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The concept of the fractional Fourier transform is framed within the context of quantum 
evolution operators. This point of view yields an extension of the above concept and greatly 
simplifies the underlying operational algebra. It is also proved that a multidimensional 
extension can be performed by using a biorthogonal multiindex harmonic oscillator basis. It 
is finally shown that most of the proposed physical interpretations of the fractional Fourier 
transform are just trivial consequences of the analysis developed in this paper. 

1. Introduction 

The concept of Fourier transform of fractional order (F.O.F.T.) was introduced by Namias 
(1980), who established the main properties and provided the rules of the relevant opera- 
tional calculus. The Namias ideas have been put on more rigorous basis by McBride & Kerr 
(1987), who eliminated, by a proper redefinition of the F.O.F.T. operator, the ambiguity 
contained in the first ‘heuristic’ formulation. Notwithstanding the weakness of the Namias 
approach from the purely mathematical point of view, the methods and the concepts de- 
veloped in (Namias 1980) provide effective tools to deal with time-dependent Schrodinger 
equations or other types of non-homogenous parabolic equations. Furthermore they have 
stimulated interesting speculation in optics (Sashin et al. 1995) sand in quantum optics 
(Aytur & Ozaktas 1995). 

In this paper we propose a point of view different from the theory of F.O.F.T. by show- 
ing that it is a particular case of the evolution operator theory. The F.O.F.T. will be shown 
to be generated by an evolution operator belonging to a Hamiltonian admitting SU( 1,l) 
as dynamical group. We will see how this point of view puts the F.O.F.T. in a wider con- 
text, allows the introduction of a generalized form of F.O.F.T., justifies the speculations of 
(Sashin et al. 1995, Aytiir & Ozaktas 1995) and suggests further physical interpretations. 

The paper is organized as follows. In Section 2 we recall the Namias definition of 
F.O.F.T. and show how it can be derived within the context of SU( 1,l) evolution operator 
theory. In Section 3 we discuss the extension of the Namias operator to the multidimen- 
sional case and, as an important byproduct, we derive the Mehler formula for the Hermite 
functions with many variables and many indices. Final comments are contained in Sec- 
tion 4, which is also devoted to the physical interpretation of the concepts associated with 
F.O.F.T. 

@ Oxford University Press 1998 
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2. Fractional order Fourier transform and evolution operators 

The F.O.F.T. operation, denoted by F,, has been suggested by the following simple con- 
siderations. 

(a) The harmonic oscillator functions are eigenfunctions of the ordinary ET. denoted by 
Ff,, namely 

F 4n e-i”iH,(x)] = dinn [dx2Hn(x)]. (1) 

(b) The obvious generalization of the above identity can be written as 

f&(x)] = eina [e-ix2 H,(x)] . (2) 

(c) By denoting the operator F, by eiaA and by keeping the derivative of both sides of 
(2) with respect to CX, we find the following differential realization for A: 

d2 &A-- 2dxz+;x2-;. (3 

It is obvious that for a real 

(4) 

is a unitary operator, which follows from the hermiticity of A. The action of F, on a given 
function of x can be viewed as that of an evolution operator relevant to a Hamiltonian of a 
harmonic oscillator; with respect to this constant term -$ plays a minor role. We rewrite 
(4) as 

F a = exp(-$icr) exp(-iiud2/dx2 + $iolx2). (3 

From group theory, we introduce the following SU( 1 ,I) generators (Dattoli it aZ. 1987) 

it+ = iid2/dx2, i- = -$x2, I?() = -; (xd/dx + ;) (6) 

which satisfy the rules of commutation 

[a,,a_]=-2e, [a,,k*]=&*. (7) 

By using the ordinary ordering theorems, we can write F, as the following product of 
exponential operators; see, for example, (Dattoli et aZ. 1987, Wei & Norman 1963): 

F a 
= e-liaeg(a)i-e2h(a)~*ef(a)~+ 

9 (8) 

where (see Dattoli et al. (1987) for the details of the derivation) 

g(a) = - tana, f<a) = - tana!, ehCa) = COSQ!. (9) 

The action of Fa on a given function F(x) can be evaluated by using the following two 
operational identities (Dattoli et al. 1990): 

etd2/dX2$(x) = & / 
+OO 

#(xt)e-(X-X’)214td~t , t > 0, 
-00 
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(10) eaxd/dx#(x) = #(e”x) , 

which, together with (8), after a little algebra yield 

ei(t7ra-ia) 
1 ix2 tan a 

+C= 

(Fa 0 (X) = 
(274 Isin& 

e2 
s 

F(d) exp -i/2 tan a (x/ cos a - x ) / 2 dd, 
--00 I 

(11) 
where & = sign(a) and --it K a < it the values a = 0 and a = &~d reproducing the 
identity and reflection (with respect to x = 0) operators respectively. 

Since we have clarified that Fa is just an evolution operator, most of the operational rules 
established in Namias (1980), McBride & Kerr (1987) follow from elementary quantum 
mechanics. To give an example we note that since Fa is unitary we have 

Fax = (FaxFL) Fa , (12) 

and we also obtain 

FaxFL = eiQixe-iai 1 d 
= xcosa + 7 sina-, (1% 

1 dx 

which is nothing but the Heisenberg evolution of x. The same procedure can be used to 
establish identities of the type 

1 d 

> 

nz 

Faxm = ~~~~a+ysin~- Fa. 
1 dx (14) 

Before concluding this section, let us note that we can derive from (11) the Mehler sum 
rule (Morse & Feschback 1953, p. 871), which is one of the starting points of the Namias 
procedure. Indeed by expanding F(x) in harmonic oscillator eigenfunctions, we obtain 

F(x) = 2 a,e-ix2 Hn (x), (1% 
n=O 

where 
1 

s 

+OO 
an = - 

2”n!Jn w-O0 
H,(x)e-fXZ F(x) dx . (16) 

By noting that, according to (2) and (15) 

(Fa F) (x) = 2 an&nae-~x2 Hn(x) 
n=O 

(17) 

by inserting (16) in (17), and using (1 l), after some manipulaticm we get 

00 eina x - Hn(x)Hn(x’) = 
1 

n = o 292! (1 _ e2ia) k 
exp ({ 2xx’eia - e2ia (x2 + x’~)} / { 1 - e2ia]) 

(18) 
which is just the Mehler sum rule. We will see that this result can be extended to generalized 
Hermite polynomials within the context of the multidimensional extension of the F.O.F.T. 
concept. 
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3. Generalized form of fractional Fourier transform 

A first, almost trivial, example of generalization of F.O.F.T. is that of considering the fol- 
lowing slightly generalized form of k 

f& ad* b 
-2G + 2x2 + 

where a, b, c are assumed real to ensure the hermiticity of A. By using the operators (4) 
and (19) and by exploiting the same ordering procedure as before, we find the characteristic 
functions (Dattoli et al. 1987) 

R(a) = eh(@) = cash (Jdar) + c sinh (l/a~~) , 
WA 

eh@ f(a) = ---$ sinh (,/da!) , eh@g(a) = 
b 

-~/d sinh (,/AcY) 

A= -ab + h* 
4 l 

(20) 

The use of the identities (10) finally yields 

FaF) (x> = 
exp (-sign@+ [$r - x*g(- ~cxI)]) 

w F-f c-- 14>1+ 
CR c-- bINi 

X 

s i 
exp -sknw;i [(R (- 14) x - Y>"] I - f (-- 14) 

I  

F(Y) dY l (21) 

R 

which holds for A > 0, a > 0 and for every a. 
The possibility of a more interesting generalization of F.O.F.T. is offered by the en- 

tangled harmonic oscillator eigenvalue equation (Dattoli & Torre 1995) satisfied by the 
functions &,Jx, y) and G~,m(x, y), namely 

( -a,‘~-’ a, - 1 + +zTh > Tn,m(x, y> = (n + m>G,f?,(x9 y>, (22) 

where Tn,m is ‘Ft,,, or &,m9 with 

Ai 1 
%rl(X, L> = -- 

(24 (n!m!$ 
Hn,.,Jx, y)e-izTMz, 

Gn.n& Y> = 
A; 1 

- -G,,m(~, y)e-fzTMz, 
(2x9 (n!m!)+ 

z=(:>, fi=(i E), a,c>O, AG=ac-b*#O (23) 

and T denotes transpose. The functions Hn,m and G,,, are generalized Hermite polyno- 
mials provided by the following Rodrigues type relation: 
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Hn,m(X, y) = (-l)n+me’ZTMr 
A an+m -1 T& 

-e 2’ , 
axnay 

Gn,m(x, y) = (-l)n+me~wT'-lw- 

It is finally clear that the quadratic operator on the left-hand side of (22) is the general- 
ization of the one-dimensional quantum harmonic oscillator Hamiltonian, in fact 

(26) 

is the entangled Laplace operator. 
The bidimensional F.O.F.T. operator can be therefore defined as follows: 

Fct 
-ia iab =e e , b= x -#&la x + LX*& 

4 (27) 

and according to (22) 

F, Tn m = ei(n+m)a T, m . t 9 (28) 

if 
We can obtain the two-dimensional F.O.F.T. by employing the same procedure as 
we note that the SU( 1,l) generators can be realized by the following operators: 

before 

h- = iazT&Qjz, KS = -i$zTtiz, KO = -$ (zTaz + a,‘z> , (2% 

and further by noting that the bidimensional counterparts of equations (10) read 

epK-t/f(x, y) = e-itzTazt/r(x, y), 

we can specify the action of the bidimensional F, operator as follows: 
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or in a form closer to the Namias formula, as 

1 
-ia -$in&AT 

(F,F) (x, Y) = -e 4n ,sinrv,a 

-in <w+,a#O. (32) 
It is important to note that, in the limit a = $ we find that 

F (x’, y’) dx’ dy’, 

(F; G-m) (X, y) = ei(n+m)t Tn,m(x, y), (33) 

that is, either 3-1n.m or Gn,m is an eigenfunction of the bidimensional F.O.F.T. operator. 
Other definitions of the bidimensional Fourier transform are possible but do not satisfy the 
property (28). For a more general treatment of the two-dimensional Fourier transform the 
reader is addressed to Dattoli & Torre (1995) and Dattoli et al. (1997). 

An important byproduct of the above results is the derivation of a generalized form of 
the Mehler sum rule for the entangled Hermite polynomials. Remember that the functions 
7-i n,m and Gn.m P rovide a biorthogonal system in the sense that 

We can therefore use this property to expand a two-variable function as follows: 

00 

Fk y> = >: an,mKz,m (X9 y>9 
n,m=O 

an,m = 1: dx’lr dy’ F (x’9 y’>Gn,m (X’9 y’> l 

According to (28) we also find 

00 
FCYF) (x, Y> = x an,m ei(n+m)cy3-In,m (X, y) . 

n.m=O 

(35) 

(36) 
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By means of (35)2, equation (36) can be cast in the form 

w? (x9 v> = 2 n m=oei(n+m)a s_c,” dx’lr dY’F(x’9 )%&,m (x’9 y’l’FI,,m (X9 u> (37) 

t 

which, using (3), yields (for -$r < a c $r, a! # 0) 

00 

>: 
ei(n+m)a 

1 

n,m=O 

mGn,rn(x’9 Yl)H,,mh u) = 
1 

. . (1 - ,,,)t 

2ZTfizreia _ e2ict zTfiz + Z~T&Z~ 

x exp > 
2 (1 - e2i(u) 

I 

. (38) 

This last identity is fairly important, being the extension of the Mehler formula to the 
multivariable multiindex Hermite functions. 

To complete this section we note that the rules of the operational calculus of the bidi- 
mensional operator F, can be established fairly straightforwardly and in fact we can infer 
that 

which facilitates the following alternative definition of F.O.F.T. operations: 

P-cm (x9 Y) = 

F xcosa!-2isina! 
( 

(40) 
The multidimensional generalization (more than two indices and two variables) of the 

F.O.F.T. is straightforward and obtained from (3 1) by replacing fi with an n x n symmetric 
matrix, z with an n-component vector, the integral with an n-dimensional integral and F 
with an n-variable function. 

4. Concluding remarks 

The fact that we have viewed the operator F, as an ordinary evolution operator clarifies 
in a fairly transparent way its physical meaning. It is therefore obvious that any evolution 
problem treated by means of a Schrodinger equation involving a quadratic potential may 
be considered a F.O.F.T. 

In particular the paraxial propagation of an optical beam through a lens-like medium is 
a relevant genuine example. 

It is indeed well known that the propagation of an electromagnetic wave in a non- 
homogeneous medium with a quadratic refractive index profile is governed by an equation 
of the type (Yariv 1975) 
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where z is the longitudinal coordinate of propagation and q is one of the transverse coord- 
inates (X or y). Furthermore ko(z) is the wave number on the axis of propagation and k&) 
is associated to the refractive index. In the case in which k&) and k*(z) are not explicitly 

z-dependent $ the solution of (4 1) is just the F.O.F.T. of #(q). We must also emphasize that 
in the general time-dependent case the solution can be found in a F.O.F.T. like form but in 
that case the characteristic functions (f, g, h) are obtained as the solution of a nonlinear 
system of first-order differential equations, namely (Dattoli et al. 1987) 

-ehf 
-eh fg + evh 

0 Vko(~) eh -ehf 
42(Z) 0 >( ehg -eh fg + evh > ’ 

(42) 
It is also clear that the same method can be applied to other problems involving, for 

example, the evolution of squeezed states. 
The concepts developed in this paper indicate that the idea of F.O.F.T. can be extended 

to other types of solvable Hamiltonians admitting SU( 1,l) as dynamical group. This aspect 
of the problems will be considered in a forcoming investigation. 

In the previous sections we have stressed the hermiticity of the operators i and b which 
ensures the unitarity of F, and thus the fact that FL produces a F.O.F.T. which is the com- 
plex conjugate of that associated with F,. We must emphasize that the unitarity of the 
operator-generating transform of the fractional type is not crucial. Namias has in fact in- 
troduced the fractional Hankel transform defined by the operator (Namias 1980) 

fi=------+ 1 d2 1 d 

- 

4 dx2 4x dx x2 v2 1 0-J + 1) ’ 4+x--* 2 

& can be viewed as a non-unitary evolution operator since 

1 d2 1 d x2 v2 (v+l) b#bt=----g+~~+--+~-- 
2 ’ 

(43) 

(44) 

However, the techniques developed in the previous sections can be exploited in this case 
too, the only difference being that two different Hankel transforms should be considered, 
one associated with b and the other with Bt. 

The fractional Hankel transform can be shown to be contained in the F.O.F.T. This fact 
can be understood as follows. The function 

Lp(x2 + y2) = 
1 --rL,(x2 + y2)emiCx2+y2), 

2Yr3 
(4% 

where L, denotes Laguerre polynomials (Morse & Feschback 1953), satisfies the differ- 
ential equation 

[ 4; - a; + $ (x2 + y2)] L,(x2 + y2) = 2pL,(x2 + y2). (46) 

$ Note that within the present context z plays the role of time and thus of a. 
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We can therefore define the following bidimensional operators: 

which yield 

223 

- iin& 

(F,@) (x, y) = -iz;sina/ e-t! cota(X2+J’2) 

the value a = 0 reproducing the unit operator. 
By using polar coordinates, by assuming that + has a cylindrical symmetry and by 

exploiting the following integral representation for the Jo-Bessel function: 

1 X 
Jo(x) = - 

2n -n e s 
-ix case w (49) 

which is a particular case of the fractional Hankel transform introduced in Namias (1980). 
By using the same procedure leading to the Mehler sum rule for the Hermite polynomials, 
we can exploit the fact that L, is an orthogonal basis (Morse & Feschback 1953), to get 
the following Mehler addition formula for Laguerre polynomials: 

00 

>: 

e2ipa 1 
Lp(p)L,(P’~~ = pexexp 

i 
- 

(p* + p’*) e2ia, Jo pp’ 

2C1 
- $a) 

I( ) 2sina! l 

(51) 
p=o 

The more general case of fractional-order Hankel transform, involving the generalized 
Laguerre polynomials, will be discussed elsewhere. 

Before closing we want to further emphasize the usefulness of the F.O.F.T. concept from 
the mathematical point of view; we have seen that by inverting the procedure we can derive 
the Mehler sum rule as a consequence of the fractional-order transform. This fact can be 
exploited to obtain Mehler type sum rules for other types of special functions. 
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