xv)+ (Ihgn,v), v∈Xr
h0,

u0
h = Π

1,0
h φ0,

(5.116)

where δ(γ)
t (un

h−u0
h) is defined by

δ
(γ)
t (un

h−u0
h) =

1
Δtγ

n∑

k=0

ω
(γ)
n−k(un

h−u0
h), ω

(γ)
k = (−1)k

(
γ

k

)

.

The stability of (5.116) can be proved as that of method (5.78). The convergence in
the sense of L2 norm is O(Δt+hr+1).

If the time direction is discretized by the FLMMs as those in (4.116), (4.117),
(4.120), or (4.121), then we can obtain the corresponding finite element methods
with much better convergence rates in time.

• FLMM-FEM-I: Find un
h∈Xr

h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = −Kγ

2β

n∑

k=0

(−1)kω
(γ)
k (∂xun−k

h ,∂xv)−KγB(1)
n (∂xu0

h,∂xv)

+
1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.117)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, and B(1)

n is defined by (4.114) with
m = 1.
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• FLMM-FEM-II: Find un
h∈Xr

h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = −Kγ(1− γ

2
)(∂xun

h,∂xv)+
γ

2
(∂xun−1

h ,∂xv)

−KγB(2)
n (∂xu0

h,∂xv)+
1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.118)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, and B(2)

n is defined by (4.114) with
m = 2.

• FLMM-FEM-III: Find un
h∈Xr

h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = −Kγ

2β

n∑

k=0

(−1)kω
(γ)
k (∂xun−k

h ,∂xv)−KγB(1)
n (∂xu0

h,∂xv)

−KγC
(1)
n (∂x(u1

h−u0
h),∂xv)+

1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.119)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, B(1)

n is defined by (4.114) with

m = 1, and C(1)
n is defined by (4.119) with m = 1.

• FLMM-FEM-IV: Find un
h∈Xr

h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = −Kγ(1− γ

2
)(∂xun

h,∂xv)+
γ

2
(∂xun−1

h ,∂xv)

−KγB(2)
n (∂xu0

h,∂xv)−KγC
(2)
n (∂x(u1

h−u0
h),∂xv)

+
1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.120)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, B(2)

n is defined by (4.114) with

m = 2, and C(1)
n is defined by (4.119) with m = 1.

The four methods (5.117), (5.118), (5.119), and (5.120) are all unconditionally
stable [168, 169], which are reduced to the Crank–Nicolson finite element methods
with second-order accuracy in time when γ = 1.

Theorem 52 Let un
h be the solution to (5.117), (5.118), (5.119), or (5.120),

g∈C(0,T ; L2(Ω)). Then there exists a positive constant C0 independent of n, Δt, h
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and T , and a positive constant C1 independent of n, Δt and h, such that

‖un
h‖2+

1
2
Δtγ‖∂xun

h‖2≤C0
(
‖u0

h‖2 +Δtγ‖∂xu0
h‖2

)
+C1 max

0≤k≤nT
‖gk‖2. (5.121)

The error bounds for (5.117) and (5.118) are the same, which are given as

‖un
h −u(tn)‖≤C(Δt+hr+1),

√√

Δt
n∑

k=0

‖uk
h−U(tk)‖2≤C(Δt1.5 +hr+1).

The error estimates for (5.119) and (5.120) are the same, which are given as

‖un
h−u(tn)‖≤C(Δt2+hr+1).

Readers can refer to [168, 169] for more detailed information.

5.4.3 Numerical Examples

In this subsection, we present numerical examples to verify the theoretical results.
For convenience, we use interpolation operator Ih to replace the projector Π1,0

h in
schemes (5.96) and (5.117)–(5.120) in the following numerical experiments. We first
numerically verify the error estimate and the corresponding convergence order of the
method CNFEM (5.96).

Example 12 Consider the following subdiffusion equation [173]

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu = RLD1−β
0,t ∂

2
xu+ f (x, t), (x, t)∈ (0,1)×(0,1],

u(0, t) = t2 + t+1, u(1, t) = exp(1)(t2+ t+1), t∈ (0,1],
u(x,0) = exp(x), x∈ [0,1],

(5.122)

where

f (x, t) =
[

2t+1−
( 2t2−β

Γ(3−β)
+

t1−β

Γ(2−β)
+

t−β

Γ(1−β)

)
]

exp(x).

The exact solution of (5.122) is

u = exp(x)(t2+ t+1).

Denote by εn = u(x, tn)−un
h. Then the L∞-error and L2-error at tn are defined as

‖εn‖∞ = max
0≤ i≤N

|u(xi, tn)−un
h(xi)|, ‖εn‖ =

⎛
⎜⎜⎜⎜⎜⎜⎝h

N−1∑

i=0

(u(xi, tn)−un
h(xi))2

⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

.

We first verify the convergence orders in time and space for CNFEM (5.96) . The
linear element is used in this example. Tables 5.1 and 5.2 display the maximum L∞-
error max

0≤n≤nT
‖εn‖∞ and the maximum L2-error max

0≤n≤nT
‖εn‖ with the parameter values
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β = 0.25,0.5,0.75. From Tables 5.1 and 5.2, we can find that the numerical solutions
fit well with the analytical solutions, and the convergence orders in time and space
also fit well with the theoretical analysis.

Next, we compare CNFEM (5.96) with the Crank–Nicolson type finite difference
method (CNFDM) developed in [173], in which the space is discretized by the cen-
tral difference method, and the convergence order in time is min{1+ β,2− β/2}. So
we use the linear element in the computation; the maximum L∞-error is shown in
Table 5.3. We find that when β is small, the two methods CNFEM and CNFDM
have almost the same numerical results. When β increases, the method CNFEM
achieves better numerical results in this example. Theoretically, one can find that
if 0 < β≤2/3, then CNFEM and CNFDM have the same convergence orders in time,
otherwise (2/3< β≤1), CNFEM displays better convergence orders than CNFDM in
time, which is also illustrated in the numerical experiments; see the numerical results
shown in Table 5.3.

TABLE 5.1: The maximum L∞ errors for Example 12 with N = 1/h = 1000.
β 1/Δt L∞-error order L2-error order

16 4.1782e−3 3.0566e−3
32 1.8315e−3 1.1898 1.3386e−3 1.1912

0.25 64 7.8822e−4 1.2164 5.7592e−4 1.2168
128 3.3579e−4 1.2310 2.4535e−4 1.2311
256 1.4227e−4 1.2389 1.0395e−4 1.2389
16 1.2444e−3 9.1043e−4
32 4.7937e−4 1.3762 3.5020e−4 1.3784

0.5 64 1.7888e−4 1.4222 1.3067e−4 1.4222
128 6.5551e−5 1.4483 4.7884e−5 1.4483
256 2.3765e−5 1.4638 1.7359e−5 1.4638
16 1.6258e−4 1.1881e−4
32 6.4940e−5 1.3239 4.7437e−5 1.3246

0.75 64 2.3415e−5 1.4717 1.7099e−5 1.4721
128 8.0019e−6 1.5490 5.8424e−6 1.5493
256 2.6623e−6 1.5877 1.9436e−6 1.5878

Next, we numerically verify the error estimates and the convergence orders of the
FEMs (5.117)–(5.120).

Example 13 Consider the following subdiffusion equation [65, 96]

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDβ
0,t = ∂

2
xu+ f (x, t), (x, t)∈ (0,1)×(0,1],

u(x,0) = 2sin(2πx), x∈ [0,1],
u(0, t) = u(1, t) = 0, t ∈ (0,1].

(5.123)

Choose a suitable right-hand side function f such that the exact solution to (5.123)
is

u = (t2+β+ t+2)sin(2πx).
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TABLE 5.2: The maximum L∞ errors for Example 12 with Δt = 1e−4.
β N = 1/h L∞-error order L2-error order

4 2.9246e−3 2.1485e−3
8 7.2782e−4 2.0066 5.3600e−4 2.0031

0.25 16 1.8404e−4 1.9835 1.3462e−4 1.9933
32 4.7114e−5 1.9658 3.4450e−5 1.9664
64 1.2889e−5 1.8700 9.4175e−6 1.8711
4 2.9765e−3 2.1870e−3
8 7.3959e−4 2.0088 5.4475e−4 2.0053

0.5 16 1.8598e−4 1.9915 1.3605e−4 2.0014
32 4.6570e−5 1.9977 3.4057e−5 1.9982
64 1.1727e−5 1.9896 8.5690e−6 1.9907
4 2.9801e−3 2.1897e−3
8 7.4041e−4 2.0090 5.4536e−4 2.0055

0.75 16 1.8612e−4 1.9921 1.3615e−4 2.0020
32 4.6532e−5 1.9999 3.4028e−5 2.0004
64 1.1645e−5 1.9985 8.5093e−6 1.9996

TABLE 5.3: The maximum L∞ errors for Example 12 with h = 1/1000.

method 1/Δt β = 0.4 β = 0.5 β = 0.8 β = 0.9 β = 1
16 1.9912e−3 1.9437e−3 3.6981e−3 4.3373e−3 4.9609e−3
32 8.1666e−4 6.3689e−4 1.1981e−3 1.3732e−3 1.5280e−3

(4.67) 64 3.2417e−4 2.0120e−4 3.6055e−4 4.0218e−4 4.3742e−4
128 1.2651e−4 6.3193e−5 1.0259e−4 1.1219e−4 1.2048e−4
256 4.8861e−5 2.3015e−5 2.8182e−5 3.0469e−5 3.2450e−5
16 2.0946e−3 1.2444e−3 1.4399e−4 1.3778e−4 2.0685e−4
32 8.4560e−4 4.7937e−4 2.8191e−5 3.0204e−5 5.1681e−5

(5.96) 64 3.3272e−4 1.7888e−4 1.1328e−5 6.6085e−6 1.2893e−5
128 1.2907e−4 6.5551e−5 4.0791e−6 1.4141e−6 3.1999e−6
256 4.9656e−5 2.3765e−5 1.4023e−6 2.8688e−7 7.8039e−7

The cubic element (r = 3) is used in this example, the space and time step sizes
are chosen as h = 1/1000 and Δt = 1/32,1/64,1/128,1/256,1/512.

We first check the global maximum L2 error max0≤n≤nT ‖un
h−un‖, the average L2

error (Δt
∑nT

n=0 ‖un
h − un‖2)1/2, and the L2 error ‖un

h − un‖ at n = nT , which are shown
in Tables 5.4–5.6. From Table 5.4, we find that Schemes I and II show the first-order
accuracy in time for β = 0.1,0.5. When β = 0.9, (5.117) and (5.118) show much
better results than the theoretical analysis. Obviously, (5.119) and (5.120) show the
convergence rates, even better than expected. Table 5.5 gives the average L2 errors,
which shows that the four algorithms yield the desired convergence rates even better
than anticipated. Table 5.6 displays the L2 error at t = 1. Obviously, (5.117) and
(5.118) show second-order accuracy in time, and (5.119) and (5.120) really show
second-order accuracy as expected. Briefly speaking, (5.117) and (5.118) show better
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numerical results than the theoretical analysis, and (5.119) and (5.120) show the
second-order accuracy as expected.

Next, we compare the present FEMs (5.117)–(5.120) with the FEM in [65]. See
also (5.105); where the time derivative was discretized by the L1 method, we denote
it by L1FEM. The L1FEM has convergence order of O(τ2−β+ hr+1). We choose the
same parameters in the computations; the results are shown in Table 5.7. Obviously,
the present methods show better performances than the L1FEM, especially when
β increases. It is easy to verify that the present four algorithms show second-order
experimental accuracy and the L1FEM shows (2−β)th-order experimental accuracy,
which is in line with the theoretical analysis.

TABLE 5.4: The global maximum L2 errors max
0≤n≤nT

‖un
h − un‖ for Example 13, N =

1000,r = 3.
Method 1/Δt β = 0.1 order β = 0.5 order β = 0.9 order

32 4.7141e−4 1.0490e−3 1.3175e−4
64 2.4645e−4 0.935 5.2706e−4 0.993 6.7038e−5 0.974

(5.117) 128 1.2553e−4 0.973 2.4738e−4 1.091 2.3457e−5 1.515
256 6.3191e−5 0.990 1.1150e−4 1.149 7.2003e−6 1.703
512 3.1637e−5 0.998 4.8600e−5 1.198 2.0743e−6 1.795
32 7.4577e−5 6.8243e−5 1.4795e−4
64 5.0606e−5 0.559 1.5696e−5 2.120 2.9862e−5 2.308

(5.118) 128 2.8356e−5 0.835 8.3982e−6 0.902 7.3010e−6 2.032
256 1.4864e−5 0.931 4.7785e−6 0.813 1.9438e−6 1.909
512 7.5776e−6 0.972 2.2498e−6 1.086 5.2847e−7 1.879
32 5.2941e−5 1.2396e−4 9.3790e−5
64 1.2332e−5 2.102 2.1236e−5 2.545 1.2378e−5 2.921

(5.119) 128 2.8724e−6 2.102 5.1989e−6 2.030 3.1014e−6 1.996
256 6.6894e−7 2.102 1.3003e−6 1.999 7.7612e−7 1.998
512 1.5581e−7 2.102 3.2515e−7 1.999 1.9403e−7 2.000
32 5.2941e−5 1.2396e−4 9.3790e−5
64 1.2332e−5 2.102 2.1236e−5 2.545 1.1039e−5 3.086

(5.120) 128 2.8726e−6 2.102 3.6080e−6 2.557 1.3108e−6 3.074
256 6.6894e−7 2.102 6.0779e−7 2.569 1.5970e−7 3.037
512 1.5571e−7 2.103 1.0149e−7 2.582 3.1009e−8 2.364

5.5 Galerkin FEM for Time-Space Fractional Differential Equa-
tions

In this subsection, we introduce the finite element methods for the time-space
fractional differential equations. We first consider the following fractional diffusion
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TABLE 5.5: The average L2 errors (Δt
∑nT

n=0 ‖un
h − un‖2)1/2 for Example 13, N =

1000,r = 3.
Methods 1/Δt β = 0.1 order β = 0.5 order β = 0.9 order

32 1.1498e−4 3.3381e−4 4.2705e−5
64 4.1847e−5 1.458 1.0495e−4 1.669 1.1796e−5 1.856

(5.117) 128 1.4962e−5 1.483 3.1468e−5 1.737 2.9836e−6 1.983
256 5.3064e−6 1.495 9.2010e−6 1.774 7.3814e−7 2.015
512 1.8747e−6 1.501 2.6420e−6 1.800 1.8227e−7 2.017
32 1.8257e−5 1.5479e−5 2.7191e−5
64 8.0767e−6 1.176 3.0432e−6 2.346 4.3535e−6 2.642

(5.118) 128 3.1225e−6 1.371 1.2367e−6 1.299 9.0489e−7 2.266
256 1.1462e−6 1.445 4.5034e−7 1.457 2.1165e−7 2.096
512 4.1152e−7 1.477 1.5235e−7 1.563 5.1627e−8 2.035
32 1.7649e−5 6.3719e−5 3.5855e−5
64 4.2297e−6 2.061 1.5076e−5 2.079 8.0732e−6 2.150

(5.119) 128 1.0439e−6 2.018 3.7252e−6 2.016 1.9916e−6 2.019
256 2.6030e−7 2.003 9.2916e−7 2.003 4.9700e−7 2.002
512 6.5029e−8 2.001 2.3217e−7 2.000 1.2415e−7 2.001
32 9.8452e−6 2.2325e−5 1.8170e−5
64 1.6221e−6 2.601 2.8235e−6 2.983 2.3677e−6 2.940

(5.120) 128 2.6828e−7 2.596 4.0332e−7 2.807 4.9677e−7 2.252
256 4.4794e−8 2.582 7.3597e−8 2.454 1.2155e−7 2.031
512 7.6500e−9 2.549 1.6522e−8 2.155 3.0315e−8 2.003

equation
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDγ
0,tu = RZD2α

x u+g(x, t), (x, t) ∈Ω× (0,T ],

u(x,0) = φ0(x), x ∈Ω,
u = 0, (x, t) ∈ ∂Ω× (0,T ],

(5.124)

where Ω = (a,b), 0 < γ≤1,1/2 < α < 1.
Then we introduce the corresponding schemes for another type of time-space

fractional diffusion equation in the following form

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu = RLD1−γ
0,t (RZD2α

x u)+ f (x, t), (x, t) ∈Ω× (0,T ],

u(x,0) = φ0(x), x ∈Ω,
u = 0, (x, t) ∈ ∂Ω× (0,T ],

(5.125)

where Ω = (a,b), 0 < γ≤1,1/2 < α < 1.
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TABLE 5.6: The L2 errors ‖un
h−un‖ at n = nT (t = 1) for Example 13, N = 1000,r= 3.

Method 1/Δt β = 0.1 order β = 0.5 order β = 0.9 order
32 2.3997e−6 1.5308e−5 4.8896e−5
64 9.3699e−7 1.356 1.1924e−5 0.360 1.2355e−5 1.984

(5.117) 128 3.2532e−7 1.526 4.2184e−6 1.499 3.1005e−6 1.994
256 1.0460e−7 1.637 1.1979e−6 1.816 7.7624e−7 1.997
512 3.2047e−8 1.706 3.1472e−7 1.928 1.9409e−7 1.999
32 3.1243e−6 4.6797e−6 7.9556e−6
64 8.1059e−7 1.946 1.1587e−6 2.013 1.9910e−6 1.998

(5.118) 128 1.9968e−7 2.021 2.8364e−7 2.030 4.9787e−7 1.999
256 4.8185e−8 2.051 6.9455e−8 2.029 1.2441e−7 2.000
512 1.1575e−8 2.057 1.7069e−8 2.024 3.0986e−8 2.005
32 1.8316e−5 8.4548e−5 4.9286e−5
64 4.5797e−6 1.999 2.0821e−5 2.021 1.2378e−5 1.993

(5.119) 128 1.1438e−6 2.001 5.1989e−6 2.001 3.1014e−6 1.996
256 2.8575e−7 2.001 1.3003e−6 1.999 7.7612e−7 1.998
512 7.1316e−8 2.002 3.2515e−7 1.999 1.9403e−7 2.000
32 1.3694e−7 3.9832e−6 7.9564e−6
64 1.1867e−7 0.206 1.0307e−6 1.950 1.9917e−6 1.998

(5.120) 128 3.8589e−8 1.620 2.5996e−7 1.987 4.9811e−7 1.999
256 1.0583e−8 1.866 6.5024e−8 1.999 1.2448e−7 2.000
512 2.7949e−9 1.920 1.6227e−8 2.002 3.1005e−8 2.005

TABLE 5.7: Comparison of the L2 errors ‖un
h−un‖ at n = nT (t = 1) for Example 13,

N = 1000,r = 3.
Method Method Method Method L1FEM

β 1/Δt (5.117) (5.118) (5.119) (5.120) [65]
32 2.6133e−5 4.2566e−6 7.3488e−5 2.9381e−6 4.0588e−5
64 1.3567e−6 1.0444e−6 1.7955e−5 7.8792e−7 1.3740e−5

0.4 128 1.2998e−6 2.5085e−7 4.4601e−6 2.0074e−7 4.6194e−6
256 6.6074e−7 6.0246e−8 1.1137e−6 5.0390e−8 1.5450e−6
512 2.1850e−7 1.4488e−8 2.7828e−7 1.2532e−8 5.1494e−7
32 5.9934e−5 5.3346e−6 8.9378e−5 5.0233e−6 1.5276e−4
64 1.9695e−5 1.3308e−6 2.2267e−5 1.2773e−6 5.8654e−5

0.6 128 5.3544e−6 3.2966e−7 5.5749e−6 3.2041e−7 2.2413e−5
256 1.3765e−6 8.1818e−8 1.3950e−6 8.0201e−8 8.5394e−6
512 3.4737e−7 2.0098e−8 3.4871e−7 1.9809e−8 3.2467e−6
32 7.2323e−5 7.0592e−6 7.4360e−5 7.0381e−6 5.1564e−4
64 1.8542e−5 1.7682e−6 1.8673e−5 1.7661e−6 2.2617e−4

0.8 128 4.6721e−6 4.4172e−7 4.6794e−6 4.4170e−7 9.8860e−5
256 1.1713e−6 1.1048e−7 1.1712e−6 1.1054e−7 4.3132e−5
512 2.9302e−7 2.7603e−8 2.9286e−7 2.7632e−8 1.8799e−5

5.5.1 Semi-Discrete Approximations

Let us multiply by v ∈ Hα
0 (Ω) on both sides of (5.124), which yields

(CDγ
0,tu(t),v) =(RZD2α

x u(t),v)+ (g(t),v)

=− c2α
[
(RLDα

a,xu(t),RLDα
x,bv)+ (RLDα

x,bu(t),RLDα
a,xv)

]
+ (g(t),v).

(5.126)
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Denote by

A(u,v) = c2α
[
(RLDα

a,xu,RLDα
x,bv)+ (RLDα

x,bu,RLDα
a,xv)

]
. (5.127)

Then
(CDγ

0,tu(t),v) = −A(u(t),v)+ (g(t),v). (5.128)

Therefore, we can obtain the semi-discrete approximation for (5.124) as: Find
uh(t)∈Xr

h0, such that

⎧
⎪⎪⎨
⎪⎪⎩

(CDγ
0,tuh,v)+A(uh,v) = (Ihg,v), v∈Xr

h0,

uh(0) = Πα,0h φ0.
(5.129)

We can similarly obtain the semi-discrete approximation for (5.125) as: Find
uh(t)∈Xr

h0, such that

⎧
⎪⎪⎨
⎪⎪⎩

(∂tuh,v)+A(RLD1−γ
0,t uh,v) = (Ih f ,v), v∈Xr

h0,

uh(0) = Πα,0h φ0.
(5.130)

Next, we consider the convergence.
Let u∗(t) = Πα,0h u(t), η(t) = u(t)−u∗(t) and e(t) = u∗(t)−uh(t). Then we can obtain

the error equation of the semi-discrete approximation (5.129) as

(CDγ
0,te,v)+A(e,v)= −(CDγ

0,tη,v)+ (g− Ihg,v), ∀v∈Xr
h0. (5.131)

Theorem 53 Let 1/2 < α < 1 and t∈ (0,T ]. Suppose that u(t) = u(·, t)∈Hα
0 (Ω) ∩

Hr+1(Ω) is a solution to (5.124), and uh(t) is the solution to (5.129). Then

(∫ t

0
‖CDγ/2

0,s (u(s)−uh(s))‖2 ds
)1/2≤Chr+1−α,

where C is a positive constant.

Proof. Letting v = e(t) in (5.131) yields

(CDγ
0,te,e)+A(e,e)=− (CDγ

0,tη,e)+ (g− Ihg,e)

≤ε‖e‖2 + 1
4ε

(‖CDγ
0,tη‖2 + ‖g− Ihg‖2),

(5.132)

where ε is a suitable positive constant satisfying ε‖e‖2≤A(e,e). Hence, we have

(CDγ
0,te,e)≤C(‖CDγ

0,tη‖2 + ‖g− Ihg‖2). (5.133)

Integrating in time leads to
∫ t

0
(CDγ

0,se(s),e(s))ds≤C
∫ t

0
(‖CDγ

0,sη(s)‖2 + ‖g(s)− Ihg(s)‖2)ds. (5.134)
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Since e(0) = 0, from Lemmas 5.1.11 and 5.1.2 we have
∫ t

0
(CDγ

0,se(s), e(s))ds =
∫ t

0
(RLDγ

0,se(s), e(s))ds =
∫ t

0
(RLDγ/2

0,s e(s), RLDγ/2
s,t e(s))ds.

Using Lemma 5.1.2 yields
∫ t

0
‖CDγ/2

0,s e(s)‖2 ds≤C
∫ t

0
(‖CDγ

0,sη(s)‖2 + ‖g(s)− Ihg(s)‖2)ds

≤Ch2r+2−2α
∫ t

0
(‖CDγ

0,su(s)‖2Hr+1(Ω) + ‖g(s)‖2Hr+1(Ω))ds,
(5.135)

where we have used (5.53) and Lemma 5.1.7. Applying ‖u(t)− uh(t)‖=‖η(t)+ e(t)‖
finishes the proof. �

For the semi-discrete scheme (5.130), we have the following error estimate.

Theorem 54 Let 1/2 < α < 1 and t∈ (0,T ]. Suppose that u(t) = u(·, t)∈Hα
0 (Ω) ∩

Hr+1(Ω) is a solution to (5.125), and uh(t) is the solution to (5.130). Then

‖u(t)−uh(t)‖≤Chr+1−α,

where C is a positive constant.

Proof. Similar to (5.131), one can write the error equation for (5.130) as

(∂te(t),v)+A(RLD1−γ
0,t e(t),v) = −(∂tη,v)+ ( f − Ih f ,v), ∀v∈Xr

h0. (5.136)

Letting v = e(t) in the above equation yields

(∂te(t),e(t))+A(RLD1−γ
0,t e(t),e(t)) = −(∂tη,e(t))+ ( f − Ih f ,e(t)). (5.137)

Integrating on (0, t] gives

‖e(t)‖2 −‖e(0)‖2+2
∫ t

0
A(RLD1−γ

0,s e(s),e(s))ds

=2
∫ t

0
(∂se(s),e(s))ds+2

∫ t

0
A(RLD1−γ

0,s e(s),e(s))ds

≤2C0

∫ t

0
‖e(s)‖2 ds+C

∫ t

0
(‖∂sη(s)‖2 + ‖ f (s)− Ih f (s)‖2)ds.

(5.138)

From Lemmas 5.1.11, 5.1.7, 5.1.6 and e(0) = 0, we have
∫ t

0
A(RLD1−γ

0,s e(s),e(s))ds≥C0

∫ t

0
‖e(s)‖2 ds,

where C0 is a positive constant independent of h. Therefore,

‖e(t)‖2≤‖e(0)‖2+C
∫ t

0
(‖∂sη(s)‖2 + ‖ f (s)− Ih f (s)‖2)ds

≤Ch2r+2−2α
∫ t

0
(‖∂su(s)‖2Hr+1(Ω) + ‖ f (s)‖2Hr+1(Ω))ds,

(5.139)
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where (5.53) is used. Using ‖u(t)− uh(t)‖=‖η(t)+ e(t)‖ yields the desired result. The
proof is completed. �

5.5.2 Fully Discrete Schemes

In this subsection, we introduce the fully discrete finite element approximations
for the time-space fractional partial differential equations as (5.124) and (5.125). We
find that the time discretization techniques for (5.78) can be applied to (5.124).

• The fully discrete finite element methods for (5.124)

The time discretization is the same as (5.105); we present the first fully discrete
approximations for (5.124) as: Find un

h∈Xα
h0,n = 1,2, · · · ,nT , such that

⎧
⎪⎪⎨
⎪⎪⎩

(δ(γ)
t un

h,v)+A(un
h,v) = (Ihgn,v),∀v∈Xα

h0,

u0
h = Π

α,0
h φ0,

(5.140)

where δ(γ)
t and A(u,v) are respectively defined by

δ
(γ)
t un

h =
1
Δtγ

n−1∑

k=0

b(γ)
n−k(uk+1

h −uk
h), b(γ)

k =
1

Γ(2−γ)

[
(k+1)1−γ− k1−γ] ,

A(u,v) = c2α
[
(RLDα

a,xu,RLDα
x,bv)+ (RLDα

x,bu,RLDα
a,xv)

]
. (5.141)

Next, we consider the stability and error estimate for (5.140). We first give the
following theorem.

Theorem 55 Let un
h be the solution to (5.140), and g∈C(0,T ; L2(Ω)). Then there

exists a positive constant C independent of n, Δt and h, such that

‖un
h‖2Hα(Ω)≤2‖u0

h‖2Hα(Ω)+C max
0≤k≤nT

‖gk‖2.

Proof. The proof is very similar to that of Theorem 50, so we omit the details.
The proof is completed. �

Theorem 56 Let un
h be the solution to (5.140), and g∈C(0,T ; L2(Ω)). Then

‖un
h‖2≤C1‖u0

h‖2 +C2 max
0≤k≤nT

‖gk‖2,

where the positive constant C1 is independent of n, Δt,h and T , and C2 is independent
of n, Δt and h.

Proof. Letting v = δ(γ)
t un

h in (5.140) yields

(δ(γ)
t un

h, δ
(γ)
t un

h)+A(un
h, δ

(γ)
t un

h) = (Ihgn, δ
(γ)
t un

h) ≤ ‖δ(γ)
t un

h‖2 +
1
4
‖Ihgn‖. (5.142)
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Hence, one has

b(γ)
0 A(un

h,u
n
h) ≤

n∑

k=1

(b(γ)
k−1−b(γ)

k )A(un
h,u

n−k
h )+b(γ)

n A(un
h,u

0
h)+CΔtγ‖gn‖. (5.143)

In fact, A(u,v) defines a kind of inner product. Hence, one can derive from the rela-
tion A(u,v) ≤ εA(u,u)+ 1

ε A(v,v), ε > 0 and (5.143) that

b(γ)
0 A(un

h,u
n
h) ≤1

2

n∑

k=1

(b(γ)
k−1−b(γ)

k )(A(un
h,u

n
h)+A(un−k

h ,un−k
h ))

+
1
2

b(γ)
n (A(un

h,u
n
h)+A(u0

h,u
0
h))+CΔtγ‖gn‖,

(5.144)

which leads to

b(γ)
0 A(un

h,u
n
h) ≤

n∑

k=1

(b(γ)
k−1−b(γ)

k )A(un−k
h ,un−k

h )+b(γ)
n A(u0

h,u
0
h)+CΔtγ‖gn‖

≤
n∑

k=1

(b(γ)
k−1−b(γ)

k )A(un−k
h ,un−k

h )+b(γ)
n

[

A(u0
h,u

0
h)+C max

0≤k≤nT
‖gk‖2

]

,

(5.145)
where Δtγ ≤Cγb(γ)

n is used. Using the mathematical induction method, one can easily
derive

A(un
h,u

n
h) ≤ A(u0

h,u
0
h)+C max

0≤k≤nT
‖gk‖2.

Note that c1‖u‖Hα(Ω) ≤ A(u,u) ≤ c2‖u‖Hα(Ω),c1,c2 > 0. Therefore, the proof is com-
pleted. �

Let u∗ = Πα,0h u, ηn = un−un∗ and en = un∗ −un
h. Similarly to (5.114), we can obtain

the error equation for (5.140) as:

(δ(γ)
t en,v)+A(en,v) = (Rn,v), (5.146)

where A(ηn,v) = 0 for v ∈ Xr
h0, and Rn = Rn

1+Rn
2+Rn

3 satisfies

Rn
1 = O(Δt2−γ), Rn

2 = gn−Π1,0
h gn, Rn

3 = −δ(γ)
t ηn. (5.147)

Theorem 57 Let 0 < γ < 1,1/2 < α < 1. Suppose that u(t)∈C3(0,T ; Hr+1(Ω) ∩
H1

0(Ω)) is a solution to (5.124), and un
h is the solution to (5.140), g∈C(0,T ; Hr+1(Ω)).

Then there exists a positive constant C independent of n,Δt and h such that

‖un
h−u(tn)‖Hα(Ω)≤C(Δt2−γ +hr+1−α).

Proof. From Theorem 56, Lemmas 5.1.12 and 5.3.1 we have

‖en‖Hα(Ω)≤
(

C1‖e0‖2Hα(Ω) +C2 max
0≤k≤nT

‖Rk‖2
)1/2

≤C(Δt2−γ +hr+1−α).
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Using ‖un
h − u(tn)‖Hα(Ω)≤‖en‖Hα(Ω) + ‖ηn‖Hα(Ω) and Lemma 5.3.1 yield the desired

result. The proof is completed. �

Similar to (5.117)–(5.120), we can also construct the corresponding FLMM fi-
nite element methods for (5.124), which have the similar forms as those of (5.117)–
(5.120). We just need to replace (∂xu,∂xv) in (5.117)–(5.120) by A(u,v) to obtain the
corresponding algorithms, which are listed below.

• FLMM-FEM-I: Find un
h∈Xr

h0(n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = − 1

2β

n∑

k=0

(−1)kω
(γ)
k A(un−k

h ,v)−B(1)
n A(u0

h,v)

+
1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.148)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, and B(1)

n is defined by (4.114) with
m = 1.

• FLMM-FEM-II: Find un
h∈Xr

h0(n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = −(1− γ

2
)A(un

h,v)− γ
2

A(un−1
h ,v)

−B(2)
n A(u0

h,v)+
1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.149)

where ω(γ)
k = (−1)k

(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, and B(2)

n is defined by (4.114) with
m = 2.

• FLMM-FEM-III: Find un
h∈Xr

h0(n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = − 1

2β

n∑

k=0

(−1)kω
(γ)
k A(un−k

h ,v)−B(1)
n A(u0

h,v)

−C(1)
n A(u1

h−u0
h,v)+

1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.150)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, B(1)

n is defined by (4.114) with

m = 1, and C(1)
n is defined by (4.119) with m = 1.
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• FLMM-FEM-IV: Find un
h∈Xr

h0(n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δtγ

n∑

k=0

ω
(γ)
k (un−k

h −u0
h,v) = −(1− γ

2
)A(un

h,v)− γ
2

A(un−1
h ,v)−B(2)

n A(u0
h,v)

−C(2)
n A(u1

h−u0
h,v)+

1
Δtγ

n∑

k=0

ω
(γ)
n−k(Gn−k,v), v∈Xr

h0,

u0
h = Π

1,0
h φ0,

(5.151)
where ω(γ)

k = (−1)k
(
γ
k

)
, Gn =

[
D−γ0,t Ihg(t)

]

t=tn
, B(2)

n is defined by (4.114) with

m = 2, and C(2)
n is defined by (4.119) with m = 2.

Next, we give the following theorem.

Theorem 58 Let un
h be the solution to (5.148), (5.149), (5.150), or (5.151),

g∈C(0,T ; L2(Ω)). Then there exist a positive constant C0 independent of n, Δt, h
and T , and a positive constant C1 independent of n, Δt and h, such that

‖un
h‖2+

1
2
ΔtγA(un

h,u
n
h)≤C0

(
‖u0

h‖2 +ΔtγA(u0
h,u

0
h)
)
+C1 max

0≤k≤nT
‖gk‖2. (5.152)

Theorem 59 Suppose that un
h (n = 1,2, · · · ,nT ) are the solutions of (5.148),

(5.149), (5.150), or (5.151), u is the solution of (5.124), u∈C2(0,T ; Hr+1(Ω)),
g∈C(0,T ; Hr+1(Ω)), φ0∈Hr+1(Ω). Then there exists a positive constant C indepen-
dent of n, h, and Δt, such that

‖un
h−u(tn)‖≤C(Δtq+hr+1−α),

where q= 1 if un
n is the solution to method (5.148) or (5.149), q= 2 if un

n is the solution
to method (5.150) or (5.151).

Proof. We only consider method (5.148). The other three methods (5.149),
(5.150), and (5.151) can be similarly considered. We first write the error equation
for (5.148) as

1
Δtγ

n∑

k=0

ω
(γ)
k (en−k − e0,v) = − 1

2β

n∑

k=0

(−1)kω
(γ)
k A(en−k,v)+ (Rn,v), (5.153)

where e = Πα,0h u−uh,η = u−Πα,0h u, Rn = Rn
1+Rn

2+Rn
3 satisfies

Rn
1 = O(Δt), Rn

2 =
1
2β

n∑

k=0

(−1)kω
(γ)
k (gn− Ihgn−k),

Rn
3 =

1
Δtγ

n∑

k=0

ω
(γ)
k (ηn−k−η0).

(5.154)
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From Theorem 58 and (5.153), we obtain

‖en‖2≤C0‖e0‖2+C0ΔtγA(e0,e0)+C1 max
0≤k≤nT

‖Rk‖2.

Note that e0 = 0 and Rn satisfies (5.154), so we have

‖en‖2≤C(Δt+hr+1−α),

where (5.53) and the following bounds are utilized

‖Rn
1‖≤CΔt, ‖Rn

2‖≤Chr+1, ‖Rn
3‖≤C(Δt+hr+1−α).

Using (5.53) once more yields

‖un
h−u(tn)‖≤‖en‖+ ‖ηn‖≤C(Δt+hr+1−α).

The proof is thus completed. �

• The fully discrete finite element methods for (5.125)

Next, we introduce the fully discrete approximations for (5.125). Obviously, the
time derivative in (5.124) can be discretized the same as that of (5.77) or see the time
discretization for (4.10). In the following, we present several fully discrete approxi-
mations for (5.125),

(1) The fully discrete implicit Euler type finite element method based on the
Grünwald formula of the discretization of the time fractional derivative (see the
time discretization method in the finite difference method (4.30)) for (5.125)
is given by: Find un

h∈Xr
h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v) = −δ(1−γ)

t A(un
h,v)+ (Ih f n,v), v∈Xr

h0,

u0
h = Π

α,0
h φ0,

(5.155)

where A(u,v) is defined by (5.141), and

δ
(γ)
t A(un

h,v) =
1
Δtγ

n∑

k=0

ω
(γ)
n−kA(uk

h,v), ω
(γ)
k = (−1)k

(
γ

k

)

.

(2) The fully discrete implicit Euler type finite element method based on the L1
method for the discretization of the time fractional derivative (see the time dis-
cretization method in the finite difference method (4.49)) for (5.125) is given
by: Find un

h∈Xr
h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v) = −δ(1−γ)

t A(un
h,v)+ (Ih f n,v), v∈Xr

h0,

u0
h = Π

α,0
h φ0,

(5.156)
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where A(u,v) is defined by (5.141), and

δ
(γ)
t A(un

h,v) =
1
Δtγ

⎛
⎜⎜⎜⎜⎜⎜⎝

n−1∑

k=0

b(1−γ)
n−k−1

[
A(uk+1

h ,v)−A(uk
h,v)

]
+

nγ−1

Γ(1+γ)
A(u0

h,v)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

b(1−γ)
k =

1
Γ(1+γ)

[(k+1)γ− kγ].

(3) The fully discrete implicit Crank–Nicolson type finite element method (see the
time discretization method in the finite difference method (4.59)) for (5.125)
is given by: Find un

h∈Xr
h0 (n = 1,2, · · · ,nT ), such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v) = −δ(1−γ)

t A(un
h,v)+ (Ih f n,v), v∈Xr

h0,

u0
h = Π

α,0
h φ0,

(5.157)

where A(u,v) is defined by (5.141), and

δ
(γ)
t A(un

h,v) =
1
Δtγ

⎛
⎜⎜⎜⎜⎜⎜⎝

n−1∑

k=0

b(γ)
n−k−1

[
A(uk+1

h ,v)−A(uk
h,v)

]
+

nγ−1

Γ(1+γ)
A(u0

h,v)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

b(1−γ)
k =

1
Γ(1+γ)

[(k+1)γ− kγ].

(4) The time direction is discretized the same way as that in (4.81); then we have
the fully discrete approximation for (5.125) as: Find un

h∈Xr
h0 (n = 1,2, · · · ,nT ),

such that
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(δtu
n− 1

2
h ,v) = δ(1−γ)

t A(un
h,v)+ (Ih f n,v), v∈Xr

h0,

u0
h = Π

α,0
h φ0,

(5.158)

where A(u,v) is defined by (5.141), and

δ
(1−γ)
t A(un

h,v) =
1
Δt1−γ

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑

l=1

b(1−γ)
n−l A(ul

h,v)−
n−1∑

l=1

b(1−γ)
n−l−1A(ul

h,v)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

b(1−γ)
l =

1
Γ(1+γ)

[(l+1)γ− lγ].

Next, we consider the stability and convergence for (5.155)–(5.158), the proof
of which is similar to that of Theorems 58 and 59. Next, we analyze the algorithm
(5.155).

We now give the following result.

Theorem 60 Let un
h be the solution to (5.155), f ∈C(0,T ; L2(Ω)). Then there exists

a positive constant C independent of n, Δt and h, such that

‖un
h‖2≤‖u0

h‖2 +ΔtγA(u0
h,u

0
h)+CΔt

n∑

k=1

‖ f k‖2. (5.159)
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Proof. From (5.155), we have

(un
h,v)+b0ΔtγA(un

h,u
n
h)=(un−1

h ,v)+Δtγ
n∑

k=1

(bk−1−bk)A(uk
h,v)+Δt(Ih f n,un

h),

(5.160)
where bn =

∑n
k=0ω

(1−γ)
k . Letting v = un

h in the above equality, and applying the
Cauchy–Schwarz inequality yields

‖un
h‖2 +ΔtγA(un

h,u
n
h)≤ 1

2
(‖un

h‖2 + ‖un−1
h ‖2)+Δt(Ih f n,un

h)

+
1
2
Δtγ

n∑

k=1

(bk−1−bk)
(
A(un

h,u
n
h)+A(un−k

h ,un−k
h )

)
.

(5.161)

Rearranging the above inequality yields

‖un
h‖2 +Δtγ

n∑

k=0

bkA(un−k
h ,un−k

h )≤‖un−1
h ‖2+Δtγ

n−1∑

k=0

bkA(un−1−k
h ,un−1−k

h )

−bnΔtγA(un
h,u

n
h)+2Δt(Ih f n,un

h).

(5.162)

Denote by

En = ‖un
h‖2+Δtγ

n∑

k=0

bkA(un−k
h ,un−k

h ).

Then we have

En≤En−1+2Δt(Ih f n,un
h)≤E0+2Δt

n∑

k=1

Δt(Ih f k,uk
h). (5.163)

Hence,

‖un
h‖2+Δtγ

n∑

k=0

bn−kA(uk
h,u

k
h)≤E0+2Δt

n∑

k=1

(Ih f k,uk
h)

≤E0+

n∑

k=1

(
Δt2

εbn−kΔtγ
‖Ih f k‖2 + εbn−kΔtγ‖uk

h‖2
)

,

(5.164)

where ε is a suitable positive constant such that ε‖uk
h‖2 ≤ ‖uk

h‖2Hα(Ω) ≤CA(uk
h,u

k
h) .

Hence

‖un
h‖2≤E0+

n∑

k=1

Δt2−γ

εbn−k
‖Ih f k‖2≤E0+CΔt

n∑

k=1

‖ f k‖2, (5.165)

where we have used Δt1−γ ≤ Cγbk and ‖Ih f k‖ ≤ C‖ f k‖. Using E0 = ‖u0
h‖2 +

ΔtγA(u0
h,u

0
h) yields the desired result. The proof is completed. �

For the methods (5.156)–(5.158), the similar results as (5.159) can be obtained.
Next, we consider the convergence for (5.155).
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Theorem 61 Suppose that un
h (n = 1,2, · · · ,nT ) is the solution of (5.155), and that U

is the solution of (5.125), U ∈C2(0,T ; Hr+1(Ω)), f ∈C(0,T ; Hr+1(Ω)), φ0∈Hr+1(Ω).
Then there exists a positive constant C independent of n, h, and Δt, such that

‖un
h−u(tn)‖≤C(Δt+hr+1−α).

Proof. We write the error equation for (5.155) as

(δten− 1
2 ,v) = −δ(1−γ)

t A(en,v)+ (Rn,v), v∈Xr
h0, (5.166)

where Rn = Rn
1+Rn

2+Rn
3 satisfies

Rn
1 = O(Δt), Rn

2 = f n − Ih f n, Rn
3 = δtη

n− 1
2 . (5.167)

From Theorem 60 we obtain

‖en‖2≤‖e0‖2 +ΔtγA(e0,e0)+CΔt
n∑

k=1

‖Rk‖2

≤C(Δt+hr+1−α).

(5.168)

Using ‖un
h−u(tn)‖≤‖ηn‖+ ‖en‖ yields the desired result. The proof is ended. �

The convergence rates for methods (5.156), (5.157), and(5.158) can be similarly
derived, which are of orders O(Δt+ hr+1−α), O(Δt1+γ + hr+1−α), and O(Δt+ hr+1−α),
respectively in the L2 sense.
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α-th order fractional derivative in the
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pth-order FLMMs, 39
“short memory” principle, 93
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ADI finite difference methods, 189
Adomian decomposition method, 104

backward Euler method, 130

Caputo derivative, 2
Caputo type time-fractional diffusion

equation, 147, 238
Cea’s lemma, 229
classical ordinary differential equation,
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Crank–Nicolson type methods, 137
cubic spline interpolation, 34

D’Yakonov factorization, 190
differential matrix, 92
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Discontinuous Galerkin methods, 224
Discrete Gronwall’s inequality, 224

energy method, 132
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finite element space Xr
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first-order accuracy, 42
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Fourier transform, 16
Fourier transform for the fractional
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integral operator, 17
fourth-order difference schemes for the
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Riemann–Liouville
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fourth-order numerical method for the
Riesz derivative, 64

fractal, 1
fractional Adams method, 104
Fractional backward Euler method, 101
fractional cable equation, 144
Fractional calculus, 1
fractional central difference method, 170
fractional central difference operator, 58
fractional derivative for a composite

function, 12
fractional differential matrix, 92
fractional Fokker–Planck equation, 144
Fractional forward Euler method, 101
fractional left and right average central

difference operators, 61
fractional linear multistep methods, 38
fractional Newton–Cotes formula, 32
Fractional Poincaré–Friedrichs, 222
fractional Simpson’s formula, 32
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fractional trapezoidal formula, 31, 143
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fractional von Neumann analysis, 128,
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Fractional weighted difference method,
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generalized discretized Gronwall’s
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generating functions, 38, 72
Gerschgorin theorem, 163
Grünwald–Letnikov derivative, 2
Grünwald–Letnikov Formula, 99
Gronwall’s inequality, 224

Haar wavelet approximation, 95
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high-order coefficients, 79, 86
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Riesz derivative, 67
homotopy perturbation method, 125
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differential equations, 125

Jacobi orthogonal polynomials, 35
Jacobi polynomials, 35
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Jacobi–Gauss–Lobatto interpolation, 37
Jacobi–Gauss–Lobatto points, 37
Jacobi–Gauss–Radau point, 38

L1 method, 43, 98
L2 method, 46
L2C method, 46, 47
Lagrangian basis functions, 225
Laguerre integral formula, 95
Laplace transform, 14
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Laplace transform of the fractional

integral, 15

Laplace transform of the
Riemann–Liouville fractional
derivative, 15

Lax–Milgram Theorem, 227
left fractional central difference operator,
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left fractional rectangular formula, 30,
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left Riemann–Liouville integral, 1
Leibniz rule, 10
Leibniz rule for fractional

differentiation, 11
linear operators, 10
linear spline interpolation method, 57
Lower triangular strip matrices, 91

Marchaud fractional operators, 18
matrix approach, 91
memory length, 94
modified L1 method, 46

Neumann type, 27
Newton iterative method, 104
nonuniform grids, 44

operational matrix, 53
orthogonal projection operator, 226

partial fractional derivatives, 21
piecewise interpolation operator, 225
PR factorization, 190
predictor-corrector method, 104, 106,
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Product Trapezoidal Method, 99

Riemann–Liouville derivative, 2
Riemann–Liouville integral, 1
Riemann–Liouville type time-fractional

diffusion equation, 238
Riesz derivative, 3, 55
right fractional central difference

operator, 61
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Rubin type, 27

second-order and third order numerical
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Riemann–Liouville
derivatives, 59

second-order coefficients, 73, 77
second-order methods, 43
second-order scheme and two

fourth-order numerical
schemes for the Riesz
derivative, 60

semi-group properties, 4
semi-norm, 219
shifted Grünwald–Letnikov formulas, 56
Sobolev space, 219
space-fractional differential equation,
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space-fractional diffusion equation, 159,

230
stability region, 115
standard Grünwald–Letnikov formula,
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starting weights, 39
steady state fractional advection

dispersion equation, 224
Stieltjes integral, 24

Stokes’ first problem for a heated
generalized second grade fluid
with fractional derivative, 144

strongly stable, 115

The L1 method, 49
The L2 method, 49
The L2C method, 49
The modified L1 method, 49
time-fractional diffusion equation, 127,

185
time-space fractional diffusion equation,

174, 179, 208
time-space-fractional differential

equations, 251
two-sided space-fractional partial

differential equations, 168

unconditionally stable algorithms, 43
uniform grids, 45
upper triangular strip matrices, 92

variable-order derivatives, 95
vector fractional derivatives, 95
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