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Abstract In this work, we derive a new fractional order theory for thermo-viscoelasticity.
A uniqueness theorem for these equations is proved. A reciprocity theorem is also proved.
A 1D problem for a viscoelastic half space is solved by using the Laplace transform tech-
nique. The solution in the transformed domain is obtained by a direct approach. The inverse
transforms are obtained by using a numerical method. The temperature, displacement and
stress distributions are computed and represented graphically.

Keywords Fractional calculus · Half Space · Reciprocity theorem ·
Thermo-viscoelasticity · Uniqueness theorem

1 Introduction

In recent years, viscoelastic materials became a very important study field. This is due to
the massive use of polymers and composite materials in industry. The applications of these
materials are various and numerous. For instance, they are used in the fabrication of med-
ical diagnostic tools and also used in the NASA space programs. Also the investigation of
seismic viscoelastic waves plays an important role for geophysical prospecting technology.

The mechanical model of linear viscoelasticity was represented by Gross (1953). Many
authors worked to develop this model and discussed the behavior of viscoelastic materials
like Gurtin and Sternberg (1962), Stratonova (1971), Malyi (1976), and Li (1978).

Pobedrya (1969), Il’yushin (1968), Kovalenko and Karnaukhov (1972) and Medri (1988)
discussed the coupled theory of thermo-viscoelasticity and solved some problems in the
context of this theory. The heat equation of this theory is a parabolic partial differential
equation which predicts limited velocity of spread for heat waves contrary to physical obser-
vations. Due to this flaw, Sherief et al. (2011) introduced the generalized theory of thermo-
viscoelasticity with one relaxation time. This theory is an extension to the generalized theory
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of thermoelasticity which was introduced by Lord and Shulman (1967) and Dhaliwal and
Sherief (1980). Elhagary (2013) has solved a thermo-mechanical shock problem for gener-
alized theory of thermo-viscoelasticity. Sherief et al. (2015) solved a 2D problem for a half
space in the generalized theory of thermo-viscoelasticity.

Recently, fractional calculus has been used to describe an increasing numbers of physical
processes, like, electromagnetism, astrophysics, quantum mechanics, and nuclear physics
etc. Caputo and Mainardi (1971a, 1971b) and Caputo (1974) had got good experimental
results when using fractional derivatives for description of viscoelastic materials and insti-
tuted the relationship between the theory of linear viscoelasticity and fractional order deriva-
tives. Adolfsson and Enelund (2003), Adolfsson et al. (2004) constructed a newer fractional
order model of visco-elasticity. Bagley and Torvik (1983, 1986) and Welch et al. (1999)
introduced good contributions in this field. Ezzat et al. (2013, 2015), Ezzat and El-Bary
(2017) constructed a model and solved a number of problems for fractional order thermo-
viscoelasticity.

Povstenko (2005, 2009, 2011) investigated new thermoelasticity models that use frac-
tional derivative. The fractional order theory of thermoelasticity was derived by Sherief
et al. (2010). Sherief and AbdEl-Latief (2013, 2014) and Raslan (2015, 2016) solved some
problems in the context of this theory.

In this work, the authors introduce a new fractional order theory of thermo-viscoelasticity.
A modified law of heat conduction including both heat flux and its fractional time derivative
is used to drive the equation of heat conduction. Uniqueness and reciprocity theorems for
these equations are proved. The authors have solved a one-dimensional thermo-viscoelastic
problem for a half space in order to illustrate the obtained results. In the following, a comma
indicates a material derivative and a dot denotes differentiation with respect to time t .

1.1 Derivation of the fundamental equations

A continuous viscoelastic medium contained within a volume V and surrounded by a closed
surface S is considered. It is subject to a body force Fi per unit mass and a heat source of
strength Q per unit mass, Let the position vector of a point be denoted by x(xi) where
(i = 1,2,3). The components of strain tensor eij are defined by (Fung 1965)

eij = 1

2
(ui,j + uj,i), (1.1)

where ui are the components of the displacement vector.
Now, we define a linear thermo-viscoelastic material to be one for which the stress ten-

sor components σij (x, t) are related to strain tensor components eij (x, t) by a convolution
integral as follows:

σij =
∫ t

0
Cijkl(t − τ)

∂ekl(x, τ )

∂τ
dτ − αt

∫ t

0
mij (t − τ)

∂T (x, τ )

∂τ
dτ, (1.2)

where Cijkl and mij are tensor field called tensorial relaxation functions of the material, T is
the absolute temperature and αt is the coefficient of liner thermal expansion.

Substituting Eqs. (1.1) and (1.2) into the equation of motion which is given by (Fung
1965)

σji,j + ρFi = ρüi, (1.3)
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where ρ is the density, we get

ρüi = ρFi + 1

2

∫ t

0
Cijkl(t − τ)

∂

∂τ
[uk,lj + ul,kj ]dτ − αt

∫ t

0
mij (t − τ)

∂T,j

∂τ
dτ. (1.4)

The entropy equation for a thermally conducting viscoelastic solid subjected to small
strain and small temperature changes is given by (Foutsitzi et al. 1996)

ρT0η = ρcE(T − T0) + αtT0

∫ t

0
mij (t − τ)

∂eij (x, τ )

∂τ
dτ, (1.5)

where η is the entropy per unit mass and T0 is reference temperature for which the medium
is in equilibrium free of strain. Equation (1.5) can be written in the form

ρT0η = ρcE(T − T0) − αtT0

[∫ t

0
eij (x, t − τ)

∂mij (τ )

∂τ
dτ − mij (0)eij (x, t)

]
. (1.6)

We shall use the linearized entropy balance equation, namely (Sherief et al. 2011)

ρT0η̇ = −qi,i + ρQ, (1.7)

where qi is heat flux vector. Using Eq. (1.6) this reduces to

qi,i = −ρcEṪ + αtT0

[∫ t

0
ėij (x, t − τ)

∂mij (τ )

∂τ
dτ − mij (0)ėij (x, t)

]
+ ρQ. (1.8)

Now, we shall use the definition of fractional derivatives of order α ∈ [0,1] of the absolutely
continuous function f (t) given by (Miller and Ross 1993)

dα

dtα
f (t) = 1

Γ (1 − α)

∫ t

0
(t − s)−αf ′(s) ds, (1.9)

where f (t) is a Lebesgue integrable function, α > 0. If the function f (t) is absolutely
continuous, then

Lim
α→1

dα

dtα
f (t) = f ′(t).

We assume a generalized Fourier law of heat conduction of the form (Sherief et al. 2010)

qi + τ0
∂αqi

∂tα
= −kijT,j , (1.10)

where kij is a thermal conductivity tensor, τ0 is a constant with the dimension of time, called
relaxation time, and α is a constant such that 0 < α ≤ 1.

Now, taking divergence of both sides of (1.10) and using (1.8) and its time derivative, we
arrive at

(kij T,j ),i = ρcE

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
T − αtT0

[∫ t

0

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
eij

∂mij

∂τ
dτ

− mij (0)

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
eij

]
− ρ

(
∂

∂t
+ τ0

∂α

∂tα

)
Q. (1.11)
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In a case of an isotropic body, the tensorial relaxation functions can be written as (Sherief
et al. 2011)

Cijkl = G1δij δkl + G2[δikδjl + δilδjk], (1.12a)

mij = (3G1 + 2G2)δij = Gδij , kij = kδij , (1.12b)

where G1(t) and G2(t) are relaxation functions.
Substituting (1.12a), (1.12b) into (1.2) and (1.4) we get

σij = 2
∫ t

0
G2

∂eij

∂τ
dτ + δij

[∫ t

0
G1

∂e

∂τ
dτ − αt

∫ t

0
G

∂T

∂τ
dτ

]
. (1.13)

ρüi = ρFi +
∫ t

0
G2

∂ui,jj

∂τ
dτ +

∫ t

0
(G1 + G2)

∂uj,ij

∂τ
dτ − αt

∫ t

0
G

∂T,i

∂τ
dτ (1.14)

and the equation of heat conduction takes the form

kT,ii = ρcE

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
T − αtT0

[∫ t

0

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
eij

∂G

∂τ
dτ

− G(0)

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
eij

]
− ρ

(
1 + τ0

∂α

∂tα

)
Q, (1.15)

where e is the cubical dilatation given by e = ekk .

2 Uniqueness theorem

As usual, to prove uniqueness we assume there exist two sets of functions σ
(1)
ij and σ

(2)
ij , e

(1)
ij

and e
(2)
ij , etc., and let

σij = σ
(1)
ij − σ

(2)
ij , eij = e

(1)
ij − e

(2)
ij .

Theorem Given a regular region of space V + S with boundary S then there exists at most
one set of single-valued functions σij (xk, t) and eij (xk, t) of class C(1), ui(xk, t) and T (xk, t)

of class C(2) in V +S, t ≥ 0 which satisfy Eqs. (1.4) and (1.11) in V , t > 0 and the following
equation on the boundary S, t > 0:

T = f1 on S, (2.1)

ui = ui1 on S. (2.2)

The following equations in V , t = 0:

T = h0, Ṫ = h1, ui = ui0, u̇i = u̇i0, (2.3)

where we assume that the viscoelasticities and the conductivities satisfy the symmetry con-
dition

Cijkl = Cklij , kij = kji . (2.4)
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We assume also that Cijkl and kij satisfy the positive definiteness condition

Cijkl(0)ξij ξkl ≥ c1ξij ξij , kij ζiζj ≥ c2ζiζi (2.5)

for some positive constants c1 and c2 and for all nonzero tensors ζi and ξij .

Proof Equation (1.4) can be rewritten as the form

ρüi =
∫ t

0
Cijkl(t − τ)

∂ekl

∂τ
dτ + αt

[∫ t

0
T,j (x, t − τ)

∂mij (τ )

∂τ
dτ − mij (0)T,j (x, t)

]
. (2.6)

Applying the Laplace transform defined by the relation

f̄ (x, s) =
∫ ∞

0
e−stf (x, t) dt,

to both sides of Eqs. (2.6) and (1.11) we obtain

ρs2ūi = sC̄ijkl ēkl,j + αt

[
sm̄ij T̄,j − 2mij (0)T̄,j

]
, (2.7)

(kij T̄,j ),i = ρcEs
(
1 + τ0s

a
)
T̄ − αtT0s

(
1 + τ0s

a
)[

sm̄ij ēij − 2mij (0)ēij

]
. (2.8)

Multiplying Eq. (2.7) by ūi and (2.8) by T̄ , integrating over V and using the Green–Gauss
theorem, we get

∫
V

ρs2ūi ūi dV +
∫

V

sC̄ijkl ēkl ēij dV + αt

[∫
V

sm̄ij T̄ ēij dV −
∫

V

2mij (0)T̄ ēij dV

]
= 0,

(2.9)
∫

V

kij T̄,j T̄,i dV + s
(
1 + τ0s

a
)∫

V

ρcET̄ 2 dV − αtT0s
(
1 + τ0s

a
)[∫

V

sm̄ij T̄ ēij dV

−
∫

V

2mij (0)T̄ ēij dV

]
= 0. (2.10)

Eliminating the last term in Eqs. (2.9) and (2.10), we obtain
∫

V

ρs2ūi ūi dV +
∫

V

sC̄ijkl ēkl ēij dV + kij

T0s(1 + τ0sα)

∫
V

T̄,j T̄,i dV +
∫

V

ρcE

T0
T̄ 2 dV = 0.

(2.11)
By the initial value theorem of the Laplace transform (Churchill 1972), sC̄(s) → C(0) as
s → ∞, then, for large s, we have

∫
V

[
ρs2ūi ūi + Cijkl(0)ēkl ēij + kij

T0s(1 + τ0sα)
T̄,j T̄,i + ρcE

T0
T̄ 2

]
dV = 0. (2.12)

By the hypothesis (2.5), we arrive at
∫

V

[
ρs2ūi ūi + c1ēij ēij + c2

T0s(1 + τ0sα)
T̄,i T̄,i + ρcE

T0
T̄ 2

]
dV ≤ 0. (2.13)

The integrand in (2.13) is the sum of squares and cannot be negative. Therefore, we obtain
∫

V

[
ρs2ūi ūi + c1ēij ēij + c2

T0s(1 + τ0sα)
T̄,i T̄,i + ρcE

T0
T̄ 2

]
dV = 0, t ≥ 0. (2.14)
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It follows from (2.14) that the difference functions are identically zero throughout the
body for all time. According to Learch’s theorem (Churchill 1972) the inverse Laplace trans-
form of each is unique, and this completes the proof. �

3 Reciprocity theorem

We supplement Eqs. (1.4) and (1.11) with the boundary conditions

σijnj = pi(x, t), T (x, t) = υ(x, t), x ∈ S, t > 0 (3.1)

and the homogeneous initial conditions

ui(x,0) = 0, u̇i(x,0) = 0, T (x,0) = 0, Ṫ (x,0) = 0, x ∈ V. (3.2)

Consider a bounded thermo-viscoelastic body subject to the action of a body forces Fi ,
surface tractions pi , heat sources Q and heating of the surface to the temperature υ . We
write these causes symbolically as

L = {Fi,pi,Q,υ}. (3.3)

The causes C produce in the body the displacements ui and the temperature increment θ .
We write these results as

R = {ui, T }. (3.4)

Assume now that there exists another system of causes and effects, namely

L′ = {
F ′

i , p
′
i ,Q

′, υ ′}, R′ = {
u′

i , T
′}. (3.5)

If we perform over Eq. (1.2) the Laplace transform, we get the relation

σ̄ij = sC̄ijkl ēkl − β̄ij T̄ (3.6)

where β̄ij = αtsm̄ij

For system (3.7) the equivalent equation is

σ̄ ′
ij = sC̄ijkl ē

′
kl − β̄ij T̄

′. (3.7)

Multiplying Eq. (3.6) by ē′
klδikδjl , Eq. (3.7) by ēklδikδjl and integrating the difference

over V , we get
∫

V

[
σ̄ij ē

′
ij − σ̄ ′

ij ēij

]
dV = αt

∫
V

m̄ij

[
T̄ ′ēij − T̄ ē′

ij

]
dV . (3.8)

Now we have
∫

V

σ̄ij ē
′
ij dV =

∫
V

σ̄ij ū
′
i,j dV =

∫
S

σ̄ij nj ū
′
i dS −

∫
V

σ̄ij,j ū
′
i dV . (3.9)

Performing the Laplace transform over Eq. (1.3) and using the homogeneous initial condi-
tions (3.2) we obtain

σ̄ij,j + ρF̄i = ρs2ūi , x ∈ V. (3.10)



Mech Time-Depend Mater (2020) 24:179–195 185

Combining Eqs. (3.1), (3.9) and (3.10), we have

∫
V

σ̄ij ē
′
ij dV =

∫
S

p̄i ū
′
i dS + ρ

∫
V

F̄i ū
′
i dV − ρ

∫
V

s2ūi ū
′
i dV . (3.11)

Substituting from (3.11) and an analogous integral
∫

V
σ̄ij ē

′
ij dV into (3.8) we obtain the

equation

∫
S

[
p̄i ū

′
i − p̄′

i ūi

]
dS + ρ

∫
V

[
F̄i ū

′
i − F̄ ′

i ui

]
dV + β̄ij

∫
V

[
T̄ ′ēij − T̄ ē′

ij

]
dV = 0. (3.12)

Equation (3.12) constitutes the first part of the reciprocity theorem since it contains only
causes of a mechanical nature, namely, the mechanical forces and the surface tractions.

To derive the second part we take the Laplace transform of both sides of (1.11) and use
the initial conditions (3.2) to obtain

(kij T̄,j ),i = ρcE

(
s + τ0s

1+α
)
T̄ − αtT0

(
s + τ0s

1+α
)[

sm̄ij − mij (0)
]
ēij − ρ

(
1 + τ0s

α
)
Q.

(3.13)
The analogous equation for (3.13) is

(
kij T̄

′
,j

)
,i

= ρcE

(
s + τ0s

1+α
)
T̄ ′ − αtT0

(
s + τ0s

1+α
)[

sm̄ij − mij (0)
]
ē′
ij − ρ

(
1 + τ0s

α
)
Q′.

(3.14)
Multiplying Eq. (3.13) by T̄ ′ and (3.14) by T̄ , subtracting the result and integrating over the
volume V , we arrive at the identity

∫
V

[
(kij T̄,j ),i T̄

′ − (
kij T̄

′
,j

)
,i
T̄

]
dV = T0[β̄ij − αij ]

(
s + τ0s

1+α
)∫

V

[
ē′
ij T̄ − ēij T̄

′]dV

− (
1 + τ0s

α
)∫

V

ρ
[
Q̄T̄ ′ − Q̄′T̄

]
dV, (3.15)

where αij = αtmij (0).
Integrating by parts we find, after using the transformed boundary condition (3.1), that

∫
V

(kij T̄,j ),i T̄
′ dV =

∫
S

kij T̄,j T̄
′ni dS −

∫
V

kij T̄,j T̄
′
,i dV

=
∫

S

kij ῡ
′T̄,j ni dS −

∫
V

kij T̄,j T̄
′
,i dV . (3.16)

Substituting (3.16) and an analogous expression for
∫

V
(kij T̄,j ),i T̄

′ dV into Eq. (3.15) we
obtain

∫
S

kij

[
ῡ ′T̄,j − ῡT̄ ′

,j

]
ni dS = T0[β̄ij − αij ]

(
s + τ0s

1+α
)∫

V

[
ē′
ij T̄ − ēij T̄

′]dV

− (
1 + τ0s

α
)∫

V

ρ
[
Q̄T̄ ′ − Q̄′T̄

]
dV . (3.17)

Equation (3.17) is the second part of the reciprocity theorem. It contains thermal causes,
namely: the heat sources and heating of the surface S.
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Eliminating the integral
∫

V
[T̄ ′ēij − T̄ ē′

ij ]dV from Eqs. (3.12) and (3.17) we arrive at a
reciprocity theorem containing both systems of causes of L and L′ and effects R and R′:

∫
S

kij β̄ij

[
ῡ ′T̄,j − ῡT̄ ′

,j

]
ni dS + (

1 + τ0s
α
)
β̄ij

∫
V

ρ
[
Q̄T̄ ′ − Q̄′T̄

]
dV

= T0

[
β̄ij − βij (0)

](
s + τos

1+α
)∫

S

[
p̄i ū

′
i − p̄′

i ūi

]
dS

+ T0

[
β̄ij − βij (0)

](
s + τos

1+α
)∫

V

[
F̄i ū

′
i − F̄ ′

i ūi

]
dV . (3.18)

To invert the Laplace transform in (3.18) we use the convolution theorem (Churchill 1972)
and (Oberhettinger and Badii 1973) namely

L−1
[
f̄ (s).ḡ(s)

] =
∫ t

0
L−1

[
f̄ (s)

]
t=t−z

L−1
[
ḡ(s)

]
t=z

dz.

Equation (3.18) finally reduces to

∫
S

kij ni dS

∫ t

0

[
T,j (x, t − τ)

∫ τ

0
βij (τ − ς)υ ′(x, ς)dς − T ′

,j (x, t − τ)

×
∫ τ

0
βij (τ − ς)υ(x, ς) dς

]
dτ

+
∫

V

ρ dV

∫ t

0

[
T ′(x, t − τ)

∫ τ

0
βij (τ − ς)Q(x,ς) dς − T (x, t − τ)

×
∫ τ

0
βij (τ − ς)Q′(x, ς) dς

]
dτ

+ τ0

∫
V

ρ dV

∫ t

0

[
∂T ′(x, τ )

∂τ

∫ t−τ

0
βij (ς)Q(x, t − τ − ς)dς

− ∂T (x, τ )

∂τ

∫ t−τ

0
βij (ς)Q′(x, t − τ − ς)dς

]
dτ

= T0

∫
S

dS

∫ t

0

[
∂u′

i (x, τ )

∂τ

∫ t−τ

0
βij (ς)pi(x, t − τ − ς)dς

− ∂ui(x, τ )

∂τ

∫ t−τ

0
βij (ς)p′

i (x, t − τ − ς)dς

]
dτ

+ T0τ0

∫
S

dS

∫ t

0

[
∂1+αu′

i (x, τ )

∂τ 1+α

∫ t−τ

0
βij (ς)pi(x, t − τ − ς)dς

− ∂1+αui(x, τ )

∂τ 1+α

∫ t−τ

0
βij (ς)p′

i (x, t − τ − ς)dς

]
dτ

− T0αij

∫
S

dS

∫ t

0

[
∂u′

i (x, τ )

∂τ
pi(x, t − τ) − ∂ui(x, τ )

∂τ
p′

i (x, t − τ)

]
dτ

− T0αij

∫
S

dS

∫ t

0

[
∂1+αu′

i (x, τ )

∂τ 1+α
pi(x, t − τ) − ∂1+αui(x, τ )

∂τ 1+α
p′

i (x, t − τ)

]
dτ



Mech Time-Depend Mater (2020) 24:179–195 187

+ T0

∫
V

dV

∫ t

0

[
∂u′

i (x, τ )

∂τ

∫ t−τ

0
βij (ς)Fi(x, t − τ − ς)dς

− ∂ui(x, τ )

∂τ

∫ t−τ

0
βij (ς)F ′

i (x, t − τ − ς)dς

]
dτ

+ T0τ0

∫
V

dV

∫ t

0

[
∂1+αu′

i (x, τ )

∂τ 1+α

∫ t−τ

0
βij (ς)Fi(x, t − τ − ς)dς

− ∂1+αui(x, τ )

∂τ 1+α

∫ t−τ

0
βij (ς)F ′

i (x, t − τ − ς)dς

]
dτ

− T0αij

∫
V

dV

∫ t

0

[
∂u′

i (x, τ )

∂τ
Fi(x, t − τ) − ∂ui(x, τ )

∂τ
F ′

i (x, t − τ)

]
dτ

− T0αij

∫
V

dV

∫ t

0

[
∂1+αu′

i (x, τ )

∂τ 1+α
Fi(x, t − τ) − ∂1+αui(x, τ )

∂τ 1+α
F ′

i (x, t − τ)

]
dτ.

(3.19)

4 A half space problem

Consider a homogeneous isotropic thermos-viscoelastic solid occupying the region 0 ≤
x ≤ ∞, and assumed that the body is initially quiescent. For zero body forces and the ab-
sence of a heat source, the equation of motion is given by

ρüi =
∫ t

0
G2(t − τ)

∂ui,jj (x, τ )

∂τ
dτ +

∫ t

0
(G1 + G2)(t − τ)

∂ui,ij (x, τ )

∂τ
dτ

− αt

∫ t

0
G(t − τ)

∂T,i(x, τ )

∂τ
dτ, (4.1)

and the equation of heat conduction has the form

k∇2T = ρcE

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
T − αtT0

[∫ t

0

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
eij

∂G

∂τ
dτ

− G(0)

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
eij

]
, (4.2)

where the relaxation functions can be taken in the form (Sherief et al. 2011)

G1(t) = λ
(
1 − A1e

−βt
)
,

G2(t) = μ
(
1 − A2e

−βt
)
,

G(t) = 3G1(t) + 2G2(t),

(4.3)

where A1, A2, and, β are non-dimensional empirical constants such that β ≥ 0.
The boundary conditions are assumed to be

σxx(0, t) = 0 and T (0, t) − T0 = CH(t), t > 0, (4.4)

where C is a constant and H(·) is the Heaviside unit step function.
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Since the problem is solved in one dimension, all considered functions will depend
only on the space variables x and time t . The displacement vector has the components
(u(x, t),0,0) and the cubical dilatation has the form e = ∂u

∂x
, and Eqs. (4.1), (4.2), and (1.13)

then reduce to

ρ
∂2u

∂t2
=

∫ t

0
(G1 + 2G2)

∂

∂τ

(
∂2u

∂x2

)
dτ − αt

∫ t

0
G

∂

∂τ

(
∂T

∂x

)
dτ, (4.5)

k
∂2T

∂x2
= ρcE

(
∂T

∂t
+ τ0

∂α+1T

∂tα+1

)
− αtT0

[∫ t

0

(
∂e

∂t
+ τ0

∂α+1e

∂tα+1

)
∂G

∂τ
dτ

− G(0)

(
∂e

∂t
+ τ0

∂α+1e

∂tα+1

)]
, (4.6)

σxx =
∫ t

0
(G1 + 2G2)

∂e

∂τ
dτ − αt

∫ t

0
G

∂T

∂τ
dτ. (4.7)

Let us introduce the following non-dimensional variables:

x∗ = c1ξx, u∗ = c1ξu, t∗ = c2
1ξ t, τ ∗

0 = c2
1ξτ0,

G∗
i = Gi

λ + 2μ
, i = 1,2, θ = αt (T − T0), σ ∗

xx = σxx

(λ + 2μ)
,

where c1 = √
(λ + 2μ)/ρ, ξ = ρcE/k

In terms of these non-dimensional variables Eqs. (4.5)–(4.7), and (4.3) become

∂2u

∂t2
=

∫ t

0
(G1 + 2G2)

∂

∂τ

(
∂2u

∂x2

)
dτ −

∫ t

0
G

∂

∂τ

(
∂θ

∂x

)
dτ, (4.8)

∂2θ

∂x2
=

(
∂θ

∂t
+ τ0

∂α+1θ

∂tα+1

)
− ε0

[∫ t

0

(
∂e

∂t
+ τ0

∂α+1e

∂tα+1

)
∂G

∂τ
dτ

− G(0)

(
∂e

∂t
+ τ0

∂α+1e

∂tα+1

)]
, (4.9)

σxx =
∫ t

0
(G1 + 2G2)

∂e

∂τ
dτ −

∫ t

0
G

∂θ

∂τ
dτ, (4.10)

G1(t) = α1

(
1 − A1e

−βt
)
,

(4.11)
G2(t) = α2

(
1 − A2e

−βt
)
,

where

ε = α2
t T0(λ + 2μ)

ρcE

, α1 = λ

λ + 2μ
, α2 = μ

λ + 2μ
,

G(0) = 3α1(1 − A1) + 2α2(1 − A2).

The boundary conditions (4.4) become

σxx(0, t) = 0 and θ(0, t) = θ0H(t) (4.12)

where θ0 = αtC.
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4.1 Solution in the Laplace transform domain

Applying the Laplace transform (denoted by an over-bar) to both sides of Eqs. (4.8)–(4.11),
and using the initial conditions, we arrive at

(
γ̄1D

2 − s2
)
ū = γ̄2

∂θ̄

∂x
, (4.13)

(
D2 − s

(
1 + τ0s

α
))

θ̄ = εs
(
1 + τ0s

α
)(

2G(0) − γ̄2

)
ē, (4.14)

σ̄xx = γ̄1ē − γ̄2θ̄ , (4.15)

where

γ̄1 = s(Ḡ1 + 2Ḡ2), γ̄2 = sḠ, and D = ∂

∂x
. (4.16)

The transformed boundary condition (4.12) becomes

σ̄xx(0, s) = 0 and θ̄ (0, s) = θ0

s
. (4.17)

Differentiating both sides of Eq. (4.13) with respect to x, we obtain
(
γ̄1D

2 − s2
)
ē = γ̄2D

2θ̄ . (4.18)

Eliminating ē between Eqs. (4.15) and (4.18), we get
{
γ̄1D

4 − D2
[
s2 + s

(
1 + τ0s

α
)(

γ̄1 + εγ̄2

(
2G(0) − γ̄2

))] + s3
(
1 + τ0s

α
)}

θ̄ = 0. (4.19)

The above equation can be factorized as
(
D2 − k2

1

)(
D2 − k2

2

)
θ̄ = 0, (4.20)

where k2
1 and k2

2 are the roots with positive real parts of the characteristic equation

γ̄1k
4 − k2

[
s2 + s

(
1 + τ0s

α
)(

γ̄1 + εγ̄2
(
2G(0) − γ̄2

))] + s3
(
1 + τ0s

α
) = 0. (4.21)

Since θ̄ must remain bounded as x → ∞, the solution of Eq. (4.20) is given by

θ̄ =
2∑

i=1

(
γ̄1k

2
i − s2

)
Cie

−kix, (4.22)

where Ci , i = 1,2 are parameters depending on s.
Similarly, eliminating θ̄ between Eqs. (4.15) and (4.18), we find that ē satisfies an equa-

tion identical to Eq. (4.19). Thus, we obtain the solution compatible with Eq. (4.18):

ē =
2∑

i=1

γ̄2k
2
i Cie

−kix . (4.23)

Integrating both sides of (4.23) with respect to x, we obtain

ū = −
2∑

i=1

γ̄2kiCie
−kix . (4.24)
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Substituting form Eqs. (4.22) and (4.23) into (4.16), we get

σ̄xx =
2∑

i=1

γ̄2s
2Cie

−kix . (4.25)

Applying the boundary conditions (4.17), we arrive at the linear system of equations

2∑
i=1

(
γ̄1k

2
i − s2

)
Ci = θ0

s
, (4.26)

2∑
i=1

s2γ̄2Ci = 0. (4.27)

The solution of the above system of equations is given by

C1 = θ0

sγ̄1(k
2
1 − k2

2)
, (4.28)

C2 = −θ0

sγ̄1(k
2
1 − k2

2)
. (4.29)

This completes the solution of the problem in the Laplace transform domain.
Numerical methods described in Honig and Hirdes (1984) are used to get the inversion

solution of the problem in the normal domain.

4.2 Numerical results and discussion

For purposes of numerical evaluation, polymethylmethacrylate (PMMA) material was cho-
sen. The constants of the problem are given by

k = 187 W/(mK), αt = 6.3(10)−5 K−1, cE = 1475 J/(kgK),

η = 9149.73, τ0 = 0.02 s, μ = 0.19(10)10 kg/
(
ms2

)
,

λ = 0.4(10)10 kg/
(
ms2

)
, ρ = 1160 kg/m3, T0 = 293, β = 0.5.

Firstly, the computations were carried out for three values of time, namely for t =
0.025,0.05, and 0.075. The outcomes are shown graphically in Figs. 1, 2 and 3 for the tem-
perature increment θ , displacement component u and stress component σxx distributions,
respectively. Secondary, Figs. 4, 5 and 6 show the computations for two different values
of α, namely for α = 1.0 (the case of thermo-viscoelastic (TV)), and α = 0.5 (the case of
fractional thermo-viscoelastic (FTV)) materials. Thirdly, the influence of the constants A1

and A2 and t = 0.08 and α = 0.5 for stress and displacement components are showed in
Figs. 7, 8, 9 and 10, respectively.

There are two waves emanating from the surface of the half space (x = 0). The first
wave is mainly mechanical, while the second wave is mainly thermal. As expected from the
order of the partial differential equations, the finite velocities of propagation of the waves
is apparent in all figures. The front of the first wave appears as a finite jump in the graph
of σxx while it is not clear in the graph of the temperature θ because the values of these
discontinuities are very small. Also, it appears as a discontinuous first derivative (sharp
peak) in the graph of u.
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Fig. 1 Temperature distributions
for different values of time

Fig. 2 Displacement
distributions for different values
of time

Fig. 3 Stress Distributions for
different values of time
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Fig. 4 Temperature distribution
for t = 0.1

Fig. 5 Displacement
distributions for t = 0.1

Fig. 6 Stress distribution for
t = 0.1
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Fig. 7 Influence of A1 on the
stress component σxx for fixed
A2 = 0.5 at t = 0.08 and α = 0.5

Fig. 8 Influence of A2 on the
stress component σxx for fixed
A1 = 0.5 at t = 0.08 and α = 0.5

Fig. 9 Influence of A1 on the
displacement component u for
fixed A2 = 0.5 at t = 0.08 and
α = 0.5
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Fig. 10 Influence of A2 on the
displacement component u for
fixed A1 = 0.5 at t = 0.08 and
α = 0.5

In Figs. 1, 2 and 3, it is clear that all functions have infinite wave propagation speed. For
t = 0.025, the two wave fronts are located at the positions x = 0.0156 and x = 0.963, ap-
proximately, while for t = 0.075 the waves arrive at the positions x = 0.0469 and x = 1.730,
approximately.

In Figs. 4, 5, and 6, it is found that a change in α has a small effect on the magnitudes of
the functions considered and on the speed of the first wave. A change in α, however, has a
great effect on the location of the second front wave and hence on the speed of propagation
of the second wave. For example, in the case of TVE the positions of the front waves are
located at x = 0.0493 and 0.568, respectively, and the speed of the two waves v1 = 0.616
and v2 = 7.1. For the FTVE case, the front waves are located at x = 0.0501 and 1.846,
respectively, and the speed of the two waves are v1 = 0.626 and v2 = 23.075.

Also, in Figs. 7, 8, 9 and 10, it was observed that viscoelastic effects decrease the absolute
value of the stress for all values of the parameters A1 and A2. The increase of either of A1

or A2 tends also to decrease the absolute values of stress. Also, viscoelastic effects tend to
decrease the absolute values of the displacement.
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