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Preface

The aim of this monograph is essentially to investigate the connec-
tions among fractional calculus, linear viscoelasticity and wave mo-
tion. The treatment mainly reflects the research activity and style
of the author in the related scientific areas during the last decades.

Fractional calculus, in allowing integrals and derivatives of any
positive order (the term “fractional” is kept only for historical rea-
sons), can be considered a branch of mathematical physics which
deals with integro-differential equations, where integrals are of con-
volution type and exhibit weakly singular kernels of power law type.

Viscoelasticity is a property possessed by bodies which, when de-
formed, exhibit both viscous and elastic behaviour through simul-
taneous dissipation and storage of mechanical energy. It is known
that viscosity refers mainly to fluids and elasticity mainly to solids,
so we shall refer viscoelasticity to generic continuous media in the
framework of a linear theory. As a matter of fact the linear theory of
viscoelasticity seems to be the field where we find the most extensive
applications of fractional calculus for a long time, even if often in an
implicit way.

Wave motion is a wonderful world impossible to be precisely de-
fined in a few words, so it is preferable to be guided in an intuitive
way, as G.B. Whitham has pointed out. Wave motion is surely one
of the most interesting and broadest scientific subjects that can be
studied at any technical level. The restriction of wave propagation
to linear viscoelastic media does not diminish the importance of this
research area from mathematical and physical view points.
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This book intends to show how fractional calculus provides a suit-
able (even if often empirical) method of describing dynamical proper-
ties of linear viscoelastic media including problems of wave propaga-
tion and diffusion. In all the applications the special transcendental
functions are fundamental, in particular those of Mittag-Leffler and
Wright type.

Here mathematics is emphasized for its own sake, but in the sense
of a language for everyday use rather than as a body of theorems and
proofs: unnecessary mathematical formalities are thus avoided. Em-
phasis is on problems and their solutions rather than on theorems and
their proofs. So as not to bore a “practical” reader with too many
mathematical details and functional spaces, we often skim over the
regularity conditions that ensure the validity of the equations. A
“rigorous” reader will be able to recognize these conditions, whereas
a “practionist” reader will accept the equations for sufficiently well-
behaved functions. Furthermore, for simplicity, the discussion is re-
stricted to the scalar cases, i.e. one-dimensional problems.

The book is likely to be of interest to applied scientists and engi-
neers. The presentation is intended to be self-contained but the level
adopted supposes previous experience with the elementary aspects
of mathematical analysis including the theory of integral transforms
of Laplace and Fourier type.

By referring the reader to a number of appendices where some
special functions used in the text are dealt with detail, the author
intends to emphasize the mathematical and graphical aspects related
to these functions.

Only seldom does the main text give references to the literature,
the references are mainly deferred to notes sections at the end of
chapters and appendices. The notes also provide some historical
perspectives. The bibliography contains a remarkably large number
of references to articles and books not mentioned in the text, since
they have attracted the author’s attention over the last decades and
cover topics more or less related to this monograph. The interested
reader could hopefully take advantage of this bibliography for enlarg-
ing and improving the scope of the monograph itself and developing
new results.



Preface ix

This book is divided into six chapters and six appendices whose
contents can be briefly summarized as follows. Since we have chosen
to stress the importance of fractional calculus in modelling viscoelas-
ticity, the first two chapters are devoted to providing an outline of
the main notions in fractional calculus and linear viscoelasticity, re-
spectively. The third chapter provides an analysis of the viscoelas-
tic models based on constitutive equations containing integrals and
derivatives of fractional order.

The remaining three chapters are devoted to wave propagation
in linear viscoelastic media, so we can consider this chapter-set as a
second part of the book. The fourth chapter deals with the general
properties of dispersion and dissipation that characterize the wave
propagation in linear viscoelastic media. In the fifth chapter we dis-
cuss asymptotic representations for viscoelastic waves generated by
impact problems. In particular we deal with the techniques of wave-
front expansions and saddle-point approximations. We then discuss
the matching between the two above approximations carried out by
the technique of rational Pade approximants. Noteworthy examples
are illustrated with graphics. Finally, the sixth chapter deals with
diffusion and wave-propagation problems solved with the techniques
of fractional calculus. In particular, we discuss an important problem
in material science: the propagation of pulses in viscoelastic solids
exhibiting a constant quality factor. The tools of fractional calculus
are successfully applied here because the phenomenon is shown to be
governed by an evolution equation of fractional order in time.

The appendices are devoted to the special functions that play a
role in the text. The most relevant formulas and plots are provided.
We start in appendix A with the Eulerian functions. In appendices
B, C and D we consider the Bessel, the Error and the Exponential
Integral functions, respectively. Finally, in appendices E and F we
analyse in detail the functions of Mittag-Leffler and Wright type,
respectively. The applications of fractional calculus in diverse areas
has considerably increased the importance of these functions, still
ignored in most handbooks.

Francesco Mainardi
Bologna, December 2009
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Chapter 1

Essentials of Fractional Calculus

In this chapter we introduce the linear operators of fractional in-
tegration and fractional differentiation in the framework of the so-
called fractional calculus. Our approach is essentially based on an
integral formulation of the fractional calculus acting on sufficiently
well-behaved functions defined in IR or in all of IR. Such an integral
approach turns out to be the most convenient to be treated with
the techniques of Laplace and Fourier transforms, respectively. We
thus keep distinct the cases IR" and IR denoting the corresponding
formulations of fractional calculus by Riemann—Liouville or Caputo
and Liouville-Weyl, respectively, from the names of their pioneers.

For historical and bibliographical notes we refer the interested
reader to the the end of this chapter.

Our mathematical treatment is expected to be accessible to ap-
plied scientists, avoiding unproductive generalities and excessive
mathematical rigour.

Remark : Here, and in all our following treatment, the integrals
are intended in the generalized Riemann sense, so that any function
is required to be locally absolutely integrable in IR". However, we
will not bother to give descriptions of sets of admissible functions
and will not hesitate, when necessary, to use formal expressions with
generalized functions (distributions), which, as far as possible, will
be re-interpreted in the framework of classical functions.



2 Fractional Calculus and Waves in Linear Viscoelasticity

1.1 The fractional integral with support in IRt

Let us consider causal functions, namely complex or real valued func-
tions f () of a real variable ¢ that are vanishing for ¢ < 0.

According to the Riemann—Liouville approach to fractional cal-
culus the notion of fractional integral of order a (o > 0) for a causal
function f(t), sufficiently well-behaved, is a natural analogue of the
well-known formula (usually attributed to Cauchy), but probably due
to Dirichlet, which reduces the calculation of the n—fold primitive of
a function f(t) to a single integral of convolution type.

In our notation, the Cauchy formula reads for ¢ > 0:

1 t
o7 £(0) = 1,0 = g [(e= T @) ar e N (L)

where IN is the set of positive integers. From this definition we note
that f,(t) vanishes at ¢ = 0, jointly with its derivatives of order
1,2,...,n—1.

In a natural way one is led to extend the above formula from
positive integer values of the index to any positive real values by
using the Gamma function. Indeed, noting that (n — 1)! = I'(n),
and introducing the arbitrary positive real number «, one defines
the Riemann—Liouville fractional integral of order o > 0:

1) /t(t—f)a—lf(T)dT, £>0, a e R,  (12)
0

olf f(t) = (o)

where IR" is the set of positive real numbers. For complementation
we define oI := I (Identity operator), i.e. we mean oIy f(t) = f(t).

Denoting by o the composition between operators, we note the
semigroup property

OIta o OItﬁ - OIta+ﬁ7 o, /8 Z 07 (13)

which implies the commutative property OIf oolff = ol o OIE . We
also note the effect of our operators ¢If* on the power functions

F(’Y + 1) t’y-{-a

1o =
0%t T(y+1+a)

, a>0, v>-1, t>0. (14)
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The properties (1.3) and (1.4) are of course a natural generalization
of those known when the order is a positive integer. The proofs are
based on the properties of the two Eulerian integrals, i.e. the Gamma
and Beta functions, see Appendix A,

I'(z) = /Oooe“ u”tdu, Re{z}>0, (1.5)

1
B(p,q) = /0(1—u)pluq1 du = %, Re{p, q} > 0. (1.6)

For our purposes it is convenient to introduce the causal function

a—1
D, (t) := %,

where the suffix + is just denoting that the function is vanishing for

a>0, (1.7)

t < 0 (as required by the definition of a causal function). We agree to
denote this function as Gel’fand-Shilov function of order a to honour
the authors who have treated it in their book [Gel’fand and Shilov
(1964)]. Being a > 0, this function turns out to be locally absolutely
integrable in IR,

Let us now recall the notion of Laplace convolution, i.e. the convo-
lution integral with two causal functions, which reads in our notation

t
£(t) * glt) = /O F(t =) g(rydr = gt) = ().

We note from (1.2) and (1.7) that the fractional integral of order
a > 0 can be considered as the Laplace convolution between &, ()
and f(t), i.e.,

ofi' f(t) = @a(t) * f(1), a>0. (1.8)

Furthermore, based on the Eulerian integrals, one proves the compo-
sition rule

Py (t) * Pp(t) = Paip(t), a, >0, (1.9)
which can be used to re-obtain (1.3) and (1.4).
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The Laplace transform for the fractional integral. Let us
now introduce the Laplace transform of a generic function f(t), lo-
cally absolutely integrable in IR", by the notation?

LIf(t):8] = /Ooestf(t) dt = f(s), s C.

0

By using the sign + to denote the juxtaposition of the function f(¢)

with its Laplace transform f(s), a Laplace transform pair reads

f(t) + f(s).

Then, for the convolution theorem of the Laplace transforms, see e.g.
[Doetsch (1974)], we have the pair

f(t) * g(t) + f(s)g(s)-

As a consequence of Eq. (1.8) and of the known Laplace transform
pair

D, (t) + wa a>0,
we note the following formula for the Laplace transform of the frac-
tional integral,

oI f(t) + fs(j) . a>0, (1.10)

which is the straightforward generalization of the corresponding for-
mula for the n-fold repeated integral (1.1) by replacing n with a.

LA sufficient condition of the existence of the Laplace transform is that the
original function is of exponential type as ¢ — oco. This means that some constant
ay exists such that the product e~*#* | f(¢)| is bounded for all ¢ greater than some
T. Then f(s) exists and is analytic in the half plane Re (s) > ay. If f(t) is
piecewise differentiable, then the inversion formula

~ Ytico ~
7= £ [Fs)it] = 5 e f(s)ds, Re (s)=~>ay,

270 Jy—ico

with ¢ > 0, holds true at all points where f(¢) is continuous and the (complex)
integral in it must be understood in the sense of the Cauchy principal value.



Ch. 1: Essentials of Fractional Calculus 5

1.2 The fractional derivative with support in IR

After the notion of fractional integral, that of fractional derivative of
order « (o > 0) becomes a natural requirement and one is attempted
to substitute a with —a in the above formulas. We note that for
this generalization some care is required in the integration, and the
theory of generalized functions would be invoked. However, we prefer
to follow an approach that, avoiding the use of generalized functions
as far is possible, is based on the following observation: the local
operator of the standard derivative of order n (n € IN) for a given t,
n

D} = pr is just the left inverse (and not the right inverse) of the

non-local operator of the n-fold integral ,I;', having as a starting
point any finite @ < t. In fact, for any well-behaved function f(¢)
(t € R), we recognize

Di o ol f(t) = f(t), t>a, (1.11)

and

t—a)k
oMo DI f(t) = Z 7,, t>a. (1.12)

As a consequence, taking a = 0, we require that ¢Djf* be defined as
left-inverse to oIf*. For this purpose we first introduce the positive
integer

m €N such that m—-1<a<m,
and then we define the Riemann-Liouville fractional derivative of

order a > 0 :
oD f(t) := D" o o;"* f(t), with m—-1<a<m, (1.13)

namely
1 dam™ [t f(r)dr
S DR SV 1
T(m — ) dim /O(t ~pjerimmy MT S @S
oDf f(t):=
] a=m.

(1.13a)
For complementation we define oDy = I.
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In analogy with the fractional integral, we have agreed to refer to
this fractional derivative as the Riemann-Liouville fractional deriva-
tive.

We easily recognize, using the semigroup property (1.3),

ODta o OIta = Dzn o} OItm—a o OIta = D;n o} OIZTL =1. (].].4)
Furthermore we obtain

(y+1) -
7 >0 >—-1, t>0. (1.15
F(’Y+1—O[) b (6% b ’Y ) ( )

Of course, properties (1.14) and (1.15) are a natural generalization
of those known when the order is a positive integer. Since in (1.15)

oD 17 =

the argument of the Gamma function in the denominator can be
negative, we need to consider the analytical continuation of I'(z) in
(1.5) into the left half-plane.

Note the remarkable fact that when « is not integer (a ¢ IN) the
fractional derivative oDj* f(t) is not zero for the constant function
f(t) =1. In fact, Eq. (1.15) with v = 0 gives

t*Ol
fi—a)’ a>0, t>0, (1.16)

which identically vanishes for @ € IN, due to the poles of the Gamma

oDl =

function in the points 0,—1,—-2,....

By interchanging in (1.13) the processes of differentiation and
integration we are led to the so-called Caputo fractional derivative of
order a > 0 defined as:

oDE f(t) == oI""@ o D™ f(t) with m—1<a<m, (1.17)

namely
1 L)
d —1
F(m—a)/o = et T, m <a<m,
oD f(t):=
dm
dt—m (t), a=1m.

(1.17a)
To distinguish the Caputo derivative from the Riemann-Liouville
derivative we decorate it with the additional apex *. For non-integer
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a the definition (1.17) requires the absolute integrability of the
derivative of order m. Whenever we use the operator {Df* we (tac-
itly) assume that this condition is met.

We easily recognize that in general
oD f(£):=Dy" o oli" ™ f(t) # off" "o D" f(t) =: oDi" f(¢), (1.18)

unless the function f(¢) along with its first m — 1 derivatives vanishes
at t = 07, In fact, assuming that the exchange of the m-derivative
with the integral is legitimate, we have

—Q

TJA) (1.19)

oD f(t) = oDf' f ka)

and therefore, recalling the fractional derivative of the power func-
tions (1.15),

m—1 k
$DE 110 = oDt |10 =3 f ISR INNCE)
In particular for 0 < a < 1 (i.e. m = 1) we have
D7 (1) = oD £10) = J(0%) =5 = D¢ 110 = 107)]

From Eq. (1.20) we recognize that the Caputo fractional derivative
represents a sort of regularization in the time origin for the Riemann-
Liouwille fractional derivative. We also note that for its existence all
the limiting values,

F®E ) = lim DEf(t), k=0,1,...m—1,
t—0
are required to be finite. In the special case f*)(01) = 0, we recover
the identity between the two fractional derivatives.

We now explore the most relevant differences between the two
fractional derivatives. We first note from (1.15) that

oD =0, a>0, t>0, (1.21)
and, in view of (1.20),
oDf1=0, a>0, (1.22)
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in contrast with (1.16). More generally, from Egs. (1.21) and (1.22)
we thus recognize the following statements about functions which
for t > 0 admit the same fractional derivative of order a (in the
Riemann-Liouville or Caputo sense), withm -1 <a<m, m e N,

oDf f(t) = oD g(t) <= f(1) +Zc 7, (1.23)

oDi" f(t) = oDi" g(t) <= [(t) +Z L (1.24)

where the coefficients ¢; are arbitrary constants. Incidentally, we
note that (1.21) provides an instructive example for the fact that
oDy is not right-inverse to oI, since for ¢ > 0

oI o oDt 1 =0, ¢D¥ o oIt P =t*"1 a>0.  (1.25)

We observe the different behaviour of the two fractional derivatives in
the Riemann-Liouville and Caputo at the end points of the interval
(m — 1,m), namely, when the order is any positive integer, as it
can be noted from their definitions (1.13), (1.17). For o« — m~
both derivatives reduce to D}", as explicitly stated in Egs. (1.13a),
(1.17a), due to the fact that the operator oI = I commutes with
D*. On the other hand, for « — (m — 1)™ we have:

{on‘f(t) — D" o oI} f(t) = DV f(t) = fH(t),
sDf(t) — oI} o D f(t) = f V() — fm=D(0T).

As a consequence, roughly speaking, we can say that oDy is, with

(1.26)

respect to its order o, an operator continuous at any positive integer,
whereas jDjf* is an operator only left-continuous.

Furthermore, we observe that the semigroup property of the stan-
dard derivatives is not generally valid for both the fractional deriva-
tives when the order is not integer.

The Laplace transform for the fractional derivatives. We
point out the major usefulness of the Caputo fractional derivative
in treating initial-value problems for physical and engineering ap-
plications where initial conditions are usually expressed in terms of
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integer-order derivatives. This can be easily seen using the Laplace
transformation®. In fact, for the Caputo derivative of order a with
m—1<a<m, we have

m—1
* Ty . — o F — a=l=k ¢(k) o+
LLGDES@ss} =57 S5 = D o™ H B0, o)
F®(0F) = lim Dff(t).

The corresponding rule for the Riemann-Liouville derivative of

order « is
m—1
£ {oD§ f(1); s} = 52 J(s) — kZ SR (0h), (1.28)

g®(0%) 1= lim Dfglt). glt) == oI (1)

Thus it is more cumbersome to use the rule (1.28) than (1.27). The
rule (1.28) requires initial values concerning an extra function g(t)
related to the given f(¢) through a fractional integral. However,
when all the limiting values f*)(0%) for k = 0,1,... are finite and
the order is not integer, we can prove that the corresponding ¢(¥)(01)
vanish so that the formula (1.28) simplifies into

LA{oDg f(t);s}=s"f(s), m—1<a<m. (1.29)

For this proof it is sufficient to apply the Laplace transform to
Eq. (1.19), by recalling that

L{t% st =T(B+1)/s*, a>-1, (1.30)
and then to compare (1.27) with (1.28).

It may be convenient to simply refer to the Riemann-Liouville
derivative and to the Caputo derivative to as R—L and C derivatives,
respectively.

2We recall that under suitable conditions the Laplace transform of the m-
derivative of f(t) is given by

m—1
EADE JW)ssh =" s = 2 SO, S0 o= i DES)
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We now show how the standard definitions (1.13) and (1.17) for
the R-L and C derivatives of order « of a function f(¢) (¢t € R") can
be derived, at least formally, by the convolution of ®_,(¢) with f(¢),
in a sort of analogy with (1.8) for the fractional integral. For this
purpose we need to recall from the treatise on generalized functions
[Gel'fand and Shilov (1964)] that (with proper interpretation of the
quotient as a limit if £ = 0)

—n—1
d_,(t) := ﬁ =M@, n=0,1,..., (1.31)
where 6("(t) denotes the generalized derivative of order n of the
Dirac delta distribution. Here, we assume that the reader has some
minimal knowledge concerning these generalized functions, sufficient
for handling classical problems in physics and engineering.
Equation (1.31) provides an interesting (not so well known) rep-
resentation of 8 (t), which is useful in our following treatment of
fractional derivatives. In fact, we note that the derivative of order n
of a causal function f(t) can be obtained for ¢ > 0 formally by the
(generalized) convolution between ®_,, and f

n tt
LI =IO =80 = S0 = [ f)i -y dr, (152)
N
based on the well-known property

ﬁf(T) ™ (r —t)dr = (=) f™(1), (1.33)
o

where 60" (t—7) = (=1)" 6" (1 —t). According to a usual convention,
in (1.32) and (1.33) the limits of integration are extended to take
into account for the possibility of impulse functions centred at the
extremes. Then, a formal definition of the fractional derivative of
positive order o could be
1 a T
d_, x f(t)= T—a) /0_ (t_f(q_))Ha dr, a€R".

The formal character is evident in that the kernel ®_(¢) is not lo-
cally absolutely integrable and consequently the integral is in general

divergent. In order to obtain a definition that is still valid for clas-
sical functions, we need to regularize the divergent integral in some
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way. For this purpose let us consider the integer m € IN such that
m—1 < a <m and write —a = —m+(m—a) or —a = (m—a)—m.
We then obtain

D _o(t)* f(t) = P (t)* Prma(t) * f(t) = Dy o oI" " f(2), (1.34)

_at) * J(H)=Proalt) * D_u(t) * F(E) = 0[" " o D" f(2). (135)

As a consequence we derive two alternative definitions for the
fractional derivative (1.34) and (1.35) corresponding to (1.13) and
(1.17), respectively. The singular behaviour of ®_,,(t) as a proper
generalized (i.e. non-standard) function is reflected in the non-
commutativity of convolution for ®,,_,(t) and ®,,(t) in these for-
mulas.

Remark : We recall an additional definition for the fractional deriva-
tive recently introduced by Hilfer for the order interval 0 < o < 1,
see [Hilfer (2000b)], p. 113 and [Seybold and Hilfer (2005)], which in-
terpolates the definitions (1.13) and (1.17). Like the two derivatives
previously discussed, it is related to the Riemann-Liouville fractional
integral. In our notation it reads

B v 0<a<l,
tha’ﬁ — off(l a) D! o OIt(l oIe a)’ {0<;<1 (1.36)

We call it the Hilfer fractional derivative of order o and type [.
The Riemann-Liouville derivative of order a corresponds to the type
(8 =0, while the Caputo derivative to the type g = 1.

1.3 Fractional relaxation equations in IRt

The different roles played by the R-L and C fractional derivatives
are more clear when the fractional generalization of the first-order
differential equation governing the exponential relaxation phenomena
is considered. Recalling (in non-dimensional units) the initial value
problem

d
d_ZZ—u(w, t>0, with u(07)=1, (1.37)
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whose solution is
u(t) = exp(—t), (1.38)

the following three alternatives with respect to the R-L and C frac-
tional derivatives with a € (0, 1) are offered in the literature:

oD u(t) = —u(t), t>0, with u(07)=1, (1.39a)

oD u(t) = —u(t), t>0, with lim o} 7%u(t) =1, (1.39b)
t—0

d
d_lt‘ = —oDf “u(t), t>0, with u(0%)=1. (1.39¢)

In analogy with the standard problem (1.37) we solve these three
problems with the Laplace transform technique, using the rules
(1.27), (1.28) and (1.29), respectively. Problems (a) and (c) are
equivalent since the Laplace transform of the solution in both cases
comes out to be

Sa—l
u(s) = 1.40
W)= S (1.40)
whereas in case (b) we get
1 sat
u(s) = =1- . 1.41
)= T (1.41)

The Laplace transforms in (1.40) and (1.41) can be expressed in terms
of functions of Mittag-Leffler type, of which we provide information
in Appendix E. In fact, in virtue of the Laplace transform pairs (E.52)
and (E.53), we have

a1 546
E _ ay, — IB_IE — ay. = 142
L [Eo(—At%); 8] sa—i-)\’ﬁ{t g (= AE); 8} s+ N ( )
where
o0 ( )\ta)n © )\ta n
ORIV o G >SS V) (14
= ;)Nomﬂ) z:: Man s

with o, 3 € Rt and X € R.
Then we obtain in the equivalent cases (a) and (c) :

u(t) = Ya(t) = Ba(—t*), t>0, O<a<l, (1.44)
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Sos

= 4n-1
<10

Fig. 1.1 Plots of ¥4 (t) with a = 1/4,1/2,3/4,1 versus t; top: linear scales
(0 < t < 5); bottom: logarithmic scales (1072 < ¢ < 10?).

and in case (b) :

u(t) = o (t) ==t~ 17 B, o (—t%)
d (1.45)
=——F,(-t%), t>0, 0<a<l.

The plots of the solutions ¥, (t) and ¢, (t) are shown in Figs. 1.1
and 1.2, respectively, for some rational values of the parameter «, by
adopting linear and logarithmic scales.
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It is evident that for @« — 17 the solutions of the three initial
value problems reduce to the standard exponential function (1.38)
since in all cases u(s) — 1/(s + 1). However, case (b) is of minor
interest from a physical view-point since the corresponding solution
(1.45) is infinite in the time-origin for 0 < o < 1.

Whereas for the equivalent cases (a) and (c) the corresponding
solution shows a continuous transition to the exponential function
for any ¢ > 0 when o — 17, for the case (b) such continuity is lost.

Fig. 1.2 Plots of ¢a(t) with a = 1/4,1/2,3/4,1 versus ¢; top: linear scales
(0 < t < 5); bottom: logarithmic scales (1072 < ¢ < 10?).
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It is worth noting the algebraic decay of 14 (t) and ¢ (t) as t — oo:
sin(am) I'(«a
alt) ~ 2O T

7T te

t — +o00. (1.46)
sin(ar) T'(a+ 1)
T tlat+l)

Qba(t) ~

Remark : If we adopt the Hilfer intermediate derivative in fractional
relaxation, that is

oD u(t) = —u(t), 20, lim o7V () =1, (147)

the Laplace transform of the solution turns out to be
Bla—1)
S

u(s) = R (1.48)

see [Hilfer (2000b)], so, in view of Eq. (1.43),

ult) = Hap(t) = 10D By gy (=47, 12 0. (149)
For plots of the Hilfer function H, g(t) we refer to [Seybold and Hilfer
(2005)].

1.4 Fractional integrals and derivatives with support
in IR

Choosing —oo as the lower limit in the fractional integral, we have
the so-called Liouville-Weyl fractional integral. For any o > 0 we
write .

—ooI f(t) = 1 / (t—7)* 1 f(r)dr, a€R", (1.50)

I'(e) Joo

and consequently, we define the Liouville—Weyl fractional derivative
of order « as its left inverse operator:

—ooDE f(t) =D o _oo I f(t), m—1<a<m, (1.51)
with m € IN, namely

1 dm /t F(r)dr

m—1<a<m,

D(m —a)dtm | . (t—7)eti-m’
—ooD{ f (1) :=
dm
dt—mf(t) , a=m.

(1.51a)
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In this case, assuming f(¢) to vanish as t — —oc along with its first
m — 1 derivatives, we have the identity

D" o oI f(t) = oI o D" f(t), (1.52)
in contrast with (1.18). While for the Riemann-Liouville fractional
integral (1.2) a sufficient condition for the convergence of the integral
is given by the asymptotic behaviour

f)y=0@"),e>0,t—0", (1.53)
a corresponding sufficient condition for (1.50) to converge is
fFRy=0(t "), e>0,t— —oo. (1.54)

Integrable functions satisfying the properties (1.53) and (1.54) are
sometimes referred to as functions of Riemann class and Liouwille
class, respectively, see [Miller and Ross (1993)]. For example, power
functions ¢7 with v > —1 and ¢ > 0 (and hence also constants) are
of Riemann class, while [¢|=° with § > a >0 and ¢ < 0 and exp (ct)

with ¢ > 0 are of Liouville class. For the above functions we obtain
I'd —a)

o
(1.55)
DR 10 = e o
and
Coolfet =c e,
(1.56)

oD et =ce .
Causal functions can be considered in the above integrals with
the due care. In fact, in view of the possible jump discontinuities of
the integrands at ¢ = 0, in this case it is worthwhile to write

/_;(...)dT:/t(...)dT.

As an example we consider for 0 < o < 1 the identity

1 L) foh)ee 1 L)
/0 dr = + )/0( dr,

Il —a) Jo-(t —T1)~ Nl-—a) TA-« t— 1)
that is consistent with (1.19) for m = 1, that is
o fOOET
oD f(t) = T+ oD f(1)-

'l -—a)
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1.5 Notes

The fractional calculus may be considered an old and yet novel topic.
It is an old topic because, starting from some speculations of G.W.
Leibniz (1695, 1697) and L. Euler (1730), it has been developed pro-
gressively up to now. A list of mathematicians, who have provided
important contributions up to the middle of the twentieth century,
includes P.S. Laplace (1812), S.F. Lacroix (1819), J.B.J. Fourier
(1822), N.H. Abel (1823-1826), I. Liouville (1832-1873), B. Riemann
(1847), H. Holmgren (1865-1867), A.K. Grinwald (1867-1872),
AV. Letnikov (1868-1872), H. Laurent (1884), P.A. Nekrassov
(1888), A. Krug (1890), I. Hadamard (1892), O. Heaviside (1892—
1912), S. Pincherle (1902), G.H. Hardy and L.E. Littlewood (1917-
1928), H. Weyl (1917), P. Lévy (1923), A. Marchaud (1927), H.T.
Davis (1924-1936), E.L. Post (1930), A. Zygmund (1935-1945), E.R.
Love (1938-1996), A. Erdélyi (1939-1965), H. Kober (1940), D.V.
Widder (1941), M. Riesz (1949), W. Feller (1952).

However, it may be considered a novel topic as well. Only since
the Seventies has it been the object of specialized conferences and
treatises. For the first conference the merit is due to B. Ross who,
shortly after his Ph.D. dissertation on fractional calculus, organized
the First Conference on Fractional Calculus and its Applications at
the University of New Haven in June 1974, and edited the proceed-
ings, see [Ross (1975a)]. For the first monograph the merit is as-
cribed to K.B. Oldham and I. Spanier, see [Oldham and Spanier
(1974)] who, after a joint collaboration begun in 1968, published a
book devoted to fractional calculus in 1974.

Nowadays, the series of texts devoted to fractional calculus
and its applications includes over ten titles, including (alphabeti-
cally ordered by the first author) [Kilbas et al. (2006); Kiryakova
(1994); Miller and Ross (1993); Magin (2006); Nishimoto (1991);
Oldham and Spanier (1974); Podlubny (1999); Rubin (1996); Samko
et al. (1993); West et al. (2003); Zaslavsky (2005)]. This list
is expected to grow up in the forthcoming years. We also cite
three books (still) in Russian: [Nakhushev (2003); Pskhu (2005);
Uchaikin (2008)].
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Furthermore, we call attention to some treatises which contain
a detailed analysis of some mathematical aspects and/or physical
applications of fractional calculus, although without explicit mention
in their titles, see e.g. [Babenko (1986); Caputo (1969); Davis (1936);
Dzherbashyan (1966); Dzherbashyan (1993); Erdélyi et al. (1953-
1954); Gel’fand and Shilov (1964); Gorenflo and Vessella (1991)].

In recent years considerable interest in fractional calculus has been
stimulated by the applications it finds in different areas of applied
sciences like physics and engineering, possibly including fractal phe-
nomena. In this respect A. Carpinteri and F. Mainardi have edited
a collection of lecture notes entitled Fractals and Fractional Calculus
in Continuum Mechanics [Carpinteri and Mainardi (1997)], whereas
Hilfer has edited a book devoted to the applications in physics [Hilfer
(2000a)]. In these books the mathematical theory of fractional calcu-
lus was reviewed by [Gorenflo and Mainardi (1997)] and by [Butzer
and Westphal (2000)].

Now there are more books of proceedings and special issues of
journals published that refer to the applications of fractional cal-
culus in several scientific areas including special functions, control
theory, chemical physics, stochastic processes, anomalous diffusion,
rheology. Among the special issues which appeared in the last decade
we mention: Signal Processing, Vol. 83, No. 11 (2003) and Vol. 86,
No. 10 (2006); Nonlinear Dynamics, Vol. 29, No. 1-4 (2002) and
Vol. 38, No. 1-4 (2004); Journal of Vibration and Control, Vol. 13,
No. 9-10 (2007) and Vol. 14, No. 1-4 (2008); Physica Scripta, Vol.
T136, October (2009), We also mention the electronic proceedings
[Matignon and Montseny (1998)] and the recent books, edited by [Le
Méhauté et al. (2005)], [Sabatier et al. (2007)], [Klages et al. (2008)],
[Mathai and Haubold (2008)], which contain selected and improved
papers presented at conferences and advanced schools, concerning
various applications of fractional calculus.

Already since several years, there exist two international jour-
nals devoted almost exclusively to the subject of fractional calcu-
lus: Journal of Fractional Calculus (Editor-in-Chief: K. Nishimoto,
Japan) started in 1992, and Fractional Calculus and Applied Analy-
sis (Managing Editor: V. Kiryakova, Bulgaria) started in 1998, see
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http://www.diogenes.bg/fcaa/. Furthermore, web-sites devoted
to fractional calculus have been set up, among which we call special
attention to http://www.fracalmo.org whose name is originated
by FRActional CALculus MOdelling. This web-site was set up in
December 2000 by the initiative of the author and some colleagues:
it contains interesting news and web-links.

Quite recently the new journal Fractional Dynamic Systems
(http://fds.ele-math.com/) has been announced to start in 2010.

The reader interested in the history of fractional calculus is re-
ferred to Ross’ bibliographies in [Oldham and Spanier (1974)], [Ross
(1975b); (1977)] and to the historical notes contained in the text-
books and reviews already cited.

Let us recall that exhaustive tables of fractional integrals are avail-
able in the second volume of the Bateman Project devoted to Integral
Transforms [Erdélyi et al. (1953-1954)], in Chapter XII1.

It is worthwhile and interesting to say here something about
the commonly used naming for the types of fractional integrals and
derivatives that have been discussed in this chapter. Usually names
are given to honour the scientists who provided the main contribu-
tions, but not necessarily to those who first introduced the corre-
sponding notions. Surely Liouville and then Riemann (as a student!)
contributed significantly towards fractional integration and differen-
tiation, but their notions have a history. As a matter of fact it was
Abel who, in his 1823 paper [Abel (1823)], solved his celebrated in-
tegral equation by using fractional integration and differentiation of
order 1/2. Three years later Abel considered the generalization to
any order « € (0,1) in [Abel (1826)]. So Abel, using the opera-
tors that nowadays are ascribed to Riemann and Liouville, preceded
these eminent mathematicians by at least ten years. Because Rie-
mann, like Abel, worked on the positive real semi-axis IR", whereas
Liouville and later Weyl mainly on all of R, we would use the names
of Abel-Riemann and Liouville-Weyl for the fractional integrals with
support in IR" and IR, respectively. However, whereas for IR we
keep the names of Liouville-Weyl, for IR", in order to be consistent
with the existing literature, we agree to use the names of Riemann-
Liouville, even if this is an injustice towards Abel.
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In IR we have not discussed the approach investigated and used
in several papers by Beyer, Kempfle and Schaefer, that is appro-
priate for causal processes not starting at a finite instant of time,
see e.g. [Beyer and Kempfle (1994); Beyer and Kempfle (1995);
Kempfle (1998); Kempfle and Schéfer (1999); Kempfle and Schéfer
(2000); Kempfle et al. (2002a); Kempfle et al. (2002b)]. They define
the time-fractional derivative on the whole real line as a pseudo-
differential operator via its Fourier symbol.

In this book, special attention is devoted to an alternative form of
fractional derivative (where the orders of fractional integration and
ordinary differentiation are interchanged) that nowadays is known
as the Caputo derivative. As a matter of fact, such a form is found
in a paper by Liouville himself as noted by Butzer and Westphal
[Butzer and Westphal (2000)] but Liouville, not recognizing its role,
disregarded this notion. As far as we know, up to to the middle of
the tuentieth century most authors did not take notice of the differ-
ence between the two forms and of the possible use of the alternative
form. Even in the classical book on Differential and Integral Cal-
culus by the eminent mathematician R. Courant, the two forms of
the fractional derivative were considered as equivalent, see [Courant
(1936)], pp. 339-341. As shown in Egs. (1.19) and (1.20) the alter-
native form (denoted with the additional apex %) can be considered
as a regularization of the Riemann—Liouville derivative which iden-
tically vanishes when applied to a constant. Only in the late sixties
was the relevance of the alternative form recognized. In fact, in
[Dzherbashyan and Nersesyan (1968)] and then in [Kochubei (1989);
Kochubei (1990)] the authors used the alternative form as given
by (1.19) in dealing with Cauchy problems for differential equa-
tions of fractional order. Formerly, Caputo, see [Caputo (1967);
Caputo (1969)] introduced this form as given by Eq. (1.17) prov-
ing the corresponding rule in the Laplace transform domain, see
Eq. (1.27). With his derivative Caputo was thus able to general-
ize the rule for the Laplace transform of a derivative of integer order
and to solve some problems in Seismology in a proper way. Soon
later, this derivative was adopted by [Caputo and Mainardi (1971a);
(1971b)] in the framework of the theory of Linear Viscoelasticity.
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Since the seventies a number of authors have re-discovered and
used the alternative form, recognizing its major usefulness for solv-
ing physical problems with standard initial conditions. Although
several papers by different authors appeared where the alternative
derivative was adopted, it was only in the late nineties, with the tu-
torial paper [Gorenflo and Mainardi (1997)] and the book [Podlubny
(1999)], that such form was popularized. In these references the Ca-
puto form was named the Caputo fractional derivative, a term now
universally accepted in the literature. The reader, however, is alerted
that in a very few papers the Caputo derivative is referred to as the
Caputo—Dzherbashyan derivative. Note also the transliteration as
Djrbashyan.

As a relevant topic, let us now consider the question of notation.
Following [Gorenflo and Mainardi (1997)] the present author opposes
to the use of the notation ¢D;  for denoting the fractional integral;
it is misleading, even if it is used in such distinguished treatises
as [Oldham and Spanier (1974); Miller and Ross (1993); Podlubny
(1999)]. Tt is well known that derivation and integration operators are
not inverse to each other, even if their order is integer, and therefore
such indiscriminate use of symbols, present only in the framework of
the fractional calculus, appears unjustified. Furthermore, we have to
keep in mind that for fractional order the derivative is yet an integral
operator, so that, perhaps, it would be less disturbing to denote our
oD as oI, @, than our oIf* as oD; “.

The notation adopted in this book is a modification of that in-
troduced in a systematic way by [Gorenflo and Mainardi (1997)] in
their CISM lectures, that, in its turn, was partly based on the book
on Abel Integral Equations [Gorenflo and Vessella (1991)] and on the
article [Gorenflo and Rutman (1994)].

As far as the Mittag-Leffler function is concerned, we refer the
reader to Appendix E for more details, along with historical notes
therein.
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Chapter 2

Essentials of Linear Viscoelasticity

In this chapter the fundamentals of the linear theory of viscoelas-
ticity are presented in the one-dimensional case. The classical ap-
proaches based on integral and differential constitutive equations are
reviewed. The application of the Laplace transform leads to the so-
called material functions (or step responses) and their (continuous
and discrete) time spectra related to the creep and relaxation tests.
The application of the Fourier transform leads to the so-called dy-
namic functions (or harmonic responses) related to the storage and
dissipation of energy.

2.1 Introduction

We denote the stress by o = o(x,t) and the strain by € = €(x,t)
where x and ¢ are the space and time variables, respectively. For the
sake of convenience, both stress and strain are intended to be normal-
ized, i.e. scaled with respect to a suitable reference state {0, €.} .

At sufficiently small (theoretically infinitesimal) strains, the be-
haviour of a viscoelastic body is well described by the linear theory
of viscoelasticity. According to this theory, the body may be consid-
ered as a linear system with the stress (or strain) as the excitation
function (input) and the strain (or stress) as the response function
(output).

To derive the most general stress—strain relations, also referred as
the constitutive equations, two fundamental hypotheses are required:
(i) invariance for time translation and (ii) causality; the former means

23
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that a time shift in the input results in an equal shift in the output,
the latter that the output for any instant ¢; depends on the values of
the input only for ¢ < ¢;. Furthermore, in this respect, the response
functions to an excitation expressed by the unit step function O(¢),
known as Heaviside function defined as

0 ift<O,
o) =4
1 ift>0,

are known to play a fundamental role both from a mathematical and
physical point of view.

The creep test and the relaxation test. We denote by J(t) the
strain response to the unit step of stress, according to the creep test

o(t) = O(t) = e(t) = J(t), (2.1a)

and by G(t) the stress response to a unit step of strain, according to
the relazation test

e(t) = O(t) = o(t) = G(t). (2.1b)

The functions J(t) and G(t) are usually referred as the creep com-
pliance and relaxation modulus respectively, or, simply, the material
functions of the viscoelastic body. In view of the causality require-
ment, both functions are causal, i.e. vanishing for ¢t < 0. Implicitly,
we assume that all our causal functions, including J(t) and G(t),
are intended from now on to be multiplied by the Heaviside function
O(t).

The limiting values of the material functions for ¢ — 0% and
t — +oo are related to the instantaneous (or glass) and equilibrium
behaviours of the viscoelastic body, respectively. As a consequence,
it is usual to set

Jg:=J(0F) glass compliance, (2.20)
2a
Je := J(+00) equilibrium compliance ;
and
Gy :=G(0") glass modulus, (2.20)
Ge := G(+00) equilibrium modulus .
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From experimental evidence, both the material functions are non-
negative. Furthermore, for 0 < ¢ < 400, J(t) turns out to be a
non-decreasing function, whereas G(t) a non-increasing function. As-
suming that J(t) is a differentiable, increasing function of time, we
write
+ dJ +
teR", E>0 — 0< J(0") < J(t) < J(+x) < +o00. (2.3a)
Similarly, assuming that G(t) is a differentiable, decreasing function
of time, we write
+ 4G +
te R", E<0 = 400>G(0") > G(t) > G(4+00) > 0. (2.3b)
The above characteristics of monotonicity of J(t) and G(t) are related
respectively to the physical phenomena of strain creep and stress re-
lazation, which indeed are experimentally observed. Later on, we
shall outline more restrictive mathematical conditions that the ma-
terial functions must usually satisfy to agree with the most common
experimental observations.

The creep representation and the relaxation representation.
Hereafter, by using the Boltzmann superposition principle, we are go-
ing to show that the general stress — strain relation is expressed in
terms of one material function [J(t) or G(¢)] through a linear heredi-
tary integral of Stieltjes type. Choosing the creep representation, we
obtain
t
€(t) = / Jt—71)do(T). (2.4a)
—0o0

Similarly, in the relazation representation, we have

o(t) = / G(t —7)de(T). (2.4b)

In fact, since the responses are to be invariant for time translation,
we note that in J(¢) and G(t), t is the time lag since application of
stress or strain. In other words, an input o(t) = 01 O(t —711) [e(t) =
€1 O(t —71) ] would be accompanied by an output €(t) = o1 J(t — 1)
[0(t) = e1G(t —71)]. As a consequence, a series of N stress steps
Aoy, =0p41 —0op (n=1,2,...,N) added consecutively at times

TN > TN—1 > """ >T] > —00,
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will induce the total strain according to

N N
= Acn Ot —7) = €(t) =Y Ao, J(t— 7).

We can approximate arbitrarily well any physically realizable stress
history by a step history involving an arbitrarily large number of
arbitrarily small steps. By passing to the limit in the sums above,
we obtain the strain and stress responses to arbitrary stress and
strain histories according to Egs. (2.4a) and (2.4b), respectively. In
fact

:/t @(t_T)da(T):/t do(t) = e(t)—/t J(t=7)do(r),

oo

/@tTde)/de() /GtTde)

Wherever the stress [strain] history o(t) [e( )] is differentiable, by
do(7) [de(T)] we mean &(7)dr [€(T)dT ], where we have denoted by
a superposed dot the derivative with respect to the variable 7. If o(t)
[€(t) ] has a jump discontinuity at a certain time ¢, the corresponding
contribution is intended to be Acgg J(t — 19) [Aeg G(t — 710) .

All the above relations are thus a consequence of the Boltzmann
superposition principle, which states that in linear viscoelastic sys-
tems the total response to a stress [strain| history is equivalent (in
some way) to the sum of the responses to a sequence of incremental
stress [strain] histories.

2.2 History in IRT: the Laplace transform approach

Usually, the viscoelastic body is quiescent for all times prior to some
starting instant that we assume as ¢ = 0; in this case, under the
hypotheses of causal histories, differentiable for ¢ € IR", the creep

and relaxation representations (2.4a) and (2.4b) reduce to
t

e(t):/ J(t— 7)do(r) = o(07) J(t )+/J(t—7) (r)dr . (2.50)

t
o) = [ Gt —7)de(r) = e(0F) G /Gt—T Pdr. (2.50)
.
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Unless and until we find it makes any sense to do otherwise, we
implicitly restrict our attention to causal histories.

Another form of the constitutive equations can be obtained from
Eqgs. (2.5a) and (2.5b) by integrating by parts. We thus have

e(t) = J, o (1) + /O J(t— ) o(r)dr, (2.60)
and, if Gy < oo,
o(t) = Gye(t) + /O Gt —7)e(r)dr. (2.6b)

The causal functions J(t) and G(t) are referred as the rate of creep
(compliance) and the rate of relazation (modulus), respectively; they
play the role of memory functions in the constitutive equations (2.6a)
and (2.6b). If J, > 0 or G4 > 0 it may be convenient to consider the
non-dimensional form of the memory functions obtained by normal-
izing them to the glass values!.

The integrals from 0 to ¢t in the R.H.S of Egs. (2.5a) and (2.5b)
and (2.6a) and (2.6b) can be re-written using the convolution form
and then dealt with the technique of the Laplace transforms, accord-
ing to the notation introduced in Chapter 1,

() % g(t) + F(5)G(s).
Then, we show that application of the Laplace transform to
Eqgs. (2.5a) and (2.5b) and (2.6a) and (2.6b) yields

e(s)=sJ(s)a(s), (2.7a)
5(s) = sG(s)&(s) . (2.7b)

This means that the use of Laplace transforms allow us to write the
creep and relaxation representations in a unique form, proper for
each of them.

In fact, Eq. (2.7a) is deduced from (2.5a) or (2.6a) according to

&(s) = a(07) J(s)+J(s) [s5(5) =0 (0F)] = Jy 5(s)+[s (s) = Jg] 5(s) ,

!See later in Chapters 4 and 5 when we will use the non-dimensional memory

functions T 1 4G
U(t) := — —_— .
(*) Gy dt

= Jg E, (I)(t) =
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and, similarly, Eq. (2.7b) is deduced from (2.5b) or (2.6b) according
to

G(s) = e(0) G(s)+G(s) [se(s)—e(01)] = Gy &(s)+]s G(s)—Gy] (s) .

We notice that (2.7b) is valid also if Gy = oo, provided that we
use a more general approach to the Laplace transform, based on the
theory of generalized functions, see e.g. [Doetsch (1974); Ghizzetti
and Ossicini (1971); Zemanian (1972)].

2.3 The four types of viscoelasticity

Since the creep and relaxation integral formulations must agree with
each other, there must be a one-to-one correspondence between the
relaxation modulus and the creep compliance. The basic relation
between J(t) and G(t) is found noticing the following reciprocity
relation in the Laplace domain, deduced from Eqgs. (2.7a) (2.7b),

2T = 55 = T80 = Siz (2.8)

Indeed, inverting the R.H.S. of (2.8), we obtain

t
J(t) « G(t) = /0 J(t—7)Glr)dr 1. (2.9)

We can also obtain (2.8) noticing that, if the strain causal history
is J(t), then the stress response is ©(t), the unit step function, so
Egs. (2.4a) and (2.5a) give

o) = [ Gt —r)di) /G (t—1)J(r)dr. (2.10)

o-
Then, applying the Laplace transform to (2.10) yields
= = J,G(s) + G(s) [sj(s) . Jg} .

S

Following [Pipkin (1986)], Eq. (2.10) allows us to obtain some
notable relations in the time domain (inequalities and integral equa-
tions) concerning the material functions. Taking it for granted that,
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for 0 < t < 400, J(t) is non-negative and increasing, and G(t) is
non-negative decreasing, Eq. (2.10) yields

t t
1= [ G(t—r1)dJ(r) > G(t) / dJ(r) = G(t) J(t)

0-

namely
Jt)G(t) <1. (2.11)

We also note that if J; # 0, we can rearrange (2.10) as a Volterra
integral equation of the second kind, treating G(t) as the unknown
and J(t) as the known function,

t
G(t) = Jg_l - Jg_1 / J(t —71)G(r)dr. (2.12a)
0

Similarly, if G(t) is given and G4 # oo, the equation for J(t) is
t
J(t) =G, -G,! / Gt —71)J(r)dr. (2.12b)
0

Pipkin has also pointed out the following inequalities

() /0 Jrdr <t < J(0) /0 Gy dr. (2.13)

One of these inequalities (L.H.S.) is not as close as (2.11); the other
(R.H.S.) gives new information. Furthermore, using with the due
care the limiting theorems for the Laplace transform

F0%) = lm sf(s),  f(+o0) = lm sf(s)

we can deduce from the L.H.S of (2.8) that
1 1

-~ Je = =
Gy’ Ge

with the convention that 0 and 400 are reciprocal to each other.

Jy = (2.14)

The remarkable relations allow us to classify the viscoelastic bod-
ies according to their instantaneous and equilibrium responses. In
fact, from Eqs. (2.2), (2.3) and (2.14) we easily recognize four possi-
bilities for the limiting values of the creep compliance and relaxation
modulus, as listed in Table 2.1.
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Table 2.1 The four types of viscoelasticity.

Type Jy Je Gy Ge
I >0 < 00 < 00 >0
11 >0 =00 < 00 =0
111 =0 < 00 =00 >0
v =0 =00 =00 =0

We note that the viscoelastic bodies of type I exhibit both instan-
taneous and equilibrium elasticity, so their behaviour appears close
to the purely elastic one for sufficiently short and long times. The
bodies of type IT and IV exhibit a complete stress relaxation (at con-
stant strain) since G = 0 and an infinite strain creep (at constant
stress) since J. = 0o, so they do not present equilibrium elasticity.
Finally, the bodies of type III and IV do not present instantaneous
elasticity since J; =0 (G4 = 00).
Other properties will be pointed out later on.

2.4 The classical mechanical models

To get some feeling for linear viscoelastic behaviour, it is useful to
consider the simpler behaviour of analog mechanical models. They
are constructed from linear springs and dashpots, disposed singly and
in branches of two (in series or in parallel) as it is shown in Fig. 2.1.

As analog of stress and strain, we use the total extending force and
the total extension, respectively. We note that when two elements
are combined in series [in parallel], their compliances [moduli] are
additive. This can be stated as a combination rule: creep compliances
add in series, while relaxation moduli add in parallel.

The important role in the literature of the mechanical models is
justified by the historical development. In fact, the early theories
were established with the aid of these models, which are still help-
ful to visualize properties and laws of the general theory, using the
combination rule.

Now, it is worthwhile to consider the simple models of Fig. 2.1
by providing their governing stress—strain relations along with the
related material functions.
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L

N
| 9

a) t‘>) c) d)

Fig. 2.1 The representations of the basic mechanical models: a) spring for
Hooke, b) dashpot for Newton, c¢) spring and dashpot in parallel for Voigt, d)
spring and dashpot in series for Maxwell.

The Hooke model. The spring a) in Fig. 2.1 is the elastic (or
storage) element, as for it the force is proportional to the extension;
it represents a perfect elastic body obeying the Hooke law. This
model is thus referred to as the Hooke model. If we denote by m the
pertinent elastic modulus we have

Hooke model : o(t) =me(t), (2.15a)

SO

{J(t) =1/m, (2.15b)

G(t) =m.

In this case we have no creep and no relaxation so the creep com-
pliance and the relaxation modulus are constant functions: J(t) =
Jog=Je=1/m; G(t) =Gy = Ge =1/m.

The Newton model. The dashpot b) in Fig. 2.1 is the viscous (or
dissipative) element, the force being proportional to rate of extension;
it represents a perfectly viscous body obeying the Newton law. This
model is thus referred to as the Newton model. Denoting by by the
pertinent viscosity coefficient, we have

d
Newton model : o(t) = b d—; (2.16a)
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so
t

) = by’ (2.16D)
G(t) =01 0(t).
In this case we have a linear creep J(t) = J,t and instantaneous
relaxation G(t) = G_d(t) with G_ =1/J4 = b;.
We note that the Hooke and Newton models represent the limiting
cases of viscoelastic bodies of type I and IV, respectively.

The Voigt model. A branch constituted by a spring in parallel
with a dashpot is known as the Voigt model, c¢) in Fig. 2.1. We have

d
Voigt model : o(t) =me(t) + by d—z , (2.17a)
S0
_ —t/, 1 _ b
= 1— € = - =
Tt = ( ¢ ) = Te= (2.17b)

G(t)=Ge+G_4(t), Ge=m, G_=by,
where 7, is referred to as the retardation time.
The Maxwell model. A branch constituted by a spring in series

with a dashpot is known as the Mazwell model, d) in Fig. 2.1. We
have

d d
Mazwell model : o(t) + a1 - by o , (2.18a)
dt dt
S0
1
JO) = Jy+ Tet,  Jy=0 e =
y 1 (2.18b)

G(t):Gle_t/T", Glza—7 To =ai,
1

where 7, is is referred to as the the relazation time.

The Voigt and the Maxwell models are thus the simplest viscoelas-
tic bodies of type III and II, respectively. The Voigt model exhibits
an exponential (reversible) strain creep but no stress relaxation; it
is also referred as the retardation element. The Maxwell model ex-
hibits an exponential (reversible) stress relaxation and a linear (non
reversible) strain creep; it is also referred to as the relaxation element.

Based on the combination rule introduced above, we can continue
the previous procedure in order to construct the simplest models of
type I and IV that require three parameters.
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The Zener model. The simplest viscoelastic body of type I is ob-
tained by adding a spring either in series to a Voigt model or in par-
allel to a Maxwell model, respectively. In this way, according to the
combination rule, we add a positive constant both to the Voigt-like
creep compliance and to the Maxwell-like relaxation modulus so that
Jy > 0 and G > 0. Such a model was considered by Zener [Zener
(1948)] with the denomination of Standard Linear Solid (S.L.S.) and
will be referred here also as the Zener model. We have

Zener model - {1 +ar i] o(t) = [m—i— b i] ), (219a)

dt dt
SO
— a 1 a b

J(t):Jg+J1(1_e t/T6>’ Jg:b_iy Jl:a_b_ivTezaly
- b

G(t):Ge+Gle t/Taﬂ Ge = m, Gl:a_l_m, Te = Q1 .
1

(2.190)

We point out the condition 0 < m < by/ay in order Ji,Gy be pos-
itive and hence 0 < J;, < Jo < oo and 0 < G, < Gy < 00. As
a consequence, we note that, for the S.L.5. model, the retardation
time must be greater than the relaxation time, i.e. 0 < 7, < 7e < 0.

The anti-Zener model. The simplest viscoelastic body of type
IV requires three parameters, i.e. a1, b1 , bo ; it is obtained by adding
a dashpot either in series to a Voigt model or in parallel to a Maxwell
model (Fig. 2.1c and Fig. 2.1d, respectively). According to the com-
bination rule, we add a linear term to the Voigt-like creep compliance
and a delta impulsive term to the Maxwell-like relaxation modulus
so that J, = oo and G, = co. We may refer to this model as the

anti-Zener model. We have
‘ d d d?
anti—Zener model : |1+ a1— | o(t)= bl% + bgW e(t), (2.20a)

dt
SO

_ 1 b b

J(t):J+t+J1 (1_6 t/T€>7 J+ZE’J1:%_Z)_§7T€:£’
1

- b by b

G)=G-d(t) + Gre /T, =2 Gi=2 == =
1 ai ay
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We point out the condition 0 < by/by < ay in order Ji,G1 to be
positive. As a consequence we note that, for the anti-Zener model,
the relaxation time must be greater than the retardation time, i.e.
0 < 7e < 7, < 00, on the contrary of the Zener (S.L.S.) model.

In Fig. 2.2 we exhibit the mechanical representations of the
Zener model [a), b)] and the anti-Zener model [c), d)]. Because
of their main characteristics, these models can be referred as the
three-element elastic model and the three-element viscous model, re-
spectively.

? i\‘:g |
a) b)

0) d)

L §

Fig. 2.2 The mechanical representations of the Zener [a), b)] and anti-Zener [c),
d)] models: a) spring in series with Voigt, b) spring in parallel with Maxwell, c)
dashpot in series with Voigt, d) dashpot in parallel with Maxwell.

By using the combination rule, general mechanical models can
obtained whose material functions turn out to be of the type

Jt) = Jy+ 3, I (1 - e—t/Tem) It

G(t) = Ge+ X, Gne U Tom 4 G_5(t), (220

where all the coefficients are non negative. We note that the four
types of viscoelasticity of Table 2.1 are obtained from Egs. (2.21) by
taking into account that

(2.22)

Je<oo <= Jp =0, Jo=00 <= J; #0,
Gg<oo <= G_=0, Gg=00 <= G_#0.
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The canonic forms. In Fig. 2.3, following [Gross (1953)], we ex-
hibit the general mechanical representations of Egs. (2.21) in terms
of springs and dashpots (illustrated here by boxes), so summarizing
the four canonic forms.

Ten Ten Te,n Ten
a)
Jy Jg J+ I+
Jn Jﬂ Jn -I"
» .
G‘ G" G" G! G' Gu G- Gn
B | ]
e g n To,n Tﬂ,n Tﬂ,n
’ l \] \j
type = I u o v

Fig. 2.3 The four types of canonic forms for the mechanical models: a) in creep
representation; b) in relaxation representation.

The reader must note that in Fig. 2.3 the boxes denoted by J,, G,
represent springs, those denoted by J;, G_ represent dashpots and
those denoted by {J,,, 7 n} and by {G,,, 7, } represent a sequence of
Voigt models connected in series (compound Voigt model) and a se-
quence of Maxwell models connected in parallel (compound Mazwell
model), respectively. The compound Voigt and Maxwell models are
represented in Fig. 2.4.

As a matter of fact, each of the two representations can assume
one of the four canonic forms, which are obtained by cutting out
one, both, or none of the two single elements which have appeared
besides the branches. Each of these four forms corresponds to each
of the four types of linear viscoelastic behaviour (indicated in
Table 2.1).

We recall that these material functions J(t) and G(t) are interre-
lated because of the reciprocity relation (2.8) in the Laplace domain.
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:

Fig. 2.4 The mechanical representations of the compound Voigt model (top) and
compound Maxwell model (bottom).

Appealing to the theory of Laplace transforms, we get from (2.21)
~ In Jy

J(s)=J E _n 4 IF

sJ(s)=Jg+ T + e + .

(5Ton)
=G, +G_s.
+Z 1+ 575, i

(2.23)

The second equality can be re-written as

sé(s):(Ge—Fﬂ)—ZGi—i—G s, with g := ZG”‘

1+57:n
Therefore, as a consequence of (2.23), s.J(s) and s G(s) turn out
to be rational functions in C with simple poles and zeros on the

negative real axis Re[s] < 0 and, possibly, with a simple pole or
with a simple zero at s = 0, respectively. As a consequence, see e.g.
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[Bland (1960)], the above functions can be written as

P
P(s) = l—i—Zaksk,
k=1

p (2.24)
Q(s) =m+ Y by s",
k=1

where the orders of the polynomials are equal (¢ = p) or differ of
unity (¢ = p + 1) and the zeros are alternating on the negative real
axis. The least zero in absolute magnitude is a zero of Q(s). The
ratio of any coefficient in P(s) to any coefficient in Q(s) is positive.
The four types of viscoelasticity then correspond to whether the least
zero is (J4 # 0) or is not (J4 = 0) equal to zero and to whether the
greatest zero in absolute magnitude is a zero of P(s) (J, # 0) or a
zero of Q(s) (J4 = 0). We also point out that the polynomials at the
numerator and denominator are Hurwitz polynomials, in that they
have no zeros for Re[s] > 0, with m > 0 and ¢g =por ¢ =p+ 1.
Furthermore, the resulting rational functions s.J(s), s G(s) turn out
to be positive real functions in C, namely they assume positive real
values for s € R" .

The operator equation. According to the classical theory of vis-
coelasticity (see e.g. [Alfrey (1948); Gross (1953)]), the above proper-
ties mean that the stress—strain relation must be a linear differential
equation with constant (positive) coefficients of the following form

1+ ay 7| o) =
k=1

Eq. (2.25) is referred to as the operator equation of the mechan-

m+ > b ﬁ] e(t). (2.25)
k=1

ical models, of which we have investigated the most simple cases
illustrated in Figs. 2.1, 2.2. Of course, the constants m , ag , by are
expected to be subjected to proper restrictions in order to meet the
physical requirements of realizability. For further details we refer the
interested reader to [Hanyga (2005a); (2005b); (2005c¢)].

In Table 2.2 we summarize the four cases, which are expected to
occur in the operator equation (2.25), corresponding to the four types
of viscoelasticity.
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Table 2.2 The four cases of the operator equation.

Type Order m Jy Ge | Jt G-
1 g=p >0 | ap/bp | m 0 0
II g=p =0 ap/b, | 0 | 1/bs 0
M | g=p+1|>0| 0 | m| 0 |by/a
v g=p+1|=0 0 0 | 1/b1 | bg/ap

We recognize that for p = 1 Eq. (2.25) includes the operator
equations for the classical models with two parameters: Voigt and
Maxwell; and with three parameters: Zener and anti-Zener. In fact,
we recover the Voigt model (type III) for m > 0 and p = 0,9 = 1,
the Maxwell model (type II) for m = 0 and p = ¢ = 1, the Zener
model (type I) for m > 0 and p = ¢ = 1, and the anti-Zener model
(type IV) for m =0 and p=1,q = 2.

The Burgers model. With four parameters we can construct two
models, the former with m = 0 and p = ¢ = 2, the latter with m > 0
and p = 1,q = 2, referred in [Bland (1960)] to as four-element models
of the first kind and of the second kind, respectively.

We restrict our attention to the former model, known as Burgers
model, because it has found numerous applications, specially in geo-
sciences, see e.g. [Klausner (1991); Carcione et al. (2006)]. We note
that such a model is obtained by adding a dashpot or a spring to the
representations of the Zener or of the anti-Zener model, respectively.
Assuming the creep representation the dashpot or the spring is added
in series, so the Burgers model results in a series combination of a
Maxwell element with a Voigt element. Assuming the relaxation
representation, the dashpot or the spring is added in parallel, so the
Burgers model results in two Maxwell elements disposed in parallel.
We refer the reader to Fig. 2.5 for the two mechanical representations
of the Burgers model.

According to our general classification, the Burgers model is thus
a four-element model of type II, defined by the four parameters
{al, as, bl, bg}.
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We have
d d? d d?
Burgers model : |1+ a + agﬁ} o(t)= {bla + bgw} e(t),
(2.26a)
S0
_ —t/T,
Jt) = J,+ Jot+ Jp (1 —e /7€)

(t) = Jg+Jy 1 ( ) (2.26b)

G(t) = Gre t/Tol 4 Gyet/To2.

We leave to the reader to express as an exercise the physical quan-
tities Jy, J1, 7 and G, 75,1, G2, 75,2, in terms of the four parameters
{a1,az2,b1,b2} in the operator equation (2.26a).

:

= f

Fig. 2.5 The mechanical representations of the Burgers model: the creep repre-
sentation (top), the relaxation representation (bottom).
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Remark on the initial conditions :

We note that the initial conditions at ¢ = 07 for the stress o(t)
and strain €(t),

{c™(Or), h=0,1,...p—1}, {® ("), k=0,1,...q— 1},
do not appear in the operator equation, but they are required to be
compatible with the integral equations (2.5a) and (2.5b) and con-
sequently with the corresponding Laplace transforms provided by
Eqs. (2.7a) and (2.7b). Since the above equations do not contain
the initial conditions, some compatibility conditions at t = 0" must
be implicitly required both for stress and strain. In other words, the
equivalence between the integral equations (2.5a) and (2.5b), and the
differential operator equation (2.25), implies that when we apply the
Laplace transform to both sides of Eq. (2.25) the contributions from
the initial conditions do not appear, namely they are vanishing or
cancel in pair-balance. This can be easily checked for the simplest
classical models described by Egs. (2.17)—(2.20). For simple exam-
ples, let us consider the Voigt model for which p = 0, ¢ = 1 and
m > 0, see Eq. (2.17a), and the Maxwell model for which p =g =1
and m = 0, see Eq. (2.18a).

For the Voigt model we get

so(s) = me(s) + by [se(s) — e(0T)]
so, for any causal stress and strain histories, it would be

< €(0")=0. (2.27a)

sJ(s) = m+ bis
We note that the condition €(07) = 0 is surely satisfied for any
reasonable stress history since .J;, = 0, but is not valid for any rea-
sonable strain history; in fact, if we consider the relaxation test for
which €(t) = ©(t) we have €(0") = 1. This fact may be understood
recalling that for the Voigt model we have J; = 0 and Gy = oo (due
to the delta contribution in the relaxation modulus).
For the Maxwell model we get

a(s)+aq [85(8) — a(0+)] =b [sg(s) — e(0+)] ,
so, for any causal stress and strain histories it would be

~ a 1

sJ(s) = — 4+ — <= a10(07) = bre(0H). (2.27b)
b1 b18
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We now note that the condition a10(0%) = b1e(07) is surely satisfied
for any causal history, both in stress and in strain. This fact may be
understood recalling that, for the Maxwell model, we have J; > 0
and Gy =1/J, > 0.

Then we can generalize the above considerations stating that the
compatibility relations of the initial conditions are valid for all the
four types of viscoelasticity, as far as the creep representation is con-
sidered. When the relaxation representation is considered, caution
is required for the types III and IV, for which, for correctness, we
would use the generalized theory of integral transforms suitable just
for dealing with generalized functions.

2.5 The time - and frequency - spectral functions

From the previous analysis of the classical mechanical models in
terms of a finite number of basic elements, one is led to consider
two discrete distributions of characteristic times (the retardation and
the relazation times), as it has been stated in Eq. (2.21). However,
in more general cases, it is natural to presume the presence of con-
tinuous distributions, so that, for a viscoelastic body, the material
functions turn out to be of the following form

J(t) = Jy+a [ Re(r) (1 - e_t/T) dr+ Jit,

(2.28)
G(t) = Ge+b [ Ro(r) e HTdr +G_5(t),
where all the coefficients and functions are non-negative. The func-
tion R.(7) is referred to as the retardation spectrum while R, () as
the relaxation spectrum. For the sake of convenience we shall omit
the suffix to denote any one of the two spectra; we shall refer to
R(7) as the time-spectral function. in IR" | with the supplementary
normalization condition [;* R(7)dr =1 We require R(7) be locally
summable if the integral in IR" is convergent.

The discrete distributions of the classical mechanical models,
see Eqgs. (2.21), can be easily recovered from Egs. (2.28). In fact,
assuming a # 0, b # 0, we get after a proper use of the delta-Dirac
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generalized functions

RG(T):$ZJn5(T—T67n), a:ZJn,

1< (2.29)
Ro(r) == Y _ Gnd(r—Ton), b= Gy.
ﬂ n n
We now devote particular attention to the time-dependent contri-
butions to the material functions (2.28) which are provided by the
continuous or discrete spectra using for them the notation

J-(t) :=a /OOO R(T) (1 — e_t/T> dr,

0o (2.30)
G (t) == / R,(r)e t/Tdr.
0

We recognize that J-(t) (that we refer as the creep function with
spectrum) is a non-decreasing, non-negative function in IR" with lim-
iting values J-(07) =0, J-(4+00) = a or oo, whereas G, (t) (that we
refer as the relazation function with spectrum) is a non-increasing,
non-negative function in IR™ with limiting values G,(07) = b or oo,
Gr(+00) = 0. More precisely, in view of the spectral representations
(2.30), we have

d*J;
J-(t) =0, (=1)" T <0,
t>0, n=1,2,. (2.31)
d"G
G,(t) >0, (=1)" T >
H=0, (-)"—

Using a proper terminology of mathematical analysis, see e.g. [Berg
and Forst (1975); Feller (1971); Gripenberg et al. (1990)], G,(t) is
a completely monotonic function whereas J.(t) is a Bernstein func-
tion, since it is a non-negative function with a completely monotonic
derivative. These properties have been investigated by several au-
thors, including [Molinari (1975)], [Del Piero and Deseri (1995)] and
recently, in a detailed way, by [Hanyga (2005a); Hanyga (2005b);
Hanyga (2005c¢)].

The determination of the time—spectral functions starting from the
knowledge of the creep and relaxation functions is a problem that
can be formally solved through the Titchmarsh inversion formula
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of the Laplace transform theory according to [Gross (1953)]. For
this purpose let us recall the Gross method of Laplace integral pairs,
which is based on the introduction of the frequency—spectral functions
Se(y) and S, () defined as

Sem::aw, Sul(7) = b (71/7), (2.32)

where v = 1/7 denotes a retardation or relaxation frequency. We
note that with the above choice it turns out

aR(7)dr = Sc(v)dy, bRs(7)dr = Sys(7)dy. (2.33)
leferenmatlng (2.30) Wlth respect to time yields

o [t = [Tsime T,

—G.(t)=b /OOORU—(T) e_t/T dr = /Ooofy So(7) ety dry .

(2.34)

-
We recognize that v.Se(v) and 7vS,(y) turn out to be the inverse

Laplace transforms of J.(t) and —G-(t), respectively, where ¢ is now
considered the Laplace transform variable instead of the usual s.
Adopting the usual notation for the Laplace transform pairs, we thus

Re(l/v) - jf(t),

756(’7) =a ~y (2 35)
5 = D) |

Consequently, when the creep and relaxation functions are given

write

as analytical expressions, the corresponding frequency distributions
can be derived by standard methods for the inversion of Laplace
transforms; then, by using Eq. (2.32), the time-spectral functions
can be easily derived.

Incidentally, we note that in the expressions defining the time
and frequency spectra, often d(log 7) and d(log ) rather than dr and
dvy are involved in the integrals. This choice changes the scaling of
the above spectra in order to better deal with phenomena occurring
on several time (or frequency) scales. In fact, introducing the new
variables v = log7 and v = log~y, where —oco < u, v < 400, the
new spectra are related to the old ones as it follows

R(u)du=R(r)rdr,  S)dv=5S(H)vdy. (2.36)
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Example of time and frequency spectra. As an example of
spectrum determination, we now consider the creep function

J-(t) =aEin (t/79), a>0, 79>0, (2.37)

where Ein denotes the modified exponential integral function, de-
fined in the complex plane as an entire function whose integral and
series representations read

z _ e—C & pe
Fin (2) = /o Lo g =S (-1 ceC.  (2.38)

' Y
¢ — nn!
For more details, see Appendix D. As a consequence we get
dJ, 1—e 0t 1
T =a———, == (239)

By inspection of a table of Laplace transform pairs we get the inver-
sion and, using (2.35), the following time and frequency—spectra

0, 0<7<19,

R.(r) = TS (2.40a)
/7, 10<7T<00;
, 0<~v<m,

S.(y) = {“/ T 0= <0 (2.400)
0, Yo <y < 0.

Plotted against log 7 and log~y the above spectra are step-wise dis-
tributions.

Stieltjes transforms. To conclude this section, following [Gross
(1953)], we look for the relationship between the Laplace transform
of the creep/relaxation function and the corresponding time or fre-
quency spectral function. If we choose the frequency spectral func-
tion, we expect that a sort of iterated Laplace transform be involved
in the required relationship, in view of the above results. In fact,
applying the Laplace transform to Eq. (2.34) we obtain

J-(s) = —dy,
° (8) /0 s+ g

(2.41)

~ . OO’YSU('Y)
sGT(s)——/O 220 4y + 61 (0,
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Introducing the function

=[Sk
I(s) = /0 0 ar, (2.42)

where the suffix € or ¢ is understood, we recognize that L(s) is the
Stieltjes transform of 7y .S(y) . The inversion of the Stieltjes transform
may be carried out by Titchmarsh’s formula,

S() = L1 [L(ve ™)} = 2 tim I {L(— —i0)} . (243)

=—1Im e = — lim Im —y =1 .(2.
TR ™ Y T 6—0 i

Consequently, when the Laplace transforms of the creep and relax-
ation functions are given as analytical expressions, the corresponding
frequency distributions can be derived by standard methods for the

inversion of Stieltjes transforms; then, by using Eq. (2.32) the time—
spectral functions can be easily derived.

2.6 History in IR: the Fourier transform approach and
the dynamic functions

In addition to the unit step (that is acting for ¢ > 0), another widely
used form of excitation in viscoelasticity is the harmonic or sinu-
soidal excitation that is acting for all of IR since it is considered
(ideally) applied since ¢ = —oo. The corresponding responses, which
are usually referred to as the dynamic functions, provide, together
with the material functions previously investigated, a complete de-
scription of the viscoelastic behaviour. In fact, according to [Findley
et al. (1976)], creep and relaxation experiments provide information
starting from a lower limit of time which is approximatively of 10 s,
while dynamic experiments with sinusoidal excitations may provide
data from about 1078 s to about 103 s. Thus there is an overlapping
region (10s — 103 s) where data can be obtained from both types of
experiments. Furthermore, the dynamic experiments provide infor-
mation about storage and dissipation of the mechanical energy, as
we shall see later.

In the following the basic concepts related to sinusoidal excita-
tions is introduced. It is convenient to use the complex notation
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for sinusoidal functions, i.e. the excitations in stress and strain in
non-dimensional form are written as

o(t;w) :eWt, e(t;w):eWt, w>0, —co<t<+4oo, (2.44)

where w denotes the angular frequency (f = w/27 is the cyclic fre-
quency and T' = 1/f is the period). Of course, in Eq. (2.44) we
understand to take the real or imaginary part of the exponential in

Fiwt — cog wt + ¢ sin wt .

view of the Euler formula e
For histories of type (2.44), the integral stress—strain relations
(2.4) can be used to provide the corresponding response functions.

We obtain, after an obvious change of variable in the integrals,

~

o(t) = et — ¢(t) = J*(w)e™! | J*(w) == iwJ(w), (2.45q)
and

e(t) = e — o(t) = G*(w) ! | G*(w) == iw G(w), (2.45b)
where J(w) = J T () e —Wwl gt and G(w) = [G(t)e —wi gt

The functions J*(w) and G*(w) are usually referred as the com-
plex compliance and complex modulus, respectively, or, simply, the
dynamic functions of the viscoelastic body. They are related with
the Fourier transforms of the causal functions J(¢) and G(¢) and

therefore can be expressed in terms of their Laplace transforms as
follows

Tw)=sJs)| , Gw)= sG(s) o (2.46)

so that, in agreement with the reciprocity relation (2.8),

T (w) G (w) =1. (2.47)

2.7 Storage and dissipation of energy: the loss tangent

Introducing the phase shift 6(w) between the sinusoidal excitation
and the sinusoidal response in Eqgs. (2.45a) and (2.45b), we can write

THw) = J'(w) — iJ" (W) = |7 w)|e ~0W) (2.48q)
and

G (W) = G (w) +iG" () = |G*(w)] e T1OW) (2.48)
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As a consequence of energy considerations, recalled hereafter by fol-
lowing [Tschoegel (1989)], it turns out that §(w) must be positive (in
particular, 0 < d(w) < 7/2) as well as the quantities J'(w), J"(w)
and G’ (w), G”(w) entering Egs. (2.48a) and (2.48b). Usually, J’ and
G’ are called the storage compliance and thestorage modulus, respec-
tively, while J” and G” are called the loss compliance and the loss
modulus, respectively; as we shall see, the above attributes connote
something to do with energy storage and loss. Furthermore,
14 1

tan §(w) = T (w) = G (w)

J(w) G'(w)
is referred to as the loss tangent, a quantity that summarizes the

(2.49)

damping ability of a viscoelastic body, as we will show explicitly
below.

During the deformation of a viscoelastic body, part of the total
work of deformation is dissipated as heat through viscous losses, but
the remainder of the deformation-energy is stored elastically. It is
frequently of interest to determine, for a given sample of material in
a given mode of deformation, the total work of deformation as well as
the amount of energy stored and the amount dissipated. Similarly,
one may wish to know the rate at which the energy of deformation
is absorbed by the material or the rate at which it is stored or dissi-
pated.

The rate at which energy is absorbed per unit volume of a vis-
coelastic material during deformation is equal to the stress power,
i.e. the rate at which work is performed. The stress power at time ¢
is

W(t) =o(t)ét), (2.50)
i.e. it is the product of the instantaneous stress and rate of strain.
The electrical analog of (2.50) is the well-known relation which states
that the electrical power equals the product of instantaneous volt-
age and current. The total work of deformation or, in other words,
the mechanical energy absorbed per unit volume of material in the
deformation from the initial time ¢¢ up to the current time ¢, results
in
¢ t
W)= [W(r)dr = / o(t)e(r)dr . (2.51)
¢

to 0
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Assuming the possibility of computing separately the energy stored,
Ws(t), and the energy dissipated, Wy(t), we can write

W(t) = Wi(t) + Wa(t),  W(t) = Wi(t) + Wa(t). (2.52)

Please note that all energy or work terms and their derivatives will
henceforth refer to unit volume of the material even when this is not
explicitly stated.

Elastically stored energy is potential energy. Energy can also be
stored inertially as kinetic energy. Such energy storage may be en-
countered in fast loading experiments, e.g. in response to impulsive
excitation, or in wave propagation at high frequency. In the lin-
ear theory of viscoelastic behaviour, however, inertial energy storage
plays no role.

How much of the total energy is stored and how much is dissi-
pated, i.e. the precise form of (2.52), depends, of course, on the nature
of the material on the one hand, and on the type of deformation on
the other. The combination of stored and dissipated energy is conve-
niently based on the representation of linear viscoelastic behaviour
by models (the classical mechanical models) in that, by definition,
the energy is dissipated uniquely in the dashpots and stored uniquely
in the springs.

For the rate of energy dissipation we get

t) = Z Odn (t) édn Z 7771 6dn ) (253)

where o4, (t) and ég4,(t) are the stress and the rate of strain, re-
spectively, in the n-th dashpot, which are related by the equality
Odn(t) = Ny €qn(t) with 1, denoting the coefficient of viscosity.

For the energy storage we get

t
0= Z /toasn(f) eon(7) d
€sn(t)

_ZG / €sn(T) desn(7) (2.54)

€sn (0)

:_ZG fsn )
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where o4, (t) and €5, (t) are the stress and the strain, respectively, in
the n-th spring, which are related by the equality o4,(t) = Gy, €5,(t)
with G, denoting the elastic modulus.

Equations (2.53) and (2.54) are the basic relations for determin-
ing energy storage and dissipation, respectively, during a particular
deformation. They are given meaning by finding the stresses, strains,
rates of strain in the springs and dashpots of mechanical models in
the given mode of deformation. The nature of the material is re-
flected in the distribution of the parameters G,, and 7,,. Examples
have been given by [Tschoegel (1989)], to which the interested reader
is referred. In the absence of appropriate spring-dashpot models we
may still think of energy-storing and energy-dissipating mechanisms
but without identifying them with mechanical models, and modify
the arguments as needed.

Let us now compute the total energy W (t) and its rate W (t) for
sinusoidal excitations, and possibly determine the corresponding con-
tributions due to the storing and dissipating mechanisms [Tschoegel
(1989)]. Taking the imaginary parts in (2.45b) we have

€(t) = sinwt = o(t) = G'(w) sinwt + G"(w) coswt, (2.55)
where the terms on the R.H.S. represent, respectively, the compo-
nents of the stress which are in phase and out of phase with the

strain.
Since the rate of strain is w coswt, Egs. (2.50) and (2.55) lead to

PV@)::g[G%w)ﬁn2wt+(¥%w)ﬂ—%am2wﬂ]. (2.56)

Integration of (2.56), subject to the initial condition W (0) = 0, yields
1

W(t) = 1 [G'(w) (1 — cos2wt) + G"(w) (2wt + sin 2wt)].  (2.57)

In general, all storing mechanisms are not in phase as well as all
dissipating mechanisms, so that in Eqgs. (2.56) and (2.57) we cannot
recognize the partial contributions to the storage and dissipation of
energy. Only if phase coherence is assumed among the energy storing
mechanisms on the one hand and the energy dissipating mechanisms
on the other, we can easily separate the energy stored from that
dissipated. We get

w

IW@zga@ammnm@_Qmwm+mwm,@w)
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hence

Wet) = G/fl”) (1—cos 2wt), We(t) = S

(2wt +sin 2wt), (2.59)

where the superscript ¢ points out the hypothesis of coherence.
For the stored energy, a useful parameter is the average taken
over a full cycle of the excitation. We find from (2.59)

1 t+T

W)=z [ Wir)dr

(2.60)

! 2m Jw l
= wG(w) / (1 —cos2wTr)dr = Glw) ,
81 0 4

which is one half of the maximum coherently storable energy.

For the dissipated energy we consider the amount of energy that
would be dissipated coherently over a full cycle of the excitation. We
find from (2.56)

t+T
AWy(w) == Wi(r)dr
t (2.61)

" 27w
A G2 ) /0 (1+ cos2wr)dr = 1G"(w).

We recognize that Egs. (2.60) and (2.61) justify the names of G'(w)
and G”(w) as storage and loss modulus, respectively.

Usually the dissipation in a viscoelastic medium is measured by in-
troducing the so-called specific dissipation function, or internal fric-
tion, defined as

1 1 AWy

Q (w) = o Ws* )
where AW, is the amount of energy dissipated coherently in one
cycle and W is the peak energy stored coherently during the cycle.
It is worthwhile to note that Q! denotes the reciprocal of the so-
called quality factor, that is denoted by @ in electrical engineering,
see e.g. [Knopoff (1956)]. From Egs. (2.49) and (2.60) and (2.62) it
turns out that

(2.62)

Q' (w) =tand(w). (2.63)



Ch. 2: Essentials of Linear Viscoelasticity 51

This equation shows that the damping ability of a linear viscoelastic
body is dependent only on the tangent of the phase angle, namely the
loss tangent introduced in Eq. (2.49), that is a function of frequency
and is a measure of a physical property, but is independent of the
stress and strain amplitudes.

2.8 The dynamic functions for the mechanical models

Let us conclude this chapter with the evaluation of the dynamic
functions (complex moduli or complex compliances) for the classi-
cal mechanical models as it can be derived from their expressions
according to Eq. (2.49), with special emphasis to their loss tangent.

For convenience, let us consider the Zener model, that contains as
limiting cases the Voigt and Maxwell models, whereas we leave as an
exercise the evaluation of the dynamic functions for the anti-Zener
and Burgers models.

For this purpose we consider the dynamic functions, namely the
complex compliance J*(w) and the complex modulus G*(w), for the
Zener model, that can be derived from the Laplace transforms of
the corresponding material functions J(¢) and G(t) according to
Egs. (2.46). Using Egs. (2.19a) and (2.19b) we get

1
J(w) = sJ(s) i = Jy+ N1 I B (2.64)
G*'w) = sG(s)] =Ge+G—1 (2.65)
N s=iw ! 1+ 8To | g—iw ’
Then we get:
1
J(W) = Jy+ Jh———
Jw) = W) - J"W), LA T (2.66)
S =
WT,
G'(w) =G + G —2T2
* / 1! (w) + ! 1 —"_ w27—3
G (W) = G'(w) + G" (), 29 (2.67)

wWoTS

" _
G (w) —G11+w27_3 .
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Taking into account the definitions in (2.19b) that provide the
interrelations among the constants in Eqgs. (2.64) and (2.67), we find
it convenient to introduce a new characteristic time

T :=\/To Te (2.68)

and
Jo — J,
JgJe’
A=l"T0 (2.69)
T Gy — Ge

Then, after simple algebraic manipulations, the loss tangent for the
Zener model turns out to be

CJMNw)  G"(w) wT
CJ(w) G'w) T 14 (wr)?
We easily recognize that the loss tangent for the Zener model attains

(2.70)

Zener model : tan §(w)

its maximum value A/2 for w = 1/7.

It is instructive to adopt another notation in order to provide
alternative expressions (consistent with the results by [Caputo and
Mainardi (1971b)]), by introducing the characteristic frequencies re-
lated to the retardation and relaxation times:

a:=1/7e =m/by,
B:=1/1 =1/ay,

As a consequence the constitutive equations (2.19a) and (2.19b) for

with 0<a<f<oo. (2.71)

the Zener model read

1d 1d o
l+=—|ot)=m|1+=—| et =G, =G, —. (272
15 |0 =mfie s 50, m )5 @)

Then, limiting ourselves to consider the complex modulus, this reads

1+iw/a o+ 1w

G*(w) =G, =G , 2.73

W) =G 0/5 = %5 (2.73)
henceforth

w2+ ap
sy 4G W =G
G*(w) =G (w) + G"(w), Zj(ﬁ L) (2.74)
G"w)=G

gw2+62'
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Finally, the loss tangent turns out to be
G (w w
= ,( ) = (6 - a) 2 :
G'(w) w? +afp
Now the loss tangent attains its maximum value (G —«a)/(2v/a () for

w = vapf, a result consistent with that obtained with the previous
notation.

(2.75)

Zener model :  tan §(w)

It is instructive to plot in Fig. 2.6 the dynamic functions G'(w),
G"(w) and the loss tangent tand(w) versus w for the Zener model.
For convenience we use non-dimensional units and we adopt for w
a logarithmic scale from 1072 to 102. We take a = 1/2, 3 = 2 so
af=1,and Gy =1s0 Ge = aff =1/4.

1

09
0.8
tan 8(e)
07t

0.6
05

0.4r

107 107" 10° 10" logw 107

Fig. 2.6 Plots of the dynamic functions G’ (w), G”(w) and loss tangent tan §(w)
versus log w for the Zener model.

As expected, from Eq. (2.75) we easily recover the expressions of
the loss tangent for the limiting cases of the Hooke, Newton, Voigt
and Maxwell models. We obtain:

Hooke model (a« = =0) : tand(w) =0, (2.76)
Newton model (0 =a < f=00) : tand(w) = 00, (2.77)

Voigt model (0 < v < f=00) : tand(w) = Yo wTe,  (2.78)
«

1
Mazwell model (0 =a < < 00) : tand(w) = — = . (2.19)
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We recover that the Hooke model exhibits only energy storage
whereas the Newton model, only energy dissipation. The Voigt and
Maxwell models exhibit both storage and dissipation of energy, in
such a way that their loss tangent turns out to be directly propor-
tional and inversely proportional to the frequency, respectively. As
a consequence, with respect to the loss tangent, the Zener model ex-
hibits characteristics common to the Voigt and Maxell models in the
extremal frequency regions: precisely, its loss tangent is increasing
for very low frequencies (like for the Voigt model), is decreasing for
very high frequencies (like for the Maxwell model), and attains its
(finite) maximum value within an intermediate frequency range.

2.9 Notes

The approach to linear viscoelasticity based on memory functions
(the “hereditary” approach) was started by V. Volterra, e.g. [Volterra
(1913); Volterra (1928); Volterra (1959)] and pursued in Italy by a
number of mathematicians, including: Cisotti, Giorgi, Graffi, Tri-
comi, Benvenuti, Fichera, Caputo, Fabrizio and Morro.

Many results of the Italian school along with the recent theoretical
achievements of the “hereditary” approach are well considered in the
book [Fabrizio and Morro (1992)] and in the papers [Deseri et al.
(2006)], [Fabrizio et al. (2009)].

Our presentation is mostly based on our past review papers [Ca-
puto and Mainardi (1971b); Mainardi (2002a)] and on classical books
[Bland (1960); Gross (1953); Pipkin (1986); Tschoegel (1989)].

For the topic of realizability of the viscoelastic models and for the
related concept of complete monotonicity the reader is referred to
the papers by A. Hanyga, see e.g. [Hanyga (2005a); Hanyga (2005b);
Hanyga (2005¢)] and the references therein.

We have not considered (in the present edition) the topic of ladder
networks: the interested reader is invited to consult the excellent
treatise [Tschoegel (1989)] and the references therein. We note that
in the literature of ladder networks, the pioneering contributions by
the late Ellis Strick, Professor of Geophysics at the University of
Pittsburgh, are unfortunately not mentioned: these contributions
turn out to be hidden in his unpublished lecture notes [Strick (1976)].
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To conclude, applications of the linear theory of viscoelasticity
appear in several fields of material sciences such as chemistry (e.g.
[Doi and Edwards (1986); Ferry (1980)], seismology (e.g. [Aki and
Richards (1980); Carcione (2007)]), soil mechanics (e.g. [Klausner
(1991)]), arterial rheology (e.g. [Craiem et al. (2008)]), food rheology
(e.g. [Rao and Steffe (1992)]), to mention just a few. Because papers
are spread out in a large number of journals, any reference list cannot
be exhaustive.
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Chapter 3

Fractional Viscoelastic Models

Linear viscoelasticity is certainly the field of the most extensive appli-
cations of fractional calculus, in view of its ability to model hereditary
phenomena with long memory.

Our analysis, based on the classical linear theory of viscoelas-
ticity recalled in Chapter 2, will start from the power law creep to
justify the introduction of the operators of fractional calculus into
the stress-strain relationship. So doing, we will arrive at the frac-
tional generalization of the classical mechanical models through a
correspondence principle. We will devote particular attention to the
generalization of the Zener model (Standard Linear Solid) of which
we will provide a physical interpretation.

We will also consider the effects of the initial conditions in prop-
erly choosing the mathematical definition for the fractional deriva-
tives that are expected to replace the ordinary derivatives in the
classical models.

3.1 The fractional calculus in the mechanical models

3.1.1 Power-Law creep and the Scott-Blair model

Let us consider the viscoelastic solid with creep compliance,
a
J({t) = ————t", >0, 0<v<l, 3.1
D=t @ Y (8-1)

where the coefficient in front of the power-law function has been in-
troduced for later convenience. Such creep behaviour is found to

57
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be of great interest in a number of creep experiments; usually it is
referred to as the power-law creep. This law is compatible with the
mathematical theory presented in Section 2.5, in that there exists
a corresponding non-negative retardation spectrum (in time and fre-
quency). In fact, by using the method of Laplace integral pairs and
the reflection formula for the Gamma function,

T
I'ivYI'l —v) =
()T ) sinmy’
we find
sinmy 1 sinmry 1
RG(T) = p 7—1*11 — SG(’}/) =a T m . (32)

In virtue of the reciprocity relationship (2.8) in the Laplace domain
we can find for such viscoelastic solid its relazation modulus,and then
the corresponding relaxzation spectrum. After simple manipulations

we get
Gy =—" v p=Lsy (3.3)
CT(1-v) ’ o ’ '
and
sinty 1 sinty 1
R, (1) = — T = Se(y) =0 e (3.4)

For our viscoelastic solid exhibiting power-law creep, the stress-
strain relationship in the creep representation can be easily obtained
by inserting the creep law (3.1) into the integral in (2.4a). We get:

t
a

€t) = =——— t—71)do. 3.5

0 =757y [ ¢ (35)
Writing do = &(t) dt and integrating by parts, we finally have

¢
a

)= —— t—r)v 1 dr=a - _I” [o(t)], (3.6

)=y [ (=D endr = ol (0] (36)
where _. I/ denotes the fractional integral of order v with start-
ing point —oo, the so-called Liouville-Weyl integral introduced in
Section 1.3.

In the relazation representation the stress-strain relationship is
now obtained from (2.4b) and (3.3). Writing de = é(¢) dt , we get

o(t) = ﬁ /Oo(t —7) Vé(T)dr =b- _Df [e(t)], (3.7)
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where

DY = IV o Dy =Dy o oIV, with Dy := %, (3.8)
denotes the fractional derivative of order v with starting point —oo,
the so-called Liouville-Weyl derivative introduced in Section 1.4.

From now on we will consider causal histories, so the starting
point in Egs. (3.5)-(3.8) is 0 instead of —oo. This implies that
the Liouville-Weyl integral and the Liouville-Weil derivative must
be replaced by the Riemann-Liouville integral oIy, introduced in
Section 1.1, and by the Riemann-Liouville (R-L) or by the Caputo
(C) derivative, introduced in Section 1.2, denoted respectively by
oDy and [Dy. Later, in Section 2.5, we will show the equivalence
between the two types of fractional derivatives as far as we remain in
the framework of our constitutive equations and our preference for
the use of fractional derivative in the Caputo sense. Thus, for causal
histories, we write

e(t) =a- oy [o(t)] (3.9)

o(t) =b- oDy e(t) = b- 5D [e(t)] (3.10)

where ab = 1.

Some authors, e.g. [Bland (1960)], refer to Eq. (3.10) (with the R-
L derivative) as the Scott-Blair stress-strain law. Indeed Scott-Blair
was the scientist who, in the middle of the past century, proposed
such a constitutive equation to characterize a viscoelastic material
whose mechanical properties are intermediate between those of a pure
elastic solid (Hooke model) and a pure viscous fluid (Newton model).

3.1.2 The correspondence principle

The use of fractional calculus in linear viscoelasticity leads us to
generalize the classical mechanical models, in that the basic New-
ton element (dashpot) is substituted by the more general Scott-Blair
element (of order v), sometimes referred to as pot. In fact, we can
construct the class of these generalized models from Hooke and Scott-
Blair elements, disposed singly and in branches of two (in series or
in parallel).
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The material functions are obtained using the combination rule;
their determination is made easy if we take into account the fol-
lowing correspondence principle between the classical and fractional
mechanical models, as introduced in [Caputo and Mainardi (1971b)],
that is empirically justified. Taking 0 < v < 1, such a correspon-
dence principle can be formally stated by the following three equa-
tions where Laplace transform pairs are outlined:

§t) ~1 = F(%_Vy) + s (3.11)
1 tv 1
b2 T sy T (3.12)
—t/T . 1 V] . Sy_l
et - e (VT (3.13)

where 7 > 0 and E,, denotes the Mittag-Leffler function of order v.
In Fig. 3.1, we display plots of the function E,(—t") versus ¢ for
some (rational) values of v.
Referring the reader to Appendix E for more details on this func-
tion, here we recall its asymptotic representations for small and large
times,

tV
E(-t")~1— ——— t + . .14
)~ 1= gyt (3.14)
t*l/
E(—t") ~ = : 1
()~ et (3.15)

We easily recognize that, compared to the exponential obtained
for v = 1, the fractional relaxation function E, (—¢") exhibits a very
different behaviour. In fact, for 0 < v < 1, as shown in Egs. (3.14)
and (3.15) our function exhibits for small times a much faster de-
cay (the derivative tends to —oo in comparison with —1), and for
large times a much slower decay (algebraic decay in comparison with
exponential decay).
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0.8
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0.4r

0.2r

0 ‘
0 5 10 t 15

Fig. 3.1 The Mittag-Leffler function E,(—t") versus ¢ (0 < ¢ < 15) for some
rational values of v, i.e. v =0.25,0.50, 0.75,1.

3.1.3 The fractional mechanical models

We now consider the fractional generalizations of the Newton, Voigt,
Maxwell, Zener and anti-Zener models. For this purpose it is suffi-
cient to replace the derivative of order 1 with the fractional deriva-
tive of order v € (0,1) (in the R-L or C sense) in their constitutive
equations (2.16a)-(2.20a) and then make use of the correspondence
principle stated by Egs. (3.11)-(3.13). We then obtain the following
stress-strain relationships and corresponding material functions:

dll
fractional Newton (Scott— Blair) model : o(t) = b; %f , (3.16a)
tV
J(t) = ;
e Y (3.16b)
t)y=1>
G®) 'T1-v)’
fractional Voigt model : o(t) = me(t) + by % , (3.17a)

J(t) = %{1 —Ey [=(t/7)"]},
v (3.17b)
G(t) = m+b Ti—0)

where (7¢)” = by /m;
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a’ a’
fractional Mazwell model : 7 ¢

= 1
o) +ar 2o =bi—,  (3.18)

a 1 tv
T = T T

(3.18)
2, [ (t/7)'],

where (7,)” = ax;

fractional Zener model :

14

[1+a1 jty] o(t) = [mﬂn ;q 0. (3.19a)

tV

{J(t) =Jg+ 1 [1 = B, [—(t/7)"]],

(3.190)
G(t) =G.+GLE,[—(t/1,)"],
where
1 b
J :ﬂ7 Jl___alaTe__lu
b1 WZL) b1 m
Ge= m, G4 il m, To = a1 ;
ay

fractional anti— Zener model :

14

J dy 22 (3.20a)
|:1 + aq dt”:| ( ) |:b1 v + b2 W:| G(t),

&m)zJﬁﬁ%5+£H—&PWim

o) (3.200)
G(t) =G_

=) + G E, [—(t/75)")],

where
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Extending the procedures of the classical mechanical models, we
get the fractional operator equation in the form that properly gener-
alizes Eq. (2.25):

P dve
1+ ay | ot =
k=1

with vy = k 4+ v — 1, so, as a generalization of Eq. (2.21):

IO = Jy+ 3 Il = B [t/ D+ e iy
n - (3.22)
G(t) =Ge + Z Gn,E, [_(t/Ta,n)V] +G_ m s

where all the coefficients are non-negative. Of course, also for
the fractional operator equation (3.21), we distinguish the same
four cases of the classical operator equation (2.25), summarized in
Table 2.2.

3.2 Analysis of the fractional Zener model

We now focus on the fractional Zener model. From the results for
this model we can easily obtain not only those for the most simple
fractional models (Scott-Blair, Voigt, Maxwell) as particular cases,
but, by extrapolation, also those referring to more general models
that are governed by the fractional operator equation (3.21).

3.2.1 The material and the spectral functions

We now consider for the fractional Zener model its creep compliance
and relaxation modulus with the corresponding time-spectral func-
tions. Following the notation of Section 2.5 we have J(t) = J,+J- (1)
and G(t) = Ge + G- (t) where
J-(t)=J1 {1 -E, [—(t/Tﬁ)”]}:Jl/ Re(m)(1 — e_t/T)dT,
00”0 (3.23)

Go(t) = G1Ey [ (/)] =G /0 Ro(r)e~""dr,
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with J; = J.—Jy, G1 = G4g—Ge. The creep compliance J(t) and the
relaxation modulus G(t) are depicted in Fig. 3.2 for some rational
values of v.

v=1/4

v=1/2

0 1 2 3 4 5 6 7 8 9 10

Fig. 3.2 The material functions J(t) (top) and G(t) (bottom) of the frac-
tional Zener model versus ¢t (0 < ¢ < 10) for some rational values of v,
ie. v=025,050,0.75,1.

Using the method of Laplace transforms illustrated in Section 2.5,
we can obtain the time—spectral functions of the fractional Zener
model. Denoting the suffixes €, o by a star, we obtain

1 sin v
77 (7/7)Y + (7/7) "V + 2 cos vr’

R.(1) = (3.24)
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1 sin v

R.(u) = — . u=1 L) . 3.25
() 2m cosh vu 4+ cos v u = log (7/7) (3:25)
Plots of the spectral function R.(7) are shown in Fig. 3.3 for some
rational values of v € (0, 1) taking 7, = 1.

R.(1)

Fig. 3.3 The time-spectral function R.(7) of the fractional Zener model versus
7 (0 < 7 < 2) for some rational values of v, i.e. v =0.25, 0.50, 0.75,0.90.

From the plots of the spectra we can easily recognize the effect
of a variation of v on their character; for v — 1 the spectra become
sharper and sharper until for v = 1 they reduce to be discrete with
a single retardation/relaxation time. In fact we get

lim R,(r) = (7 —1), lim R, (u) = 6(u). (3.26)

We recognize from (3.24) that the spectrum R.(7) is a decreasing
function of 7 for 0 < v < vy where vy =~ 0.736 is the non-zero solu-
tion of equation v = sin vw. Subsequently, with increasing v, it first
exhibits a minimum and then a maximum before tending to the im-
pulsive function §(7—1) as v — 1. The spectra (3.24) and (3.25) have
already been calculated in [Gross (1947a)], where, in the attempt to
eliminate the faults which a power law shows for the creep function,
B. Gross proposed the Mittag-Leffler function as a general empiri-
cal law for both the creep and relaxation functions. Here we have
newly derived this result by introducing a memory mechanism into
the stress-strain relationships by means of the fractional derivative,
following [Caputo and Mainardi (1971a)].
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3.2.2 Dissipation: theoretical considerations

Let us now compute the loss tangent for the fractional Zener model
starting from its complex modulus G*(w). For this purpose it is
sufficient to properly generalize, with the fractional derivative of
order v, the corresponding formulas valid for the standard Zener
model, presented in Section 2.8. Following the approach expressed
by Egs. (2.71)-(2.79), we then introduce the parameters

=1/7" =m/b
{O‘ e =mfb i 0<a <8< oo, (3.27)

B:=1/17 =1/a1,
As a consequence, the constitutive equation (3.19a)-(3.19b) for
the fractional Zener model reads

1 d 1 d o
[14-3@}0(15)—771[14—&@]6@), m—Ge—GgB. (3.28)
Then, the complex modulus is
. 1+ (iw)”/« a+ (iw)?
G = G, , = : , 3.29
W =Gy = Yy B
henceforth,
w?+ap
G,(W) = GQW )
G (w) = G'(w) + G"(w), with “ ( ﬂ+_ ) (3.30)
G”(W) = Ggm .

Finally, the loss tangent is obtained from the known relationship
(2.49)

G//(w)
tan d(w) = @)
Then we get:
fractional Zener model :
w” sin (v7/2) (3.31)

tan 9(w) = (8 —a) w? +af+ (a+ B)w” cos (vr/2)
For consistency of notations such expression would be compared with
(2.75) rather than with (2.70), both valid for the Zener model.

As expected, from Eq. (3.31) we easily recover the expressions of
the loss tangent for the limiting cases of the fractional Zener model,
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that is the loss tangent for the Scott-Blair model (intermediate be-
tween the Hooke and Newton models), and for the fractional Voigt
and Maxwell models. We obtain:

fractional Newton Scott—Blair model (0 =a < = 00) :
tan d(w) = tan (v /2);
(3.32)

fractional Voigt model (0 < a < (f=00) :
tam 6(w) = wY sin(vm/2) ’ (3.33)
a+ w? cos(vm/2)

fractional Maxwell model (0=a << o0) :
Buw” sin(vr/2) (3.34)
tan d(w) = .
an do(w) w? + BwY cos(vm/2)

We note that the Scott-Blair model exhibits a constant loss tan-
gent, that is, quite independent of frequency, a noteworthy property
that can be used in experimental checks when v is sufficiently close to
zero. As far as the fractional Voigt and Maxwell models (0 < v < 1)
are concerned, note that the dependence of loss tangent of frequency
is similar but more moderate than those for the standard Voigt and
Maxwell models (v = 1) described in Egs. (2.78), (2.79) respectively.
The same holds for the fractional Zener model in comparison with
the corresponding standard model described in Eq. (2.75).

Consider again the fractional Zener model. Indeed, in view of
experimental checks for viscoelastic solids exhibiting a low value for
the loss tangent, say less than 1072, we find it reasonable to approxi-
mate the exact expression (3.31) of the loss tangent for the fractional
Zener model as follows:

w" sin (v7/2)

tan §(w) ~ (6 — . 3.35
an o(w) = (f —a) w 4+ a? + 2aw? sin (v /2) (3:35)
This approximation is well justified as soon as the condition
A=l g (3.36)
o

is satisfied, corresponding to the so-called nearly elastic case of our
model, in analogy with the standard Zener model (S.L.S.). In such



68 Fractional Calculus and Waves in Linear Viscoelasticity

approximation we set

W =a
A_B—awﬂ—a (3.37)
- a Wap’
so that ‘
tand(w) ~ A (w/wo)” sin (vr/2) (3.38)

14 (w/wo)? + 2 (w/wp)¥ cos (vm/2)

I ton 8
INE (a)
0.8 I 1
o6 //\)\ |
b
) /// ’?:?\\\
0.2 P 7’ (d) ~——__
0 _=é &.

-4 -2 0 2 4
Logo {wT)

Fig. 3.4 Plots of the loss tangent tan é(w) scaled with A /2 against the logarithm
of w7, for some rational values of v: a)v =1, b) v = 0.75, ¢) v = 0.50, d) v = 0.25.

It is easy to recognize that wg is the frequency at which the loss
tangent (3.34) assumes its maximum given by
A sin(vr/2)
mar =9 1 4 cos (vm/2)
It may be convenient to replace in (3.38) the peak frequency wy
with 1/7 where 7 is a characteristic time intermediate between 7
and 7,. In fact, in the approximation a ~ 3 we get from (3.27)

wo:=1/Te 1)1 =~ 1/\/Te 7o - (3.40)
Then, in terms of 7, the loss tangent in the nearly elastic approxi-
mation reads

tand(w) ~ A

tan §(w)| (3-39)

(wT)Y sin (v /2)
14+ (w7T)? +2(w7T) cos (v /2)

(3.38')
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When the loss tangent is plotted against the logarithm of w/wy =
wT, it is seen to be a symmetrical function around its maximum value
attained at w/wy = wT = 1, as shown in Fig. 3.4 for some rational
values of v and for fixed A. We note that the peak decreases in
amplitude and broadens with a rate depending on v; for v = 1 we
recover the classical Debye peak of the classical Zener solid.

For the sake of convenience, in view of applications to experimen-
tal data, in Fig. 3.5 we report the normalized loss tangent obtained
when the maximum amplitude is kept constant, for the previous ra-
tional values of v.

A/ I\NRN
SZAV/ IV AN
R S/AR\N

. N

-4 -2 0

/

n

4
Lagyg (w7)

Fig. 3.5 Plots of the loss tangent tan §(w) scaled with it maximum against the
logarithm of w7, for some rational values of v: a)v = 1, b)v = 0.75, c)v =
0.50, d) v = 0.25.

3.2.3 D:issipation: experimental checks

Experimental data on the loss tangent are available for various vis-
coelastic solids; however, measurements are always affected by con-
siderable errors and, over a large frequency range, are scarce be-
cause of considerable experimental difficulties. In experiments one
prefers to adopt the term specific dissipation function Q~' rather
than loss tangent, assuming they are equivalent as discussed in
Section 2.7, see Eqgs. (2.62)-(2.63). We also note that indirect
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methods of measuring the specific dissipation are used as those based
on free oscillations and resonance phenomena, see e.g. [Kolsky (1953);
Zener (1948)]. By these methods [Bennewitz-Rotger (1936), (1938)]
measured the @) for transverse vibrations in reeds of several metals in
the frequency range of three decades. Their data were fitted in [Ca-
puto and Mainardi (1971b)] by using the expression (3.38) in view
of the low values of dissipation. Precisely, in their attempt, Caputo
and Mainardi computed a fit of (3.38) to the experimental curves by
using the parameters A, «, v as follows. From each datum they
found wp, QL. then, (3.39) is a relationship between A and v.
The theoretical curve, forced to pass through the maximum of the
experimental curve, was then fitted to this by using the other free
parameter.

Herewith we report only the fits obtained for brass and steel, as
shown in Figs. 3.6 and 3.7, respectively, where a dashed line is used
for the experimental curves and a continuous line for the theoretical
ones. The values of the parameter v are listed in Table 3.1.

w(Hz)

Fig. 3.6 Q' in brass: comparison between theoretical (continuous line) and
experimental (dashed line) curves.

Table 3.1 Parameters for the data fit after Bennewitz and Rotger.

Metal A (Siy) « (Siy) v fmaa: (HZ) Q;L}LI
brass 0.77 153.2 0.90 427 2.14-107°
steel 0.19 54.3 0.80 23.4 1.35-1073
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w (Hz)

Fig. 3.7 Q™' in steel: comparison between theoretical (continuous line) and
experimental (dashed line) curves.

3.3 The physical interpretation of the fractional Zener
model via fractional diffusion

According to [Zener (1948)] the physical interpretation of anelastic-
ity in metals is linked to a spectrum of relaxation phenomena. In
particular, the thermal relaxation due to diffusion in the thermoelas-
tic coupling is essential to derive the standard constitutive equation
(stress-strain relationship) in linear viscoelasticity. This equation
corresponds to a simple rheological model (with three independent
parameters) known also as Standard Linear Solid (S.L.S.), discussed
in Section 2.4, see Egs. (2.19a)-(2.19b), and in Section 2.8. We now
re-write its constitutive equation in the form

J—i-Tﬁcfl—(Z:Mr <6+Tg%> , (3.41)
where 0 = o(t) and € = €(t) denote the uni-axial stress and strain
respectively. The three parameters are M,., which represents the re-
laxed modulus, and 7, 7., which denote the relaxation times under
constant stress and strain respectively; an additional parameter is
the unrelaxed modulus M, given by 7, /7. = M, /M, > 1.

Following Zener, the model equation (3.41) can be derived from
the basic equations of the thermoelastic coupling, provided that 7,
and 7. also represent the relaxation times for temperature relaxation
at constant stress and strain, respectively, and M, and M, represent
the isothermal and adiabatic moduli, respectively.
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Denoting by AT the deviation of the temperature from its stan-
dard value, the two basic equations of thermoelasticity are

1
€= 7 0T, (3.42)

T

d 1 de

where A is the linear thermal expansion coefficient and v =
(0T /0€) adgiap - Equation (3.43) results from the combination of the
two basic phenomena which induce temperature changes, (a) relax-

ation due to diffusion

(3.43)

d 1
<—AT> = —— AT, (3.44)
dt diff Te
and (b) adiabatic strain change
d de
—AT =—y . A4
(dt >adz’ab ! dt (3 5)

Putting 1 + Ay = 7, /7 = M, /M, and eliminating AT between
(3.42) and (3.43), the relationship (3.41) is readily obtained. In this
way the temperature plays the role of a hidden variable.

If now we assume, following [Mainardi (1994b)], that the relax-
ation due to diffusion is of long memory type and just governed by
the fractional differential equation

v
(%AT) :—_iVAT, 0<v<l, (3.46)
t diff T¢
where T, is a suitable relaxation time, we allow for a natural gener-
alization of the simple process of relaxation, which now depends on
the parameter v, see e.g. [Mainardi (1996b); Mainardi (1997)]. As a
consequence, Eq. (3.43) turns out to be modified into

%AT: —%AT—V%, (3.47)
and, mutatis mutandis, the stress-strain relationship turns out to be
LY, <e+?”ﬁ> (3.48)

< dtv " cdv )’ '

where we have used 1+ Ay = (7, /7c)” = M, /M, . So doing, we have
obtained the so-called fractional Zener model, analysed in Section
3.2.
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3.4 Which type of fractional derivative? Caputo or
Riemann-Liouville?

In the previous sections we have investigated some physical and
mathematical aspects of the use of fractional calculus in linear vis-
coelasticity. We have assumed that our systems are at rest for time
t < 0. As a consequence, there is no need for including the treatment
of pre-history as it is required in the so-called initialised fractional
calculus, recently introduced by [Lorenzo and Hartley (2000)] and
[Fukunaga (2002)].

We note that the initial conditions at ¢ = 0% for the stress and
strain do not explicitly enter into the fractional operator equation
(3.21) if they are taken in the same way as for the classical mechanical
models reviewed in the previous chapter (see the remark at the end
of Section 2.4). This means that the approach with the Caputo
derivative, which requires in the Laplace domain the same initial
conditions as the classical models, is quite correct.

On the other hand, assuming the same initial conditions, the ap-
proach with the Riemann-Liouville derivative is expected to provide
the same results. In fact, in view of the corresponding Laplace trans-
form rule (1.29) for the R-L derivative, the initial conditions do not
appear in the Laplace domain. Under such conditions the two ap-
proaches appear equivalent.

The equivalence of the two approaches has been noted for the
fractional Zener model in a recent note by [Bagley (2007)]. How-
ever, for us the adoption of the Caputo derivative appears to be the
most suitable choice, since it is fully compatible with the classical
approach. We shall return to this matter in Chapter 6, when we
consider wave propagation in the Scott-Blair model.

The reader is referred to [Heymans and Podlubny (2006)] for the
physical interpretation of initial conditions for fractional differential
equations with Riemann-Liouville derivatives, especially in viscoelas-
ticity.
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3.5 Notes

During the twentieth-century a number of authors have (implicitly
or explicitly) used the fractional calculus as an empirical method of
describing the properties of viscoelastic materials. In the first half of
that century the early contributors were: Gemant in USA, see [Ge-
mant (1936); (1938)], Scott-Blair in England, see [Scott-Blair (1944);
(1947); (1949)], Gerasimov and Rabotnov in the former Soviet Union,
see [Gerasimov (1948)], [Rabotnov (1948)].

Gemant published a series of 16 articles entitled Frictional Phe-
nomena in Journal of Applied Physics since 1941 to 1943, which
were collected in a book of the same title [Gemant (1950)]. In his
eighth chapter-paper [Gemant (1942)], p. 220, he referred to his pre-
vious articles [Gemant (1936); (1938)] for justifying the necessity of
fractional differential operators to compute the shape of relaxation
curves for some elasto-viscous fluids. Thus, the words fractional and
frictional were coupled, presumably for the first time, by Gemant.

Scott-Blair used the fractional calculus approach to model the ob-
servations made by [Nutting (1921); (1943); (1946)] that the stress
relaxation phenomenon could be described by fractional powers of
time. He noted that time derivatives of fractional order would simul-
taneously model the observations of Nutting on stress relaxation and
those of Gemant on frequency dependence. It is quite instructive to
cite some words by Scott-Blair quoted in [Stiassnie (1979)]:

I was working on the assessing of firmness of various materi-
als (e.g. cheese and clay by experts handling them) these systems
are of course both elastic and viscous but I felt sure that judgments
were made not on an addition of elastic and viscous parts but on
something in between the two so I introduced fractional differentials
of strain with respect to time. Later, in the same letter Scott-Blair
added: I gave up the work eventually, mainly because I could not find
a definition of a fractional differential that would satisfy the mathe-
maticians.

The 1948 the papers by Gerasimov and Rabotnov were published
in Russian, so their contents remained unknown to the majority of
western scientists up to the translation into English of the treatises
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by Rabotnov, see [Rabotnov (1969); (1980)]. Whereas Gerasimov
explicitly used a fractional derivative to define his model of viscoelas-
ticity (akin to the Scott-Blair model), Rabotnov preferred to use the
Volterra integral operators with weakly singular kernels that could
be interpreted in terms of fractional integrals and derivatives. After
the appearance of the books by Rabotnov it has became common to
speak about Rabotnov’s theory of hereditary solid mechanics. The
relation between Rabotnov’s theory and the models of fractional vis-
coelasticity has been briefly recalled in the recent paper [Rossikhin
and Shitikova (2007)]. According to these Russian authors, Rabot-
nov could express his models in terms of the operators of the frac-
tional calculus, but he considered these operators only as some math-
ematical abstraction.

In the late sixties, formerly Caputo, see [Caputo (1966); (1967);
(1969)], then Caputo and Mainardi, see [Caputo and Mainardi
(1971a); (1971b)], explicitly suggested that derivatives of fractional
order (of Caputo type) could be successfully used to model the dis-
sipation in seismology and in metallurgy. In this respect the present
author likes to recall a correspondence carried out between himself
(as a young post-doc student) and the Russian Academician Rabot-
nov, related to two courses on Rheology held at CISM (Interna-
tional Centre for Mechanical Sciences, Udine, Italy) in 1973 and 1974,
where Rabotnov was an invited speaker but without participating,
see [Rabotnov (1973); (1974)]. Rabotnov recognized the relevance
of the review paper [Caputo and Mainardi (1971b)], writing in his
unpublished 1974 CISM Lecture Notes:

That’s why it was of great interest for me to know the paper of Ca-
puto and Mainardi from the University of Bologna published in 1971.
These authors have obtained similar results independently without
knowing the corresponding Russian publications..... Then he added:
The paper of Caputo and Mainardi contains a lot of experimental
data of different authors in support of their theory. On the other
hand a great number of experimental curves obtained by Postnikov
and his coworkers as well as by foreign authors can be found in nu-
merous papers of Shermergor and Meshkouv.



76 Fractional Calculus and Waves in Linear Viscoelasticity

Unfortunately, the eminent Russian scientist did not cite the 1971
paper by Caputo and Mainardi (presumably for reasons indepen-
dently from his willing) in the Russian and English editions of his
later book [Rabotnov (1980)].

Nowadays, several articles (originally in Russian) by Shermer-
gor, Meshkov and their associated researchers have been re-printed
in English in Journal of Applied Mechanics and Technical Physics
(English translation of Zhurnal Prikladnoi Mekhaniki i Tekhnich-
eskoi Fiziki), see e.g. [Shermergor (1966)], [Meshkov et al. (1966)],
[Meshkov (1967)], [Meshkov and Rossikhin (1968)], [Meshkov (1970)],
[Zelenev et al. (1970)], [Gonsovskii and Rossikhin (1973)], available
at the URL: http://www.springerlink.com/. On this respect we
cite the recent review papers [Rossikhin (2010)], [Rossikhin and Shi-
tikova (2010)] where the works of the Russian scientists on fractional
viscoelasticity are examined.

The beginning of the modern applications of fractional calculus in
linear viscoelasticity is generally attributed to the 1979 PhD thesis
by Bagley (under supervision of Prof. Torvik), see [Bagley (1979)],
followed by a number of relevant papers, e.g. [Bagley and Torvik
(1979); (1983a); (1983b)] and [Torvik and Bagley (1984)]. How-
ever, for the sake of completeness, one would recall also the 1970
PhD thesis of Rossikhin under the supervision of Prof. Meshkov, see
[Rossikhin (1970)], and the 1971 PhD thesis of the author under the
supervision of Prof. Caputo, summarized in [Caputo and Mainardi
(1971b)].

To date, applications of fractional calculus in linear and nonlinear
viscoelasticity have been considered by a great and increasing number
of authors to whom we have tried to refer in our huge (but not
exhaustive) bibliography at the end of the book.



Chapter 4

Waves in Linear Viscoelastic Media:
Dispersion and Dissipation

In this chapter we review the main aspects of wave propagation in
homogeneous, semi-infinite, linear viscoelastic media. In particular,
we consider the so-called impact waves, so named since they are
generated by impact on an initially quiescent medium. The use of
the techniques of integral transforms (of Laplace and Fourier type)
allows us to obtain integral representations of these waves and leads
in a natural way to the concepts of wave—front velocity and complex
index of refraction. We will discuss the phenomena of dispersion and
dissipation that accompany the evolution of these waves. We will
extend the concepts of phase and group velocity related to dispersion
to take into account the presence of dissipation characterized by the
attenuation coefficient and the specific dissipation function. We also
discuss the peculiar notion of signal velocity introduced by Brillouin.

4.1 Introduction

Impact waves in linear viscoelastic media are a noteworthy example
of linear dispersive waves in the presence of dissipation. They are
obtained from a one-dimensional initial-boundary value problem that
we are going to deal with the techniques of Laplace and Fourier
transforms. We already know from Chapter 2 that these techniques
are suited to deal with the various constitutive equations for linear
viscoelastic bodies.

T
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In Section 4.2 we consider the structure of the wave equations
in the original space-time domain after inversion from the Laplace
domain; in particular, we provide the explicit wave equations for the
most used viscoelastic models.

In Section 4.3 we introduce the Fourier integral representation
of the solution which leads to the notion of the complex refraction
index. The dispersive and dissipative properties of the viscoelastic
waves are then investigated by considering phase velocity, group ve-
locity and attenuation coefficient of the wave-mode solutions for some
relevant models of viscoelasticity. We also discuss these properties
related to the Klein-Gordon equation with dissipation: such equation
is relevant to provide instructive examples both of normal dispersion
(usually met in the absence of dissipation) and anomalous dispersion
(always present on viscoelastic waves).

In Section 4.4 we deal with the problem of finding a suitable def-
inition of the signal velocity for viscoelastic waves. In fact, because
of the presence of anomalous dispersion and dissipation, the iden-
tification of the group velocity with the signal velocity is lost and
the subject matter must be revisited. This argument is dealt with,
following the original idea of Brillouin that is based on the use of
the steepest—descent path to compute the solution generated by a
sinusoidal impact.

4.2 Impact waves in linear viscoelasticity

4.2.1 Statement of the problem by Laplace transforms

Problems of impact waves essentially concern the response of a long
viscoelastic rod of uniform small cross-section to dynamical (uniax-
ial) loading conditions. According to the elementary theory, the rod
is taken to be homogeneous (of density p), semi-infinite in extent
(x > 0), and undisturbed for ¢t < 0. For ¢ > 0 the end of the rod (at
x = 0) is subjected to a disturbance (the input) denoted by 7o(t).
The response variable (the output) denoted by r(x,t) may be either
the displacement u(x,t), the particle velocity v(z,t) = %u(w, t), the
stress o(z,t), or the strain e(z,t).
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The mathematical problem consists in finding a solution for r(x, t)
in the region x > 0 and ¢t > 0, which satisfies the following field
equations:

- the equation of motion

2
%U(xat) pagu($7t)7 (4 1)
- the kinematic equation
0
6($, t) = . u(x, t) ) (42)

Ox
- the stress—strain relationship Flo(x,t),e(x,t)] =0,
which, in virtue of Eqgs. (2.5a)-(2.5b), reads either in creep represen-
tation or in relaxation representation as

t
e(x,t) = o(z,0h) J(t) + / Jt—1) 8%_0(1:, T)dr, (4.3a)

0

t 0

o(x,t) = e(x,07) G(t) + /G(t —7) EE(QJ,T) dr, (4.3b)

0

with boundary conditions

r(0,t) =ro(t), lm r(z,t)=0, t>0, (4.4)

and homogeneous initial conditions

0
r(z,07) = g r(z,t)],_g+ =0, x>0. (4.5)

The stress—strain relationship is known to describe the mechanical
properties of the rod and, therefore, it is the constitutive equation for
the assumed viscoelastic model, uniquely characterized by the creep
compliance J(t) or by the relazation modulus G(t). The relationship
is most conveniently treated using the Laplace transform as shown in
Chapter 2, see Egs. (2.7a) and (2.7b). Then, the creep and relaxation
representations read

€(x,s) =sJ(s)o(x,s), (4.6a)

5(x,s) = sG(s)e(x,s). (4.6b)
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Applying the Laplace transform to the other field equations and
using Eqgs. (4.4) and (4.5), we obtain

% :f\‘/(l‘, 8) . [H(S)]2 ,,’;,’(1,7 8) =0 — ?(.T, 5) = 770(5) e_M(S)JL" (47)

where (s) can be written in creep or relaxation representation as
~ q1/2 ~ q-1/2
pu(s) =+/ps [s J(s)] / =ps [s G(s)} / , (4.8)
with
uw(s)>0 for s>0,  pu(s)=pu) for seC, (4.9)
where the over-bar denotes the complex conjugate.

The solution r(x,t) is therefore given by the Bromwich represen-

tation,
r(z,t) = i / 70(s) oSt — p(s)z ds, (4.10)
2w J gy
in which Br denotes the Bromwich path, i.e. a vertical line lying to
the right of all singularities of 7o(s) and of u(s). Because of (4.8),
the singularities of p(s) result from the explicit expressions of the
functions s J(s), s G(s) and, thus, of the material functions J(t) and
G(t), respectively.

From the analysis carried out in Chapter 2, we obtain the ex-
pressions valid for viscoelastic models with discrete or continuous
distributions of retardation and relaxation times, respectively. We
recognize that, in the discrete case sJ(s) and sG(s) are rational
functions with zeros and poles interlacing along the negative real
axis, while in the continuous case they are analytic functions with a
cut in the negative real axis. Correspondingly, u(s) exhibits on the
negative real axis of the s-plane a series of cuts (connecting the zeros
and poles of s J(s) and s G(s)) or the entire semi-infinite cut.

It may be convenient in (4.10) to introduce the so-called impulse
response (or Green function)

G(z,t) + Gz, ) = e H(8)T (4.11)
that is the solution corresponding to ro(t) = d(t) . Consequently, we
can write

r(x,t) = /0 G(x,t —7)ro(7)dr = G(2,t) * ro(t), (4.12)

where * denotes as usual the (Laplace) time convolution.
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A general result, which can be easily obtained from the Laplace
representation (4.10), concerns the velocity of propagation of the
head (or wave-front velocity) of the disturbance. This velocity, de-
noted by ¢, is readily obtained by considering the following limit in
the complex s-plane

1
@H—>O as Re[s] — +0o0. (4.13)
c

According to tﬁe analysis carried out in Chapter 2, the limit in
(4.13) holds true for viscoelastic models of types I and II, which
exhibit an instantaneous elasticity, namely 0 < G(0") =1/J(0") <
00, for which s G(s) — G(0T) and s J(s ) — J(0T) as Re[s] — +o0.
Then, setting G, = G(0") and J, = J(07), we easily recognize

c=1/\/pJy=/Gy/p, (4.14)

and, from the application of Cauchy’s theorem in (4.10), r(z,t) = 0
for t < x/c. Therefore, ¢ represents the wave-front velocity, i.e.
the maximum velocity exhibited by the wave precursors. On the
other hand, the viscoelastic bodies of types III and IV, for which
Jg = 0, exhibit an infinite wave—front velocity. Because it is difficult
to conceive a body admitting an infinite propagation velocity in this
respect, ¢ is assumed finite throughout the remainder of the present
analysis, with the exception of certain isolated cases.
Using Eqs. (4.8), (4.13) and (4.14), we find it convenient to set

s
uls) = nls), (4.15)
where
~ 1/2 ~ ~1/2
n(s):= [sJ(s)/Jg} = [SG(S)/GQ} — 1 as Re[s] — +oo, (4.16)
so that the solution (4.10) assumes the instructive representation:

r(z,t) = % /B 7o(s) eSlt = (z/e)n(s)] g (4.17)

Of course, n(s) takes on itself the multivalued nature of u(s),
exhibiting the same branch cut on the negative real axis and the
same positivity and crossing-symmetry properties, i.e.

n(s) >0 for s>0, n(s) =n(E), seC. (4.18)
We will see in Section 4.3 that n(s) is related to the so-called complex
refraction indexr. In the limiting case of a perfectly linear elastic
medium we get n(s) = 1.
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4.2.2 The structure of wave equations in the
space-time domain

After having reported on the integral representation of impact waves
in the Laplace domain, here we derive the evolution equations in the
original space-time domain and discuss their mathematical structure.
For this purpose, we introduce the following non-dimensional
functions, related to the material functions J(¢) and G(t) :
a) Rate of Creep

1 dJ
U(t):=——2>0 4.19
b) Rate of Relaxation
1 dG
O(t) i = =——<0. 4.19b
)= g g <O (4.190)

The Laplace transforms of these functions turn out to be related
to n(s) through Eq. (4.16); we obtain

sdJ(s)

[n(s)]? := ¥ =1+ U(s), (4.20a)
g9
and
9 sé(s) B ~
[n(s)] 2 := G, =14 ®(s). (4.200)

As a consequence of (4.7), (4.16), (4.20a) and (4.20b), we obtain
the creep and relaxation representation of the wave equations in the
Laplace domain as follows

2 §2 _
% Ha.s) = 5 [1+8(s) | 7l s) = 0, (4.210)
~ 0? 52
[1 v @(s)] S (@, 5) = 5 7w, s) = 0. (4.210)

Thus, the required wave equations in the space-time domain can be
obtained by inverting (4.21a) and (4.21b), respectively.
We get the following integro-differential equations of convolution
type:
a) Creep representation
OPr 5 0

r=r(z,t), (4.22a)
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b) Relaxation representation:
0?r

0?r 9
g = ¢ L+ 5. r=r1). (4.22b)

We recall that, in view of their meaning, the kernel functions W(t)
and ®(t) are usually referred to as the memory functions of the creep
and relaxation representations, respectively.

4.2.3 FEvolution equations for the mechanical models

Let us now consider the case of mechanical models treated in
Chapter 2, Section 2.4. We recall that s.J(s) and s G(s) turn out
to be rational functions in C with simple poles and zeros interlacing
along the negative real axis and, possibly, with a simple pole or a
simple zero at s = 0, respectively. In particular, we write

P
P(s) = 1+Zaksk,
k=1

~ 1 P
sJ(s) = —— = QES; , where q (4.23)
s
s G(s) Q(s)zm—i—Zbksk,
k=1
with ¢ = p for models exhibiting a glass compliance, i.e. instanta-

neous elasticity (J; = ap/b, > 0) and ¢ = p+ 1 for the others.

For all these models the general evolution equation (4.7) with
(4.8) and (4.9) in the Laplace domain can be easily inverted into the
space-time domain and reads

q k 2
0 o“r
m+zbk (‘%k] 8.1‘2:p
k=1

This is to say that for the mechanical models the integral con-

p k 2
0 o°r
1+;ak ﬁ] EnE r=r(zt). (4.24)

volutions entering the evolution equations (4.22a)-(4.22b) can be
eliminated to yield the time derivatives present inside the square
parenthesis in Eq. (4.24). We note that this is due to the fact that
the creep and relaxation functions reduce to linear combinations of
exponentials.
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We now turn to the most elementary mechanical models, report-
ing for each of them the corresponding evolution equation for the
response variable r = r(x,t).

d
Newton : o(t)="»> d—z ,
or 0?r b
—=D— D=—-. 4.25
ot ox?’ p (4.25)

In this case we obtain the classical diffusion equation, which is of
parabolic type.

d
Voigt : o(t)=me(t)+0b d_; ,
o0?r 9 o\ 9% 9 m b
oz~ (”%) g 0= Te=ge (420)

Also in this case we obtain a parabolic equation, but of the third
order.

Mazwell : o(t)—l—acfi—j:b%,
O’ 1 0r 0% 9 b
8t2+7'a ot~ ¢ 0a?’ ¢ ap’ fo =4 (4:27)

This is the so-called telegraph equation, which is of hyperbolic type.

d d b
Zener : [1+aa]a(t)—[m+ba}e(t), O<m<a,
o 82 82 82 82 62— b
T 9 O°r 1 r 9 071 =
(L 2 =2 ) =0 a 4.28
8t<8t2 ‘ ax2)+a<8t2 COa:ﬂ) ’ c%):”_f (4.28)
P
We recall that for the Zener model 7. = b/m, 7, = a, so that

co/c = T,/T7e = am/b. This common ratio will be denoted by yx,
where 0 < x < 1. The Maxwell model is recovered as a limit case
when y — 0. Here we have an hyperbolic equation of the third order
with characteristics (related to ¢) and sub-characteristics (related to
co) as pointed out in [Chin (1980)].

We note that the Maxwell and Zener models are the simplest
viscoelastic models that exhibit a proper wave character with a finite
wave—front velocity.
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4.3 Dispersion relation and complex refraction index

4.3.1 Generalities

For linear problems, dispersive waves are usually recognized by the
existence of elementary solutions in the form of sinusoidal wave trains
whose frequency w and wave number k are related between them
through an equation, referred to as the dispersion relation,

D(w,k) =0. (4.29)

The function D is determined by the particular equations of the
problem. We write these elementary solutions in one of the following
ways

Re {ei [’“*W(“)t]}zcos {k]z — V()t]}, V(k) w(”)7
i lwt—r(w)z x 1 K(w)
Re{e[ (”}:cos{w [t_V(w)}}’ V(w): s

where the constant amplitude has been set to 1 and V = w/k de-
notes the phase velocity. The two ways correspond to the fact the

(4.30)

dispersion relation may be solved in the form of real roots w = w(k)
or K = K(w), correspondingly. There will be a number of such so-
lutions, in general, with different functions w(k) or k(w). We refer
to these as modes and the corresponding wave trains as wave-mode
solutions. These solutions are thus monochromatic waves propagat-
ing with phase velocity. The concept of group velocity U = dw/dk
is usually associated to the concept of phase velocity V = w/k to
analyse the dispersion properties of the wave-packet constructed as
a superposition of monochromatic waves over a range of k or w. Both
concepts are supposed to be familiar to the reader, who, for further
details, is referred to any good treatise or survey on wave propaga-
tion, e.g. [Lighthill (1965)], [Whitham (1974)], [Thau (1974)], [Bal-
dock and Bridgeman (1981)].

In the presence of dissipation, however, w and x cannot be both
real and we need to distinguish which one is to be chosen as the
independent real variable and which one is the dependent complex
variable. This choice is related to the type of boundary value problem
under consideration. For the problem of impact waves, as stated in
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Section 4.2, we must assume w real so k = k(w) is to be obtained as a
specific complex branch of the dispersion relation. In fact, in alterna-
tive to Eq. (4.10), there is another (perhaps more common) integral
representation of the solution, which is based on the Fourier trans-
form of causal functions. This Fourier integral representation can
be formally derived from our Laplace representation setting s = iw
in (4.10). Recalling our notation for the Fourier transform pair of a
generic function f(t), absolutely integrable in RR:

+o00 .
_ flw) = / el s(n)dt,
f(t)+f(w)> 1700 +o0 . R w G]R>
=50 [ et Fwydo,
2m J_o
Eq. (4.10) can be re-written as
1 +o00 .
(o,1) = o= / Fo(w) et W= 8@ gy ) = piw), (4.31)
—0o0
where 7)(w) denotes the Fourier transform of the (causal) input dis-
turbance ro(t) and x(w) is the complex wave number corresponding
to the real frequency w.
To ensure that r(z,t) is a real function of z and ¢, the crossing-
symmetry relationship holds
kW) = —k(-w), weR, (4.32)
which shows that the real (imaginary) part of K(w) = k. (w) + i ki (w)
is odd (even), respectively. We recognize that the complex wave
number turns out to be related to the complex modulus G*(w) and to
the complex compliance J*(w), defined in Chapter 2, see (2.69), by
the following relations
A(w) = Vpw (G @) = pw @) (433)
The integral representation based on Laplace transform (4.10)
and that based on Fourier transform (4.31) are to be used according
to their major convenience. The Fourier representation is mostly
used to show the dispersive nature of the wave motion, starting from
the exponential integrand in (4.31) that in real form provides the
wave-mode solution:

Re {ei [wt—n(W)ac]} — Re {eni(w);c ei[wt_,ir(w)gg]}

4.34
= ¢ 0wz (g {w[t—z/V(w)]}, | )
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where
VW) =15 20 (4.35)
O(w) == —kri(w) >0.

As a matter of fact the solution (4.34) represents a pseudo-
monochromatic wave (of frequency w), which propagates with a phase
velocity V(w) and with an amplitude exponentially decreasing by an
attenuation coefficient §(w).

Remark 1: We use for (4.34) the term pseudo-monochromatic wave,
since it defines a wave strictly periodic only in time (with frequency
w), being in space exponentially attenuated.

Remark 2: Since attenuation and absorption are here considered as
synonyms, we can speak about attenuation coefficient or absorption
coefficient, indifferently.

Of course, the function u(s) can also be found from the dispersion
relation. Setting in Eq. (4.29) w = —is and solving for K = k(—is),
we have u(s) = tk(—is), where the choice of sign is dictated by the
condition that Re (u) > 0 when s > 0, [Thau (1974)].

The Fourier representation allows us to point out the importance
of the analytic function n(s) for problems of wave propagation. For
this purpose let us consider n(s) on the imaginary axis (the frequency
axis) and put it in relation with the complex wave number. Then,
using (4.34) with (4.16) and (4.17), we write

k(w) = —=n"(w), where

w
c (4.36)
n*(w) = n(iw) =[Gy /G (@)]'* = [J"(w)/Jg]'*.
The quantity n*(w) is referred to as the complex refraction index of
the viscoelastic medium with respect to mechanical waves, in analogy
with the optical case. Of course, n*(w) — 1 as w — oo and only in
the limiting case of a perfectly linear elastic medium n*(w) = 1.

From Egs. (4.32) and (4.36) we obtain the crossing-symmetry
relationship for n*(w), namely

n*(w) =n"(—w) weR, (4.37)
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which shows that the real/imaginary part of the complex refraction
index is even/odd, respectively. We note the property

{nr(w) i=Re[n*(w)] 20 for w>0, (4.38)

ni(w) :=Imn*(w)] <0 for w>0,

which derives from (4.36) recalling that the same property holds for
J*(w).

We also point out the so-called Kronig-Kramers or K—K relations,
which hold between the real and imaginary parts of the complex
refraction index n*(w) as a consequence of causality,
2 [Wn(W) —wni(w)

ny(w) :1—; R

0
_ 2 [Frew) m @)

(4.39)
ni(w) m Jo W2 — 2

where the integrals are intended as Cauchy principal values. Similar
relations are also expected to hold between the real and imaginary
parts of the complex wave number x(w) and the dynamic functions
J*(w), G*(w), provided that they refer to causal models of vis-
coelasticity, i.e. to viscoelastic models of type I and II. Furthermore,
Eqgs. (4.39) imply that the phase velocity V(w) and the attenuation
coefficient §(w) are related to each other.

For applications of the K—K relations in propagation problems of
viscoelastic waves, we refer the interested reader e.g. to [Futterman
(1962)], [Strick (1970)], [Chin (1980)], [Aki and Richards (1980)], and
[Ben-Menahem and Singh (1981)].

4.3.2 Dispersion: phase velocity and group velocity

Extending the definition of the phase velocity V(w) and the group
velocity U(w) in terms of the real part of the complex wave number
and consequently of the complex refraction index we have

V(w) = (W) e ;
U(w) = [% n,n(w)} e (4.40)
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In the presence of dissipation we note that, while the concept of
phase velocity retains its kinematic meaning of the phase speed in
the above definition of group velocity is expected to lose its usual
kinematic meaning, the wave packet speed. In fact, for purely disper-
sive waves, according to the classical argument of Lord Rayleigh, the
concept of group velocity arises from the consideration of a super-
position of two monochromatic waves of equal amplitude and nearly
equal frequency and wavelength. When dispersion is accompanied
by dissipation, two such waves cannot exist at all times because they
are attenuated by different amounts due to the imaginary part of the
wave number # (or of the frequency w), see e.g. [Bland (1960)].

Concerning the dependence of the phase velocity with frequency,
we obtain from the first in Eqgs. (4.40):

1dv 1 dn,
Vido — ny dw
Concerning the relation between the phase velocity and the group

(4.41)

velocity, we obtain using both Eqgs. (4.40):

Vv w dn, w dV

— =14 — =1—-=—. 4.42

U + n, dw V dw ( )
As customary, we refer to the case 0 < U < V' as normal dispersion,
while the other cases (U > V > 0 and U < 0 < V) are referred

as anomalous dispersion. 1t is easy to recognize from Eqs. (4.42)

that the dispersion is normal or anomalous when dn,/dw > 0 or
dn,/dw < 0, respectively or, in other words, when the phase velocity
is a decreasing or increasing function of w.

Because of the mathematical structure of the linear viscoelasticity
we expect that

dn,
i)nr>1,ii)di§0,for0§w<oo, (4.43)
w

with n, = 1 only in the limit w — oo, where V(w) — ¢. So, including
for convenience the value w = oo, for any linear viscoelastic solid we
can state the following fundamental results for 0 < w < oo:

np(w) >1 <= 0<V(w) <c, (4.44)

and

(4.45)

dn, < {a) V' increasing function of w,
dw —

b) U >V, anomalous dispersion.
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For proof we refer to [Mainardi (1983a)]. In the following subsections
we will consider some instructive examples of anomalous dispersion
present in the classical Zener model and its fractional generalization
where the dispersion plots show these peculiar properties of viscoelas-
tic waves.

We thus summarize the dispersion properties of viscoelastic waves
by stating that their dispersion is completely anomalous, i.e. anoma-
lous throughout the full frequency range, and writing

0<V(w) <U(w). (4.46)

We note that for w — 0 and w — oo we have U(w) — V(w), sow =0
and w = oo can be considered the non-dispersive limits.

While for 0 < w < oo the phase velocity V(w) turns out to be
an increasing function of w, never exceeding the wave—front velocity
¢ = V(o0), the group velocity U(w) is expected to increase up to
reach a maximum value greater than ¢ and then decreases to get
¢ from above at infinity. As a consequence, there exists a certain
value wg of the frequency such that for w > wqg it turns out that
U(w) > c. Since the group velocity of viscoelastic waves may attain
non-physical values (i.e. greater than the wave-front velocity), we
need to revisit the concept of signal velocity usually identified with
the group velocity when the dispersion is normal and the dissipation
is absent or negligible. We will deal with this interesting topic in the
following Section.

4.3.3 Dissipation: the attenuation coefficient and
the specific dissipation function

The dissipation is characterized by the attenuation coefficient that
now we express in terms of the imaginary part of the complex refrac-
tion index:

_wni(w) '

(w) == —kKi(w) = (4.47)

c
Another interesting quantity related to attenuation is the specific

dissipation function Q~!(w) that we have seen as equivalent to the
loss tangent discussed in Chapters 2 and 3 for time oscillations in
linear viscoelastic bodies. Now, we have time and space oscillations
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coupled together in in the steady state of the wave motion, which
are attenuated only in space. Because of the interrelations among
the loss tangent, the dynamic functions and the complex refraction
index, see Egs. (2.49), (2.63) and (4.36), we write
0 (w) = Im {n*(—iw)} _ 2n;(w)/nq(w)
Re{n?(—iw)} 1 —[ni(w)/n.(w)*
So we recognize that now dissipation is related with dispersion

(4.48)

through the complex refraction index.
For the low-loss media (Q~'(w) < 1) a useful approximation is
i 5
Ol (w) ~ 2 W) oy 2 (4.49)
ny (w)

If in addition we can neglect dispersion when negligible,

ne(w) ~1 <= Vw)~c,
we obtain the so-called reduced specific dissipation function mainly
used in seismology, see [Futterman (1962)],

Qo (w) = 2n;(w) = 2¢ @ . (4.50)

4.3.4 Dispersion and attenuation for the Zener
and the Maxwell models

In order to show the dispersion and attenuation for viscoelastic
waves, the plots reporting frequency versus the phase velocity, the
group velocity and the attenuation coefficient are necessary. In
Fig. 4.1 we show these quantities for the two simplest viscoelastic
models of type I and II, i.e. the Zener and the Mazwell model,
respectively. For this purpose we refer to Eqs. (4.35) and (4.47)
based on the complex function n(s) with s = iw corresponding to
the Zener model and to the Maxwell model. The function n(s) is
readily derived from the constitutive equations of the two models,
see Eq. (2.19) [reproduced above Eq. (4.28)] and Eq. (2.18) [repro-
duced above Eq. (4.27)], respectively. As a matter of fact we get

s+1/7,

1/2
e > T, >0, 4.51
8+1/T€:| v Te s T (4.51)

Zener model n(s) = [

L
Mazwell model n(s) = [1 + —] , Te>0. (4.52)

To S
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0

Fig. 4.1 Phase velocity V, group velocity U and attenuation coefficient § versus
frequency w for a) Zener model, b) Maxwell model.

We note that the expression for the Maxwell model can be derived
from that of the Zener model in the limit 7. — oco. We also point
out for this model that the attenuation coefficient turns out to be
proportional to the phase velocity. In fact, from Eq. (4.52) with
§ = iw we get:

n2(w) — n2(w) + 2ing (W) ni(w) =1 —i/(wry), (4.53)

SO

—wn;(w)ny(w) :=0(w)c/V(w) =1/(27) . (4.54)

In plotting we have considered non-dimensional variables, by scal-

ing the frequency with w, = 1/7,, the velocities V and U with ¢,

and the coefficient 0 with 0, = 1/(c7,). In practice, we have assumed

c=1,7,=1and 7. = 1.5, so for the Maxwell model we recognize
that, using this normalization, d(w) = V(w)/2.

4.3.5 Dispersion and attenuation for the fractional
Zener model

For the fractional Zener model, see Section 3.2.2, we have

N a7 1/2
n(s) = Sl/—’_i , 0<v<l. (4.55)
sY+1/1¥
For convenience, let us define the non-dimensional parameter
vi=(1e/70)" > 1, (4.56)

that turns out to be related to the amount of dissipation.
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Fig. 4.2 Phase velocity over a wide frequency range for some values of v with
Te=10%s anda)y=11 :1)v=1,2) v=0.75,3) v = 0.50, 4) v = 0.25. b)
y=15:5)v=1,6)r=0.75,7) vr=0.50, 8) v =0.25.

In Figs. 4.2 and 4.3 we show the dispersion and the attenuation
plots for the fractional Zener model taking: v = 0.25, 0.50, 0.75, 1.
As an example we fix 7. = 10735 and take v = 1.1, 1.5 for the
dispersion plots and v = 1.5 for the attenuation plots.

3)

absorbtion coefficient  (radfunit distance)
3
T T

A

0 500 1000 1500 2000
w(radfs)

Fig. 4.3 Attenuation coefficient over a wide frequency range for some values of
vwith7e =10"3s,y=15 : ) v=1,2)vr=0.75,3) v =0.50, 4) v = 0.25.
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4.3.6 The Klein-Gordon equation with dissipation

In a series of papers the author [Mainardi (1983a); (1983b); (1984)]
has considered the wave equation

0?r 9 0?r

W+2 + Br —caz,r:r(:c,t),a,ﬁzo, (4.57)
that reduces to the linear Klein-Gordon equation for « = 0 and to
the telegraph equation for § = 0. Since the parameter « is related
to dissipation, we refer to it as to the Klein-Gordon equation with
dissipation.

This equation is quite interesting since it is simple enough to ad-
mit, as we will see here after, the closed-form solution suitable to
any problem of impact waves as stated in Subsection 4.2.1 via a con-
volution integral with the input disturbance 7¢(t), and the algebraic
dispersion equation easy to be discussed and interpreted. We are
going to show the occurrence of normal dispersion if 0 < a < 3, and
anomalous dispersion for 0 < 8 < a. We note that the case a = (8
corresponds to the distortion-less wave propagation where there is
attenuation without any dispersion.

As a matter of fact the case 0 < 3 < « turns out to be akin to that
of viscoelastic waves in view of the common anomalous dispersion in
the full range of frequencies; furthermore the special case § = 0
reproduces the Maxwell model of viscoelasticity.

The function n(s). Before starting our analysis we must consider
the fundamental quantity n(s) corresponding to Eq. (4.57), which
embodies the dispersion and attenuation properties. Applying the
Laplace transform to (4.57) we obtain

1/2 1/2
ﬂ2] / [(5+Oé)2:i:)(2] /

= - , (4.58)

n(s) = [1+2 +

where
x? = 3% — a?, hence xy = /|82 — a2|. (4.59)
In Eq. (4.58) the opposite signs in front of x? correspond to phys-
ically distinct cases that we refer as cases (+) and (—), respectively.
As a matter of fact we will see how the parameter y turns to be fun-
damental to characterize the solutions and the dispersion properties
of the Klein-Gordon equation with dissipation.
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The solution. Denoting as usual by 7 (¢) the input disturbance at
x = 0, the solution of the corresponding signalling problem is found
according to (4.17) by inverting the Laplace transform,

(z, s) = 7o(s) eSlt = (@/c)n(s)] (4.60)

where n(s) is given by Eq. (4.58). Then, by introducing the new
space and time variables

E:=z/c T=t—2z/c, (4.61)

and recalling the Laplace transforms pairs of the Bessel functions,
see Appendix B, after simple manipulation we get for 7 > 0:

r(E T) =0 [romq:x»s /0 "o BEe T ro(r — 7Y dr |, (4.62)

with
Jy 4 [r(r + )]
F+(§77'): 1[{T(T+§)]1/2 }’ 62_a2>0,
(4.63)
L {lr(r + 91
Ff(f,T): 1%7_(7——’_5)]1/2 }’ 52_a2<0,

where J; and I; denote the ordinary and the modified Bessel func-
tions of order 1, respectively. In addition to x it may be convenient
to introduce the parameter

m = — (4.64)

so that the case 0 < m < 1 corresponds to (+), whereas 1 < m < oo
to (-).

The solution thus consists of two terms: the first represents the
input signal, propagating at velocity ¢ and exponentially attenuated
in space; the second is responsible for the distortion of the signal,
that depends on the position and on the time elapsed from the wave
front. The amount of distortion can be measured by the parameter
x that indeed vanishes for e = 3, the distortion-less case.
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Dispersion and attenuation properties. As it is known, the
function n(s), as given in Eq. (4.58), provides the complex refraction
index for s = =+iw, from which, as described through Eqs. (4.40)-
(4.47), we derive the dispersion and attenuation characteristics,
namely the phase velocity V(w), the group velocity U(w) and the
attenuation coefficient d(w). In fact, from
) 1 O(w) a B 1/2
we obtain V(w) and d(w) by solving the system

02[ w? —52(w)}:w2—ﬂ2,

V3 (w)
(4.66)
2 6(w) _
V(w)
Then, the group velocity U(w) can be computed from V(w) using

e.g. Eq. (4.42).
- For a = 0, i.e. in the absence of dissipation, a cut-off occurs at
w = [, namely

0<w<f, dw)=+p%—w?/c, no propagaton;
f<w<oo, V(w)=cwy/w?—pF?, no attenuation.
- For a # 0, i.e. in the presence of dissipation, we obtain for any w:
d(w) =aV(w)/c,
w? [ /VE(w) = 1] = a? V3 (w)/c* — 2.
We note that the attenuation coefficient is proportional to the phase
velocity. In the distortion-less case a« = 3 (m = 1) we easily derive
from (4.68) constant attenuation (§ = «a/c?) and no dispersion
(V. =U =c¢).
If « # 3 (m # 1) some manipulations are necessary to derive from

(4.67)

(4.68)

(4.68) the explicit expression of V(w) (and consequently of §(w)),
that we leave as an exercise together with the following interesting
relationship between V and U (shown in [Mainardi (1984)]):
Q21— V) + (1= V)

o — 32

U=V |1+ (4.69)
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When 8 = 0 (Telegraph equation), Eq. (4.69) reduces to the

expression derived in [Carrier et al. (1966)]:
U=2V-V3/c, (4.70)

whereas when o = 0 (Klein-Gordon equation), it reduces to the well-
known expression

UV =¢. (4.71)
As a matter of fact, we obtain the following inequalities

0<a<p, 1<— <=, U<V : normal dispersion;
c o
(4.72)

<1, U >V : anomalous dispersion.

Fig. 44 Dispersion and attenuation plots: m = 0 (left), m = 1/v/2 (right).

Fig. 4.5 Dispersion and attenuation plots: m = v/2 (left), m = oo (right).
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In Figs. 4.4 and 4.5 we show the dispersion and attenuation plots
for normal and anomalous dispersion, corresponding to cases (+)
and (-), respectively. For case (+) we chose 3 =1 and m = 0,1/v/2,
whereas for case (-) @ = 1 and m = v/2. In the last case we note con-
sequently §(w) = V(w), that for 5 = 0 provides the Maxwell model
of viscoelasticity with 7, = 1/2, compare with Eq. (4.54). The dis-
persion plots confirm that in regime of normal/anomalous dispersion
the phase velocity is indeed a decreasing/increasing function of the
frequency according to the fundamental relationships (4.42).

4.4 The Brillouin signal velocity

4.4.1 Generalities

We have already pointed out that for a given linear viscoelastic
medium the complex refraction index n*(w) characterizes the disper-
sion and attenuation of pseudo-monochromatic waves propagating in
it. Based on the pioneering analysis of A. Sommerfeld and L. Bril-
louin, see [Brillouin (1960)], carried out in 1914 for electromagnetic
waves propagating in a dielectric, we recognize that these pseudo-
monochromatic waves are obtained as a steady—state response to a
sinusoidal excitation of a given frequency (2 provided at = 0 for
t > 0 of a viscoelastic medium. In fact, adopting the Laplace repre-
sentation! stated in Eq. (4.17), where we assume
s
REENT
the solution admits the complex‘integral representation
1 ] —
rat) = 3 /B Tmes[t (@/c)n(s)] gs. (4.74)

We refer to this signalling problem as the Brillowin problem.

ro(t) = cos(Qt) O(t) + To(s) (4.73)

1The original analysis by Brillouin was made by using the Fourier integral and
deforming the path of integration into the upper complex half plane. It may be
shown by a simple change of variable that the complex Fourier integral employed
by Brillouin is exactly the Bromwich integral (4.74) with the path deformed into
the left complex half plane. Our approach with the Laplace transform is consistent
with that sketched in [Stratton (1941)], see Chapter 5, Section 18, where the
arguments by Brillouin are summarized.
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The application of the Cauchy theorem requires the analysis of
the singularities of the integrand in (4.74) that are laying to the left
of the Bromwich path, namely for Re[s] < 0. We note that they
are represented by the branch cut of the complex function n(s) and
the two simple poles on the imaginary axis, s+ = +if), exhibited by
the Laplace transform of the sinusoidal input disturbance. Then, by
applying the Cauchy theorem, one gets the following picture of the
course of the mechanical disturbance r(z,t) at a distance x > 0. Up
to time ¢ = z/c no motion occurs; then for ¢ > z/c the wave motion
starts from a certain amplitude (that could also be very small or
even vanishing) and consists of two parts: the contribution from
the branch cut, and that from the two poles. These parts of are
usually referred to as the transient state rp(x,t) and the steady state
rs(z,t), respectively, since the former is expected to vanish at any
r as t — oo, while the latter is oscillating in space and time and
exponentially attenuated only in space. As a consequence the steady
state gives the limiting value of the total response variable at any x
as t — oo.

Writing

n(£iQ) = n,.(Q) £in;(Q) = é [kr(Q) £k ()], (4.75)

we obtain, as a simple exercise of complex analysis, that the sum
contribution of the two poles s = £} is given by

re(x,t) = e O T cos QI — 2/V ()], (4.76)
where
c Q
= T e = @
5(Q) = —Q m(cﬂ) = —ki(Q) > 0.

Thus we recognize that the steady—state response to a sinusoidal
impact of frequency Q is a pseudo-monochromatic wave, travelling
with phase velocity V() with an amplitude exponentially attenuated
in space with attenuation coefficient §(2). This is to say that the
steady-state response is a particular wave-mode solution, whose com-

plex wave number and real frequency satisfy the dispersion equation
(4.29) with w = Q.
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4.4.2 Signal velocity via steepest—descent path

It is known that the group velocity for electromagnetic waves propa-
gating in a dielectric may attain non-physical values (being in some
frequency ranges negative or greater than the wave—front velocity)
and thus cannot be identified with any signal velocity. This fact led
Sommerfeld and Brillouin, after the advent of the (restricted) theory
of relativity, to investigate the subject matter more carefully. From
1914 these scientists analysed the propagation of an electro-magnetic
signal of type (4.73) in a dielectric obeying the Lorentz-Lorenz dis-
persion equation. The contributions were translated into English and
collected in the sixties by Brillouin in a relevant booklet [Brillouin
(1960)]. In particular, Brillouin introduced a suitable definition of
signal velocity in order to meet the physical requirement to be pos-
itive; lessen the wave-front velocity (the velocity of light in the vac-
uum) in the frequency range where the dispersion is anomalous and
the absorption is high. The equivalence of the signal velocity with the
group velocity was effectively proved only in the presence of negligi-
ble dissipation. In regions of high absorption some estimations of the
appropriate signal velocity were provided in a 1914 article, reported
in [Brillouin (1960)], and then improved by [Baerwald (1930)], see
also [Elices and Garcfa-Moliner (1968)]. For a more recent and ex-
haustive discussion, see the interesting book [Oughstun and Sherman
(1994)].

For viscoelastic waves that exhibit only anomalous dispersion and
relatively high absorption, the problem of the identification of a suit-
able signal velocity turns out to be of some relevance. Hereafter
we summarize the main results applicable to the class of viscoelas-
tic waves obtained by the present author, see [Mainardi (1983a);
(1983b); (1984)], who extended the classical arguments of Brillouin
valid for electromagnetic waves. For this purpose, let us consider
the Brillouin signalling problem, represented in the Laplace domain
through Eqs. (4.73) and (4.74).

Following the idea of Brillouin, we intend to use the path of steep-
est descent in order to evaluate the complex Bromwich integral in
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(4.74). For this purpose, let us change the original variables x, ¢ into

E=uxfc, O=ct/z>1, (4.78)
so that the solution reads
_ b s §F(s;0)
r(&,0) = 57 /BT PrC ds, (4.79)
where
F(s;0) = ®(s,0) +1¥(s,0) :=s[0 —n(s)] . (4.80)

After this, the original fixed path Br is to be deformed into the
new, moving path L(6), that is of steepest descent for the real part
of F(s;0) in the complex s-plane. Restricting our attention to the
simplest case, for any given 6 > 1 this path L turns out to be defined
by the following properties:

e (i) L passes through the saddle point sg of F'(s;0), i.e.
dF

s =0 < n(s)+ sd—n =0 at s=s0(6); (4.81)
R

ds

S0

e (ii) the imaginary part of F(s;#) is constant on L, i.e.
U(s;0) =¥(sp;0), se€L; (4.82)

e (iii) the real part of F'(s;60) attains its maximum at sg along
L,ie.

D(s;0) < P(sp;0), se{L—so}; (4.83)

e (iv) the integral on L is equivalent either to the original one
or differs from it by the contribution due to the residues at
the poles s = £i€).

In our case the integral on L(f) turns out to be equal to the
Bromwich integral, or different from it by the steady state solution
(4.76), according to 1 < 6 < 05(2) or 6 > 6,(R), respectively, where
05(£2) is the value of 0 for which L(f) intersects the imaginary axis
at the frequency +€.

Therefore, the representation of the wave motion by the integral
on L(0), which we refer to as the Brillouin representation, allows one
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to recognize the arrival of the steady state and, following Brillouin,
to define the signal velocity as

(4.84)

The condition 8 > 1 ensures that, in any dispersive motion where
the representation (4.74), namely (4.79), holds, the signal velocity
S(2) is always less than ¢, the wave—front velocity; this property is
independent of the fact that the group velocity U(QQ) can a priori be
greater than c or be negative.

We note that the analytical determination of the path L and its
evolution is in general a difficult task even for simple models of visco-
elasticity, so special numerical techniques can be envisaged. For the
Zener model (S.L.S.) with n(s) provided by (4.51) [Mainardi (1972)]
was able to show in several plates the evolution of the corresponding
path L of steepest descent, in a way similar to that by Brillouin for
the Lorentz-Lorenz dispersion equation. More recently, in [Mainardi
and Vitali (1990)] the authors found it convenient to use their specific
routine to determine the path L in the complex s—plane by solving
Eq. (4.82) numerically, based on rational approximations (Padé Ap-
proximants of type II), according to an algorithm that ensures an
exponential convergence.

The exact evaluation of the signal velocity S may appear only as
a numerical achievement. In other words, for a general linear disper-
sive motion, the definition of signal velocity by Brillouin appears as
a computational prescription. Its evaluation, in general depending
on the explicit knowledge of n(s) in the complex s-plane, appears
more difficult than the evaluation of the phase velocity V' and group
velocity U, both of which depend on the values of n(s) only in the
imaginary axis.

Hereafter we find it instructive to illustrate the Brillouin method
in the cases of full normal dispersion and full anomalous dispersion by
considering again the Klein-Gordon equation with dissipation (4.57).
Such an equation can be assumed as a simple prototype of the two
regimes of dispersion that depend on the relative weight of their two
independent parameters a and (3, better summarized in a unique
parameter: y given by (4.59) or m given by (4.64).
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The evolution of the steepest—descent path. In order to de-
pict the evolution of the steepest descent path L(6) for our equation
(4.65) according to the idea of Brillouin, we must keep the cases (+)
and (-) distinct. To this aim we recall Eq. (4.58), i.e.,

1/2
(s + a)? + x2
n(s): [ S ] 7X2:‘ﬂ2_a2‘7
where the opposite signs in front of x? correspond to the cases (+)
[0 < m < 1] and (-) [m > 1], respectively. As a consequence, the
branch points of n(s) turn out to be

case (+) : sT = —a+iy, case (") :st=—axy, (4.85)

so that they are complex conjugate in the case (+), and real negative
in the case (-). Following the instructions previously illustrated, see
Egs. (4.80)-(4.83), we write for our cases

F(s,0) = s[0—n(s)] = —ab+ (s +a)0— [(s + a)* £ x?]
Setting for convenience

sta=p=u+iv, RO =(0>-1)"2, (4.87)

the saddle points and the steepest—descent paths through them in

V2 (4.86)

the complex p-plane are:

case (+) : pi = +ix0/R(9), (4.88)

Im{pd — (p* + x2)/2} = £yR(6),
{Re {pf — (p2 + X2)1/2} <0: (4.89)
and
case () : pg = +x0/R(0), (4.90)
Im{pd — (p*> —x>)V?} =0,
{Re {pb — (p2 _ X2)1/2} < +yR(6). (4.91)

For case (+) the path L(6) consists of two branches, the upper
one L' passing through p(J{ with the direction v = 37/4, and the
lower one L™, passing through p, with v = 7/4, which is the mirror
image of L™. In particular Lt intersects line u = 0 at two points
with v = x0/R(0) (the saddle point) and v = xR(0)/6.
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For the case (—) the path L(#) consists of an ellipse of equation
(607 = 1) [u? + 6%2) = (x6)2, (1.92)

passing through pa—L with v = +m/2. We notice that on L, the real
part in (4.86) has in p{ its maximum while in py its minimum. The
ellipse intersects line u = 0 at point v = +x/R(0).

Figures 4.6 and 4.7 show the steepest—descent paths in the upper
complex s-plane for the cases (+) and (—), respectively, with arrows
showing the direction of ascent through the saddle points.

Re s

Fig. 4.6 The evolution of the steepest—descent path L(6): case (+).

From the above analysis we can infer that the saddle points leave
the infinity point at € = 1 and, with 8 increasing, they move towards
the branch points of n(s) on the line connecting these points. The
path L(#) intersects the imaginary axis (the frequency axis) for any
f such that 1 < 0 < 6., where 6. denotes the critical value of 6 for
which the corresponding path is tangent to the axis. This implies for
the signal velocity S(€2) (for a sinusoidal signal of frequency ) the
following range

/0. < 8S(0) < c. (4.93)
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Fig. 4.7 The evolution of the steepest—descent path L(6): case ().

When o = 0 in the case (4), the saddle points move along the
imaginary axis s = Ziw, with w > x = (. This fact will be
shown to imply that for Q > x the signal velocity coincides with
the group wvelocity. In fact, because the lines of steepest descent for
® =Re{F(s,,0)} cross the axis at the saddle points with slope an-
gles £ /4, the axis is a line of steepest descent for ¥ = Zm {F(s,0)}.
This means that along the imaginary axis W is stationary at the sad-
dle points. When the saddle points meet the poles s = +i2, from
(4.8) we obtain:

av d
— = el -n@I} =0, (4.94)
dw w=0Q dw w=0
with 0 = 65(€2). Accounting for (4.40) and (4.84) we finally get
S(Q) = o = ¢ =U(Q).  (4.95)

0:(Q)  [nr(w) +wdn,/dw]w—a
This result is in agreement with that given by the method of station-
ary phase [Lighthill (1965)]. However, as pointed out in [Brillouin
(1960)], only in the absence of dissipation (i.e. n(iQ2) = n,.(Q)) are
the points of stationary phase saddle points, and the two methods
give the same result for the signal velocity. If Q@ <y = [ we have
n(i2) = in; (), that is dissipation is present without dispersion. In
this case the signal is a standing wave decaying exponentially with
distance, that appears for § > 04(Q) = c/U(x?/Q) [Thau (1974)].
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In the more general case (+) with 0 < m < 1, we notice that the
identification of the group velocity with the signal velocity cannot
be valid for all frequencies. In fact, as it is visible in the right plate
of Fig. 4.4 (m = 1/v/2), we note that U > ¢ for 0 < w < w,, where
wy is a certain frequency depending on m. Here we do not consider
the evaluation of the Brillouin signal velocity for 0 < m < 1, limiting
ourselves to state that the group velocity may represent the signal
velocity only if the dissipation effects are sufficiently small and the
frequency is sufficiently high.

Here, however, we deal with the case () where 1 < m < oo,
because it is just akin to that of viscoelastic waves where the phase
velocity is an increasing function over the full range of the frequency.
In particular, for m = oo ( = 0) we recover the telegraph equation
that governs the viscoelastic waves in the Maxwell model. For the
entire range m > 1, viewing the evolution of the steepest—descent
path in Fig. 4.7, we recognize that the relevant saddle point sg moves
from +o0o (at the wave front, § = 1) up to the largest branch point of
n(s) (for # = 00), and that the path L(6) of steepest descent through
so is a curve that encloses the branch cut of n(s). This situation
is similar to that we have verified for the Zener model [Mainardi
(1972)], which also includes the Maxwell model. In other words,
we may assume that this evolution of the steepest—descent path is
common to viscoelastic models that exhibit branch cuts in the finite
part of the negative real axis.

Thus, when the path L(0) intersects the imaginary axis at the
poles s = i), we obtain

Im [F(s0,05)] = Im [F(£iQ, 05)] = £Q [0s — nr(Q)] = 0. (4.96)

This means that
c c

S(Q) = ) @) V(Q). (4.97)

In the case of absence of dissipation the identification of signal
velocity with group velocity in quite clear: at the wave front it ap-
pears an oscillating forerunner (or percursor) that matches with the
steady state solution after a time 7y = x/U(2) — x/c. Being the
percursor of small and highly decaying amplitude, the steady state

solution is well recognized as the main signal.
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In the case of full anomalous dispersion, the identification of sig-
nal velocity with phase velocity is to be interpreted differently. We
observe here at the wave front the appearance of a non-oscillating
forerunner that matches with the steady state solution after a time
v = x/V(Q) — x/c. Being the percursor of substantial (weakly
damped) amplitude, the steady solution is not well recognized. As
a matter of fact, this percursor is known to be the source of great
disturbance for transmissions. In other words, the appearance of
a strong forerunner can lead to a wrong identification of the input
signal. In this respect the interested reader is referred to [Mainardi
(1984)] and to the more recent paper [Hanyga (2002c)].

Note again that the relevant example of anomalous dispersion is
provided by the Maxwell model of viscoelasticity, that is known to
be governed by the telegraph equation, see Eq. (4.57) with 3 = 0.
Some authors, [Carrier et al. (1966)] and [Thau (1974)], have consid-
ered this equation to evaluate the Brillouin signal velocity but have
overlooked the identification with the phase velocity. This fact has
been pointed out by [Mainardi (1983b)].

4.5 Notes

An interesting problem related to the identification of the signal ve-
locity is that of the energy velocity. This topic is much more sub-
tle since the energy is not well defined in the presence of dissipa-
tion. The author has also considered the problem of characteriz-
ing the energy propagation by means suitable definitions for energy
velocity, in the presence of anomalous dispersion and dissipation,
see [Mainardi (1987); Mainardi (1993)], [Mainardi and Van Groe-
sen (1989); Van Groesen and Mainardi (1989); Van Groesen and
Mainardi (1990)] [Mainardi et al. (1991); Mainardi et al. (1992);
Mainardi and Tocci (1993)]. Formerly, [Brillouin (1960)] devoted
great attention to this topic, providing interesting results for electro-
magnetic waves in dielectrics. For pseudo-monochramatic viscoelas-
tic waves [Bland (1960)] has shown that energy velocity is identified
with phase velocity, a result that was later confirmed through an
independent approach by [Mainardi (1973)].
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Chapter 5

Waves in Linear Viscoelastic Media:
Asymptotic Representations

In this chapter we consider some mathematical methods that allow
us to derive asymptotic expansions in space-time domains for im-
pact viscoelastic waves, starting from their Laplace transform repre-
sentations. We first deal with recursive series methods which, after
inversion of the Laplace transform, yield asymptotic or convergent
expansions, suitable in a space-time domain close to the wave front.
Then, we apply the saddle—point method to the Bromwich represen-
tation of the inverse Laplace transform, which, for the evolution of
impact waves, provides approximations suitable far from the wave
front. Because the numerical convergence of wave—front expansions
usually does not allow for matching with saddle-point approximation
in any space-time domain, we suggest the acceleration technique of
rational Pade approximants as a good candidate to achieve this goal.

5.1 The regular wave—front expansion

The full analytical models of viscoelasticity We now consider
viscoelastic models for which the material functions J(t) and G(t)
with J, := J(07) > 0 and G4 := G(07) > 0 are entire functions
of exponential type. We recall from [Widder (1971)] that an entire
function f(z) with z € C is said to be of exponential type and we
write f(z) € {1, 6} with 6 > 0, if its Taylor series is such that

f(z) = a2 /k!, with Jim lap |V < 6.
k=0 e

109
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Since the material functions are defined as causal functions, their
analytic continuation from ¢t € IR" to ¢t € C is understood. Hence-
forth, we shall refer to the corresponding models as full analytical
models of viscoelasticity.

It is now convenient to consider non-dimensional memory func-
tions defined in Egs. (4.19) as

‘I’(t)::id—J, (t)::iﬁgo.
Jg dt Gy dt
We will refer to them simply as rate of creep and rate of relaxation,
respectively. They are entire functions of exponential type as well,
so that their Laplace transforms turn out to be analytic functions
at infinity according to a known theorem, see e.g. [Widder (1971)].
More precisely we write

U(t) e {1,6,} = U(s) e A for |s|>d,, U(co)=0, (5.1a)
and
®(t) € {1,045} = B(s) € A for |s|>d5, ®(c0)=0, (5.1b)

where A denotes the class of analytic functions in the complex s-
plane and ¢, and 4 are suitable positive numbers. Assuming the
creep representation we can write

J(t) =, 1—|—io:wﬁ (0 — L dk—J (5.2a)
- R OTR T, LatR | ‘
k=1
Thus, recalling Eq. (4.20a), we get in the Laplace domain
j _ o0
[n(s)]? := sJ(s) =1+V(s)=1+ Z Vr ;I8 >y, (5.3a)
Jy s

Similarly, assuming the relaxation representation, we write

=tk 1 [d*G
T P A [—] R
; k:!] Gy | di* |, _os

Thus, in view of Eq. (4.20b), we have

G(t) = Gy

2= 20 s )
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We refer to coefficients 9, and ¢j, of the memory functions as creep
and relazation coefficients, respectively. In view of Eqgs. (5.3) also
the functions [n(s)]*? and consequently n(s) turn out to be analytic
in the s-plane, regular at infinity where they assume the value 1.

As a matter of fact, to ensure that ¥(s) and ®(s) are analytic and
vanishing at infinity and, hence, U(t) and ®(¢) are entire functions
of exponential type, we have to assume that for the corresponding
viscoelastic models the retardation /relaxation spectra, either discrete
or continuous, are such that n(s) provided by Eq. (4.16) exhibit a
finite branch cut on the negative real axis. This means that a positive
number § can be found so that n(s) is represented by a power series,
absolutely convergent for |s| > 4,

n mn
n(s):1+?1+5_§+..., s| > 0. (5.4)

Of course, the series coefficients ny; (k = 1,2,...) can be obtained
either from the creep coeflicients or from the relaxation coefficients.
Setting ¢ = 1 for convenience, and recalling from Egs. (5.3)

) 1/} 1/2 ) ¢ -1/2
k=1 k=1

we easily obtain the first few coefficients of n(s), e.g.

1

1 1
n1:§¢1,n2:§¢2—§¢%,... (56(1)

n(s) =

and
1 1 3 5
nl——§¢1,n2——§¢g+§¢1,... (5.6b)

Recalling from Section 2.5 that the creep compliance J(t) is a
Bernstein function and the relaxation modulus G(t) is a CM function,
from Egs. (2.31) we get (—1)"¢, < 0 and (—1)"¢, > 0, n > 1, so
that we deduce for consistency that in Egs. (5.6): n; > 0 and ng < 0.

The recursive series method. We now present an efficient recur-
sive series method, which allows us to obtain a convergent wave—front
expansion for the solution r(z, t), starting from the creep coefficients,
as proposed by [Mainardi and Turchetti (1975)].
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For this purpose, we start from the solution of the general evolu-
tion equation (4.7) in the Laplace domain, that is, after (4.15)-(4.16)
and (5.4)-(5.6),

7(z,s) =To(s) e—H(s)T — To(s) e SUS)T with

3 a B (5.7)

= ——4... =14+—-——=+4...

w(s) =s+a S—i- n(s) —I—s 32+ )
where, for convenience, we have assumed ¢ = 1 and set
1 1 1
a=mn =120, 5=—n2=—§¢2+§¢%20- (5.8)
Let us re-write the transform solution as follows

7(z,s) :=To(s) emH(s)T — g —aw [e—sx R(z,s)| , (5.9)

which yields in the time domain
r(z,t)=e T R(z,t —x) . (5.10)

The purpose of the exponentials in (5.9) is to isolate the wave front
propagating with velocity ¢ = 1 and with amplitude that exponential
decays in space by an attenuation coefficient a.

The equation satisfied by R(z, s) is, from Eqs. (4.7) and (5.9),

[ —2ira) £~ [ — s+ o]} Ry =0, ()

subjected to the initial condition R(0,s) = 7o(s). After simple ma-
nipulations we obtain

[,uZ(s) (s +a) ] = 28+ Z %*2 (5.12)

This shows how the differential operator acting on R(z, s) in (5.11)
depends on the creep coefficients 1; that are easily obtained from
the creep law.

For ﬁ(a:, s) we now seek a series expansion in integer powers of
1/s. Based on the theory of Laplace transforms, see e.g. [Doetsch
(1974)], one is led to think that the term-by-term inversion of such
series provides in the time domain an expansion for R(z,t) asymp-
totic as t — (z/c)*. Consequently, a formal wave-front expansion
for r(x,t) is expected to be of the kind considered in [Achenbach
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and Reddy (1967)] and [Sun (1970)] by using the theory of prop-
agating surfaces of discontinuity, and in [Buchen (1974)] by using
the ray-series method. Here, however, we show that a term-by-term
inversion yields an expansion which is convergent in any space-time

domain. For this purpose we use the following theorem, stated in
[Mainardi and Turchetti (1975)].

Theorem. Let R(z, s) be analytic for |s| > 0, uniformly continuous
inx for 0 <x <X, with R(x,00) =0, whose expansion reads

[o¢]
~ wi(2)
R(z,s) =) i s>, (5.13)
k=0
then the inverse Laplace transform R(x,t) is an entire function of t
of exponential type, whose expansion reads

R(z,t) = w(x)
k=0

tk

R uniformly in x, (5.14)

and vice versa.
We easily recognize that the conditions of the above theorem are
fulfilled if:

(i) the creep compliance is an entire function of exponential type, i.e.

— 1)

k
1 E — 1, > Oy ;
+k_1 Sk] ‘8‘ v

(ii) the input 7o(¢) is an entire function of exponential type, i.e.

J(t) € {1,6,) <= sJ(s) = J,

ro(t) € {160} <= () = Y iy,

k=0

Is| > & . (5.15)

While assumption (i) has been requested since the beginning, as-
sumption (ii) can be released by considering the impulse response
(or Green function) G(x,t) as shown in Section 4.2, Eq. (4.12), and
performing a suitable convolution with rg(t).

We now illustrate the procedure to find the coefficients wy/(z)
by recurrence from the creep coefficients. The required expansion
can be determined by substituting the expansions (5.12)-(5.13) into
Eq. (5.11) and collecting like powers of s. For this purpose let us
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expand the operator in brackets at L.H.S of Eq. (5.11) in power
series of s. Dividing by the highest power of s, i.e. —2s, and defining
this operator as L(x, s), we have

= Z Li(z)s™, (5.16)

where, using (5.8) and (5.12),
2
LO:%,Ll ;ddZ d ~ 3, L %@le,iZQ. (5.17)
With a minimum effort the coefﬁments wk.(fz:) in Eq. (5.13) prove

to be solutions of a recursive system of linear first-order differential
equations with initial conditions wg(0) = px (kK =0,1,2,...). In fact,
since the expansion of L{R(z,s)} is given by termwise application
of the L; to the wg(x), the coefficients wy(x) satisfy the recursive
system of equations

f/O wo = 0 s

jlo’u)k = —Zf)iwj, k‘ Z 1, (5'18)

0.

where the summation is taken over values of i, j for which i+j = k+1.
The solutions of this system are easily seen to be polynomials in x
of degree k, which we write in the form

h
X

where the Ay, are obtained from the initial data Ao = pr by the
following recurrence relations, with 1 < h < k,

1
Ag,p = B Ap1py1 — @ Ap_1p + B Ap—1h1

k—h+1
1 (5.20)
) Z Vi1 Ag—jh-1, 1<h<k.

=2

Finally, we obtain the following series representation

oh tF
Z Z kR Rl (5.21)
k=0 h=0
that with (5.10) provides the requested solution. This solution is

easy to handle for numerical computations since it is obtained in a
recursive way. However, the numerical convergence of the series is
expected to fall down far from the wave front, as we will see later.
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Examples: the Zener and the Maxwell models. By way of
example, let us consider the Zener model (S.L.S.) for which n(s) is
provided in Section 4.3 by Eq. (4.51). Taking 7, =1 and 7. = 1/a >
1, we easily know the corresponding rate of creep in time and Laplace
domains and consequently, we derive the creep coefficients. We have

U(t)=(1- a)e_at — P =1—-a)(—a)" 1 k=1,2,... (5.22)
with dy = 1 as requested by Eq. (5.3a) In particular, we obtain the

coefficients e = (1 —a)/2 and = (1 — a)(1 + 3a)/8 as requested by
Egs. (5.7)-(5.8).

[

Fig. 5.1 The pulse response for the Maxwell model depicted versus ¢t — z for
some fixed values of z.

For ¢ = 0 the Zener model is known to reduce to the Maxwell
model, see Eq. (4.52), so we simply get

U(t)=1,= thp=0k1, k=12,.... (5.23)
Consequently, for the Maxwell model the recurrence relation (5.20)
simplifies to

1 1 1
App = 3 Ap—1,ht1 — 3 Ap—1,n+ 3 Ap_1h-1- (5.24)

The computations for solutions corresponding to an initial Heavi-
side step function 7¢(t) = ©(t) provide the plots in Fig. 5.1 depicted
versus time elapsed from the wave front for some values of x.



116 Fractional Calculus and Waves in Linear Viscoelasticity

5.2 The singular wave—front expansion

We now consider viscoelastic models for which the material func-
tions J(t), G(t) and consequently the respective memory functions
U(t), ®(t) are no longer entire functions of exponential type.

In this framework we discuss the general method developed by
[Buchen and Mainardi (1975)], which provides an asymptotic series
solution when the creep compliance J(t) of the viscoelastic medium
exhibits at the time origin a behaviour of the form

Jt)=J,+0(") as t—0", (5.25)

where J,; > 0 is the instantaneous compliance and 0 <y < 1.

Creep compliances which conform to this representation cover a
wide class of viscoelastic materials including the models for which
J(t) has a well-defined expansion of about ¢ = 0" in fractional non-
negative powers of ¢ with J; > 0.

The starting point of the Buchen—Mainardi method is the asymp-
totic behaviour of u(s) provided by Eq. (4.8) as s — oo. Note that
in our present case we cannot use the function n(s) and the conse-
quent normalization ¢ = 1, since when .J; = 0 the wave—front velocity
is infinite. In general, for u(s) we have an expansion in decreasing
powers of s of the form

wu(s) = \/ﬁssJ )2~ st F0=0o<fr1<.... (5.26)

Denoting by g (s) the sum of the first (m + 1) terms with G, < 1
(k=0,1,...,m) and by p_(s) the remainder of the series, we can
write the transform solution as

r(x,s) =719(s) et u(s) = To(s)e % p(s) o= p—(s) (5.27)
Let us now set
R(z,s) :=e~20-(5) (5.28)

and, without loosing generality, we agree to take as input the unit
step Heaviside function, ro(t) = ©(t) so that 79(s) := 1/s. The
function p4(s) is referred to as the principal part of the expansion
of u(s). It can be obtained with a minimum effort from the first
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few terms of the expansion of J(t) as t — 0. From the asymptotic
limits (4.8), (4.15) and (5.25) we easily infer

J,=0 =—=by=0, =~/2,
{g 0 B ="/ (5.29)

Jg >0 =byg=/pJyg=1/c, [pi=1.

For E(az, s) we seek an asymptotic expansion in negative powers of s
as s — oo of the kind

)~ > wp(a)sTM, 0< A <A< (5.30)

Furthermore, let us set
(/Iv)k(;p’ 5) = 5_(Ak + ]-) e ¥ [HJF(S) - S/C] , (531)

with the convention 1/¢ = 0 when J; = 0. Then, from Eqgs. (5.27)-
(5.28) and (5.30)-(5.31) the Laplace transform of the complete solu-
tion admits the following asymptotz’c eTpansion as s — 0o:

r(x,s) ~e —zs/e Zwk ) D (x, 5) . (5.32)

The purpose of the exponential functlon in (5.32) is to isolate, upon
inversion, the wave front propagating with velocity ¢ (0 < ¢ < 00).

From Eqs. (5.26), (5.31) two things are evident for £k =0,1,... ,
as § — 0o

(i) Brer(e,s) = o0 (Bu(a,5)) .
(11) eds Oy (z,5) — 00, V6> 0.
Because of a lemma from [Erdélyi (1956)], we expect that the con-

ditions (5.33) will allow a term-by-term inversion of (5.32), which
provides the required asymptotic solution in the time domain, as

(5.33)

t — (z/c)t. Therefore, finally, our asymptotic solution reads in
time-space domain

Zwk )®p(z,t —x/c), ast — (x/c)T. (5.34)

We now dlscuss the recursive methods to determine
a) the functions wg(x) and the exponents Ay ;
b) the functions P (x,t), the Laplace inverse of (5.31).
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As far as the first goal is concerned, we note that R(z, s) formally
satisfies the following differential equation obtained from the general
equation (4.7) with the positions (5.27) and (5.28),

2
{% 2 ()] e~ [17(s) ﬁ(sﬂ} f(z,5) =0, (535)

subjected to the initial condition R(0,s) = 1.

In order to obtain the coefficients wy(z) and exponents A in the
asymptotic expansion (5.30), we will use an argument which gen-
eralizes the one followed in the previous Section in order to allow
non-integer powers of s. This argument is based on a general theo-
rem stated by [Friedlander and Keller (1955)], which we report for
convenience.

Theorem by Friedlander and Keller. Let L be a linear operator
that admits an asymptotic expansion with respect to a parameter €
o0

as € — 0 oftheformj}NZe”ifLi with0=vy <11 <...,andv a
i=0
solution of Lv = 0, with asymptotic expansion as € — 0,

oo
UNZGA]“U]Q, A< <...
k=0

If the asymptotic erpansion of Luv is given by termwise application
of the L; to the v; and if Lo vk # 0 for k > 0, then the coefficients
v satisfy the recursive system of equations

Lovo—o
j}kvk:—zi7jf)ivj, k‘:1,2,...,

where the summation is taken over values of i, j for which v; + \; =
A - The constant \g is arbitrary but N\ for k > 0 is the (k4 1)-st
number in the increasing sequence formed from the set of numbers
Ao + Zf; m; v; where the m; are any non-negative integers.

In the application of this theorem to our problem, we recognize that
the L; are differential operators with respect to x, and

€E=3s ,v:]jz(a:,s), v = wi(z) .
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If in the differential equation (5.35) governing R(z,s) we expand
the coefficients and divide the L.H.S. by the term containing the
highest power of s (i.e. —2bgs if J, > 0 or —2bys' =1 if J, = 0), we
obtain quite generally:

Lo = dd

Codm, (5.36)

L’i: 7 R ‘:1727”'7
da:+qu+r 1

where p; , q;, r;, like the exponents v; , can be determined from the
behaviour of the creep compliance J(t) as ¢ — 01, in view of the
previous considerations. This fact will be clarified by some examples.

Now, taking into account the asymptotic expansion (5.30) for
R(z, s) in negative powers of s with the initial condition R(0, s) = 1,
the application of the Friedlander-Keller theorem leads to the de-
termination of the exponents); and of the coefficients wy(z) with
k=0,1,2,.... In fact, we have for the constants A, the recursive
algebraic system

A =0,

)\k:imiui,kzlﬂ,..., (5.37)
and for the functions wk(;:z)lthe recursive system of linear differential
equezltliuoons

dr 0,

d d 5.38

subJected to the initial conditions

wi(0) = 0 - (5.39)
The solutions of the differential system are easily seen to be polyno-
mials in z of order k, which we write in the form

l‘k
:ZAMF, k=0,1,..., (5.40)

=0
where the coefficients Ay ; are obtained from the initial data
Ao = Oro by the following recurrence relations

App =— Z PiAjh1 + G Ajp+1iAjp1), 1<h<Ek. (541)

.3
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Let us now consider the functions ®(x,t) whose Laplace trans-
forms are provided by Eqs. (5.31) with (5.26). We now derive a
recursive method for their determination. We have

By(, 5) = s~ OutD) o —wbrs' T —abnstTI g )
We first set, for sake of convenience, with ¢ =1,2,... ,m,
yi=xb, v=1=06; 1>y >...7%n >0,
and
G, iy 8) = exp (—yis™) . (5.43)
Then, inverting the Laplace transforms, the required functions

O (x,t) read as
%

q)k(x>t) = m * G’Yl (ybt) *o.oK va(yrmt)v (5'44)

where * denotes the convolution from 0 to t. For any fixed ~; = v
and y; = y, we recognize that the generic function G (y,t) turns out
to be related to the auxiliary F,-Wright function, see in Appendix F
Egs. (F.12) and (F.28), so

1y e () Oy

We note that [Buchen and Mainardi (1975)], albeit unaware of the
Wright functions, have provided analytical representations of G, (y, t)
in the following special cases

B Y . Yy
G1/3(y,t) T 31/344/3 Al (31/3 t1/3> ’

(5.46)

y y?
Gipa(y,t) = SNCIEE exp <_E> ;

where Ai is the Airy function. More importantly, they have sought
efficient methods of obtaining the inversion formulas. For this pur-
pose they have introduced the functions

Ak
Ho(z,\p) =t | —— t _ 4
’Y(Z7 k) F()‘k+1) * G’Y(yu ):| y % 7 (5 7)
and have provided the following recurrence relation
)‘kH’Y(Z7)‘]€) = _’YZH’Y(ZuAk_’Y)+H’Y(27Ak_1)7 (54'8)

which can simplify the determination of the functions ®y(z,1t).
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The expansions for analytical models. Particular examples are
the models for which J(¢) admits a Taylor expansion about ¢t = 0F
with J, > 0, without necessarily being an entire function of expo-
nential type; we refer to these models as simply analytical models,
to be distinguished from the full analytical models considered in the
previous section. It is clear that for the full or simply analytical mod-
els the method must provide the solution (5.10) with a wave—front
expansion of the type (5.21). Of course, this expansion is expected to
be convergent or only asymptotic, correspondingly. In fact, in these
cases, we obtain

vy = ia )‘k = ka

P = _1/27 q1 = «, r = _ﬂu (549)

pi =q¢=0, ri=vy1/2, i>2,
and

ik
Op(z,t) =e X7 o (5.50)

Thus, the wave—front expansion is originated by the recurrence rela-
tion (5.20), but with Ay o = dx0 .

The expansions for non-analytical models. To better illus-
trate the importance of the Buchen—Mainardi method we need to
consider non-analytical models, for which we may have, for example,

p(s)=bo+brsPl, 0<pB<1. (5.51)

Instructive examples that conform to (5.51) are the simple Voigt
model, see in Section 2.4 Egs. (2.17), and the fractional Mazwell
model of order 1/2, see in Section 3.1 Eqgs. (3.18) with v = 1/2. In
fact, after a suitable normalization, these models are described as
follows.

(a) Voigt model :
dE —t

so that
ps)=s(s+1)2 = by=0,b=1, 1 =1/2;  (5.53a)
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(b) fractional Maxwell model of order 1/2 :
A2 dl/2¢ 1/2
t - = =1+ —— .52b
oW+ G = gar — T =1 ry (5.526)
so that
w(s) =s (45" YH2 —= by = —-1/8, by =1/2, f1 =1/2. (5.53b)

As a consequence, for the above models, we respectively obtain

2 :1/2, 1/2.:17 l/3:3/27 Vi:OforiZZL’ (554(1)
Ne =h/2 =kl k-2, k-3;
and
Mo =1/2, =1, v=0fori>3, (5.54b)

Then the coefficients Ay, j, of the polynomials wy(z) in (5.38)-(5.40)
turn out to be obtained from the initial data Ay o = dro by the
following recurrence relations

1 1 1
Aen =5 Ak-1n41 = 5 Ak-1h-1 = Ae2p + 5 Ap-sher, (5.55a)

1<h<k,
and
1 1 1
Apn = —zAk—in + —= Ap—1 -1 — 5 Ap—2,h+1
7 16 2 (5.55b)
——Ap_op——Ar on_1, 1<h<k.
g Ak—2h — o Ak-—2h-1, LS <
Furthermore, for both models we obtain
Dp(a,t) = 0T 2 o (2,k/2) (5.56)
with
blx k Tk z
z = 1;17, Hl/Q(Z,k/Q) = 2" I®erfc (5) . (557)

These repeated integrals of the error function are easily computed
from the following recurrence relations found in Appendix C, see also
[Abramowitz and Stegun (1965)], which are a particular case of the
most general relations (5.47). Setting for convenience

Ky (z) :== Hyjo(2,k/2) (5.58)
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we have
K 1(2) =-Lexp (—%2) , Ko(z =erfe (%),
VT . (5.59)
Kk(z) :—%Kk_l(z)-i-EKk_g(Z), kz 1.

In conclusion, we report below the whole asymptotic expansion
for the two models.
(a) Voigt model as t — .I'Jr :

Z Z Akhx—tk/QK <\/Z> , (5.60a)

k=0 h=0
where the functions Kj(z) are defined by (5.57)-(5.58) and the coef-
ficients Ay j, are obtained from the recurrence relation (5.56a). The
Voigt model exhibits a response V¢ > 0 and has a non-analytical
expansion, which we call diffusion-like response. Figure 5.2 displays
the essential character for times up to twice the retardation time.

1 2

Fig. 5.2 The pulse response for the Voigt model depicted versus t.

(b) Fractional Mazwell model of order 1/2 as t — x™:

(.I't Nex/SZZAkh_ t—x)k/QKk

3PP <2m> (5.60b)
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where the functions Kj(z) are still defined by (5.57)-(5.58) and the
coefficients Ay, j, are obtained from the recurrence relation (5.55b).
The fractional Maxwell model displays features in common to both
the simple Maxwell and simple Voigt models. There is no motion
for t < x, but the response at the front t = x is zero for Vo > 0
and its expansion is non-analytic, which we call wave-diffusion like
response. Figure 5.3 shows the essential characteristics of the pulse
in the neighbourhood of the onset.

Fig. 5.3 The pulse response for the Maxwell 1/2 model depicted versus ¢ — z.

Discussion on wave—front expansions. We have presented a
general asymptotic theory, in the neighbourhood of the onset, for
the propagation of an initial step pulse r(t) = O(t) in a semi-infinite
viscoelastic rod. We have considered fairly general classes of models
which are characterized by a creep compliance having power law
behaviour for small times. These include both analytic and non-
analytic behaviour at the origin and it is the nature of this behaviour
which determines the character of the solution at the onset.

As instructive examples we have provided details for three vis-
coelastic models; one analytic: the simple Maxwell model, and two
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singular: the simple Voigt model and the fractional Maxwell model
of order 1/2. Hereafter, for brevity, we will list the particular re-
sults for r(z,t) when we take only the first term of our asymptotic
solutions. We obtain (in dimensionless form):

(i) simple Maxwell model (analytic) at ¢ ~ z:

r(x,t) ~ exp (—g) Ot —x); (5.61)

(ii) simple Voigt model (non-analytic) at ¢ ~ 07:

r(2,1) ~ erfc (%) o(t) ~ % gexp (-Z—j) o(t): (5.62)

(iii) fractional Maxwell model of order 1/2 (non-analytic) at ¢ ~ z:

r(z, 1) = exp (g) erfe (m) Oz — 1)
2

(5.63)
} O(x—t).

Our asymptotic representation, though strictly valid only near
the pulse onset, is particularly suitable for the study of pulse trans-
mission in viscoelastic media of long relaxation or retardation times
and provides a useful method for determining how the pulse devel-
ops from the onset. A great bonus of the method is its particularly
suitable form for numerical computation. What is otherwise a com-
plicated problem, has been reduced to a series in which everything
is determined by simple recurrence relations. The series was found
to display remarkable convergence, particularly for the smaller times
and distances involved.

The three models chosen for detailed study represent the different
types of solution which relate to the given creep compliance. These
are the wave type, the diffusion type and the wave—diffusion type.
The wave-type solution, corresponding to the analytic creep models,
reduces to the ray—series solution obtained by [Buchen (1974)]. The
other types represent an extension of the ray—series method for non-
analytic creep models. Finally, we remark that the solution for an
arbitrary source function 7(t) can be obtained by convolution with
our asymptotic series.
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5.3 The saddle—point approximation

5.3.1 Generalities

The wave-front expansions, even when mathematically convergent in
any space-time domain, cannot be used to represent the wave evolu-
tion sufficiently far from the onset of the wave front. In fact, their
numerical convergence is expected to slow down by increasing the
time elapsed from the wave front, with a rate depending on the spa-
tial coordinate. Thus, it is customary to use the saddle-point method
to invert the Laplace representation of the response variable, which
provides a suitable approximation of the wave evolution sufficiently
far from the wave front. Precisely, using the notation of Chapter 4,
see Eq. (4.17) we apply the saddle point method to the integral in
(4.17), that we re-write as

ra,t) = - /B 7o () o5l — @/ n(3)] g

2mi
(5.64)
1 ~ _
= — To(s)e($/6)8[9 n(s)] ds, 0 =ct/z > 1.
2wt g,

For the sake of convenience we have considered a finite wave—
front velocity ¢ so that all considerations for the signal velocity il-
lustrated in Subsection 4.4.3, including the introduction of the non-
dimensional parameter 6 and the steepest—descent path L(#), will
apply. If so(0) denotes the relevant saddle point of

F(s;0) :=s[0 —n(s)], (5.65)

the method just consists in taking the dominant contribution of sqg to
the integral along the steepest—descent path. In the cases when this
path is equivalent to the Bromwich path and the relevant saddle point
is not close to any singularities of 7y(s), the saddle-point method
allows us to write, see e.g. [Bleistein and Handelsman (1986)],

r(z,0) ~ L‘SQ) o (@/c)F(s0) / e(a:/c)F"(so)(s — 50)* ds |

m . L(®) 2 (5.66)
F’(SO)ZE =0>F”(80)=@ #0,
0

S0
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where on L(#) the Re [F] attains its maximum value at so and Zm [F]
is constant. -

Then, recalling the Gauss integral / exp—|alu® du = /7 /|al,

we obtain the required asymptotic repre;g;tation as
r(s
r(x,0) ~ (7?, expl(xz/c)F(s0)], so = so(f). (5.67)
27| F" (s0)]

We note that for this method a detailed knowledge of the path L is
not usually required, while the location of the relevant saddle point
with respect to the singularities of 7o(s) is relevant to get a uniform
approximation.

As instructive exercises, let us now consider the saddle—point
method for two particular impact problems in a Maxwell and in a
Zener viscoelastic solid, in order to evaluate its applicability. These
problems have been denoted respectively as Lee-Kanter and Jeffreys
problems from the names of the scientists who have formerly inves-
tigated them.

5.3.2 The Lee-Kanter problem for the Maxwell model

We know from the analysis in Chapter 4 that the Maxwell model is
the simplest viscoelastic solid that admits a finite wave—front velocity.
Recalling its characteristic function n(s) from (4.52) with 7, = 1,
n(s) = (1+1/s)"2, (5.68)
the Laplace representation (4.17) for the general impact problem,
using non-dimensional variables with ¢ = 1, reads
r(z,t) = L/ Fo(s)eslt — 2 (L+1/9)"%] g (5.69)
211 Br
This formula is indeed sufficiently simple to allow us to determine

the solution in the space—time domain. In fact, writing
sn(s) = s(1+1/s)% = (s +1/s)2 = [(s +1/2)* —1/4] '~ , (5.70)
we can apply the Laplace transform pair (B.64) to (5.69)-(5.70). We
obtain for t > x:

r(z,t) = e % 2ro(t — z)

1/2

t I, (8 — 22)1/2
x 'y [ — 2?12 )2]
+§/$e Pro(t —t) ) dt’

whre I; denotes the modified Bessel function of order 1.

(5.71)
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For the so-called Lee-Kanter problem, see [Lee and Kanter
(1956)], the impact problem (in non-dimensional variables) consists
in finding the stress when the semi-infinite bar is subjected at the
accessible end z = 0 to a unit step of velocity v(t) = ©(t). In our
notations, recalling Eqgs. (4.1)-(4.8), this means to find the Laplace
inversion of

1

sn(s)’

where sn(s) is given by (5.70). Then, by recalling the Laplace trans-

r(z,s) =ro(s)exp[—zn(s)] with 7o(s) = (5.72)

form pair (B.62), we have the solution in explicit form through a
modified Bessel function of order 0,
V2 — 1,2] ,

5 > 1. (5.73)

r(x,t) = o t/2 Iy [
The simplicity of the Lee-Kanter problem provides us with the
opportunity to evaluate for it the evolution of the steepest—descent
path and to compare the saddle—point approximation of the solution
with the closed exact expression (5.73). For this purpose we first
determine the saddle points and the steepest—decent path through
them.
For the Maxwell model Eq. (4.81) for the saddle points reads

n(s) + SZ—Z _ <1 + %)1/2 {1 _ ﬁ} 9, (5.74)

that, when rationalized, is a quadratic equation in s with two real
solutions. These solutions are the required saddle points, which read

1 0
+
— -1 . .
5 2[21: 02_1] (5.75)
Therefore, these saddle points move on the real axis from +oo (for
6 = 1) to the branch points of n(s) : s, =0, s,~ = —1 (for

0 = o0).
The path of steepest descent through s* is defined by the condi-
tion (4.82), that now reads

Im[F(s,0)] =Im {59 —[s(s+ 1)]1/2} =0. (5.76)
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Setting s = & + in, this condition leads to the following algebraic
equation

€+12° @ 6,1

a? N S RV
Thus, the curve L represented by (5.77) is an ellipse, with axes 2a, 2b
and foci in the branch points s,*, that intersects the real axis in the
saddle points s*.

In Fig. 5.4 we show the evolution of the path L(#) in the s-complex
plane for the Maxwell model for the following five values of 1/6 :
1) 0.85, 2) 0.75, 3) 0.50, 4) 0.25, 5) 0.15. From the figure we
easily understand the evolution of the ellipse from a big circle at
infinity (for # = 1) to the segment of the branch cut (for § = o).

(5.77)

. N
=N
g‘l \C::% >
&=
* NG =
| ~__ |

Fig. 5.4 The evolution of the steepest-descent path L(0) for the Maxwell model.

When the integration is carried out on the entire curve L, the
exact result is expected to be found for any x and ¢, without any
problem related to an oscillating integrand since on L the imaginary
part of F(s,#) is constant.

For large  and ¢ we can presume that the dominant contribu-
tion to the integral along L comes from a neighborhood of sg: this
yields the leading term in the asymptotic expansion of the wave form,
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that can easily be found by the saddle-point method. It is easy to
prove that sT is the relevant saddle point sg, being a maximum of
Re{F(s;0)} on L, and that the original Bromwich path Br can be
deformed into the ellipse L. Thus, the saddle—point method provides
the following approximate representation

r6.1) ~ ﬁz foo(s0 + 1)]1/4 oH50 = [so(so + DIV2/0}  (5.78)

We can easily check the range of validity of the saddle-point
method. Indeed, in Fig. 5.5, we compare the exact solution [contin-
uous line| with the approximate solution [dashed line] for some fixed
values of time [t = 2, 4, 6, 8, 10]. We recognize that the saddle-point
method provides a satisfactory approximation (i.e. a discrepancy of
less than one per cent) for any z, only if ¢ > 8. For smaller time
values the contribution to the integral from a neighborhood of the
relevant saddle point sq is thus inadequate to represent the solution.

0.1+ . N

X

0 1 p 3 4 5 6 7 8 9 10

Fig. 5.5 The Lee-Kanter pulse for the Maxwell model depicted versus .

The saddle-point approximation is of course not uniform on the wave
front, since for # — 1 the two saddle points coalesce at infinity.
However, it can be proved to be regular for § — oo; for 6 = co (i.e.
at x = 0) it yields r(x = 0,t) ~ 1/y/mt < exp (—t/2) Ip(t/2), where
on the R.H.S. the exact value is quoted from (5.73).
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5.3.3 The Jeffreys problem for the Zener model

Early attempts to explain the duration of the seismogram led Sir
Harold Jeffreys, the great applied mathematician and precursor
of the modern seismology, to investigate the effect of viscoelastic-
ity on the propagation of the seismic pulse, see [Jeffreys (1931);
Jeffreys (1932)]. He adopted the saddle-point approximation to eval-
uate the effect on an initial Heaviside step pulse propagating in the
simplest viscoelastic models. In the first paper, Jeffreys considered
the Voigt model, whereas in the second, the Maxwell model and the
combination of the previous ones (known later as Standard Linear
Solid or Zener model). He calls the Voigt effect, “firmoviscosity”,
and the Maxwell effect, “elastovicosity”. The second analysis, revis-
ited later by the present author [Mainardi (1972)], is now presented
to illustrate the saddle-point approximation for the Zener model.

As usual, let us start with the Bromwich representation of the
response variable for a unit step impact ro(t) = O(t) + ro(s) = 1/s.
From Eq. (4.17) we have

7(z,s) = QLm . %exp {5 [t - %n(s)]} ds, (5.79)

where, recalling Eq. (4.51),

s+ 1/7,
nis) = [5 +1/7,
Then, for our case, Eq. (4.81) for the saddle points reads

1/2
] , Te>T,>0. (5.80)

d
Hzn(s)—i-sd—z
R U 5s1)
s+ 1/ 2s1e +1)  2(sTe+1)]°

When rationalized, Eq. (5.81) gives a quartic equation for s, with
two real roots which represent the required saddle points. Their
exact location can be obtained from 6 graphically. Figure 5.6 shows
an example for 7./7, = 1.5. For § = 1 (t = x/c) they are at +oo,
then, with increasing time, come closer to the two branch points
of n(s), (s = =1/7 —¢, s = —1/7,), tending to them for § — oo
(t = 00). Setting

ng =n(0) = \/7/7o > 1, w:=c¢/nyg < c, (5.82)
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we recognize that for § = ngy (t = x/w) the saddle point is at s = 0,
which is the pole of the integrand. For [Jeffreys (1932)] the saddle
point was erroneously located between the pole (s = 0) and the
branch point (s = —17¢); then, there is no distinction between the
instants t = x/c (6 = 1) and t = z/w (0 = ngp), and the contribution
of the saddle point for ¢ ~ x/w is missed. Then for 1 < 6 < ng

o> n, )

o=n,

]

oA
¥

g
Rl

b 3
4 5 ¢

Fig. 5.6 The position of the saddle points as a function of time elapsed from the
wave front: 1) 1 < 6 < ng; 2) 8 = no; 3) 0 > no; where no = v/1.5.

the path of steepest descent is equivalent to the Bromwich path; for
0 > ngy one must add the contribution from the pole which represents
the elastic solution.

For 6 ~ ng the saddle-point method is expected to give the main
contribution, since we have the coupled contributions from the saddle
point and the pole. But, because of the vicinity of the two points,
we have to adopt a modified version of the standard saddle-point
method in order to have a uniform approximation. Based on the
method by [Van der Waerden (1951)], [Mainardi (1972)] got the final
result

r(2,1) = % [1 + orf (#ﬂ , (5.83)
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where erf denotes the Error function, see Appendix C, and

A =21 —T15)x/cC. (5.84)
In view of the behaviour of Error function, the result (5.83)-(5.84)
implies that the pulse is not sharp; it begins a little before the in-
stant ¢ = x/w and increases continuously tending to the initial value
1, the greater part of the change being spread over an interval of
order 2A. This reduction of the abruptness of the pulse is analogous
to the effect found by Jeffreys with the Voigt model [Jeffreys (1931)],
referred to as the firmoviscous effect by him. As emphasized in [Jef-
freys (1931)], the effect of firmoviscosity is of more direct seismo-
logical interest than that of elastoviscosity provided by the Maxwell
model that practically implies a reduction of the amplitude of the
shock. The reduction of the abruptness of the shock is suggestive,
because the seismic (S and P) waves in distant earthquakes begin
less abruptly than in near ones. The measure of the broadening,
found for sufficient great distances, is given by A; it is proportional
to the square root of the distance, as seen from the expression of A in
(5.84). For more details we refer the interested reader to [Mainardi
(1972)].

5.4 The matching between the wave—front and the
saddle—point approximations

Padé Approximants. To obtain the solution to a given impact
problem in any desired space-time domain the two approximations
investigated in the previous sections are not always sufficient because
the matching between them can be lost in some intermediate regions.

In order to meet the requirement of a matching, Mainardi
and Turchetti, see [Mainardi and Turchetti (1975); Turchetti and
Mainardi (1976)], have proposed to accelerate the numerical conver-
gence of series of the wave-front approximation with the technique
of Padée approximants, henceforth referred to as PA.

For details on this technique the interested reader is referred to
specialized treatises e.g. [Baker (1975)], [Baker and Gammel (1970)],
[Bender and Orszag (1987)].
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We now limit ourselves to provide the basic ideas of Padé ap-
proximation. We begin by pointing out that PA are a noteworthy
rational approximation to a function represented by a power (con-
vergent or asymptotic) series. When a power series representation of
a function diverges, it indicates the presence of singularities, so that
the divergence of the series reflects the inability of a polynomial to
approximate a function adequately near a singularity. However, even
when the power series representation converges, as it is the case of
the Taylor series for an entire function exponential type, which are
bounded at infinity, the polynomials are not able to adequately rep-
resent the function. We are faced with the same difficulty as in the
evaluation of exp (—z) using its Taylor expansion when x is large.

The basic idea of Padé summation is to replace a power series,
say » oo, anz" with a sequence of rational functions of the form

P (z) = 22— (5.85)

where we choose By = 1 without loss of generality. We choose the
remaining (M + N + 1) coefficients Ay, A1, ... Ay, By, Bo, ... By,
so that the first (M + N + 1) terms in the Taylor series expansion
of PM(z) match the first (M + N + 1) terms of the power series
3% yanz™. The resulting rational function P (z) is called Padé
approrimant.

As a matter of fact, the construction of P (z) becomes very
useful. If 3" a,z" is a power series representation of the function
f(2), then in many instances P} (2) — f(2) as M, N — oo even if the
power series is divergent. Usually one considers only the convergence
of Pade sequences P67, P11+‘], P22+J, ... having M = N + J with J
fixed and N — oo. The special sequence J = 0 is called diagonal
sequence. The full power series representation of a function need
not be known to construct a PA, just the first M + N + 1 terms.
Since PA involve only algebraic operations, they are determined by
a simple sequence of matrix operations.
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Pulse responses in the Zener viscoelastic model. For our im-
pact problems concerning viscoelastic waves, the technique of diago-
nal PA allowed Mainardi and Turchetti to use a reasonable number
of series terms of the wave-front approximation (no more than 20) in
order to have a matching with the long-time asymptotic solution, ob-
tained by the saddle-point method. So, a representation of the wave
phenomenon in any space-time domain of interest may be achieved.
In particular, these authors obtained noteworthy results (indeed in
perfect agreement with closed-form solutions when available) to rep-
resent the Jeffreys pulse response and the Lee-Kanter pulse response
for the Zener (S.L.S.) model, as illustrated in Figs. 5.7 and 5.8.

There we have considered non dimensional space-time variables
by setting ¢ = 1 and 7, = 1, and we have fixed the parameter
a:=71,/7e = 0.5 in Eq. (5.22).

a 2 a X x

Fig. 5.7 The step-pulse response for the Zener (S.L.S.) model depicted versus x:
for small times (left) and for large times (right).

SLS SLS
I 8=05 a=05

° 2 4 x

Fig. 5.8 The Lee-Kanter pulse response for the Zener (S.L.S.) model depicted
versus z: for small times (left) and for large times (right).
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Chapter 6

Diffusion and Wave—Propagation via
Fractional Calculus

In this chapter we analyse some boundary value problems for partial
differential equations of fractional order in time. These are funda-
mental for understanding phenomena of anomalous diffusion or inter-
mediate between diffusion and wave propagation. A typical process
of the second kind is provided by the one-dimensional propagation of
stress pulses in a linear viscoelastic medium with constant @, which
is quite relevant in seismology. This process is indeed governed by
an evolution equation of fractional order in time, which interpolates
the Fourier heat equation and the D’Alembert wave equation. We
show that the fundamental solutions for the corresponding Cauchy
and Signalling problems are expressed in terms of functions of the
Wright type in the similarity variable and their behaviour turns out
to be intermediate between those for the limiting cases of a perfectly
viscous fluid and a perfectly elastic solid.

6.1 Introduction

The evolution equations of fractional order. It is known that
the standard partial differential equations governing the basic phe-
nomena of diffusion and wave propagation are the Fourier diffusion
equation and the D’Alembert wave equation, respectively.

Denoting as usual x, t the space and time variables, and r = r(x,t)
the response variable, these equations read:

or 0%r
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O*r 0%
oz = oa2
In Eq. (6.1) the constant d denotes a diffusivity coefficient, whereas
in Eq. (6.2) ¢ denotes a characteristic velocity. In this Chapter we
consider the family of evolution equations
9Pr B O%r
otf = a2
where the time derivative of order 3 is intended in the Caputo sense,
namely is the operator (’SDE , introduced in Chapter 1, Eq. (1.17), and
a is a positive constant of dimension L?7T~?. We must distinguish
the cases 0 < <1l and 1 < < 2. We have

1 tro dr
" r<1—ﬁ>/o[ﬁ“”“"”)} G 0<P<L

(6.2)

0<B<2, (6.3)

57 = (6.4a)
or B=1;
at’ -
1 tr 52 dr
r _JTe- B)/o [W T(I’T)] (- P (6.4b)
o | o B=2 |
o2’ -

It should be noted that in both cases 0 < <1, 1 < 8 < 2, the
time fractional derivative in the L.H.S. of Eq. (6.3) can be removed by
a suitable fractional integration!, leading to alternative forms where
the necessary initial conditions at ¢ = 07 explicitly appear. As a
matter fact, we get the integro-differential equations:
if0<pg<1:

a [YO%r
r(x,t) = r(z,0") + () /0 (%) (t— 1) Ldr; (6.5a)

We apply to Eq. (6.3) the fractional integral operator of order 3, namely oItﬁ.
For 3 € (0,1] we have:
O[tﬂ o aDtﬁ T(.Z‘,t) = OItB © O[tl_ﬁ D% T(.Z‘,t) = OItl Dtl T(.Z‘,t) = T(.Z‘,t) - 7ﬂ(xvo-‘-) .
For 3 € (1,2] we have:
oIf o 4D/ r(w,t) = oI/ o oIf " DI r(x,t) = oI} D r(x,t)
= r(z,t) — r(z,07) — re(z,07).
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ifl<pg<2:

9 a ['O*r 3
r(z,t)=r(z,0") +1 e r(x,t)]—gr + m/o (W) (t — )" tdr.
(6.5b)

The plan of the Chapter. In Section 6.2, we analyse the frac-
tional evolution equation (6.3) in the general case 0 < # < 2, es-
sentially based on our previous works, see e.g. [Mainardi (1994a);
(1995a); (1995b); (1996a); (1996b); (1997)]. We first consider the two
basic boundary-value problems, referred to as the Cauchy problem
and the Signalling problem, by the technique of the Laplace trans-
forms, and we derive the transformed expressions of the respective
fundamental solutions, often referred to as the Green functions of
the corresponding problems. Then we carry out the inversion of the
relevant transforms and we outline a reciprocity relation between the
Green functions in the space-time domain. In view of this relation,
the Green functions can be expressed in terms of two interrelated
auziliary functions in the similarity variable & = |z|/(\/at”), where
v = (3/2. These auziliary functions can be considered as restrictions
on the real line of entire complex functions of the Wright type, see
Appendix F.

In Section 6.3, we outline the scaling properties of the fundamen-
tal solutions and we exhibit their evolution for some values of the
order v. We also show how the fundamental solutions can be inter-
preted as probability density functions related to certain Lévy stable
distributions with index of stability depending on the order of the
fractional derivative.

Finally, in Section 6.4, we deal with the signalling problem for uni-
axial stress waves in a viscelastic solid exhibiting a creep compliance
proportional to ¢7 with 0 < v < 1. The evolution equation is shown
to be of type (6.3) with 1 < 8:=2—-~v< 2. Sincel < g < 2,
the behaviour of the Green function turns out to be intermediate
between diffusion (found for a viscous fluid) and wave-propagation
(found for an elastic solid), so that it is common to speak about
fractional diffusive waves. We conclude the chapter with a section
devoted to historical and bibliographical notes.



140 Fractional Calculus and Waves in Linear Viscoelasticity

6.2 Derivation of the fundamental solutions

Green functions for the Cauchy and Signalling problems.
In order to guarantee the existence and the uniqueness of the solu-
tion, we must equip (6.1) with suitable data on the boundary of the
space-time domain. The basic boundary-value problems for diffusion
are the so-called Cauchy and Signalling problems. In the Cauchy
problem, which concerns the space-time domain —co < z < 400,
t > 0, the data are assigned at t = 0" on the whole space axis (ini-
tial data). In the Signalling problem, which concerns the space-time
domain x > 0, t > 0, the data are assigned both at ¢ = 07 on the
semi-infinite space axis z > 0 (initial data) and at = 0% on the
semi-infinite time axis ¢ > 0 (boundary data); here, as mostly usual,
the initial data are assumed to vanish.

Denoting by f(z),z € R and h(t),t € R" sufficiently well-
behaved functions, the basic problems are thus formulated as follow-
ing, assuming 0 < 8 <1,

a) Cauchy problem
r(z,07) = f(x), —co <z < 4o0; r(Foo,t) =0, t>0; (6.6a)
b) Signalling problem
r(x,0") =0, 2 >0; r(0",t) = h(t), r(+oc0,t) =0, t > 0. (6.6b)

If 1 < 8 <2, we must add into (6.6a) and (6.6b) the initial values
of the first time derivative of the field variable, 7¢(x,0"), since in
this case the fractional derivative is expressed in terms of the second
order time derivative. To ensure the continuous dependence of our
solution with respect to the parameter § also in the transition from
B=1"to 3 =17, we agree to assume

0

o "
as it turns out from the integral forms (6.5a)-(6.5b).

z,t)|,_gr =0, for1 < <2, (6.7)

In view of our subsequent analysis we find it convenient to set

0<v<1/2, <= 0<pB<1,

(6.8)
12<v<l, <= 1<p<2,

v:=0£/2, so {
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and from now on to add the parameter v to the independent space-
time variables x, ¢ in the solutions, writing r = r(x,t;v).

For the Cauchy and Signalling problems we introduce the so-
called Green functions G.(x,t;v) and Gs(x,t;v), which represent the
respective fundamental solutions, obtained when f(x) = §(z) and
h(t) = (). As a consequence, the solutions of the two basic prob-
lems are obtained by a space or time convolution according to

+o0
7“(33775; l/) = - gc(x_é.vt; l/) f(é.) g, (69&)
tt+
r(z,t;v) = Gs(x,t —m;v)h(T)dr. (6.9b)
-

It should be noted that in (6.9a) G.(x,t;v) = G.(|x|,t; v) because
the Green function of the Cauchy problem turns out to be an even
function of x. According to a usual convention, in (6.9b) the limits
of integration are extended to take into account for the possibility of
impulse functions centred at the extremes.

Reciprocity relation and auxiliary functions for the stan-
dard diffusion and wave equations. First, let us consider the
particular cases v = 1/2 and v = 1, which correspond to the stan-
dard diffusion equation (6.1) with a = d and to the standard wave
equation (6.3) with @ = ¢2. For these cases the two Green functions
for the Cauchy and Signalling problems are usually derived in classi-
cal texts of mathematical physics by using the techniques of Fourier
transforms in space and Laplace transforms in time, respectively.

Then, using the notation GZ (x,t) := Ge s(x,t;1/2), the two Green
functions of the standard diffusion equation read:

1 2 2
Gz, t) = Wt_lp o2 /(dat) £ —atk , (6.10a)

Gia,t) = gt /000 £ @V 10

From the explicit expressions (6.10a)-(6.10b) we recognize the
reciprocity relation between the two Green functions, for x > 0, t > 0:

v Gi(e,t) = 1GMe,t) = FUO) = 2eMe),  (611)
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where
2
Md(é):%eé /4 g:ﬁﬂ). (6.12)

The variable & plays the role of similarity variable for the standard
diffusion, whereas the two functions F¢(¢) and M%(€) can be consid-
ered the auziliary functions for the diffusion equation itself because
each of them provides the fundamental solutions through (6.11). We
note that the function M%(¢) satisfies the normalization condition
Joo M) dg = 1.

For the standard wave equation, using the notation G'i(w,t) :=
Ge,s(x,t;1), the two Green functions read

G (w,t) = = [6(z — Vat) + §(z + Vat)]

F
—

N = N =

e+i\/5t/£+e—i\/at/<c ’ (6.13a)

g;”(x,t) :5(15_1,/\/5) <£> e_(x/\/a)s. (6.13())

From the explicit expressions (6.13a)-(6.13b) we recognize the reci-
procity relation between the two Green functions, for z > 0, ¢t > 0:

206Gy (x,t) =t G (z,t) = F*(§) = EM™(E), (6.14)
where

M¥(€) = §(1—¢), 5:% > 0. (6.15)

Even if £ does not appear as a similarity variable in the ordinary
sense, we attribute to £ and to {F (&), M* (£)} the roles of similarity
variable and auxiliary functions of the standard wave equation.

Reciprocity relation and auxiliary functions for the frac-
tional diffusion and wave equations. We now properly extend
the previous results to the general case 0 < v < 1 by determining the
two Green functions through the technique of Laplace transforms.
We show how this technique allows us to obtain the transformed
functions gc(:v, s;v), G;(ZC, s;v), by solving ordinary differential equa-
tions of the second order in x and then, by inversion, the required
Green functions G.(x,t;v) and Gy(z,t;v) in the space-time domain.
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For the Cauchy problem (6.6a) with f(z) = d(x), the application
of the Laplace transform to Eqs. (6.3)-(6.4) with r(z,t) = G.(z,t;v)
and v = (/2 leads to the non-homogeneous_ differential equation
satisfied by the image of the Green function, G.(z, s;v),

d*G, ~
dg; — "G, =—6(x)s*t, —o<x<400. (6.16)
x

Because of the singular term d(z) we have to consider the above

equation separately in the two intervals z < 0 and « > 0, imposing
the boundary conditions at x = Foo, G.(Foo,t;v) = 0, and the
necessary matching conditions at = 0%. We obtain

Ge(z,530) = Tllu o~ (|zl/v/a)s” , —oco<z<+4oco. (6.17)

as
A different strategy to derive G.(z,t;v) is to apply the Fourier

transform to Eqs. (6.3)-(6.4) as illustrated in [Mainardi et al. (2001)],
[Mainardi and Pagnini (2003)], to which the interested reader is re-
ferred for details.

For the Signalling problem (6.6b) with A(t) = 6(¢), the application
of the Laplace transform to Egs. (6.3)-(6.4) with r(x,t) = Gs(z,t;v)
and v = (3/2, leads to the homogeneous differential equation

g
aégis—s?”@:(), z>0. (6.18)
Imposing the boundary conditions Gs(0%,¢t;v) = h(t) = §(t) and
Gs(+00,t;v) = 0, we obtain
Gs(z, s;0) = e—(x/\/a)sl’7 x>0. (6.19)

The transformed solutions provided by Egs. (6.17) and (6.19)

must be inverted to provide the requested Green functions in the

space-time domain. For this purpose we recall the Laplace trans-
form pairs related to the transcendental functions F,(r), M, (r) of
the Wright type, discussed in Appendix F, see Eqs. (F.28)-(F.29),
where r stands for the actual time coordinate ¢. In fact, the Laplace
transform pairs in Appendix F imply

lF(l/t”)—iM (1/151/);d 0<v<l (6.20)

11/ Y =My e v . .
v v v . —s”

ZFV(l/t):WMV(l/t)Te 5. 0<v<l, (6.21)

so that these formulas can be used to invert the transforms in
Eqgs. (6.17) and (6.19).
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Then, introducing for x > 0, t > 0, the similarity variable
E:=x/(Vat") >0 (6.22)
and recalling the rules of scale-change in the Laplace transform
palrs after some manipulation we obtain the Green functions in
the space-time domain in the form

Gl t50) = 3= FU) = 5 M), (6.230)
Guwtiv) = T RO = 2 MO (6230)

We also recognize the following reciprocity relation for the original
Green functions,

waGx, t;v) =tGs(x, t;v) = F,(§) = vE M, (). (6.24)
Now F, (&), M,(§) are the auziliary functions for the general case
0 < v < 1, which generalize those for the standard diffusion given
in Egs. (6.11)-(6.12) and for the standard wave equation given in
Egs. (6.14)-(6.15). In fact, for v = 1/2 and for v = 1 we recover
the expressions of M9(¢) and M™(€), respectively given by (6.12)
and (6.15), as it can be easily verified using the formulas provided in
Appendix F.

Hereafter, for the reader’s convenience, we provide the series ex-
pansions for the auxiliary functions in powers of the similarity vari-
able £ > 0 as deduced from the corresponding series expansions in
the complex domain given in Eqs. (F.12)-(F.13). We have:

=t (6.25)
1 13 .
= > ( n!) ['(vn + 1) sin(nvn),
;) T ”"” (1=v)] (6.26)
= % Z ((n Y vn) sin(mvn) .
n=1

F) = f(s), f(bt)——f(S/b) (t/b) f(bs), with b > 0.
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Although convergent in all of IR, the series representations in
(6.25)-(6.26) can be used to provide a numerical evaluation of our
auxiliary functions only for relatively small values of &, so that
asymptotic evaluations as £ — +oo are required. Following the con-
siderations in Appendix F, see Egs. (F.20)-(F.21), and choosing as
a variable £/v rather than £, the asymptotic representation for the
M, function obtained by the standard saddle—point method reads:

(= 1/2)/(1 - v)
2r (1 —v)

We note that the standard saddle-point method for v = 1/2 provides
the exact result (6.12), i.e. My/2(&) = M4(E) = (1/y/7) exp(—£2/4),
but breaks down for v — 17 . The case v = 1, (namely g = 2) for
which Eq. (6.3) reduces to the standard wave equation (6.2), is of
course a singular limit since M;(§) = 6(1 — &). We postpone the
discussion of this limit to the next Section where it is relevant for

My (&/v) ~ exp |-+ L /=0 (g

pulse propagation in certain viscoelastic solids.

Equation (6.27) along with Egs. (6.22) and (6.23a), (6.23b) allows
us to note the exponential decay of G.(x,t;v) as x — +oo (at fixed
t) and the algebraic decay of Gs(x,t;v) as t — +oo (at fixed x), for
0 < v < 1. In fact, we get

Gelz, t;v) ~ A(t) a¥—1/2/0=v) e B/ , x — 00, (6.28a)

Gs(z, t:v) ~ C(z) ™) |t = 00, (6.28b)

where A(t), B(t) and C(x) are positive functions.

6.3 Basic properties and plots of the Green functions

Scaling properties of the Green functions. Looking at
Egs. (6.23a)-(6.23b) we recognize that for the Green function of the
Cauchy [Signalling] problem the time [spatial] shape is the same at
each position [instant], the only changes being due to space [time] -
dependent changes of width and amplitude. The maximum ampli-
tude in time [space] varies precisely as 1/x [1/t].
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The two fundamental solutions exhibit scaling properties that
make easier their plots versus distance (at fixed instant) and versus
time (at fixed position). In fact, using the well-known scaling prop-
erties of the Laplace transform in (6.17) and (6.19) (see footnote 2),
we easily prove, for any p, ¢ > 0, that

1
gc(pxaqta V) = q—ygc(PfE/qy,t;V), (629(1)

1
gs(px,qt;l/) = ;gs(px/qyyt;l/)7 (629b)

and, consequently, in plotting versus the space or time variable we
can choose suitable values for the other variable kept fixed.

Plots of the Green functions. In Fig. 6.1, as an example, we
compare versus |z|, at fixed ¢, the fundamental solutions of the

Cauchy problem with different v (v = 1/4, 1/2,3/4). We consider
the range 0 < |z| < 4 for ¢t = 1, assuming a = 1.

05

04

0.3

0.2

0.1

0

Fig. 6.1 The Cauchy problem for the time-fractional diffusion-wave equation:
the fundamental solutions versus |z| with a) v =1/4, b) v =1/2, ¢) v =3/4.

In Fig. 6.2 as an example, we compare versus t, at fixed x,
the fundamental solutions of the Signalling problem with different
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v(v=1/4,1/2,3/4). We consider the range 0 < ¢t < 3 for z = 1,
assuming a = 1.

1.5

0.5

0 1 2 3
Fig. 6.2 The Signalling problem for the time-fractional diffusion-wave equation:
the fundamental solutions versus ¢t with a) v =1/4, b) v =1/2, ¢) v =3/4.

The Green functions as probability density functions. We
intend to show that each Green function that we have previously
discussed can be interpreted as a probability density function (pdf):
more precisely for the Cauchy problem as a spatial pdf evolving in
time whereas that for the Signalling problem as a temporal pdf evolv-
ing in space. In virtue of Egs. (6.23a)-(6.23b) the two Green functions
are surely non-negative in the space-time domain being proportional
to the auxiliary function M, which is positive on real axis as stated
in Appendix F. It remains to prove the normalization conditions for
both the Green functions. The proof for G.(x,t;v) is obvious in view
of its time evolution self-similarity. In fact, from Eq. (6.22) with
(6.23a) and (F.33), we obtain:

+o0 1 +o0
gc(‘rvt;y)di:i/ Mu(g)d€:1~

—00 —00



148 Fractional Calculus and Waves in Linear Viscoelasticity

For Gs(z,t;v) the proof is less obvious since it requires more ma-
nipulation. In fact, from Egs. (6.22) with (6.23b) and (F.33), the
change of variable t — ¢ yields dt = —\/a/(vx)t'*V d¢, so that we

have:

“+00 v —+o00 “+00
Go(z, tyv)dt=——= =) M (€) di = M, (€)de =1.
0 va Jg 0

We now show how our Green functions, being expressed in terms of
Wright functions, may be related in particular to the class of Lévy
stable distributions, following our discussion in Appendix F.

For sake of simplicity let us start with the Green functions
of the standard diffusion equation (6.1) provided respectively by
Egs. (6.10a) and (6.10b) for the Cauchy and Signalling problems.

For the Cauchy problem we easily recognize (as indeed it is well
known) that the corresponding Green function is the spatial Gauss or
normal pdf, evolving with variance o proportional to the first power
of time. In fact, recalling the general expression of the (symmetric)
Gaussian pdf defined for = € IR with variance o2 and of its Fourier
transform (the characteristic function), we have:

pa(x;0) = ! e_x2/(202) + e_(02/2)’%2 . (6.30)

2mo

Furthermore, by comparing (6.10a) with (6.30) we get the identity

Gl(a,t) = Mlm e at) _ oo = vaal).  (6.31)

We now consider the Green function of the standard diffusion
equation for the Signalling problem. It is not so well known that it
is related to the temporal Lévy-Smirnov pdf, evolving with a median

proportional to the second power of space. In fact, recalling the
general expression of the (unilateral) Lévy-Smirnov pdf defined for
t € IR" with parameter ;1 and of its Laplace transform, see [Feller
(1971)],

m o 1/2
pLs(t;m:—%;/Z #IQRH) o o=V 208 (6.32)
we have

Gi(x,t) =

T

sae "0 = pus(tip =20 (639



Ch. 6: Diffusion and Wave—Propagation via Fractional Calculus 149

Because the Lévy-Smirnov pdf decays at infinity like t73/2, all its
moments of positive integer order are infinite. More precisely, we
note that the moments of real order § are finite only if 0 < ¢ <
1/2. In particular, for this pdf the mean (i.e. the expectation value)
is infinite, but the median is finite, resulting t,,.q ~ 2u. In fact,
recalling the cumulative distribution function

Prs(t;p) == /OtpL(t; w) dt = erfc <\/2Et> , (6.34)

from Prs(tmeq; ) = 1/2, it turns out that .4 ~ 2u, since the
complementary error function gets the value 1/2 where its argument
is approximatively 1/2.

In Probability theory, the Gauss and Lévy—Smirnov laws are spe-
cial cases of the important class of Lévy stable distributions that
we discuss in Appendix F, using the notation Lg for the canonic
representation of their densities. Then, the Gauss pdf pg(x; o) cor-
responds to LY(z) + exp(—r?) if we set 02 = 2, whereas the Lévy-
17/12/2(15) < exp(—s'/?) setting
= 1/2. This means that, taking into account suitable scale factors,
the two Green functions for the standard diffusion equation can be
expressed in terms of stable densities as follows,

Smirnov pdf prs(t; 1) corresponds to L

d 1 —2?/(4at) _ 1 1o Vs
gc ($7t) - o0 /mat S - \/a LZ(J:/ at)7 (635)
and
T 2 a __
Gl(z,t) = We a/(4at) _ — [/1/12/2 (ta/z*) . (6.36)

Now, let us consider the general case 0 < v < 1 for which the two
Green functions are given by Eqgs. (6.23a)-(6.23b) in terms of our
auxiliary Wright functions. In order to relate the Green functions
with stable densities. we must recall the relations between our auxil-
iary functions and the extremal stable densities, proven in Appendix
F, see Egs. (F.48)-(F.49). Consequently we now are in condition to
discuss the possibility to interpret our fundamental solutions (6.23a)
and (6.23b) in terms of stable pdf’s, so generalizing the arguments
for the standard diffusion equation.
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As far as the Cauchy problem is concerned, we note that the cor-
responding Green function is a symmetrical pdf in (scaled) distance
with two branches, for z > 0 and = < 0, obtained one from the other
by reflection.

For large |z| each branch exhibits an exponential decay according
to (6.28a) and, only for 1/2 < v < 1 it is the corresponding branch
of an extremal stable pdf with index of stability & = 1/v. In fact,
from (6.23a) and (F.49) we obtain:

IR T TS VO ||
gc(\ib|,t,u)—2y\/atVL1/V <\/Et'/ . (6.37)

This property had to the author’s knowledge not yet been noted:
it properly generalizes the Gaussian property of the pdf found for
v =1/2 (standard diffusion).

Furthermore, using the expression of the moments of the auxiliary
function M, in (F.34), the moments (of even order) of G.(x, t; V) turn
out to be

+oo I'2n+1)
Mg (o tiv)de = ——" L (at?)" =1,2,... (6.
|y an = S e =12, (639

We recognize that the variance is now growing like 2, which implies
a phenomenon of slow diffusion if 0 < v < 1/2 and fast diffusion if
1/2<v<2

We now consider the Green function for the Signalling problem.
We recognize that it is a unilateral extremal stable pdf in (scaled)
time with index of stability o = v, which decays according to (6.28b)
with a power law. In fact, from (6.23b) and (F.48) we obtain:

G, ) = (@)”” Lo [ (@)“”]  (639)

T x

This property, that will be recalled in the next section, has been
noted also by [Kreis and Pipkin (1986)].
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6.4 The Signalling problem in a viscoelastic solid with
a power-law creep

Let us now consider a Signalling problem of great relevance in seis-
mology, that is the propagation of waves generated by an impact
pulse of delta type in a viscoelastic medium exhibiting a loss tan-
gent independent of frequency. Such viscoelastic medium, in view of
our analysis in Chapter 3, is characterized by a stress-strain relation
of Scott-Blair type introduced in Egs. (3.16a)-(3.16b), with a creep
compliance of power-law type. Taking into account the dependence
on the spatial coordinate x, we now write the stress-strain relation
as:

.
o(z,t) = bl%e(:n,t) 0<y<, (6.40)

where the fractional derivative is intended in the Caputo sense, and
~ stands for its order. Setting for convenience

b1 = pa, (6.41)

where p is the constant density of the medium, the creep compliance
of such medium and its Laplace transform read

1 tY ~ 1

= = J(s)=—s 0 0<y<1. 6.42

)= a0 o v<1. o (6.42)

Recalling Eq. (3.32), such medium exhibits a loss tangent or internal

J(t

friction, denoted in seismology by Q! as in Eq. (2.63), which turns
quite independent on frequency. We have

Q™! =tan (gv) : (6.43)

Then, using the creep representation in Laplace domain discussed
in Chapter 4, Eqs. (4.7)-(4.8), the evolution equation for viscoelastic
waves 7(z,t) + 7(x, s) propagating in such medium reads

2—y
S

) r(x,s) —

which implies in the space-time domain
0?7

o

77('1'78) =0,

r(z,t) = a% r(z,t). (6.44)
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Such an evolution equation is equipped with the conditions typical
of the Signalling problem:
r(0,t) :=1o(t) = 6(t) <= 7(0,s) :=71p(s) = 1. (6.45)
In order to be consistent with previous notations used in Sections
6.2, 6.3, let us set
B=2v:=2—7, r(zt)=Gsz,t;v). (6.46)
In fact, so doing, we recognize the analogy between Eqgs. (6.44) with
Egs. (6.3) and (6.18). In view of Eq. (6.23b) we have
Go(z, t;v) = 2\/1575” M, (#) . (6.47)

Because the order of the time fractional derivative in (6.44) is in-

cluded in the interval (1,2), we are in presence of an evolution pro-
cess that is intermediate between standard diffusion (y = 1) and
standard wave propagation (y = 0). We agree to denote this pro-
cess as fractional diffusion-wave phenomenon and the corresponding
solutions as fractional diffusive waves.

We point out that such a viscoelastic model is of great interest in
seismology and in material sciences. In fact, the independence of the
Q from the frequency is experimentally verified in pulse propagation
phenomena not only in seismology, see [Kjartansson (1979)], [Strick
(1970)] [Strick (1982a)], [Strick and Mainardi (1982)], but also in
many materials as formerly shown in [Kolsky (1956)]. From (6.43)
we note that @) is also independent on the material constants p and
a which, however, play a role in the phenomenon of wave dispersion.

The limiting cases of absence of energy dissipation (the elastic
energy is fully stored) and of absence of energy storage (the elastic
energy is fully dissipated) are recovered from (6.43) for v = 0 (per-
fectly elastic solid) and v =1 (perfectly viscous fluid), respectively.

However, in view of seismological applications, we must take val-
ues the parameter 7 in the creep law sufficiently close to zero in order
to guarantee realistic values for the factor Q! of the order of 1073.
This means that we deal with nearly elastic materials for which we
can approximate in Eq. (6.43) the loss tangent with its argument and
write

2
Q '~ E,y R 157y <= v~ <—) . (6.48)
2 TQ
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As a consequence our parameter v must be sufficiently close to 1,
let us say, in view of (6.46), v = 1 — e with € = /2. This implies the
adoption of the Pipkin method, see [Kreis and Pipkin (1986)], in the
evaluation of the Wright M,, function entering the formula (6.47), as
illustrated in appendix F. As instructive examples for a realistic view
of the resulting pulse evolution we chose in our plots of the Green
function € = 0.01 and € = 0.001, as shown in Fig. 6.3.
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Fig. 6.3 Plots of the fundamental solution Gs(x,t;v) versus t at fixed x = 1 with
a=1,and v =1— € (y = 2¢) in the cases: left e = 0.01, right e = 0.001.

We note an asymmetric time evolution of the pulse which, started
as a delta function at x = 0, moves with a speed theoretically infinite.
However, the peak of the pulse moves with a speed close to a, the
characteristic velocity of the standard wave equation, being preceded
by a non-causal monotonic forerunner

6.5 Notes

There is a huge literature concerning evolution equations of the types
discussed above, both with and without explicit reference to the frac-
tional calculus.

Neglecting the papers already cited in the previous sections, we
now quote a number of references from the last century that have
attracted our attention; [Caputo (1969); Caputo (1996a)], [Meshkov
and Rossikhin (1970)], [Gonsovskii and Rossikhin (1973)], [Lokshin
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and Suvorova (1982)], [Nigmatullin (1986)], [Wyss (1986)], [Schnei-
der and Wyss (1989)], [Fujita (1990a)], [Kochubei (1990)], [Giona
and Roman (1992a); Giona and Roman (1992b)], [Priisse (1983)],
[Metzler et al. (1994)], [Gorenflo and Rutman (1994)], [Engler
(1997)], [Rossikhin and Shitikova (1997a)], and [Saichev and Za-
slavsky (1997)]. Of course, this list is not exhaustive.

The integro-differential equations (6.5a)-(6.5b) were investigated
via Mellin transforms and Fox H functions by [Schneider and Wyss
(1989)] in their pioneering paper. Starting from late 1992, the author
has simplified the approach by Schneider-Wyss by using the more fa-
miliar technique of Laplace transform to deal with Eqs. (6.3)-(6.4).
He has recognized in an explicit way that the fundamental solutions
can be expressed in terms of a special function (of Wright type),
a fact not known before. In addition, he has studied the analyti-
cal properties of this function and provided for the first time some
significant plots. Unfortunately, due to some referees, who in those
times were strongly in opposition with fractional calculus®, his fi-
nal results have appeared only some years later in refereed interna-
tional journals, see [Mainardi (1995b); Mainardi (1996a); Mainardi
(1996b)]. However, previous related works have been published in
Proceedings of Conferences held in 1993, see [Mainardi (1994a);
Mainardi (1995a)]. More complete treatments are found in author’s
CISM Lecture Notes, [Mainardi (1997)], and later in [Mainardi et al.
(2001)], [Mainardi and Pagnini (2003)].

3Example of a report of an anonymous referee of the tuentieth century (June
1994), clearly against the use of fractional calculus in mathematical physics.
This paper is of insufficient interest to publish as a Letter; I believe that is
sufficiently straightforward not to consider publishing it as a paper, either. The
main drawback is that no application, either Physical or Mathematical, is really
identified; what are these equations for? Anyone can write down some linear
equations and then solve them, but that is not the point of doing Mathematical
Physics. The paper should be rejected.



Appendix A

The Eulerian Functions

Here we consider the so-called Eulerian functions, namely the well
known Gamma function and Beta function along with some special
functions that turn out to be related to them, as the Psi function
and the incomplete Gamma functions. We recall not only the main
properties and representations of these functions, but we briefly con-
sider also their applications in the evaluation of certain expressions
relevant for the fractional calculus.

A.1 The Gamma function: T'(z)

The Gamma function T'(z) is the most widely used of all the special
functions: it is usually discussed first because it appears in almost ev-
ery integral or series representation of other advanced mathematical
functions. We take as its definition the integral formula
o0
I'(z) := / w?~ lemu du, Re(z)>0. (A1)

0
This integral representation is the most common for I'(z), even if it

is valid only in the right half-plane of C.

The analytic continuation to the left half-plane is possible in dif-
ferent ways. As will be shown later, the domain of analyticity Dr of
I'(z) turns out to be

Dr=C-{0,-1,-2,...,}. (A.2)

Using integration by parts, (A.1) shows that, at least for Re (2) > 0,
I'(z) satisfies the simple difference equation

IM(z+1)=2I(z), (A.3)

155
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which can be iterated to yield
Nz+n)=z2(z4+1) ... (2+n—-1)T(2), nelN. (A.4)
The recurrence formulas (A.3-4) can be extended to any z € Dp. In
particular, being I'(1) = 1, we get for non-negative integer values
F'n+1)=n!, n=0,1,2,.... (A.5)
As a consequence I'(z) can be used to define the Complex Factorial
Function
2l =T(z+1). (A.6)

By the substitution © = v? in (A.1) we get the Gaussian Integral
Representation

I(z) =2 / e v Ny, Re(z) >0, (A7)
0

which can be used to obtain I'(z) when z assumes positive semi-
integer values. Starting from
1 teo
r <§> :/ eV dv=+/m 177245, (A.8)
—0o0

we obtain for n € IN,

1 O 2 o 1\ (2n — 1! (2n)!

I’<n+§>—/_ooe v dv—F<§> T_ﬁ?”n!'
(A.9)
For the historical development of the Gamma function we refer
the reader to the notable article [Davis (1959)]. It is surprising that
the notation I'(z) and the name Gamma function were first used
by Legendre in 1814 after that Euler had represented in 1729 his
function through an infinite product, see Eq. (A.28). As a matter of

fact Legendre introduced the representation (A.1) as a generalization
of Euler’s integral expression for n!,

1
n!:/ (—logt)™ dt.
0

In fact, changing variable t — u = —logt, we get

o
n!:/ e “u"du=T(n+1).
0
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Analytic continuation. The common way to derive the domain
of analyticity (A.2) is to carry out the analytic continuation by the
mized representation due to Mittag-Leffler:

I'(z) = Z % + /100 e v ldu, zeDr. (A.10)

This representation can be obtained from the so-called Prym’s de-
composition, namely by splitting the integral in (A.1) into 2 integrals,
the one over the interval 0 < u < 1 which is then developed in a se-
ries, the other over the interval 1 < u < oo, which, being uniformly
convergent inside C, provides an entire function. The terms of the
series (uniformly convergent inside Dr) provide the principal parts
of T'(z) at the corresponding poles z, = —n. So we recognize that
I'(z) is analytic in the entire complex plane except at the points
zn = —n (n = 0,1,...), which turn out to be simple poles with
residues R,, = (—1)"/n!. The point at infinity, being an accumula-
tion point of poles, is an essential non-isolated singularity. Thus I'(z)
is a transcendental meromorphic function.

A formal way to obtain the domain of analyticity Dr is to carry
out the required analytical continuation by the Recurrence Formula

I'(z+n)

z+n—-1)(z+n—-2)...(z+1)z’
that is obtained by iterating (A.3) written as I'(z) = I'(z +1)/=.
In this way we can enter the left half-plane step by step. The nu-
merator at the R.H.S of (A.11) is analytic for Re (z) > —n; hence,
the L.H.S. is analytic for Re(z) > —n except for simple poles at
z=0,—-1,...,(—n+2),(—n + 1). Since n can be arbitrarily large,
we deduce the properties discussed above.

Another way to interpret the analytic continuation of the Gamma
function is provided by the Cauchy-Saalschiitz representation, which
is obtained by iterated integration by parts in the basic representa-

[(z) = (A.11)

tion (A.1). If n > 0 denotes any non-negative integer, we have

F(Z):/ uz_l[e_u—1+u+—u2+...+(_1)n+1_un du,
0

2! n!
(A.12)
in the strip —(n +1) < Re (z) < —n.
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To prove this representation the starting point is provided by the
integral

o
/ u? 1 [e_u—l] du, —1<TRe(z)<0.
0
Integration by parts gives (the integrated terms vanish at both limits)

o 1 1 [ 1
/ u® [e_u—l] du:—/ u?e  Ydu=-T(z+1)=T(z2).
0 ZJo z
So, by iteration, we get (A.12).

Graph of the Gamma function on the real axis. Plots of I'(x)
(continuous line) and 1/I'(x) (dashed line) are shown for —4 < x < 4
in Fig. A.1 and for 0 < z <3 in Fig. A.2.

24 = -2 -1 0 1 2 3 x 4

Fig. A.1 Plots of I'(z) (continuous line) and 1/T'(z) (dashed line) for—4 < z < 4.

Hereafter we provide some analytical arguments that support the
plots on the real axis. In fact, one can have an idea of the graph of
the Gamma function on the real axis using the formulas
I'(x)

x—1"
to be iterated starting from the interval 0 < z < 1, where I'(z) — +
ccasr — 0T and I'(1) = 1.

MNz+1)=2'(z), I'z—-1)=
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For & > 0 the integral representation (A.1) yields I'(z) > 0 and
I'(z) > 0 since

F(:c):/ e udu, F”(a:):/ e u” ! (log u)? du .
0 0

As a consequence, on the positive real axis I'(xz) turns out to be
positive and convex so that it first decreases and then increases ex-
hibiting a minimum value. Since I'(1) = I'(2) = 1, we must have a
minimum at some xg, 1 < xg < 2. It turns out that zg = 1.4616...
and I'(xg) = 0.8856...; hence x( is quite close to the point x = 1.5
where I' attains the value /7/2 = 0.8862.. ..

On the negative real axis I'(x) exhibits vertical asymptotes at
x=-n(n=0,1,2,...); it turns out to be positive for —2 < x < —1,
—4<x<-3,...,and negative for -1 <x <0, -3<z<-2,....

2.5

11T (x)

0 ad L L L L L L
0 0.5 1 1.5 2 25 3 35 4

Fig. A.2 Plots of I'(z) (continuous line) and 1/T'(x) (dashed line) for 0 < = < 3.

The reflection or complementary formula.
T(z)T(1—2) = —

(A.13)

sin 7wz
This formula, which shows the relationship between the I' function
and the trigonometric sin function, is of great importance together
with the recurrence formula (A.3). It can be proven in several man-
ners; the simplest proof consists in proving (A.13) for 0 < Re (z) < 1
and extend the result by analytic continuation to C except the points
0,+1,+2,...
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The reflection formula shows that I'(z) has no zeros. In fact, the
zeros cannot be in z = 0,+1,+2,... and, if I'(z) vanished for a non-
integer z, because of (A.13), this zero would be a pole of I'(1—z), that
cannot be true. This fact implies that 1/T'(z) is an entire function.

The multiplication formulas. Gauss proved the following Mul-
tiplication Formula

n—1
k
D(nz) = 2m)="2pm= 12 T Dz + =), n=23,..., (414
k=0 "
which reduces, for n = 2, to Legendre’s Duplication Formula
1 1
[(22) = — 2% 1270 T(z + =), A15
(22) Jon (2)I(z +5) (A.15)
and, for n = 3, to the Triplication Formula
1 1 2
[(32) = —3* 12T T (2 4+ =)z + =). (A.16)
27 3 3

Pochhammer’s symbols. Pochhammer’s symbols (z), are de-

fined for any non-negative integer n as

I'(z+n)
I'(z)

with (2)g = 1. In particular, for z = 1/2, we obtain from (A.9)

C)::rm+ym (2n— D1

(2)n =2+ (242)...(z4n—-1) = nelN. (A.17)

2 r(1/2) on
We extend the above notation to negative integers, defining
r 1
(2)opi=2(2—-1)(2—=2)...(z—n+1) = ﬁ, n e IN.
(A.18)

Hankel integral representations. In 1864 Hankel provided a

complex integral representation of the function 1/I'(z) valid for un-
restricted z; it reads:

11 e’

L(z) 2w o 7

where Ha_ denotes the Hankel path defined as a contour that begins

at t = —oo —ia (a > 0), encircles the branch cut that lies along the

dat, zeC, (A.19a)



Appendiz A: The Eulerian Functions 161

negative real axis, and ends up at ¢ = —oo + b (b > 0). Of course,
the branch cut is present when z is non-integer because t~% is a
multivalued function; in this case the contour can be chosen as in
Fig. A.3 left, where

+m, above the cut,
arg (t) =

—m, below the cut.

When z is an integer, the contour can be taken to be simply a circle
around the origin, described in the counterclockwise direction.

An alternative representation is obtained assuming the branch cut
along the positive real axis; in this case we get

L _ 1/ g, sec (A.19b)
T(z)  2mi Jya(—0) " F5 '

where Ha, denotes the Hankel path defined as a contour that begins
at t = 400 +ib (b > 0), encircles the branch cut that lies along the
positive real axis, and ends up at t = +00 —ia (a > 0). When z is
non-integer the contour can be chosen as in Fig. A.3 left, where

) 0, above the cut,
ar =
8 27w, below the cut.

When z is an integer, the contour can be taken to be simply a circle
around the origin, described in the counterclockwise direction.

Ha
'+

Fig. A.3 The left Hankel contour Ha—_ (left); the right Hankel contour
Ha (right).

We note that

Ha_ — Hay if t—te ™, and Ha, — Ha_ if t—tet™ .
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The advantage of Hankel representations (A.19a) and (A.19b)
compared with the integral representation (A.1) is that they con-
verge for all complex z and not just for Re (z) > 0. As a consequence
1/T'(2) is a transcendental entire function (of maximum exponential
type); the point at infinity is an essential isolated singularity, which
is an accumulation point of zeros (z, = —n, n = 0,1,...). Since
1/T'(2) is entire, I'(z) does not vanish in C.

The formulas (A.19a) and (A.19b) are very useful for deriving in-
tegral representations in the complex plane for several special func-
tions. Furthermore, using the reflection formula (A.13), we can get
the integral representations of I'(z) itself in terms of the Hankel paths
(referred to as Hankel integral representations for I'(z)), which turn
out to be valid in the whole domain of analyticity Dr.

The required Hankel integral representations that provide the an-
alytical continuation of I'(z) turn out to be:

a) using the path Ha_

1
[(z) = 7/ ett*7tdt, ze Dr; (A.20a)
2t sin mz Sy,
b) using the path Ha,
1
N(z) = 57— (=t e Dr. A.20b
(2) 2¢ sin 7z /Ha+e =) R ( )

Notable integrals via Gamma function.

o _ Dla+1
/ e Sttadt:M, Re(s) >0, Re(a)>-1. (A.21)
0 sa+1

This formula provides the Laplace transform of the power function
te.

/OO o—at’ gy — T T/xli/—ﬁ) ; Re(a)>0, B>0. (A22)
0 a

This integral for fixed @ > 0 and 3 = 2 attains the well-known value
m related to the Gauss integral. For fixed a > 0, the L.H.S. of
(A.22) may be referred to as the generalized Gauss integral.

The function () := I'(1 + 1/3) strongly decreases from infinity
at # = 0 to a positive minimum (less than the unity) attained around
0 = 2 and then slowly increases to the asymptotic value 1 as 3 — oo,
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Fig. A4 Plot of I(3) :=T(1+1/8) for 0 < 3 < 10.

see Fig. A.4. The minimum value is attained at Gy = 2.16638...
and holds I(8y) = 0.8856. ..

A more general formula is
o _ 1 T(1
/ ot =1 LT V0 (A.23)
0 poo 2k

where Re (z) > 0, > 0, Re (v) > 0. This formula contains (A.21)-
(A.22); it reduces to (A.21) for z = s, p =1 and v = a+ 1, and to
(A22) for z=a,p=LF and v = 1.

Asymptotic formulas.

1 1
D(z)~V2me #2272 14— 4+ —— + | A.24
(2) e s Tassa T i (A2

as z — oo with |argz| < m. This asymptotic expression is usually
referred as Stirling formula, originally given for n!. The accuracy of
this formula is surprisingly very good on the positive real axis also for
moderate values of z =z > 0, as it can be noted from the following
exact formula,

vz )
x! = 27Te< 123 xI+1/2; x>0, (A.25)

where 6 is a suitable number in (0, 1).
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Fig. A.5 T'(x) (continuous line) compared with its first order Stirling approxi-
mation (dashed line).

Fig. A.6 Relative error of the first order Stirling approximation to I'(x) for
1<z < 10.

In Fig. A.5 we show the comparison between the plot of the
Gamma function (continuous line) with that provided by the first
term of the Stirling approximation (in dashed line), in the range
0<x<4.

In Fig. A.6 we show the relative error of the first term approxi-
mation with respect to the exact value in the range 1 <z < 10; we
note that this error decreases from less than 8% to less than 1% .
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The two following asymptotic expressions provide a generalization
of the Stirling formula.
If a,b denote two positive constants, we have

D(az +b) ~ V271 e % (az)¥H0-1/2 (A.26)
as z — oo with |arg z| < 7, and
I'(z+a) (a=b)(a+b—-1)
— 1 e A2
I'(z+0b) c + 2z * ’ (4.27)

as z — oo along any curve joining z = 0 and z = oo providing

z# —a,—a—1,... ,and z # —b,—b—1

Infinite products. An alternative approach for introducing the
Gamma function goes via infinite products provided by Euler in 1729
and Weierstrass in 1856. Let us start with the original formula given

by Euler,
z

1 = (1+%)z_ . nln
)= 11 (2 A% Germ A%

n=1
The above limits exist for all z € Dr C C.
From Euler’s formula (A.28) it is possible to derive Weierstrass’
formula

o f[ee )]

where C, called the Euler—Mascheronl constant, is given by
~ 1

-T'(1) = —/ e “logudu.
0

C =05772157... = (A.30)

A.2 The Beta function: B(p,q)

Euler’s integral representation. The standard representation of
the Beta function is

1 €
B(p,q):/oup_l(l—u)q_ldu, {Eegiig (A.31)
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Note that, from historical view-point, this representation for B(p, q)
is referred to as the Fuler integral of the first kind, while the integral
representation (A.1) for I'(z) is referred to as the Fuler integral of
the second kind.

The Beta function is a complex function of two complex variables
whose analyticity properties will be deduced later, as soon as the
relation with the Gamma function has been established.

Symmetry.

B(p,q) = B(q,p)- (A.32)
This property is a simple consequence of the definition (A.31).

Trigonometric integral representation.

w/2 R 0
B(p, q)=2/ (cos 9)2P~! (sin )2 1w, { (p) >0,
0 Re(q) > 0.

This noteworthy representation follows from (A.31) by setting u =
(cos V)2

(A.33)

Relation with the Gamma function.
I'(p)I'(q)
Bp.a) = -+ -
(p.9) L(p+q)
This relation is of fundamental importance. Furthermore, it al-

(A.34)

lows us to obtain the analytical continuation of the Beta function.

The proof of (A.34) can be easily obtained by writing the prod-
uct I'(p) T'(q) as a double integral that is to be evaluated introduc-
ing polar coordinates. In this respect we must use the Gaussian
representation (A.7) for the Gamma function and the trigonometric
representation (A.33) for the Beta function. In fact,

_4/ / f(quv 2p12q 1dudv

/2
:4/ e ¥ p2rta- 1dp/ (cos 9)*~! (sin 9)%9 1 dv
0 0

=L(p+4q)B(p.q).
Henceforth, we shall exhibit other integral representations for
B(p, q), all valid for Re (p) > 0,Re(q) >0.
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Other integral representations. Integral representations on

[0,00) are
00 l‘p_l
—d
/0 (1 _|_x)p+q z,
00 xq—l
B(pa Q) = /0 m dx , (A'35)

1 [oogP~l 4 ga!
1 / AT
\ 2 0 (1 +$)p+q

The first representation follows from (A.31) by setting u = %;
x
the other two are easily obtained by using the symmetry property of
B(p,q)-
A further integral representation on [0, 1] is
1,p—1_ ,q-1
Y +y
Bp,g)= | L—"Y 4. A.36
o) = [ T ay (4.36)

This representation is obtained from the first integral in (A.35) as a
sum of the two contributions [0, 1] and [1, c0).

Notable integrals via Beta function. The Beta function plays
a fundamental role in the Laplace convolution of power functions.
We recall that the Laplace convolution is the convolution between
causal functions (i.e. vanishing for ¢ < 0),

+o0
£(t) * g(t) = fﬁ)t—TdT—/f ot —7)d

The convolution satisfies both the commutative and associative prop-
erties;

f(@) * g(t)=g(t) = f(t), [f(t)*[g(t) « h(B)]=[f(t) * g()] * h(t).

It is straightforward to show, by setting in (A.31) w = 7/t, the
following identity

t
Pl ol = / ()i dr = 77 B(pg).  (A37)
0
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Introducing the causal Gel’fand-Shilov function

!
Dy(t) ===, NeC
)\( ) F(}\) ) )
(where the suffix + just denotes the causality property of vanishing
for t < 0), we can write the previous result in the following interesting

form:
D (t) * Pg(t) = Ppyq(t). (A.38)

In fact, dividing by I'(p) I'(¢) the L.H.S of (A.37), and using (A.34),
we just obtain (A.38).

In the following we show other relevant applications of the Beta
function. The results (A.37-A.48) show that the convolution integral
between two (causal) functions, which are absolutely integrable in
any interval [0, ¢] and bounded in every finite interval that does not
include the origin, is not necessarily continuous at t = 0, even if a
theorem ensures that this integral turns out to be continuous for any
t > 0, see e.g. [Doetsch (1974)], pp. 47-48. In fact, considering two
arbitrary real numbers «, 3 greater than —1, we have

L s(t) :==t% % t° = Bla+ 1,8+ 1) t>+F+L (A.39)
so that
+00 if —2<a+p0<-1,
Jim Log(t) = Je() i a+f=-1, (A.40)

0 it a+p8>-1,

where ¢(a) = B(a+ 1,—a) =T'(a+ 1) '(-«a) = 7/ sin(—an).

We note that in the case a + = —1 the convolution integral
attains for any ¢ > 0 the constant value ¢(«) > 7. In particular, for
a = [ =—1/2, we obtain the minimum value for ¢(a), i.e.

/ L (A.41)
———=. :
o VAN

The Beta function is also used to prove some basic identities for
the Gamma function, like the complementary formula (A.13) and the
duplication formula (A.15). To prove the complementary formula we
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know that it is sufficient to prove it for real argument in the interval
(0,1), namely

MNo)I'(1 —a) = — , O0<ax<l.
sin T
We note from (A.34-A.35) that
e8] xafl
(@T( =)= Bl —a) = [ F—d,

and from a classical exercise in complex analysis

00 xafl T
/ dr = — .
o l+4+=x sin o
To prove the duplication formula we note that it is equivalent to

[(1/2)T(22) = 22717 (2) T(2 + 1/2),

and hence, after simple manipulations, to
B(z,1/2) = 2% 1 B(z,2). (A.42)
This identity is easily verified for Re(z) > 0, using the trigonometric
representation (A.33) for the Beta function and noting that
w/2 w/2 w/2
/ (cos 1) d = / (sin 9)*d9 = 20‘/ (cos )< (sin ¥)* dv,
0 0 0

with Re(a) > —1, since sin 299 = 2 sin ¥} cos ¢

A.3 Logarithmic derivative of the Gamma function

The derivative of the Gamma function itself does not play an impor-
tant role in the theory of special functions. It is not a very manage-
able function. Much more interesting is the logarithmic derivative of
the Gamma function, called the ¥-function,

P(z) = dilzlog I'(z) = 11:,((5)) .

By using the infinite product (A.28) it follows that

(A.43)

(1 1
w(z)z—c+§<n+l —Z+n> , 2#£0,-1,-2,... (A44)



170 Fractional Calculus and Waves in Linear Viscoelasticity

Thus the i-function possesses simple poles at all non-positive inte-
gers. Like I'(z) it is a meromorphic transcendental function: the
poles of 9(z) are thus identical with those of I'(z), but with different

residues R, = —1 (in agreement with the theorem of Logarithmic
Index).
We have the recursion relation
1
Y(z+1)=9Y(2) + P (A.45)

Special values at positive integers at once follow from the series in
(A.43):
1 1 1
¥(1) ==C, Wk+1)=—CHl+o+ot- ot ke N. (A46)

The derivative of 1(z) is also a meromorphic function and has
double poles. This follows, for example, from

=~ 1
V()= ——. (A.AT)
1;) (z4+n)?

Observe that the R.H.S. is positive on (0,00) and that ¢’(z) is the
second derivative of logI'(z). This shows that I'(x) is log-convezr on
(0,00), a relevant property of the Gamma function on the positive
real axis. This fact has been used in the legendary works of Bourbaki,
according to which, for positive values of the argument, the Gamma
function is defined uniquely by the following conditions,

flx)>0, f(z+1)=xf(x), f(1) =1, f(x)is log-convex. (A.48)

Integral representations of the Psi function. For complete-
ness let us recall the main integral representations for the Psi func-
tion valid in right half-planes of C,

1 1 — u?
P(z+1) = —C+/ 1 hl du, TRe(z)> -1, (A.49)
o 1—
and
& 1 1
P(z+1) = logz+/ e (— - ) du, TRe(z)>0. (A.50)
0 u et —1
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Graph of the Psi function on the real axis. A plot of the
function ¢ (x) is shown in Fig. A.7 for —4 <z < 4.

T

Fig. A.7 Plot of ¢(x) for —4 < = < 4.

A.4 The incomplete Gamma functions

The related incomplete Gamma functions are derived from splitting
up the interval of integration in (A.1). The common definitions are

Yo, 2) = / el gy, (A.51)
0

INa, z) := / et gy, (A.52)

For vy(a, z) we assume Re a > 0, with respect to z we assume
larg z| < m. We thus have for Re a > 0 and |arg z| < 7:

Y, z) =T(a) = T(a, 2), T(a,z)=T(a)—~(a, 2). (A.53)
The importance of v(a, z) in the framework of the special functions
was pointed out in the fifties by Tricomi, who referred to it as the
Cinderella function. Let us note that this function admits the alter-
native integral representation, obtained from (A.51) putting u = v z,
ie.,

1
Y, z) = 2% / @~ LeT2 gy Re {a} >0. (A.54)
0
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We note that v(«, z) is not generally uniform because of the factor
n (1.7) [like I'(«v, z)]. Furthermore, even if analytically con-
tinued for Re a < 0, it exhibits an infinite sequence of poles at
a=0,-1,-2,... [like I'(a)]. In order to get a uniform (entire)
function in « and in z, one would consider the modified or Tricoms
incomplete Gamma function
7*(057 Z) = %7 (A55)
where we attribute to 2% its principal determination. Such function
turns to be real valued for real a and real z. In particular we point
out the noteworthy result

Y(-n,z)=2", n=0,1,2,... (A.56)

obtained by solving the indeterminate form 2: for a = —n, that are
removable singularities.

The power series of v*(«, z), valid in all of € x C, turns out to
be

" _ 1 5 (=2 o7
v(a,z)._r(a);)(wrnn, Z a+n+1 . (A57)

In terms of the function (A.55) both mcomplete Gamma functions
n (A.51)-(A.52) can be represented repectively as

Y(a, z) =T(a) 2y («, 2), (A.58)
INa, 2) =T(a) [1 =27 (a, 2)] . (A.59)

The asymptotic behaviour of the incomplete Gamma functions is

elementary when only one of the two parameters o and z tends to
infinity. Here we limit ourselves to provide the asymptotic expansion
for I'(a, 2) for z — co. From [Gatteschi (1973)] we have

o0
_ l -«
MNa,z) ~e #2° Z(—l)" (ZnT)n , |2] = 00, argz # 7, (A.60)
n=0
where (1 — ), :==I'(1 — a+n)/I'(1 — a) denotes the Pochhammer
symbol defined in (A.17). For more details on the incomplete Gamma
functions we refer the reader to [Erdélyi et al. (1953-1955)] and to
the more recent review [Gautschi (1998)].



Appendix B

The Bessel Functions

As Rainville pointed out in his classic booklet [Rainville 1960], no
other special functions have received such detailed treatment in read-
ily available treatises as the Bessel functions. Consequently, we here
present only a brief introduction to the subject including the related
Laplace transform pairs used in this book.

B.1 The standard Bessel functions

The Bessel functions of the first and second kind: J,,Y,.
The Bessel functions of the first kind J,(z) are defined from their
power series representation:

- i (—1)k 2\ 2k+v
Tulz) = ];)F(k‘—i- DI(k+v+1) (5) : (B-1)

where z is a complex variable and v is a parameter which can take
arbitrary real or complex values. When v is integer it turns out as
an entire function; in this case

J_n(z)=(-1)"Ju(2), n=12,... (B.2)
In fact
= (—1)F 2\ 2k+n
A= (3)
5 (CFzyaen () e
J_n(z):; El(k —n)! (§> :s:0 (n+ s)ls! (5) ’
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When v is not integer the Bessel functions exhibit a branch point
at z = 0 because of the factor (2/2)", so z is intended with |arg(z)| <
7 that is in the complex plane cut along the negative real semi-axis.
Following a suggestion by Tricomi, see [Gatteschi (1973)], we can
extract from the series in (B.1) that singular factor and set:

o
S = G =30 VY g
J@ = 2 =X et (5 (B.3)
The entire function J! (z) was referred to by Tricomi as the uniform
Bessel function. In some textbooks on special functions, see e.g.
[Kiryakova (1994)], p. 336, the related entire function

1)k k

Cl2) 1= 27¥/2 J,(2:1/2)
Ty () = 27000, (22 k'Fk—i—u—i—l)

(B.4)
is introduced and named the Bessel— Clzﬁord function.

Since for fixed z in the cut plane the terms of the series (B.1)
are analytic function of the variable v, the fact that the series is
uniformly convergent implies that the Bessel function of the first
kind J,(z) is an entire function of order v.

The Bessel functions are usually introduced in the framework of
the Fucks—Frobenius theory of the second order differential equations
of the form

d? d
u(z) +plz) Tu(z) + gz u(z) =0, (B.5)
where p(z) and ¢(z) are assigned analytic functions. If we chose in
(B.5)
1 2
pe) =,z =1- 5. (8.6

and solve by power series, we would just obtain the series in (B.1).
As a consequence, we say that the Bessel function of the first kind
satisfies the equation

W(2) Sl (2) + (1 - Z-j) u(z) =0, (B.7)

z
where, for shortness we have used the apices to denote differentiation
with respect to z. It is customary to refer to Eq. (B.7) as the Bessel
differential equation.
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When v is not integer the general integral of the Bessel equation
is
’LL(Z) =M JI/(Z)—'_’YQ J*I/(Z)u V1,72 € C7 (Bg)

since J_,(z) and J,(z) are in this case linearly independent with
Wronskian

WAJo(2), Ty (2)} = —% sin(m) . (B.9)

We have used the notation W{f(2),g(2)} := f(2)¢'(z) — f'(2) g(2).
In order to get a solution of Eq. (B.7) that is linearly independent
from J, also when v =n (n = 0,+1,+2...) we introduce the Bessel

function of the second kind
Y, (2) = J_y(z) cos(vm) — J_, (%) '

sin(vm)

(B.10)

For integer v the R.H.S of (B.10) becomes indeterminate so in this
case we define Y;,(z) as the limit

Yn(z)::l}iL%Y,,(z):% [8‘]552) - a‘]al”/(z) . ] (B.11)
We also note that (B.11) implies
Ya(2) = (=1)" Ya(2). (B.12)

Then, when v is an arbitrary real number, the general integral of
Eq. (B.7) is

u(z) =nJu(2) +2Y(2), m,2€C, (B.13)
and the corresponding Wronskian turns out to be
2
W{J,(2),Y,(2)} = —- (B.14)
m

The Bessel functions of the third kind: H,(jl),ngz). In ad-
dition to the Bessel functions of the first and second kind it is cus-
tomary to consider the Bessel function of the third kind, or Hankel
functions, defined as

HV(2) = 0y (2) + Yy (2), HP(2):= J,(2) —iY,(z). (B.15)
These functions turn to be linearly independent with Wronskian
4
Tz

W{H" (2), H (2)} = (B.16)
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Using (B.10) to eliminate Y,,(z) from (B.15), we obtain
J_(2) —e ™™ J,(2)

(W)(5)
H;(2) o }Sin(mr)J 7 (B.17)
HP?(2) = ° ngzzy_ﬂ) A 7

which imply the important formulas
HY () = et HW(z), HP () =e " HP(2).  (B.18)

The recurrence relations for the Bessel functions. The func-
tions J,(2), Y, (2), Hl(,l)(z), Hl(,2)(z) satisfy simple recurrence rela-
tions. Denoting any one of them by C,(z) we have:

z

Cu(z) = o [Co1(2) + Coia1(2)],

(B.19)

€)= 51Cr1(2) ~ Con(2)].

In particular we note
Jo(2) = —=J1(2), Yy(2) = —Yi(z).

We note that C,, stands for cylinder function, as it is usual to call the
different kinds of Bessel functions. The origin of the term cylinder is
due to the fact that these functions are encountered in studying the
boundary—value problems of potential theory for cylindrical coordi-
nates.

A more general differential equation for the Bessel func-
tions. The differential equation (B.7) can be generalized by intro-
ducing three additional complex parameters A, p, ¢ in such a way

2w (2) + (1-2p) 2w (2) + (N2¢*2* + p* — v?¢%) w(z) = 0. (B.20)
A particular integral of this equation is provided by
w(z) =2PC, (A 29) . (B.21)

We see that for A =1, p =0, ¢ = 1 we recover Eq. (B.7).



Appendix B: The Bessel Functions 177

The asymptotic representations for the Bessel functions.
The asymptotic representations of the standard Bessel functions for
z — 0 and z — oo are provided by the first term of the convergent
series expansion around z = 0 and by the first term of the asymptotic
series expansion for z — oo, respectively.

For z — 0 (with |arg(z)| < 7 if v is not integer) we have:

(z/2)"

Jin(2) ~ (£1)" 1 = 0,1,..., (B.22)
Jy(z)w%, vA 142, ’
Yo(z) ~ —iH (2) ~ iH (2) ~ %log (2),
(B.23)

Y, (2) ~—iHW (2) ~i HP) (z)w—%F( )(2/2)7, v > 0.

For z — oo with \arg z)| < 7 and for any v we have:

2 7r>
z) ~\— Z—I/——— ,
Tz 4

/2 -H PR E) (B.24)
H(l ~ 2 4/

e o
HP (2) ~ M—e (Z_V§_Z>,

Tz

The generating function of the Bessel functions of integer
order. The Bessel functions of the first kind J,(z) are simply re-

lated to the coefficients of the Laurent expansion of the function
“+o0o

w(z,t) =2 = N ()", 0<Jt|<oo.  (B.25)

To this aim we multiply the power series of e#t/2 ¢=2/(2) and, after

some manipulation, we get

w(z,t) = *¢1/0/ Z Jn(2)t", 0<|t| <oco.  (B.26)
n=—oo

The function w(z,t) is called the generating function of the Bessel

functions of integer order, and formula (B.26) plays an important

role in the theory of these functions.
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Plots of the Bessel functions of integer order. Plots of the
Bessel functions J,(z) and Y, (z) for integer orders v = 0,1,2,3,4
are shown in Fig. B.1 and in Fig. B.2, respectively.

1 7 :
7%
05 / N\

SIS

L & >\ X
\ )\é

\><¢
05 1 2 3 4 5 6 7 8 9 10

®

Fig. B.1 Plots of J,(z) with v =0,1,2,3,4 for 0 <z < 10.
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Fig. B.2 Plots of Y, (z) with v =0,1,2,3,4 for 0 < z < 10.

The Bessel functions of semi-integer order. We now con-
sider the special cases when the order is a semi-integer number
v=n+1/2 (n =0,4£1,£2,43,...). In these cases the standard
Bessel function can be expressed in terms of elementary functions.
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In particular we have

9\ 1/2 9\ 1/2
J+1/2(Z)=<—> sin z, J_1/2(Z):<—> cosz. (B.27)

Tz TZ

The fact that any Bessel function of the first kind of half-integer
order can be expressed in terms of elementary functions now follows
from the first recurrence relation in (B.19), i.e.

2
o1+ Jpp1 = % JI/(Z) s

whose repeated applications gives

2\ 2 [sinz
Jy32(2) = — ~— —cosz|,
2 1/2 . CoS 2
J_3/9(2) = — <—> [smz - ] ,

v z

(B.28)

and so on.

To derive the corresponding formulas for Bessel functions of the
second and third kind we start from the expressions (B.10) and (B.15)
of these functions in terms of the Bessel functions of the first kind,
and use (B.25). For example, we have:

1/2
Yi2(2) = —J_1/2(2) = — <i> cos z , (B.29)

TZ

) 2\ e e (2N L
H1/2(z) =—i (E) e® Hl/Z(z) =+i <E> e . (B.30)
It has been shown by Liouville that the case of half-integer order
is the only case where the cylinder functions reduce to elementary
functions.

It is worth noting that when v = +1/2 the asymptotic repre-
sentations (B.24) for z — oo for all types of Bessel functions re-
duce to the exact expressions of the corresponding functions provided
above. This could be verified by using the saddle-point method for
the complex integral representation of the Bessel functions, that we
will present in Subsection B.3.
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B.2 The modified Bessel functions

The modified Bessel functions of the first and second kind:
I,,K,. The modified Bessel functions of the first kind .J,,(z) with
v € Rand z € C are defined by the power series

[e.o]

1 PN
L(z) = 1;:) T(k+ DIk +v+1) (5) ' (B.31)

We also define the modified Bessel functions of the second kind
K, (z):

mI_,(z)—1,(2)

Ko(2) = 2 sin(um)

For integer v the R.H.S of (B.32) becomes indeterminate so in this
case we define Y;,(z) as the limit

K,(z):= 31311 K,(z). (B.33)

Repeating the consideration of Section B.1, we find that I,(z)

and K, (z) are analytic functions of z in the cut plane and entire

(B.32)

function of the order v. We recall that K, (z) is sometimes referred
to as Macdonald’s function. We note from the definitions (B.31) and
(B.32) the useful formulas
I, (2)=1,(2), n=0,£1,%£2,...
K_,(z)=K,(z), Vv.

The modified Bessel functions I, (z) and K, (z) are simply related

to the standard Bessel function of argument z exp(+in/2). If
—m <arg(z) <7/2, ie, —-w/2<arg(ze™?)<7/2,

then (B.1) implies

I(2) = e ™™/2 J,(2e/?) (B.34)
Similarly, according to (B.17), for the same value of z we have
K, (2) = % /2 [ (5 /2. (B.35)
On the other hand, if
—7/2 < arg(z) <m, ie, —w<arg(ze %) <w/2,
then it is easily verified that
I(z) = et™/2 ] (ze7 /2 (B.36)

and

(i

Ky(2) =~ e VT2 g2 (772 (B.37)
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The differential equation for the modified Bessel functions.
It is an immediate consequence of their definitions that I,(z) and
K, (z) are linearly independent solutions of the differential equation

1/2
(2) + %v'(z) - (1 + ;> o(z) =0, (B.38)

which differs from the standard Bessel equation (B.7) only by the sign
of one term, and reduces to Eq. (B.7) if in Eq. (B.38) we make the
substitution z = +it. Like the standard Bessel equation, Eq. (B.38)
is often encountered in Mathematical Physics and it is referred to
as the modified Bessel differential equation. Its general solution, for
arbitrary v can be written in the form

v(z) =1 L(2) + 2 Ku(2), 7,72€C. (B.39)
For the modified Bessel functions the corresponding Wronskian turns
out to be

WAL(2), Ku(2)} = ——. (B.40)

z

The recurrence relations for the modified Bessel functions.
Like the cylinder functions, the modified Bessel functions I,,(z) and
K, (z) satisfy simple recurrence relations. However, at variance with
the cylinder functions, we have to keep distinct the corresponding
recurrence relations:

I(2) = = [l1(2) = L1 (2)],

2v
(B.41)
1) = 3 () + Lo (2],
and
Ky(2) = 5 [Kya(2) = Ko ()],
(B.42)

Ki(2) = 5 [Kua(2) + Ko (2)]

Recurrence relations (B.41) and (B.42) can be written in a unified
form if, following [Abramowitz and Stegun (1965)], we set

Z,(2) = {I,(2),e" " K,(2)} . (B.43)
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In fact we get

Z,(z) = % (Zv-1(2) = Zu41(2)],

(B.44)

Z,(2) = 5 [2v1(2) + Zu1(2)],

1
2
that preserves the form of (B.41).

A more general differential equation for the modified Bessel
functions. As for the standard Bessel functions we have provided
the reader with a more general differential equation solved by related
functions, see (B.20) and (B.21), so here we do it also for the modified
Bessel functions. For this purpose it is sufficient to replace there \?
with —A?. Then, introducing three additional complex parameters
A, p, q in such a way that

22w (2)+(1—-2p) 2w’ (2)+ (—)\2q222q +p? — V2q2) w(z) =0, (B.45)

we get the required differential equation whose a particular integral
is provided by

w(z) =2 Z,(A\z29) . (B.46)

Note that for A = 1, p = 0, ¢ = 1 in (B.45) we recover Eq. (B.38).
Of course the constant e’”™ multiplying the function K, (z) is not
relevant for Egs. (B.45)-(B.46), but it is essential to preserve the
same form for the recurrence relations satisfied by the two functions

denoted by Z,(z), as shown in Eqs. (B.44).

The asymptotic representations for the modified Bessel
functions. For the modified Bessel functions we have the following
asymptotic representations as z — 0 and as z — oo.

For z — 0 (with |arg(z)| < 7 if v is not integer) we have:

(z/2)"

n!

I:I:n(z)N , n=0,1,...,
(B.47)

(2/2)"
I,(z) ~ oD v#+1,+£2.. ..
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and
Ko(z) ~log (2/2),
1 (B.48)
K,(z) ~ 3 I'(v)(z/2)7", v>0.
For z — oo with |arg(z)| < 7/2 and for any v we have:
1
I(2) ~ —— 27 1/2e% B.49
(6~ o= (5.49)
1
K, (2) ~ 2277, (B.50)

Ver

The generating function of the modified Bessel functions of
integer order. For the modified Bessel functions of the first kind
I,,(z) of integer order we can establish a generating function follow-
ing a procedure similar to that adopted for J,(z), see Egs. (B.25)-
(B.26). In fact, by considering the Laurent expansion of the function
w(z,t) = e2(+1/D/2 gbtained by multiplying the power series of €?%/2,
e*/(2) we get after some manipulation
+00
w(z,t) = *tH1/D/2 — Z I(z)t", 0<|t| <. (B.51)

n=—oo

Plots of the modified Bessel functions of integer order.
Plots of the Bessel functions I,(x) and K,(x) for integer orders
v =0,1,2 are shown in Fig. B.3.
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Fig. B.3 Plots of I, (z), K, (z) with v =0,1,2 for 0 <z <5.
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Since the modified Bessel functions exhibit an exponential be-
haviour for x — oo, see (B.49)-(B.50), we show the plots of e I,,(x)
and e* K, with v =0,1,2 for 0 <z <5 in Fig. B.4.

1)

LE)
1

0 0.5 1 15 2 25 3 35 4 45 5

Fig. B4 Plots of e I, (), e K, with v =0,1,2 for 0 < z < 5.

The modified Bessel functions of semi-integer order. Like
the cylinder functions the modified Bessel functions of semi-integer
order can be expressed in terms of elementary functions. Starting
with the case v = 1/2 it is easy to recognize

2 1/2 92 1/2
Il/Q(Z) = (E) sinhz, I,l/Q(Z) = <E> COShZ, (352)

and

Kip() = Kop) = (1) e m5)

For general index v = n + 1/2 the corresponding formulas are ob-
tained from (B.48) and the recurrence relations (B.41) and (B.42).

B.3 Integral representations and Laplace transforms

Integral representations. The basic integral representation of
the standard Bessel function J,(z) with Re z > 0 is provided through
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the Hankel contour around the negative real axis, denoted by Ha_
and illustrated in Fig. A.3 left. We have, see e.g. [Davies (2002)],

1 —v—1 z 1
(2) = — Z(p—=)| dp, . (B.54
Jy(2) 57 Haip exp [2 ( p>] p, Rez >0, (B.54)

where the restriction Rez > 0 is necessary to make the integral
converge. Then, we can split the integral in two contributions:
(i) from the circular path where p = exp(if) (-7 < 6 < 7);
(7i) from the straight paths where p = exp(s £im) (0 < s < 00).
We have:
1 tro 1 (7™
(i) / elmwb+izsing) gg — — / cos(vf — zsin@)df;  (B.55)
—T 0

2 ™

I g I g
(”) - / eus—l—zm/—z(e —e~%)/2 ds + — / eus—zm/—z(e —e~%)/2 ds
0o 2 0o

211 T

= _sinvm) / exp(—zsinhs —vs)ds.
T 0
(B.56)
Thus the final integral representation is
1 ™
Ju(z) =— / cos(vf — zsin @) df

T Jo

(B.57)

_sin(vm) / exp(—zsinhs —vs)ds, Rez > 0.
0

™

For integer v the second integral gives no contribution. The first

integral is known as Bessel’s integral.
It is a simple matter to perform an analytic continuation of (B.54)
to all the domain of analyticity of J,(z). If we temporarily restrict z
to be real and positive, then the change of variables u = pz/2 yields

12
Ju(z) = M/ w1 exp [u — 22/(4u)] du, (B.58)
Ha_

211

where the contour is unchanged since z is real. But the integral in
(B.58) defines an entire function of z because it is single-valued and
absolutely convergent for all z. We recognize from the pre-factor in
(B.58) that J,(z) has a branch point in the origin, if v is not integer.
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In this case, according to the usual convention, we must introduce a
branch cut on the negative real axis so that Eq. (B.58) is valid under
the restriction —marg(z) < .

We note that the series expansion of J,(z), Eq. (B.1) may
be obtained from the integral representation (B.58) by replacing
exp[—22/(4u)] by its Taylor series and integrating term by term and
finally using Hankel’s integral representation of the reciprocal of the
Gamma function, Eq. (A.19a). Of course, the procedure can be
inverted to yield the integral representation (B.58) from the series
representation (B.1).

Other integral representations related to the class of Bessel func-
tions can be found in any handbook of special functions.

Laplace transform pairs. Herewith we report a few of Laplace
transform pairs related to Bessel functions extracted from [Ghizzetti
and Ossicini (1971)], where the interested reader can find more for-
mulas, all with the proof included. We first consider

(ViTFaZ—s)

Tolot) = S e

, Rev>—1, Res > |Ima|, (B.59)

(5— 82—a2)y
I,(at) + Y Rev > —1, Res > |Real|. (B.60)

Then, we consider the following transform pairs relevant for wave

o—aV s2 + a2
V52 4+ a2

2

propagation problems:

Jo (a V2 — a2> O(t—a) +

, Res > |Imal, (B.61)
o—aV s? —a?
I() (a \Y4 t2 _a,2> @(t—a) - W, Res > \Rea\, (362)

N
aajl (a t a>@(t—a); —as —av/ 52 + a?

— re 08— . (B.63)
Res > |Imal,

Ot —a) +e 08 —eaVS =% gy
Res > |Real.
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B.4 The Airy functions

187

The Airy differential equation in the complex plane (z € C).
The Airy functions Ai(z), Bi(z) are usually introduced as the two

linear independent solutions of the differential equation

d2
@u(z) —zu(z) =0.

The Wronskian turns

W{Ai(2), Bi(2)} = %

Tatlor series.
3n

) a—2/3 S c
Aiz) =3 Z 9nIT(n + 2/3)
3n+1

- 432 O T(n + 4/3)

& 3n
Bi _ 2-1/6 o
i(z) =3 Z9nlr (n+2/3)

3n+1
5/6
3 Z 9T (n +4/3)

We note
Ai(0) = Bi(0)/v3 = 372/3/1(2/3) ~ 0.355.

Functional relations.

Ai(z) + wAi(wz) + w?Ai(w?2) =0, w = e 27/3
Bi(z) = iwAi(wz) — iw?Ai(w?z), w = o—2im/3

Relations with Bessel functions.

{Az’(z) =52 O = 1@ 2

Ai(—z) = 3 21/ [J1/3(C) + J71/3(<)} ) 3
{Bz’(z) = \1[ 22150 + Iys(Q)] ¢ 2 3/2
Bi(~2) = 22" [J_1/3(¢) = J13(0)] 3

(B.65)

(B.66a)

(B.66b)

(B.67)

(B.68a)

(B.68b)

(B.69a)

(B.69b)
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Asymptotic representations.

1 5.3/2
Ai(z) ~ ——=z"e 2’2//3, z—o00, largz|<wm. (B.70a)

Ve

1 3/2
Bi(z) ~ T /4e2% / /3, z—o00, |argz|<w/3. (B.70D)
T

Integral representations for real variable (z = = € IR).

1 +i0o C$—<3/3dg

17” /oo (B.71a)
= —/ cos (ux +u’/3) du.
T Jo

1 [ 3
/ [eux —u’/3 + sin (uz +u3/3) du . (B.71b)
0

Bi(z) = —
T
Graphical representations for real variable (z = = € IR).
We present the plots of the Airy functions with their derivatives on

the real line in Figs. B.5 and B.6.

e mman,
e
e 3
—m——
| oy
T ———
- P

>
< --.D--

P
""( —————
I
—
&
"-...--.

_1‘! (Y
-15 -10 -5 0 5
X

Fig. B.5 Plots of Ai(z) (continuous line) and its derivative Ai’'(z) (dotted line)
for =15 <z <5.
As expected from their relations with the Bessel functions, see

Egs. (B.69a) and (B.69b), and from their asymptotic representa-
tions, see Egs. (B.70a) and (B.70b), we note from the plots that the
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functions Ai(x), Bi(x) are monotonic for x > 0 (Ai(x) is exponen-
tially decreasing, Bi(x) is exponentially increasing) whereas both of
them are oscillating with an algebraic decay for x < 0.

T
1
ﬁ
R, R o /
H I i N ) {
H T &) i A " x
H =| R HE R AN 1
¥ H it 0! L [N Y » 7
] H ¢ ! e 1 [ o Pl 7
PR A B T [ P / L/
F H H 1o 1 K,
N N H { i AN !
NEAAANEAN A S
[ AW AR WAV A VLAY A 0 WHW AL '!‘. !
H ] L] O [ O 1
Y H H B ¥
:V:v:v: i/ YV \i 1 H
PV o 1 ' . [} 7
O R A 1 . )
T 1 H [ g ()
L 1 1 v 1 [
[ 11 1 [ Vo L
1 1 H () (3] L%
ooy Y N
AL i (Y Y
W v
L

Fig. B.6 Plots of Bi(x) (continuous line) and its derivative Bi'(z) (dotted line)
for —15 < x <5.

These changes in behaviour along the real line are the most note-
worthy characteristics of the Airy functions. For a survey on the
applications of the Airy functions in physics we refer the interested
reader to [Vallé and Soares (2004)].
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Appendix C

The Error Functions

In this appendix we provide a survey on the class of so-called Error
functions including some Laplace transform pairs related to them,
which are relevant for the applications of fractional calculus.

C.1 The two standard Error functions

Basic definitions. The Error function is an entire function defined
as

erf (2) : f/ Cac, zec, (C.1)

where the integral is evaluated along an arbitrary path joining the
origin to the point ( = z. The form of this path does not matter,
since the integrand is an entire function of the complex variable (.

The complementary Error function is an entire function defined
as

erfc (z) :=1—erf(z) : \/,/ - dC, z2€C, (C.2)

where the path of integration is subjected to the restriction arg { — 9
with || < 7/4 as ( — oo along the path. In an obvious notation
we can write the extreme of integration as e’ o0 and hence, in
particular, +oo if we assume ¥ = 0.

Recalling from Appendix A the definition of the incomplete

Gamma functions, see (A.51)-(A.52), we recognize the identities:

orf (2) = %7(1/2,22), orfe () = % r(1/2,2%).  (C.3)

191
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We note that, since
+00 1 +o0
/ o du = = / e gy = YT (C.4)
0 2/ & 2
then

erf(+00) =1, erfc(+00) =0.

The factor 2/y/7 in front of the functions in (C.1) and (C.2) is kept
to satisfy the above conditions at infinity. Some authors, however,
do not put this pre-factor in their definitions of the Error functions,
so the reader must be aware of the different definitions available in
the literature.

Symmetry relations.

erf (—z) = —erf(z), erf (Z) = erf(2). (C.5)

Power series.

i (=" on+1
£(2) (2n+1 ’ C. (C6)
erf(z) = o zeC. .
ie—ZQZ 2" S2n+1
VT — (2n+ 1) ’

Asymptotic expansions. For erfc(z) as z — oo in the sector
larg z| < 3mw/4 we have:

erfc (2) } (1+Z 2m_1> ;m> (1)

Recalling that (2m — 1)!l = (2m)!/(2"m!), m=1,2,..., we get:

2
1 e R m (2m)! 1
N (1 * mZ::l(_l) m! (22)2m> - (©8)

Plots of the Error functions on the real axis. We easily recog-
nize from (C.2) and (C.9) that on the real line erfc (x) is a decreasing
function with limits erfc (—oo) = 2, erfc (+00) = 0, whereas erf (x)

erfc (2)

is an increasing function with limits erf (—oo) = —1, erf (+o00) = 1.
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To get more insight on the family of the Error functions we find
it instructive to present in Fig. C.1 the plots of the functions erf (z)
and erfc (x) along with the plot of the function
d 2 2
erf’(x) := %erf(:v) = \/—Ee T (C.9)
in the interval —2 < x < 42. In dashed line we enclose the plot of
the leading term of the asymptotic expansion of erfc (z) as z — +o0,
see (C.8). We recognize that a reasonably good matching of erfc ()
with this leading term is obtained already for x ~ 1.5.

Error Functions

2 T
erfc(x)

150 726X Iy i

1k
erf '(x)

0.5F 1
0

05 erf (x) _

4 i i i I i

2 149 -1 0.5 0 05 1 15 2

X

Fig. C.1 Plots of erf(z), erf’(z) and erfc (z) for —2 < z < +2.

C.2 Laplace transform pairs

Let us consider the most significant Laplace transform pairs related
to the Error function. Let us start with functions that we denote by
o(a,t), ¥(a,t) and x(a,t), where a > 0 is a parameter and ¢ > 0 is the
time variable. These functions play a fundamental role in problems
of diffusion where the parameter a is the space variable x; since they
are interrelated in the Laplace domain as we later show, they will be
referred to as the three sisters functions of diffusion.
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194
. e_a81/2 N
¢(a,t) = erfc (2\/E> + . = ¢(a,s), (C.10)
2 12 ~
Y(a,t) = 23’75_3/2 e @ /(4t) CH / = (a,s), (C.11)
T
1/2
1 1y g2 e @5 _
x(a,t) = _7rt 2 o—at/(4t) . iz = X(a,s), (C.12)
where Re s > 0. We remind that
a/(2v't) 2
e Y du, t>0.

P(a,t) = erfe <2L\/Z> 1 % 0

All the three functions decay exponentially to 0 as t — 0. Their
Laplace transforms ¢(a, s), X(a, s), X(a, s) turn out to be interrelated
via simple rules so that it is sufficient to prove only one transform
pair to derive the remaining two pairs. For example,

0
¢(a7t) = a@b(avt);

SO

¢(a7 5) = 55((17 8) )

1’/;(0,, s) = s/ X(a,s), so ¢(a,t) = _%X(avt) :

Using the Bromwich inversion formula for the Laplace transforms
we obtain the following integral representations for the three sisters

functions ¢(a,t), ¥(a,t), x(a,t):

o(a, t) =1— % /Oooe 7 gin (ay/1) g = d(a,s), (C.10")
Y(a,t) = % /Oooe 7t sin (av/r) dr = P(a,s), (C.11")
x(a,t) = % /Oooe_rt cos (ay/1) % + X(a,s). (C.12)

In Fig. C.2 we show the plots of the sisters functions for 0 <¢ <5

assuming a = 1.
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Fig. C.2 Plot of the three sisters functions ¢(a,t), ¥(a,t), x(a,t) with a =1 for
0<t<5.

Another series of Laplace transform pairs involves Error functions
in the Laplace domain. Assuming the original functions for ¢ > 0
with a parameter a > 0, we have:

fi(a,t) ::e—at2 : ﬁ 682/(4a) erfc (

SN )  VseC, (C.13)

S
2V/a

and, for Res > 0:

fala,t) = \/tl—k—a + \/778_1/2easerfc [(as)l/Q] , (C.14)
fa(a,t) = m s ora Y2698 arfe {(as)l/Q] . (C15)

C.3 Repeated integrals of the Error functions

Basic definitions and formulas.

I"erfe(2) = [XI" terfc(¢)d¢, n=0,1,2,...,

z

(C.16)

with I lerfe(z) = —2* | [Oerfe(z) = erfe(2).

2
v
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The above definitions imply

u —2)"
"erfe (z / —u du, C.17
=7 (C.17)

and
IMerfc(z) = —1" Lerfe(2). (C.18)
A relevant and useful formula is
% (ez2 erfc (z)) = (=1)"2"nle® I"erfe (). (C.19)
Recurrence relations.
I"erfc(z) = —% I"terfe(z) — % I"2erfe (2). (C.20)

This formula is easily established by induction. In fact, integrating
by part, we have
1
Terfc(z) = N e — zerfe (2),

and

Perfe(z) = = | (14 22?) erfe (2) — —=ze

»PIH
S

- i [erfc (2) — 2z T erfe (2)].

Differential equation. The second-order differential equation

d2y dy
22 + 22 d_ +2ny =0, (C.21)
admits as a general solution
y(z) = AI"erfc(z) + BI"erfc(—z), (C.22)

where A and B are arbitrary constants.

Power series. Integrating term by term the expansion in power
series of erf(z) in (C.6) we get the following powers series

n _ - (_1)n
[Merfe(2) = kzzo 20K EIT[1 + (n — k)/2)] 2

(C.23)

where the terms corresponding to k = n+2,n+4, ... are understood
to be zero.



Appendiz C: The Error Functions 197

Asymptotic expansions. The following asymptotic expansions
are given for ["erfc(z), n = 0,1,2..., as z — oo in the sector
largz| < °F,

2 e’ > 2m+n)! (=1)™
Ierfe ()~ o oy <1+m§( n!;;!) ((2z))2m>' (C.24)

C.4 The Erfi function and the Dawson integral

Definition of the Erfi function. In some applications we find
z

2
the integral e du, that is related to the Error function of ar-

0
gument ¢z. In this case, at variance with the standard Error functions
we prefer to not keep the pre-factor 2//m and we define the entire
function Erfi(2) as

Erfi(z) := /Oze u? du = \g—z_r erf (iz) = \g—z_r [1 — erfc (iz)]

0 22n—|—1

L (C.25)
nl(2n+1)’
= n=0 ze(C.
2 on
o Z 22n +1
= (2n+ 1l ’

Asymptotic expansions of the Erfi function. The asymptotic
expansion of erfc (z) as z — oo in the sector |arg z| < 37/4, see (C.7),
allows us to determine the asymptotic expansion of Erfi (z) in certain
sectors of C excluding, however, the most relevant real axis.

In the particular case z = x real the asymptotic expansion for
x — 400 reads, see [Gatteschi (1973)],

1+ i M] . (C.26)

Definition and plot of the Dawson integral. In Fig. C.3 we
report on the positive real semi-axis the plot of the

Daw(z) := exp(—z?) Erfi (), (C.27)
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known as Dawson integral, that is relevant in some problems of
Mathematical Physics. This function exhibits its maximum at
x =0.93143 ... with value 0.54104...

0.9F i =
0.8F : ! i
0.7r : 8
0.6 : : B
> 0.5 : 4
0.41 : 8
0.3k : . . . . . . d
0.2 : 8

0.1

Fig. C.3 Plot of the Dawson integral Daw(x) for 0 < z < 5.

C.5 The Fresnel integrals
Basic definitions. In some applications we find the integral
/ e du = / cos(u?) du + i / sin(u?) du (C.28)
0 0 0
that is expected to be related to the Error function of argument

z:xeim/llzzcl;m. (C.29)

The required relation is obtained comparing (C.28) with the defi-
nition (C.1) after setting in it the variable ¢ = e¥7/4yu. Then, we
finally get

¢ .2 : :
/ oI gy = geimﬂ erf (ey”/‘lx) . (C.30)
0
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After these notes, let us introduce the Fresnel integrals as the
entire functions defined by

C(z) = /0 cos (g g2) dc,

zeC, (C.31)
S(z) ::/0 sin (g g2) dc,

where the integrals are evaluated along an arbitrary path joining the
origin to the point ( = 2. The form of this path does not matter,
since the integrand is an entire function of the complex variable (.
In the literature there is in use another definition as follows,

Cy(2) = \/g /0 cos (%) d¢ = € ({/22)
Si(z) = \/g /O sin (¢?) d¢ = 5 (1/22) ,

As a matter of fact, the substantial difference between the two defi-
nitions (C.31) and (C.32) stands in a stretching in the independent
variable. For both definitions, as © — +o00 all the functions approach
to the limiting value 1/2, namely

C(4+00) = S(+00) =1/2, Ci(4+00) = S1(+00) =1/2, (C.33)

as implied by the familiar formulas

zeC. (C32)

o o0 1
/ cos(u?) du = / sin(u?) du = = /=, (C.34)
0 0 2V 2
derived from the complex integral
L2 ; 144
/ o FU” gy = \/TE etim/d = /1 1 L (C.35)
0

From now on we will consider the Fresnel integrals according to their
definitions (C.31).

Power series.

T e
C(z) = 7;)(—1) m T cC (C.36)
% (m/2)2n+1 An+3 ) . |

S() = Z(_l)n(4n +3)(2n + 1)! : ’

n=0
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Relation with the Error function. By using the considerations
in Egs. (C.28)-(C.30) we get:

C(z) £iS(z) = % e/ orf (\/gejFMMZ) ; (C.37)

that implies

C(z)= 21 [e*”/‘lerf( %ei“/‘lz) +e'm/4erf (\/ge*”/‘lz)} ,

S(z)= 2\% [e_i”/‘lerf( %em/‘lz) —e'm/terf (ﬁe_”/‘lz)} .
(C.38)

S

&

Plots of the Fresnel integrals. For real z = z, the Fresnel in-
tegrals are real. Both C(x) and S(z) vanish for x = 0, and have
oscillatory character, as follows from the formulas

C'(z) = cos (g:c) ,  S'(z) =sin (ga:> , (C.39)
which show that C'(z) has extrema at x = £+/2n + 1, while S(x)
has extrema at = +v2n, n = 0,1,2.... The largest maxima

are C(1) = 0,779893... and S(v/2) = 0.713972..., respectively.
Furthermore, as before noted, both the functions approach to the
common value 1/2 as © — +o0. In Fig. C.4 we show the plots of the
Fresnel integrals in the interval 0 < x <'5.

0.9

0.8

3 7N AV ARAA

oy 7 f

Fig. C.4 Plots of the Fresnel integrals for 0 < z < 5.
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The Cornu spiral. The curve of the parametric equations
z(t) =C(t), yit)=S@1), t>0, (C.40)

is called the Cornu spiral, see Fig. C.5. It has the property to have
the radius of curvature p proportional to the arc s measured from
the origin. In fact we have

dx R .
5 = o8 (nt?/2), i —nt sin (7t%/2),
(C.41)
d . d?
d_gtJ = sin (t?/2), %’g =t cos (nt?/2),
from which
ds =+/(dz)?> + (dy)? =dt, s=t
dx (dy)2 — dy (dx)Q = p=rTSs. (0.42)

O e + P

(A
N \J) .
| ~ ]
0,2 /

o
o
N
o
~
x
o
(&}
o
[oc]
-

Fig. C.5 Plot of the Cornu spiral for 0 < z < 1.
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Appendix D

The Exponential Integral Functions

In this Appendix we provide a survey of the class of the Exponen-
tial integral functions including a list of Laplace transform pairs
related to them, which are relevant for the applications of frac-
tional calculus. Our main bibliographical sources have been the trea-
tises [Abramowitz and Stegun (1965)], [Erdélyi et al. (1953-1955)],
[Erdélyi (1956)], [Gatteschi (1973)], [Ghizzetti and Ossicini (1971)],
[Jahnke and Emde (1943)], and our research papers [Mainardi et al.
(2007); Mainardi et al. (2008)].

D.1 The classical Exponential integrals Ei (z), £ (2)

The function Ei(z). A classical definition of the Ezponential in-
tegral is

Ei(z) = — /Oo ", (D.1)

—z
where the Cauchy principal value of the integral is understood if
z =z > 0. Some authors such as [Jahnke and Emde (1943)] adopt
the following definition for Ei(z),

Bi(2) i / %udu, (D.2)

—00

which is equivalent to (D.1). For this we note that

(o] —Uu z U
€ €

/ du:—/ — du,
.o oo U

where the Cauchy principal value is understood for z = x > 0.

203
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Recalling the incomplete Gamma functions in (A.52), we note the
identity

Ei(—2) =T(0,2) :/

z

oo —U

du, |argz| <m. (D.3)

The function £(z). In many texts on special functions the func-
tion I'(0, z) is usually taken as definition of Exponential integral and
denoted by &;(#) so that

£1(2) = —Fi(—2) = /OO = /loo e;t dt . (D.4)

P u

This definition is then generalized to yield

o e—zu
5n(2):/1 t—ndu, n=12..., (D.5)
or, more generally
o e—zu
E(z) = / du, v>1. (D.5a)
1w

We note that, in contrast with the standard literature where the
Exponential integrals are denoted by the letter E, we have used for
them the letter £: this choice is to avoid confusion with the standard
notation for the Mittag-Leffler function E,(z), treated in Appendix
E, that plays a more relevant role in fractional calculus and hence in
this book.

D.2 The modified Exponential integral Ein (2)

The basic definition. The whole subject matter can be greatly
simplified if we agree to follow F.G. Tricomi who has proposed
to consider the following entire function, formerly introduced by
[Schelkunoff (1944)]

Ein (2) := /OZ ! _ueiu du. (D.6)

Such a function, referred to as the modified Exponential integral,
turns out to be entire, being the primitive of an entire function.
The relation with the classical Exponential integrals will be given in
(D.11).
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On the real axis IR the modified Exponential integral Ein (z) is

an increasing function because

d 1—e*

T Ein (z) = >0, VzelR. (D.7)

In IR" the function Ein(x) turns out to be a Bernstein function,

which means that is positive, increasing, with the first derivative
completely monotonic.

Power series. The power series expansion of Ein (z), valid in all

of €, can be easily obtained by term-by-term integration and reads
22 23 2 > 2"
Ein (z) := 2z — + - ==Y (-1)"—. (D)
=1

221 "33 44 = nn!
Relation between Ein (z) and &;(z) = —Ei(—z). The rela-
tion between Ein(z) and &;(z) = —Ei(—z) can be obtained from
the series expansion of I'(«v, z) in the limit as a« — 0. For this pur-
pose let us recall the relation (A.52) between the two incomplete
gamma functions, which, using (A.53-A.54), allows us to write

= (2

o 2) =T(@) (a2 =Tl -2 S o2Z (09
As a consequence of (D.7) and (D.9), we obtain
P, 2) = lim [F(a) - %} + Bin(2). (D.10)
Since
fm [rte) = 5| = i, HEEEE
TR A ) Rl A O RIS Sk —C —logz,

a—0 a—0 a

o
where C' = —T7(1) = 0.577215..., see (A.30), denotes the Euler-
Mascheroni constant, we finally obtain the required relation, i.e.
&1(2) = —Ei(—2)=T(0,2) = =C —log z + Ein (2) , (D.11)
with |arg z| < m. This relation is important for understanding the
analytic properties of the classical Exponential integral functions in
that it isolates the multi-valued part represented by the logarithmic
function from the regular part represented by the entire function

Ein (z) given by the power series in (D.8), absolutely convergent in
all of C.
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D.3 Asymptotics for the Exponential integrals

The asymptotic behaviour of the Exponential integrals Ei(z), £1(2)
as z — oo can be obtained from their integral representation (D.1),
(D.4), respectively, noticing that

&1(z) ::/ il du:e_z/ ¢ du. (D.12)
z 0

U U+ 2z
In fact, we can prove by repeated integrations by part that
0 U 1 N-1 n!
G(z):=e & (2) = du= =~ )"~ +R ., (D13
Q== [ el | S0 R A (019

where it turns out Ry (2) = O (27V) as z — oo with |argz| < 71—
More precisely, we get from [Erdélyi (1956)]:
N! 1

T
TNT s larg 2| > = ;

ENOIER e ; (D14)
Bk larg 2| < 5"

Furthermore, if z = x > 0, it turns out Ry(z) = (=1)Voy N!/2V |

with 0 < Oy < 1.
In conclusion, as z — oo and |arg z| < 7 — 4, the required asymp-
totic expansion is derived from (D.13) and reads

£1(2) = ~Bi(2) =T(0,5) ~ *= 3 (_1)":% . (D15)
n=0

By using the relation (D.10), we get the asymptotic expansion in the
same sector for Ein (z), which consequently includes a constant and
a logarithmic term.

From (D.13)-(D.15), as z — 07 with |argz| < 7 — §, we get the
asymptotic expansion of the function

Fl2) = G(1/2) /> = /O 001 ‘::u du~S (“1)mlzn. (D.16)
n=0

It is instructive to note that this series can be formally obtained
by developing in geometric series the factor 1/(1 + zu) (in positive
powers of (zu)) and integrating term by term.

We note that the series in the R.H.S. of (D.16) for 2z = x € R
is the famous Fuler series, which is divergent for any x # 0. It is
usually treated in textbooks on asymptotics for historical reasons.
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D.4 Laplace transform pairs for Exponential integrals

Let us consider the following three causal functions fi(t), f2(t), f3(t)
related to Exponential integrals as follows:

fl(t) = 51(15) , t>0, (D.l?a)
fo(t) :=Ein(t) =C+logt+&i(t), t>0, (D.18a)
f3(t):=C+log t+el &), t>0. (D.19q)
The corresponding Laplace transforms turn out to be:
1
L{fi(t);s} = —-log(s+1), Res>0, (D.17b)
s
1 1
,C{fg(t);s}:—glog <§+1> , Res>D0, (D.18b)
logs logs log s
L{f3(t);s} = — = Res > 0. (D.19b)

s—1 s s(s—1)7
The function f3(¢) is found in problems of fractional relaxation, see
[Mainardi et al. (2007)].

The proof of (D.17b) is found, for example, in [Ghizzetti and
Ossicini (1971)], see Eq. [4.6.16] and pp. 104-105.

The proof of (D.18b) is hereafter provided in two ways, being in
our opinion very instructive and useful for the applications in the
text. The first proof is obtained as a consequence of the identity
(D.10), i.e. Ein(t) = &1(t) + C + log t, and the Laplace transform
pair

1
L{log t;s} = - [C+logs], Res>0, (D.20a)

whose proof is found, for example, in [Ghizzetti and Ossicini (1971)],
see Eq. [4.6.15] and p. 104. The second proof is direct and instruc-
tive. For this it is sufficient to compute the Laplace transform of the
elementary function provided by the derivative of Ein (¢), that is,
according to a standard exercise in the theory of Laplace transforms,

1—et 1
L ;s 0 = log g—l—l , Res>0, (D.20b)

t
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so that

t i 1 1
fo(t) := Ein (¢) :/ f)dt = Hs) —log (— - 1) , Res>0,
0 s s s
in agreement with (D.18b). After the previous proofs, the proof of
(D.18c) is trivial.
In Fig. D.1 we report the plots of the functions fi(t), f2(t) and

f3(t) for 0 <t < 10.

Fig. D.1 Plots of the functions fi(¢), f2(¢) and f3(¢) for 0 < ¢ < 10.

We outline the different asymptotic behaviours of the three func-
tions f1(t), fa(t) and f3(t) for small argument (¢ — 07) and large
argument (¢ — +00) that can be easily obtained by using Egs. (D.7),
(D.10) and (D.15). However, it is instructive to derive the required
asymptotic representations by using the Karamata Tauberian theory
for Laplace transforms, see [Feller (1971)], Chapter XII1.5. We have

1 — 0T
fi(t) ~ {eo_gtxft)’ i_}io;’ (D.21)

t, t—0t,
fa(t) ~ (D.22)
C+logt, t— 400,
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tlog(1/t), t— 0T,

) ~ { o (D:23)

log t, t— +oo.

We conclude by pointing out the Laplace transform pair
1
L{v(t,a);s} = T logs’ Res >0, (D.24)
where
[e.) ta+T

t,a) = - dr, >—1. D.25
v(t,a) /0 Fla+7+1) (A ( )

For details on this transcendental function the reader is referred to
the third volume of the Handbook of the Bateman Project [Erdélyi
et al. (1953-1955)], see Chapter XVIII (devoted to the Miscellaneous
functions) Section 18.3, pp. 217-224.
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Appendix E

The Mittag-LefHer Functions

In this appendix we provide a survey of the high transcendental func-
tions related to the Mittag-Leffler function, which are known to play
fundamental roles in various applications of the fractional calculus.
We simply refer to these as the class of functions of the Mittag-LefHer
type. As usual we devote particular attention to their Laplace trans-
forms. In Chapter 1 and Chapter 3 we have presented applications of
these functions (with plots) in fractional relaxation phenomena. Here
we present their applications for solving the Abel integral equations.
At the end, we add some historical and bibliographical notes.

E.1 The classical Mittag-Leffler function E,(z)

The Mittag-Leffler function, that we denote by E,(z) with o > 0, is
so named in honour of Gosta M. Mittag-Leffler, the great Swedish
mathematician who introduced and investigated it at the beginning
of the tuentieth century in a sequence of notes, see [Mittag-Leffler
(1903a); (1903b); (1904); (1905)]. The function is defined by the fol-

lowing series representation, convergent in the whole complex plane,

o0
ZTZ

Ea(z):z;)m, a>0, zeC, (E.1)

so E,(z) is an entire function. In the limit for a — 0T the analyticity
in the whole complex plane is lost since

o " 1
Eo(z) =) 2" = T k<1 (E.2)

n=0

211
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The Mittag-Leffler function provides a simple generalization of the
exponential function because of the substitution in the exponential
series of n! = I'(n + 1) with (an)! = I'(an + 1). So we recog-
nize E1(z) = exp(z). We also note that for the convergence of the
power series in (E.1) the parameter « may be complex provided that
Re (a) > 0, as pointed out in [Mittag-Lefler (1904)].

Other notable cases of definition (E.1), from which elementary
functions are recovered, are

Es (—I—z2) = cosh (2), Es (—zQ) = cos (z), zeC, (E.3)
and

By pp(2512)=e? [1 +erf (izl/Q)} = o erfe(F2Y2), 2 € C, (E.4)

where erf and erfc denote the error and the complementary error
functions defined in Appendix C, see Egs. (C.1)-(C.2), as

erf (2) : \/,/ —u du, erfc(z):=1—erf(z), 2z€C.

In (E.4) for 2'/? we mean the principal value of the square root of
z in the complex plane cut along the negative real axis. With this
1/2 turns out to be positive/negative for z € R.

Since the identities in (E.3) are trivial, we present the proof only
for (E.4). Avoiding the inessential polidromy with the substitution
+21/2 z, we write

choice £z

0o 2m 00 2m+1
Bip@ =) oDy +Zrm+3/2 u(z) +v(z). (E.5)

m=0 m=0

Whereas the even part is easily recognized to be u(z) = exp(22) , only
after some manipulation can the odd part be proved to be v(z) =
exp(z?) erf(z). To this end we need to recall from Appendix C the
series representation of the error function, see (C.6),

[e.o]

2 2 2m 2m+1
erf(z):\/—Ee Zzom,z s ZEC,

and note that (2m+1)!! := 1-3-5----(2m+1) = 2" 1 T'(m+3/2) /\/7 .
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An alternative proof is obtained by recognizing, after a term-wise
differentiation of the series representation in (E.5), that v(z) satisfies
the following differential equation in C,

V() = 2 [% 4 Z’U(z)} () =0,

whose solution can immediately be checked to be

2 22/Z —u? 22
v(z) = —=e e du = e* erf(z).
() == | (=)

The Mittag-Leffler functions of rational order. Let us now
consider the Mittag-Leffler functions of rational order o = p/q with
p, q € IN relatively prime. The relevant functional relations, that
we quote from [Erdélyi et al. (1953-1955)], [Dzherbashyan (1966)],
turn out to be

d p
() B =B, (5.6)
P ol —kp/g
/1) = E p/q -9 E
dzp p/q( ) / (Z >+k_1f(1—kp/q)’ 4=23..., (ET)
1 — 1 i2mh
Ep/q( ) 5 ZEl/q (Z /p /P) (E 8)
h=0
and
(1 —k/q,
El/q<zl/q>:ez 1+Z 1_£/q ¢=2.3,..., (E.9)
where y(a, z) := fo ~“ 42! du denotes the incomplete gamma func-

tion introduced at the end of Appendix A. Let us now sketch the
proof for the above functional relations.

One easily recognizes that the relations (E.6) and (E.7) are im-
mediate consequences of the definition (E.1). In order to prove the
relation (E.8) we need to recall the identity

pil . o =
Zeﬂth/p _)p ?f k=0 (modp), (E.10)
‘o 0if k#0 (modp).
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In fact, using this identity and the definition (E.1), we have
ZE 2mh/Py = p Bop(2P), peN. (E.11)

Substituting above a with a/p and z with 21/P we obtain

-1
1% :
:5 E Eop (zl/peﬂ“h/p> , peIN. (E.12)
h=0

Setting above a = p/q, we finally obtain (E.8).
To prove the relation (E.9) we consider (E.7) for p = 1. Multi-

plying both sides by e™*, we obtain

q_l Z_k/q

o7 By (1)) e 2T kg (E.13)

Then, upon integration of this and recalling the definition of the
incomplete Gamma function, we obtain (E.9).

The relation (E.9) shows how the Mittag-Leffler functions of ra-
tional order can be expressed in terms of exponentials and incomplete
gamma functions. In particular, taking in (E.9) ¢ = 2, we now can
verify again the relation (E.4). In fact, from (E.9) we obtain

. 1
Bia(e?) = |1+ —20(1/2,2)|
which is equivalent to (E.4) if we use the relation erf(z) =

v(1/2,22)//7, see (C.3).

The Mittag-LefHler integral representation. Many of the most
important properties of E,(z) follow from Mittag-Leffler’s integral
representation

1 ¢ a—lgC

E = —
a(2) 21 Jge CO — 2

¢, a>0, zeC, (E.14)

where the path of integration Ha (the Hankel path) is a loop which
starts and ends at —oo and encircles the circular disk |¢] < |2/
in the positive sense: —7 < arg( < m on Ha. To prove (E.14),
expand the integrand in powers of (, integrate term by term, and

use Hankel’s integral for the reciprocal of the Gamma function.



Appendiz E: The Mittag-Leffler Functions 215

The integrand in (E.14) has a branch-point at { = 0. The complex
(-plane is cut along the negative real axis, and in the cut plane the in-
tegrand is single-valued: the principal branch of (¢ is taken in the cut

plane. The integrand has poles at the points ¢, = z2/@ e2mim/o

m
integer, but only those of the poles lie in the cut plane for which
—aT < argz+2mm < an. Thus, the number of the poles inside Ha

is either [a] or [a + 1], according to the value of arg z.

Asymptotic expansions. The most interesting properties of the
Mittag-Leffler function are associated with its asymptotic expansions
as z — 0o in various sectors of the complex plane.

For detailed asymptotic analysis, which includes the smooth tran-
sition across the Stokes lines, the interested reader is referred to
[Wong and Zhao (2002)]. Here, we limit ourselves to report a few
results available in [Erdélyi et al. (1953-1954)].

For the case 0 < a < 2 we have for |z| — oc:

o

1 —k
Ea(2) ~ ~ exp(z'/) - ; ﬁ larg 2| < ar/2,  (E.15)
o0 —k
Ea(z)w—;ﬁ, ar/2 < argz < 2m —am/2. (E.16)
For the case aw > 2 we have for |z| — oo:
1 ; > 2k
Ea ~ = ( 1/a 27r2m/oz) - o~ E1
(2) a;exp z % ;I‘(l—ak)’ (E.17)

where arg z can assume any value between —7 and + inclusive, and
m takes all integer values such that
—an/2 <argz+2mm < ar/2.

From the asymptotic properties (E.15)-(E.17) and the definition
of the order (and type) of an entire function, we infer that the Mittag-
Leffler function is an entire function of order p = 1/« (and type 1)
for & > 0; in a certain sense each E,(z) is the simplest entire function
of its order, see [Phragmén (1904)]. These properties are still valid
but with p = 1/Re{a}, if o € C with positive real part.

The Mittag-Leffler function also furnishes examples and counter-
examples for the growth and other properties of entire functions of
finite order, see [Buhl (1925)].
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Complete monotonicity on the negative real axis. A rele-
vant property of the classical Mittag-Leffler function is its complete
monotonicity in the negative real axis, when its parameter « is less
or equal 1. We write for = > 0:

Ey(—z) CM iff 0<a<1, (E.18)
where CM stands for completely monotone (function).

This property, formerly conjectured by Feller using probabilistic
methods, was rigorously proven by [Pollard (1948)] based on the
Bochner theorem, which provides a sufficient and necessary condition
for the complete monotonicity. In other words, Pollard was able to
give the representation of E,(—z), for z € IRY, when 0 < a < 1,
that reads

E.(—x) :/ e “Py(u)du, Pyu)>0, 0<a<l. (E.19)
0

Here P, (u) is indeed a transcendental entire function with series

representation
P, (u) = 1 i (i sin(ran) T(an + 1)] u™ ! (E.20)
To £~ nl ’

whose non-negativity was proven by Pollard being related in sign with
the inverse Laplace transform of the CM function exp(—s®) derived
in [Pollard (1946)].

Denoting this inverse Laplace transform by P¥(u), it turns out
that

B w—1-1/a e (. ~1/a ]
P,(u)=—PF} (u , with
(6%
(B.21)
1o L(an+1)
—; Eﬁ sin 7r0m) W .

Later, in Appendix F, we will show that both the functions P and
P* introduced by Pollard are functions of the Wright type.
E.2 The Mittag-Leffler function with two parameters

A straightforward generalization of the Mittag-Leffler function is ob-
tained by replacing the additive constant 1 in the argument of the
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Gamma function in (E.1) by an arbitrary complex parameter 3. It
was formerly considered in 1905 by [Wiman (1905a)]; later, in the
fifties, such generalization was investigated by Humbert and Agarwal,
with respect to the Laplace transformation, see [Humbert (1953)],
[Agarwal 1953], [Humbert and Agarwal (1953)]. Usually, when deal-
ing with Laplace transform pairs, the parameter 3 is required to be
positive as a.
For this function we agree to use the notation

[o¢] Zn
Ea”@(Z) —§m7 R@OZ>O, BEC, ze(C. (E22)

Of course E,1(2) = Eqo(2).
Particular simple cases (of trivial proof) are

e —1 e* —1—=z2
E11(z) = ¢, Eia(z2) = , E13(2) = 2
_ z
o Bl = S ( > n_> |
n=0
and
sinh (z sin (z
Eoo(+2°) = Z( ) , Faa(—2%) = Z( ) . (E.24)

Compare the identities in (E.24) with those in (E.3) concerning
EQJ(:EZQ) = EQ(:EZZ).

Recurrence relations. We list hereafter some general functional
relations for the Mittag-Leffler function (E.22) of recursive kind,
which involve both the two parameters a, 3, see [Erdélyi et al.
(1953-1955)], [Dzherbashyan (1966)],

1
Eop5(2) = T3 + 2 Eapta(2), (E.25)
d
Ea,g(z) = ﬂEa”g_i_l(Z) + az E Ea,,@-i—l(z) 5 (E26)

d\? 1 4_ N o .
(E) [zﬂ lEaﬁ(z )| =287 lEaﬁ,p(z ), peN. (E.27)
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Sometimes in the relevant literature we find functions expressed in
terms of the Mittag-Leffler function of two parameters, when, with
a minimum effort, they can be shown to be simply related to the
classical Mittag-Leffler function of one parameter. An instructive
example is offered by the function treated in Chapter 1, Eq. (1.45),

d
—Eo (—t%), t>0,
7y o (=17) 0

whose identity is valid for any « > 0. This identity is easily proven

D, (t) :=t 717 By o (—t%) = —

by a direct calculation from the series representations, but it is not
well noted in the literature.

The Mittag-Leffler integral representation. The integral rep-
resentation of the Mittag-Leffler function with two parameters turns
out to be

]_ Ca_ﬂ ec

= d E.2
el ¢, a,B8>0, ze€C, (E28)

Ea,p(2)
where the path of integration Ha is the usual Hankel path considered
in (E.14) for the classical Mittag-Leffler function in one parameter.

Asymptotic expansions. As for the classical case, the most in-
teresting properties of the Mittag-Leffler function in two parameters
are associated with its asymptotic expansions as z — oo in various
sectors of the complex plane. These properties can be summarized
as follows.

For the case 0 < o < 2 we have as |z| — oo:

1 o > 2k
Eop(z) ~ o exp(z1/9) — Z TG —ah) larg z| < am/2, (E.29)
k=1
00 Sk
Eqop(z) ~ — Z (5 — k)’ ar/2 <argz < 2r —an/2. (FE.30)

k=1
For the case a > 2 we have as |z| — oc:

—k

1 Jagmim/a) NS __ 2"
Eq 5(2) 5 ;exp (zl e? ) ; TG —ak)’ (E.31)
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where arg z can assume any value between —7 and +7 inclusive and
m takes all integer values such that

—an/2 <argz+2mrm < ar/2.

We note that the additional parameter § has no influence on the
character of the entire function E, g(z) with respect to E,(z), so
the Mittag-Leffler function in two parameters is still entire of order
p=1/Re(a) and type 1.

The complete monotonicity on the negative real axis. Only
recently the theorem by Pollard was extended to the complete mono-
tonicity of the Mittag-Leffler function with two parameters on the
negative real axis, see [Schneider (1996); Miller and Samko (1997);
Miller and Samko (2001)]. Schneider proved that, for = > 0,

0<a<l,

5o a. (E.32)

Eop(—x) CM iff {
A part of the trivial case @« = = 1, the statement, in virtue of
Bernstein’s theorem, is equivalent to prove that E, g(—z) is the
Laplace transform of a non-negative, absolutely continuous function
supported by IR", that we denote Sa,3- We have, in our notation,

> 0<a<l,
Ea,ﬂ(—fli):/ e " Sqp(u)du, Sop >0, “= (E.33)
0 ﬁ > a,

where S, g(r) is given by:
~for0<a<l, g>a:

oo

n u
Sap(w) =Y (~1) ST —a—an "SR (E.34a)
n=0 ’
-fora=1, g>1:
(1—wu)s2
— 5 0<u<l1
Sapy={ TE-1 * "= (E.34b)
0, l<u<oo.

For @ = 8 = 1 we recover the Delta generalized function centred
in u = 1, namely §(1 —u) = (1 —u)~!/I'(0). For the proof of the
non-negativity we refer the reader to the original work by Schneider.
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E.3 Other functions of the Mittag-Leffler type

There are various functions introduced in the literature that can be
simply related to the Mittag-Leffler function with two parameters
or are its generalizations by adding additional parameters. In this
section we limit ourselves to introduce three functions, named after
Miller and Ross, Rabotnov and Prabhakar; further generalizations
are briefly mentioned in the notes at the end of this appendix along
with their references.

The Miller-Ross function. In [Miller and Ross (1993)] the au-
thors introduce the function Fy(v,a) by the representation

o~ (at)”
E/(v,a) ==tV z_% ey (E.35)
Comparing this definition with (E.22) we recognize
Ei(—v,a) =t" By y41(at) . (E.36)

A part of the pre-factor t¥ the power series in (E.35) represents an
entire function in € differing from the exponential series for the ad-
ditive constant v in the argument of I'(n + 1) = n!. According to
[Wintner (1959)], this kind of generalization of the exponential series
was formerly proposed by Heaviside, and contrasts with the subse-
quent generalization proposed by Mittag-Leffler.

Recalling the series representation of the incomplete Gamma func-
tions in Section A.4, see Egs. (A.55)-(A.57), we recognize the iden-
tities
fueat

By, @) =1V ey (v, 1) =

For Rev > 0, recalling the integral representation of the incom-

v,at). (E.37)

plete Gamma function in (E.37), we have

a Ve at v—1 —u 1 K v—1 _a(t—v)
Ei(v,a)= o) Jo u’" e du:F(l/) Ov e dv. (E.38)

For v = —p (p = 0,1,...) and a # 0, using Eq. (A.55)
[v*(=p,at) = (at)P] in (E.37), we get
Ei(0,a) = e™ | Ey(—1,a) = ae™, Ey(—2,a) =a*e™,.... (E.39)
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In general we have for any v > 0:

o~ (at)” t
Ef(-va) =ty D”{a]. E.40
(—v,a) :OF(n—i—l—l/) ol |e ( )
For a = 0 and arbitrary v we recover the power law
tl/
E =— E.A41
t(l/,O) F(V—|—1) ) ( )

that degenerates for v = —(p+1) (p =0,1,...) into the derivatives
of the generalized Dirac function 6®)(t) = t=?~1/T'(—p).

For v = £1/2 and a > 0 a relationship with the error function is
expected; we have

Ei(1/2,a) = a2 erf[(at)"/?], (E.42)
—-1/2
Ei(=1/2,a) = a Ei(1/2,a) + v (E.43)
We also note the relationship
Ei(v,a) =aE/(1+v,a)+ (E.44)

F'v+1)

For more details on this function, including tables of values, re-
cursion relations and applications, the interested reader is referred
to [Miller and Ross (1993)].

The Rabotnov function. Yu N. Rabotnov, in his works on vis-
coelastity, see e.g. [Rabotnov (1948); (1969)] and [Rabotnov et al.
(1969)] introduced the function of time ¢, depending on two parame-
ters, that he denoted by o € (—1,0] (related to the type of viscoelas-

ticity) and g € IR;
0 ﬂtn(a—i—l)

Ea(B,t) =1t 7;) NCECESE t>0. (E.45)

Rabotnov, presumably unaware of the Mittag-Leffler function, re-

ferred to this function as the fractional exponential function, noting
that for & = 0 it reduces to the standard exponential exp(ft). In the
literature such a function is mostly referred to as the Rabotnov func-
tion. The relation of this function with the Mittag-Leffler function
in two parameters is thus obvious:

Ea(B,t) =t Eqy1,a41 (Bt*1) . (E.46)
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However, even not yet noted in the literature, it is trivial to show,
using (1.45), that
1d

Ea(B,t) = 3 %EO‘H (ﬂto‘“) ) (E.A7)
We have kept the notation of Rabotnov according to whom the main
parameter « is shifted with respect to ours, so it appears confusing.
However, in view of the fact that his constant 3 is negative, we
have a complete equivalence with our theory of fractional relaxation
discussed in Chapter 1 (Section 1.3), namely with Eq. (1.45), if we
set in (E47) (o +1) —» aand f — —1.

The Prabhakar function. In [Prabhakar (1971)] the author has
introduced thgO function

E] 4(2) == ;#ﬁlﬂ) 2" Rea>0,6cC,vy>0, (E.48)
where (7), =v(y+1)...(y+n—1) =T(y+n)/T(y) denotes the
Pochhammer symbol. For v = 1 we recover the 2-parameter Mittag-
Leffler function (E.22), i.e.

Bl 5(2) = 7;) F(#lﬁ) , (E.49)

and, for v = 3 = 1, the classical Mittag-Leffler function (E.1),
e n
z

El(2) = 2) Flan 71" (E.50)

The relevance of this function appears nowadays in certain fractional
relaxation and diffusion phenomena, see e.g. [Hanyga and Seredyriska
(2008a)] and [Figueiredo et al. (2009a); (2009b)].

E.4 The Laplace transform pairs

The Mittag-Leffler functions are connected to the Laplace integral
through the relevant identities

/ e Y Ey (u®2) du,
0
- (E.51)

o
/ e T By 5 (u® 2) du,
0
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where o, 3 > 0. The first integral was evaluated by Mittag-LefHer
who showed that the region of its convergence contains the unit circle
and is bounded by the line Rez!/* = 1. This is also true for any
8> 0.

The functions eq(t; A), eq,g(t; A). The above integrals are fun-
damental in the evaluation of the Laplace transform of F, (—\t%)
and E, g (—At*) with o, 3 > 0 and A € C. Since these functions
play a key role in problems of fractional calculus, we shall introduce
a special notation for them.

Putting in (E.51) u = st and u® z = —At* with¢ >0 and A € C,
and using the sign + for the juxtaposition of a function depending
on t with its Laplace transform depending on s, we get the Laplace
transform pairs for Re (s) > ||/,

N Sa—l 8_1
calt; A) = Eo (-A17) + — Yk ppvert (E.52)
and
ap(t;N) =tV By 5 (—AtY) = o Wl pe (E.53)

Of course the results (E.52)-(E.53) can also be obtained formally by
Laplace transforming term by term the series in (E.1) and (E.6) with
z ==\t

We note that, following the approach by Humbert and Agarwal,
the Laplace transform pairs (E.52)-(E.53) allow us to obtain a num-
ber of functional relations satisfied by e, (t; A) and eq g(t; A), for ex-

ample,
= L = et (ES
€a,all; - )\dtea’l ) _F(a) €a,2a\ 15 9 .
and
d
cap(t; ) = - eapr1(tA). (E.55)

To prove (E.54) we note with o > 0:

_l Sa—l _1
. 2\ se 1A ’

80‘—1—/\:

Caalt; N) +
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To prove (E.55) we note with a, 3 > 0:
Safﬁ Saf(/g‘i’l)
tA) + =
ot ) RN W R
If X is positive, the functions e, (t; ) and e, g(t; A) turn to be com-

pletely monotone fort > 0when0 < o < land0 < a < 3 < 1,
respectively. These noteworthy properties can be regarded as a con-

—0.

sequence of the theorems by Pollard and Schneider that we have
previously stated, if we recall known results for CM functions!' In
fact, the CM properties (proved with respect the variables x) for the
functions E,(—x) and E, g(—x) still hold with respect to the variable
t if we replace = by At® (¢t > 0), provided A is a positive constant,
since t* is a Bernstein function just for 0 < o < 1. Furthermore for
0 < 8 < 1 the function e, g(t; A) turns out to be CM as a product of
two CM functions.

It is instructive to prove the above properties independently
from the theorems of Pollard and Scneider but directly from the
Bochner-like integral representations of the functions e, (t; \) and
€q,3(t; A) obtained from the inversion of their Laplace transforms
(E.52), (E.53). In fact, excluding the trivial case « = 8 = 1 for
which e1(t;\) = e11(t;A) = e !, we can prove the existence of
the corresponding spectral functions using the complex Bromwich
formula for the inversion of Laplace transforms.

As an exercise in complex analysis (that we kindly invite the
reader to carry out) we obtain the required integral representations

eq(t; A) == / e Tt Ky(ryA)dr, 0<a<l, (E.56)
0

with spectral function
1 a—1 4
Are™ sin (o) >0

Ka 7)\ = — - Y
(r; A) T 72 4+ 2 X7 cos (am) + A2

(E.57)

and

con(t: N) = /0 e T Ky s N dr, 0<a<B<l, (E58)

'a) The composition of a CM function with a Bernstein function is still a CM
function. b) The product of CM functions is a CM functions. For details see
[Berg and Forst (1975)], [Gripenberg et al. (1990)].
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with spectral function
1 Asin[(8 — a)m] +r® sin (B7)
T r2e 4 2Xr® cos (am) + A2

Since in these cases the contributions to the Bromwich inversion

Kos(ri)) = 8 >0, (B.59)

formula come only from the integration on the sides of the branch
cut along the negative real axis (where s = rexp(+in), r > 0), the
spectral functions are simply derived by using the so-called Titch-
marsh formula on Laplace inversion. In fact, recalling for a generic
Laplace transform pair f(t) + f(s) the Titchmarsh formula

fit) = 2L /Oooe_rt Im {fv(rei”)} dr,

s

that requires the expressions of

Sa—l 501_,3
—1I —1I
m{saﬂ}’ m{saﬂ}’

along the ray s = re™ with » > 0 (the branch cut of the function
s%), we easily obtain the required expressions of the two spectral
functions K (r;A), Ko g(r; A), that, as a matter of fact, turn out to
be non-negative.

The functions ey /5(t;A), €1/2,1/2(t; ).  We note that in most
handbooks containing tables for the Laplace transforms, the Mittag-
Leffler function is ignored so that the transform pairs (E.52)-(E.53)
do not appear if not in the special cases « = 1/2 and § =1, 1/2,
written in terms of the error and complementary error functions, see
e.g. [Abramowitz and Stegun (1965)]. In fact, in these cases we can
use (E.4) and (E.28) and recover from (E.26)-(E.27) the two Laplace
transform pairs

1 2
m - 61/2 (t, :l:A) = e/\ t erfc (Zi:)\ \/E) N A € C N (E60)
LI (£40) = —— ey (4EN), AEC. (E61)
- — € 5 = — (& ; . .
21 1/2,1/2 (4 ?t:F 1/2 4 )

We also obtain the related pairs

1 t
mTQ\/;ﬂFQAtel/g(t,iA), AeC, (E62)
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1 . t 9 .

mT:FQ)\\/;+(1+2>\ t)el/g(t,:lz)\), AeC. (E.63)

In the pair (E.62) we have used the properties
1 1 1 dar

ey = 2505 (o "E(E).
81/2(81/2:|:)\)2 d 8(81/2:|:)\>’ ds”f() ( ) f()
The pair (E.63) is easily obtained by noting that

1 1 A

(51/2 + /\)2 T ogl/2 (51/2 + ) + $1/2 (51/2 i/\)Q
The function el,ﬁ(t; A). By using the Prabhakar function (E.48)

we define the function

el 5(t; A) :=t""VE] j(—At%), (E.64)
Substituting with «, 3,7 > 0 the series representation of the Prab-
hakar function in the Laplace transformation yields the identity

oo_ )\ n
/0 e TSV EY J(at®) = sﬁ Z 7+”) <8—a> . (E.65)

On the other hand (using the blnomlal serles)
L —1) - L(y+n)
1 7= — "= )" ———=2". (F.66
(1+2) 7F(1—'y—n)n!2 7;) ) L(v)n! @ )

Comparison between Eq. (E.65) and Eq. (E.66) yields the Laplace
transform pair

(e 9]

—~

g8 s B
(s 4+ N7 (14 As—2)7
Eq. (E.67) holds (by analytic continuation) for Re[a] > 0, Re[3] > 0.
In particular we get the known Laplace transform pairs (E.53) for
ea,3(t; A) and (E.52) for eq(t; A).

From the Laplace transform pair (E.67), using the rules stated in
[Gripenberg et al. (1990)], [Hanyga and Seredytiska (2008a)] have
shown that the Prabhakar function for A > 0 and 8 = 1 is a CM
function iff 0 < o <1 and 0 < v < 1. More generally we can show
that for A > 0

el 5(t; A) :=t""VE] 5 (=A%) + . (E.67)

0<a<p<l,

(E.68)
0<y<1.

el 5t A) = 1 E] 5 (=Xt*) CM iff {
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E.5 Derivatives of the Mittag-Leffler functions

Let us denote the derivatives of order k = 0,1,2... of the function
E, g(at®) for a € R with respect its argument z = at® by Eék/)g (at®),
where a, 3 > 0. We then quote from [Podlubny (1999)] two inter-
esting results concerning the fractional derivative and the Laplace
transform of the function ¢**+9-1 Egkgg(ata).

For the fractional derivative of order v > 0, by differentiating
term by term the series representation, we have:

D7 {t"‘k*ﬁ’l Eg’“;(ata)} — (kAL E S(at?). (E.69)
For the Laplace transform we have for Re s > |a|'/*:
-8
kt+5-1 (k) L ks® _
L{ta +5 Eaﬁ(ata),s} =g B0 (BT

We find it instructive to prove the above Laplace transform for-
mula for the classical Mittag-Leffler function (that is in the case
B = 1), namely for Re s > |a|'/*:

Kl so—t
ak (k) ay . _ _
L{t EW (at )73} = e FE0L2 (BT
In the particular case a = 1 formula (E.71) reduces to
k!
k .at. _ _
L{t"e"; s} = G k=0,1,2,..., Res>|a|l. (E.72)

As a matter of fact (E.72) is known to be valid for Re s > Re a
and its proof is a consequence of the analyticity property of the
Laplace transform, L{t* f(t);s} = (=1)¥ F®)(s), applied to f(t) =
exp(=at), for which

1

iat
{ }_(S:FCL)’

However, Eq. (E.72) can be deduced for Re s > |a| by using the
method of power series expansions as shown below. Indeed,

* —u Ftzu _OO (iz)k > e U k _OO k _ 1
/Oe e du-Z i /0 du = Z(:I:z) e

k=0 k=0

k=0,1,2,..., Res>=xRea.
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from which, by k-iterated differentiation with respect to z,
o k!
/0 e vk et du = A g2 |z| < 1.

Now, by the substitutions u = st and z = a/s (for our purposes
here we agree to take s real), we get after simple manipulations the
identity in (E.73) for s > |a|. By analytic continuation the validity
is extended to complex s with Re s > |al.

The above reasoning can be applied to the integral below in order
to derive the more general Laplace transform formula (E.71). Indeed,

fooo e " B, (+2u%) du = Zk 0 F%I:H foo e %y dy

from which, by k-iterated dlfferentlatlng with respect to z,

—u ok k « _
/0 e v u* W) (24 )dU—i(lez)kH,

Now, by the substitutions v = st and z = a/s®, we get after

|z] < 1.

simple manipulations the identity in (E.71) for s > |a|'/®, namely,

by analytic continuation, for Re s > |a|'/®.

E.6 Summation and integration of Mittag-Lefller
functions

Hereafter we exhibit for completeness some formulas related to sum-
mation and integration of the Mittag-Leffler functions (in two pa-
rameters a, 8 > 0), referring the interested reader to [Dzherbashyan
(1966)], [Podlubny (1999)] for more formulas and details.

Concerning summation we outline,

-1
1% :
Eap(2) ==Y Eapps (zl/peﬂ”h/P) . peN, (E.73)
P>
from which we derive the duplication formula,

1

Ea7ﬁ(22) == 5 [Ea/lﬁ(‘i_Z) + Ea/27ﬁ(—2):| . (E74)

As an example of this formula we can recover, for « = 2,3 = 1 the
well-known expressions

cosh (z) = <e+z +e_’z> /2, cos(z)= (e""iz +e_iz) /2.
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Concerning integration we outline another interesting formula in
which the Gaussian probability density (the fundamental solution
of the standard diffusion equation) enters with the Mittag-Leffler
function:

/0 ¢~/ By g(—2) 2Pt do = /7t By gy (5412 (172), (B.75)

where a, 3 > 0 and t > 0. For 8 = 1 we get the interesting duplica-
tion formula

1 oo
Ea/Q(_ta/Q) = Nl o7/ (41) Ey\(—z%) dx. (E.76)

Formula (E.75) can be obtained after some manipulations from term-
by-term integration from 0 to oo of the series in

00 _
xoer,B 1

Al
I'(an + )

e—$2/(4t) Ea,ﬂ(_xa) ZC’B_I —
n=0

But, as pointed out in [Podlubny (1999)], it can be derived in a
simpler way by applying a theorem on the Laplace transform theory
(a corollary of the Efros theorem), according to which

L {\/% /OO e—?/(41) f(x) dm;s} — s1/2 ]?(sl/Q).
™ 0

For this purpose let us take
f(z) = 2Pt Eop(—2%),

so that in view of the Laplace transform pair (E.53),

therefore

$0/2-(B+1)/2

—1/2~ 1/2y _
S f(S )_ Sa/2—1

=L {t(,a+1)/2—1 Ea/z,(ﬂ+1)/2(ta/2); 5} .
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E.7 Applications of the Mittag-Leffler functions to the
Abel integral equations

In their CISM Lecture notes, [Gorenflo and Mainardi (1997)] have
worked out the key role of the function of the Mittag-Leffler type
ea(t; N) := E, (—AtY) in treating Abel integral equations of the sec-
ond kind and fractional differential equations, so improving the for-
mer results by [Hille and Tamarkin (1930)], [Barret (1954)], respec-
tively. In particular, they have considered the differential equations
of fractional order governing processes of fractional relazation and
fractional oscillation, where the functions e, (¢; A\) with 0 < o < 1 and
1 < a < 2 respectively, play fundamental roles, see also [Mainardi
(1996b)], [Gorenflo and Mainardi (1996)]. We note that the frac-
tional relaxation has been treated in Chapter 1 whereas for frac-
tional oscillations we refer the interested reader to the mentioned
papers by Gorenflo and Mainardi and to the most recent papers
by Achar, Hanneken and collaborators, see [Achar et al. (2001);
Achar et al. (2002); Achar et al. (2004)] and [Hanneken et al. (2005);
Hanneken et al. (2007)].

In this section we recall the most relevant results for the Abel
integral equations.

Abel integral equations of the second kind. Using the defini-
tion (1.2) of the Riemann-Liouville fractional integral of order ac > 0
the Abel integral equation of the second kind can be written as

A tu(r) o oY ulf) —
u(t) + o) /0 = dr .= (1+ X oI}") u(t) = f(t), (E.77)

where t > 0 and A € C. As a consequence the equation can be
formally solved as follows:

u(t) = (1+XoIf) ™" f(t) = (1 Y (A" 0]5‘”) [y, (E.78)
n=1
Noting by (1.7-8) the convolution formulation

an—1
W5 1(8) = Ponlt) * F0) = s

* f(t),
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the formal solution reads
00 tomfl
t) = f(t —A)" t). E.
u(t) f<>+(Z( ) F(an)> « f(t) (E.79)

Recalling definition (E.52) of the function e, (¢; \) we note that

AN = B (MY = e (B N), t>0. E.
;( ) T(an) — ( ) = éa(t; A) >0 (£.80)

Finally, the solution reads

u(t) = f(t) + éa(t; ) = f(t). (E.81)
Of course the above formal proof can be made rigorous. Simply
observe that because of the rapid growth of the Gamma function
the infinite series in (E.79)-(E.80) are uniformly convergent in every
bounded interval of the variable ¢ so that term-wise integrations and
differentiations are allowed. However, we prefer to use the alternative
technique of Laplace transforms, which will allow us to obtain the
solution in different forms, including result (E.81).
Applying Laplace transformation to (E.77) we obtain

{1 + s%} u(s) = f(s) = ails) = ——— J(s). (E.82)

S+ A
Now, let us proceed to obtain the inverse Laplace transform of (E.82)
using Laplace transform pair (E.52) related to the Mittag-Leffler
function e, (t; A).
We note that, to this aim, we can choose two different ways, by

following the standard rules of the Laplace transformation. Firstly,
writing (E.82) as

Sa—l -
u(s) =s La ) f(s)} , (E.82a)
we obtain
== /f )ea(T; \)dT . (E.83a)
Secondly, if we write (E.82)
S0~ 1 . Sa—l
u(s) = [s f(s) = F(OT)] + £(07) (E.82b)

s® 4+ A\ s 4+ A\’
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we obtain
u(t) = /Of(t —T)ea(T; N) dr + F(0T) ealt; N). (E.83b)

We also note that, e, (¢; A) being a function differentiable with respect
to t with e, (01; ) = E,(07) = 1, there exists another possibility to
rewrite (E.82), namely

safl . -
u(s) = [s T 1] (s)+ f(s). (E.82¢)
Then we obtain
¢
u(t) = /0 F(t— 1) éa(r N dr + f(2), (B.83¢)

in agreement with (E.81). We see that the way b) is more restrictive
than the ways a) and ¢) since it requires that f(t) be differentiable
with L-transformable derivative.

E.8 Notes

We note that in the twentieth century the functions of the Mittag-
Leffler type remained almost unknown to the majority of scientists
because they have been unjustly ignored in many treatises on spe-
cial functions, including the most common [Abramowitz and Stegun
(1965)]. Furthermore, there appeared some relevant works where the
authors arrived at series or integral representations of these functions
without recognizing them, e.g. [Gnedenko and Kolmogorov (1968)],
[Balakrishnan (1985)] and [Sanz-Serna (1988)].

Thanks to suggestion of Professor Rudolf Gorenflo, the 2000
Mathematics Subject Classification has included these functions in
their items, see 33E12: Mittag-Leffler functions and generalizations.

From now on, let us consider a number of references where the
functions of the Mittag-Leffler type have been dealt with sufficient
detail.

A description of the most important properties of these functions
is found in the third volume of the Handbook on Higher Transcenden-
tal Functions of the Bateman Project, [Erdélyi et al. (1953-1955)].



Appendiz E: The Mittag-Leffler Functions 233

In it, the authors have included the Mittag-Leffler functions in the
Chapter XV III devoted to the so-called miscellaneous functions.
The attribute of miscellaneous is due to the fact that only later, in
the sixties, the Mittag-Leffler functions were recognized to belong to
a more general class of higher transcendental functions, known as
Fox H-functions®. In fact, this class was well established only after
the seminal paper [Fox (1961)]. For more details on H-functions, see
e.g. the specialized treatises [Kilbas and Saigo (2004)], [Mathai and
Saxena (1978)], [Srivastava et al. (1982)].

Coming back to the classical Mittag-Leffler functions, we recom-
mend the treatise on complex functions by [Sansone and Gerretsen
(1960)], where a detailed account of these functions is given.

However, the specialized treatise, where more details on the func-
tions of the Mittag-Leffler type are given, is surely [Dzherbashyan
(1966)], in Russian. Unfortunately, no official English translation of
this book is nowadays available. We can content ourselves for an-
other book by the same author [Dzherbashyan (1993)] in English,
where a brief description of these functions is given.

Details on Mittag-Leffler functions can also be found in some
treatises devoted to the theory and/or applications of special func-
tions, integral transforms and fractional calculus, e.g. [Davis (1936)],
[Marichev (1983)], [Gorenflo and Vessella (1991)], [Samko et al.
(1993)], [Kiryakova (1994)], [Carpinteri and Mainardi (1997)], [Pod-
lubny (1999)], [Hilfer (2000a)], [West et al. (2003)], [Kilbas et al.
(2006)], [Magin (2006)], [Debnath and Bhatta (2007)], [Mathai and
Haubold (2008)].

As pioneering works of mathematical nature we refer to [Hille and
Tamarkin (1930)] and [Barret (1954)]. The 1930 paper by Hille and
Tamarkin was concerning the solution of the Abel integral equation
of the second kind (a particular fractional integral equation). The
1956 paper by Barret was concerning the general solution of the linear
fractional differential equation with constant coefficients.

2Tt is opinion of the present author that the analysis of the Mittag-Leffler func-
tions as particular cases of the general and cumbersome class of the Fox H-
functions is not suitable for applied scientists. In fact they are accustomed to
deal with an essential number of parameters and without much generality.
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Concerning earlier applications of the Mittag-Leffler function in
physics, we refer to the contributions by Kenneth S. Cole, see [Cole
(1933)] (mentioned in [Davis (1936)], p. 287), in connection with
nerve conduction, and by F.M. de Oliveira Castro, [De Oliveira
Castro (1939)], and Bertram Gross, see [Gross (1947a)], in connec-
tion with dielectrical and mechanical relaxation, respectively. Sub-
sequently, [Caputo and Mainardi (1971a); (1971b)] have proved that
Mittag-Leffler functions appear whenever derivatives of fractional
order are introduced in the constitutive equations of a linear vis-
coelastic body. Since then, several other authors have pointed out
the relevance of the Mittag-Lefller function for fractional viscoelastic
models, as pointed out in Chapter 3.

In recent times the attention of mathematicians and applied sci-
entists towards the functions of the Mittag-Leffler type has increased,
overall because of their relation with the fractional calculus and its
applications. In addition to the books and papers already quoted,
here we would like to draw the reader’s attention to some relevant pa-
pers on the functions of the Mittag-Leffler type, in alphabetic order of
the first author, [Al Saqabi and Tuan (1996)], [Brankov and Tonchev
(1992)], [Berberan-Santos (2005a); (2005b); (2005¢)] [Gorenflo et al
(1997)], [Gorenflo and Mainardi (2008)], [Haubold et al. (2009)],
[Hilfer and Anton (1995)], [Hilfer (2008)], [Jayakamur (2003)], [Kil-
bas and Saigo (1996)], [Lin (1998)], [Mainardi and Gorenflo (2000)],
[Mainardi et al. (2000); (2004); (2005)], [Mathai et al. (2006)] [Met-
zler and Klafter (2002)], [Pillai (1990)], [Saigo and Kilbas (1998)],
[Scalas et al. (2004)], [Saxena et al. (2006d)] [Sedletski (2004)],
[Srivastava and Saxena (2001)], [Weron and Kotulski (1996)], [Wong
and Zhao (2002)], and references therein. This list, however, is not
exhaustive. More references can be found in the huge bibliography
at the end of the book.

To the author’s knowledge, earlier plots of the Mittag-Leffler func-
tions are found (presumably for the first time in the literature of
fractional calculus and special functions) in [Caputo and Mainardi
(1971a)]3. Precisely, these authors have provided plots of the func-

3Recently, this paper has been reprinted in Fractional Calculus and Applied
Analysis under the kind permission of Birkh&duser Verlag AG.
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tion E, (—t") for some values of v € (0, 1] adopting linear—logarithmic
scales, in the framework of fractional relaxation for viscoelastic me-
dia. In those years not only such a function was still almost ignored,
but also fractional calculus was not yet well accepted by the commu-
nity of physicists.

Recently, numerical routines for functions of the Mittag-LefHer
type have been provided, see e.g. [Gorenflo et al. (2002)] (with
MATHEMATICA), [Podlubny (2006)] (with MATLAB) and [Sey-
bold and Hilfer (2005)]. Furthermore, in [Freed et al. (2002)], an ap-
pendix is devoted to the table of Pade approximants for the Mittag-
Leffler function E,(—x).

Because the fractional calculus has actually attracted a wide inter-
est in different areas of applied sciences, we think that the Mittag-
Leffler function is nowadays exiting from its isolated life as Cin-
derella. (using the term coined by F.G. Tricomi in the fifties for
the incomplete Gamma function). We like to refer to the classical
Mittag-Leffler function as the Queen function of fractional calculus,
and to consider all the related functions as her court, see [Mainardi
and Gorenflo (2007)].

In this appendix, we have limited ourselves to functions of the
Mittag-Leffler type in one variable with 1, 2 or 3 parameters. A
treatment of the Mittag-Leffler functions containing more parameters
and more variables is outside the aim of this book: for this see the
recent survey papers by [Kiryakova (2008); (2009a)] and references
therein.

We finally point out that the analytical continuation of the clas-
sical Mittag-Leffler function when the parameter « is negative has
been recently considered by [Hanneken et al. (2009)].
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Appendix F

The Wright Functions

In this appendix we provide a survey of the high transcendental func-
tions known in the literature as Wright functions. We devote partic-
ular attention for two functions of the Wright type, which, in virtue
of their role in applications of fractional calculus, we have called aux-
iliary functions. We also discuss their relevance in probability theory
showing their connections with Lévy stable distributions. At the end,
we add some historical and bibliographical notes.

F.1 The Wright function W) ,(z)

The Wright function, that we denote by W) ,(z2), is so named in
honour of E. Maitland Wright, the eminent British mathematician,
who introduced and investigated this function in a series of notes
starting from 1933 in the framework of the theory of partitions, see
[Wright (1933); (1935a); (1935b)]. The function is defined by the
series representation, convergent in the whole complex plane,
o Zn’

Wi pu(2) .—;m, A>—-1, pecC, (F.1)
so Wy ,(2) is an entire function. Originally, Wright assumed A > 0,
and, only in 1940, he considered —1 < A < 0, see [Wright (1940)].
We note that in the handbook of the Bateman Project [Erdélyi et al.
(1953-1955)], Vol. 3, Ch. 18, presumably for a misprint, \ is restricted
to be non-negative. We distinguish the Wright functions in first kind
(A >0) and second kind (=1 < A < 0).

237
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The integral representation. The integral representation reads
Wan(z) = — [ e0F20 290y 1 uee,  (F2)
21 JHa ot
where Ha denotes the Hankel path. The equivalence between the se-
ries and integral representations is easily proven by using the Hankel
formula for the Gamma function, see (A.19),

1 _ ~
m—/}{aeuu du, (e€C,

and performing a term-by-term integration. The exchange between
series and integral is legitimate by the uniform convergence of the
series, being W) ;) an entire function. We have:

1 -2 d 1 2 2" d
W)\“(Z’):—_ eO'+ZO' _U:_ eO’ Z'Z_O_f)\n _U
’ 21 J g, ot 21 Jy. o ot

=1 > "
=) | — [ T AnH da] =) v -
r;] n! [2711 /Ha T;) n!T[An + p)
Furthermore, it is possible to prove that the Wright function is entire
of order 1/(1 + A) hence of exponential type only if A > 0. The case

A =0 is trivial since W ,(2) = e*/T'(1) .

Asymptotic expansions. For the detailed asymptotic analysis in
the whole complex plane for the Wright functions, the interested
reader is referred to [Wong and Zhao (1999a); (1999b)]. These au-
thors have provided asymptotic expansions of the Wright functions
of the first and second kind following a new method for smoothing
Stokes’ discontinuities.

As a matter of fact, the second kind is the most interesting for
us. By setting A = —v € (—1,0), we recall the asymptotic expansion
originally obtained by Wright himself, that is valid in a suitable sector
about the negative real axis as |z| — oo,

M—1
W_yu(z) =Y V2 He™ I3 A, Y+ O(IY|™M)|
m=0

Y =Y(2) = (1—v)(—¥ )0

where the A,, are certain real numbers.

(F.3)
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Generalization of the Bessel functions. The Wright functions
turn out to be related to the well-known Bessel functions .J, and I,
for A =1 and p = v+ 1. In fact, by using the series definitions (B.1)
and (B.31) for the Bessel functions and the series definitions (F.1)
for the Wright functions, we easily recognize the identities:

2\V —1)"(z/2)2" Z\V 22
Ju(z):= (5) > n!(r(:;)Jr( ﬁ)Jr 1) (5) Wi <_Z>’

"% 1 (F.4)
W17y+1 (—Z) = ZO W)j—i-l) :Z*V/Z Jy(221/2) 7
and
v 2n v 2
Ly(z):= <§> Z n! I’(7(1Z—/|—2?i—1/ +1) - (%) Wi (%) ’
N " (F.5)
Wiy (2) == nz;] m — /2 IV(QZI/Q) .

As far as the standard Bessel functions J,, are concerned, the fol-
lowing observations are worth noting. We first note that the Wright
function W1 ,41(—2) reduces to the entire function C,(z) known as
Bessel-Clifford function introduced Eq. (B.4). Then, in view of the
first equation in (F.4) some authors refer to the Wright function as
the Wright generalized Bessel function (misnamed also as the Bessel-
Maitland function) and introduce the notation for A > 0, see e.g.
[Kiryakova (1994)], p. 336,

2

TN (2) = (%)V i n!(;(l)\);ﬁ/ffnl) - (%)V W41 <—ZZ> . (F.6)

n=0

Similar remarks can be extended to the modified Bessel functions I,,.

Recurrence relations. Hereafter, we quote some relevant recur-

rence relations from [Erdélyi et al. (1953-1954)], Vol. 3, Ch. 18:

A Wixagu(2) = Wy u—1(2) + (1 — ) Wi (), (F.7)
W) = Wane(2). (F3)

We note that these relations can easily be derived from (F.1).
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F.2 The auxiliary functions F,(z) and M,(z) in C

In his earliest analysis of the time-fractional diffusion-wave equation
[Mainardi (1994a)], the author introduced the two auziliary functions
of the Wright type:
F (2):=W_,0(—2), 0<v<l1, (F.9)
and
M,(z) =W_,1-,(—2), 0<v<l1, (F.10)
interrelated through
F,(2)=vzM,(2). (F.11)
As it is shown in Chapter 6, the motivation was based on the inver-
sion of certain Laplace transforms in order to obtain the fundamental
solutions of the fractional diffusion-wave equation in the space-time
domain. Here we will devote particular attention to the mathemati-
cal properties of these functions limiting at the essential the discus-
sion for the general Wright functions. The reader is referred to the
Notes for some historical and bibliographical details.

Series representations. The series representations of our auxil-
iary functions are derived from those of W) ,(z). We have:

Fz) =Y %

n=1_ [ (F.12)
- % Z (% ['(vn+ 1) sin(wvn),
and i -
M,(z) = Z T (_j—)TEl )]
= nl vn v (F13)

00 ~1
_! i I'(vn) sin(rvn),
T = (n—1)!
where we have used the well-known reflection formula for the Gamma
function, see (A.13),
I'¢)r (1 —¢) =mn/sin n¢.
We note that F,(0) =0, M,(0) =1/T'(1 —v) and that the relation
(F.11), consistent with the recurrence relation (F.7), can be derived
from (F.12)-(F.13) arranging the terms of the series.
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The integral representations. The integral representations of
our auxiliary functions are derived from those of W) ,(z). We have:

1 v

F,(2)i==— [ e27 %% do, 2€C, O<v<l, (F14)
211 Ha
L o — 20" _do

MV(Z)::2_7Ti Hae F7 ZE@, O<rv<<l. (F].5)

We note that the relation (F.11) can be obtained directly from (F.14)
and (F.15) with an integration by parts, i.e.

/ 00 — 20" —(fa :/ e? <_i ie_zay) do
Ha (o Ha vz do
1

= — e¥ =% 4o .
vz Jia.

The passage from the series representation to the integral representa-
tion and vice-versa for our auxiliary functions can be derived in a way
similar to that adopted for the general Wright function, that is by ex-
panding in positive powers of z the exponential function exp(—z o"),
exchanging the order between the series and the integral and using
the Hankel representation of the reciprocal of the Gamma function,
see (A.19a).

Since the radius of convergence of the power series in (F.12)-(F.13)
can be proven to be infinite for 0 < v < 1, our auxiliary functions
turn out to be entire in z and therefore the exchange between the
series and the integral is legitimate!.

Special cases. Explicit expressions of F,(z) and M,(z) in terms
of known functions are expected for some particular values of v.

In [Mainardi and Tomirotti (1995)] the authors have shown that
for v =1/q, where ¢ > 2 is a positive integer, the auxiliary functions
can be expressed as a sum of (¢ — 1) simpler entire functions.

In the particular cases ¢ = 2 and ¢ = 3 we find from (F.13),

1 z

& . 1 2m 1 )
1/2 = — _ — ':— _ s .
M, 5(2) \/;E (—1) <2> ! \/7_rexp( z*/4), (F.16)

!The author in [Mainardi (1994a)] proved these properties independently from
[Wright (1940)], because at that time he was aware only of [Erdélyi et al. (1953-
1955)] where A was restricted to be non-negative.
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and

M y3(2) 2/3 i() 3::) 1/3 i() %

m=0 =0
(F.17)

= 323 Aj <z/31/3) ,

where Ai denotes the Airy function defined in Appendix B (Section
B.4).

Furthermore, it can be proved that M; /,(z) satisfies the differen-
tial equation of order ¢ — 1

dit (—=1)¢
subjected to the g —1 initial conditions at z = 0, derived from (F.13),
M(h) _ (_1)h T . F
1/4(0) = =———Tl(h +1)/q] sin[r (A +1)/q], (£119)

with h=0,1, ... ¢— 2.

We note that, for ¢ > 4, Eq. (F.18) is akin to the hyper-Airy dif-
ferential equation of order ¢ — 1, see e.g. [Bender and Orszag (1987)].
Consequently, in view of the above considerations, the auxiliary func-
tion M, (z) could be referred to as the generalized hyper-Airy func-
tion.

F.3 The auxiliary functions F,(x) and M,(z) in IR

We point out that the most relevant applications of Wright functions,
especially our auxiliary functions, are when the independent variable
is real. More precisely, in this Section we will consider functions of
the variable z with z € R" or € IR.

When the support is all of IR, we agree to consider even functions,
that is, functions defined in a symmetric way. In this case, to stress
the symmetry property of the function, the independent variable may
be denoted by |z|.

We point out that in the limit » — 17 the function M, (z), for
z € IR", tends to the Dirac generalized function §(x — 1).
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The asymptotic representation of M, (x). Let us first point
out the asymptotic behaviour of the function M, (z) as * — +o0.
Choosing as a variable x/v rather than z, the computation of the
asymptotic representation by the saddle-point approximation yields,
see [Mainardi and Tomirotti (1995)],

M,(z/v) ~ a(y)x(y —1/2)/1 —v) exp [—b(u)xl/(l N V)] . (F.20)

where
1 1-—
a(v) = ———=>0, b)) = Y >0. (F.21)

V2r (1 —v) v
The above evaluation is consistent with the first term in Wright’s
asymptotic expansion (F.3) after having used the definition (F.10).

Plots of M, (x). We show the plots of our auxiliary functions on
the real axis for some rational values of the parameter v.

Fig. F.1 Plots of the Wright type function M, (x) with v =0,1/8,1/4,3/8,1/2
for —5 <z < 5; top: linear scale, bottom: logarithmic scale.
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To gain more insight of the effect of the parameter itself on the
behaviour close to and far from the origin, we will adopt both linear
and logarithmic scale for the ordinates.

In Figs. F.1 and F.2 we compare the plots of the M, (z) Wright
auxiliary functions in —5 < x < 5 for some rational values in the
ranges v € [0,1/2] and v € [1/2,1], respectively. Thus in Fig. F.1 we
see the transition from exp(—|z|) for v = 0 to 1/y/7 exp(—2?) for v =
1/2, whereas in Fig. F.2 we see the transition from 1//7 exp(—z?)
to the delta function §(1 — |z|) for v = 1.

=1/2
M09 by

0.8-

. WV

0.2-

M I i ! ! TR

4 3 2 - 0
X

Fig. F.2 Plots of the Wright type function M, (z) with v =1/2,5/8, 3/4, 1 for
—5 < x < 5: top: linear scale; bottom: logarithmic scale.

In plotting M, (z) at fixed v for sufficiently large = the asymptotic
representation (F.20)-(F.21) is very useful because, as x increases,
the numerical convergence of the series in (F.13) becomes poor and
poor up to being completely inefficient. Henceforth, the matching
between the series and the asymptotic representation is relevant.
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However, as v — 17, the plotting remains a very difficult task
because of the high peak arising around z = +1. In this case the
saddle-point method, improved as in [Kreis and Pipkin (1986)], can
successfully be used to visualize some structure in the peak while it
tends to the Dirac delta function, see also [Mainardi and Tomirotti
(1997)] and Chapter 6 for a related wave-propagation problem. With
Pipkin’s method we are able to get the desired matching with the
series representation just in the region around the maximum z =~ 1,
as shown in Fig. F.3. Here we exhibit the significant plots of the
auxiliary function M, (z) with v =1 — € for € = 0.01 and € = 0.001
and we compare the series representation (100 terms, dashed line),
the saddle-point representation (dashed-dotted line), and the Pipkin
representation (continuous line).
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1000 1000 g [\

!
100 /

100

10

0.10 : /
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7 7 !
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T - T g T T T g T
06" [0 08 09 10 1l 092 094 096 0.98 100 102

Fig. F.3 Comparison of the representations of M, (z) with ¥ = 1 — € around the
maximum z & 1 obtained by Pipkin’s method (continuous line), 100 terms-series
(dashed line) and the saddle-point method (dashed-dotted line). Left: € = 0.01;
Right: ¢ = 0.001.

F.4 The Laplace transform pairs

Let us write the Laplace transform of the Wright function as
o0
Wy (dr) + £ [Wyp(dr):s] = / e 75T W () dr

0
where r denotes a non-negative real variable, i.e. 0 < r < +o00, and
s is the Laplace complex parameter.
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When A > 0 the series representation of the Wright function
can be transformed term-by-term. In fact, for a known theorem
of the theory of the Laplace transforms, see e.g. [Doetsch (1974)],
the Laplace transform of an entire function of exponential type can
be obtained by transforming term-by-term the Taylor expansion of
the original function around the origin. In this case the resulting
Laplace transform turns out to be analytic and vanishing at infin-
ity. As a consequence, we obtain the Laplace transform pair for the
Wright function of the first kind as

1 1
Wi pu(£r) + gE)W (i;) , A>0, |s|>p>0, (F.22)

where E) , denotes the generalized Mittag-Lefler function in two
parameters, and p is an arbitrary positive number. The proof is
straightforward, noting that

i (dr)" i (£1/s)"

n'F()\n—l—u N F)\n—l-u

and recalling the series representatlon (E.22) of the generalized
Mittag-Leffler function,

o0 n

z
E,p5(z) == —, a>0, zeC.
of 7;) I'(an + )
For A\ — 07 Eq. (F.22) provides the Laplace transform pair
eI 11

Wors®) = 50y * Ty 5510

This means
Woe (r) = 2 Bpp (42) = 2By (£1) ) 1| > 1, (F23)
ot u(Er) = S Bou (£ ) = s 0 o)l , .

where, in order to be consistent with (F.22), we have formally put,
according to (E. 2)

Ey (2

— E =———, <1.
We recognize that in this hmltlg case the Laplace transform exhibits
a simple pole at s = £1 while for A > 0 it exhibits an essential
singularity at s = 0.
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For —1 < A < 0 the Wright function turns out to be an entire
function of order greater than 1, so that the term-by-term trans-
formation representation is no longer legitimate. Thus, for Wright
functions of the second kind, care is required in establishing the exis-
tence of the Laplace transform, which necessarily must tend to zero
as s — oo in its half-plane of convergence.

For the sake of convenience we first derive the Laplace transform
for the special case of M, (r); the exponential decay as r — oo of
the original function provided by (F.20) ensures the existence of the
image function. From the integral representation (F.13) of the M,
function we obtain

1 < _ d
M,(r) + — e °F [/ 0 — 10" 10 ] dr
2mi Jo Ha o

- L / e ¥ /Ooe_r(s—i_ay) dr| do = L il - do
271 S 0 2mi Jpa oV +s

Then, by recalling the integral representation (E.14) of the Mittag-
Leffler function,

1 ot eS
E = — d >0
a(Z) 27T’L " CO‘ — 2 C ’ « )
we obtain the Laplace transform pair
M,(r) + E,(—s), O0<v<l. (F.24)

Although transforming the Taylor series of M, (r) term-by-term
is not legitimate, this procedure yields a series of negative powers
of s that represents the asymptotic expansion of the correct Laplace
transform, E,(—s), as s — oo in a sector around the positive real
axis Indeed we get
Z Jo e =5 (=) dr _ i (—1)" 1

nll(-vn+(1-v)) ZI(-vn+1-v) sntl
N — I(—vm+1)sm
consistently with the asymptotic expansion (E.16).

We note that (F.24) contains the well-known Laplace transform
pair, see e.g. [Doetsch (1974)],

1
M, jo(r) == NG exp (— 7“2/4) + Eyjo(—s) :=exp (82) erfe(s),
that is valid for all s € C.

~ E,(-s), s = o0,
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Analogously, using the more general integral representation (F.2)
of the Wright function, we can get the Laplace transform pair for the
Wright function of the second kind. For the case A = —v € (—1,0),
with g > 0 for simplicity, we obtain,

W_pu(=r) = Eypqu(—s), 0<v<1. (F.25)

We note the minus sign in the argument in order to ensure the the
existence of the Laplace transform thanks to the Wright asymptotic
formula (F.3) valid in a sector about the negative real axis.
In the limit as A — 0~ we formally obtain the Laplace transform
pair
e " 1 1
P(p) = T(p) s+1°
In order to be consistent with (F.24) we rewrite
1
Wo- u(=71) + Eopu(—5) = =—
" ! I'(n)

Therefore, as A — 07, we note a sort of continuity in the formal
results (F.23) and (F.26) because

1 {(1/3)Eo(—1/8)> |s| > 1;

(s+1) | Eo(-s), |s|<1.

Wo- u(=7) =

Eo(—s), |s| < 1. (F.26)

(F.27)

We now point out the relevant Laplace transform pair related to
the auziliary functions of argument r~" proved in [Mainardi (1994a);
(1996a); (1996b)]:

1 14 14 . —V
;Fy(l/r):rVHM,,(l/r)Te 5, 0<v<l. (F28)
L amy =L, = e > 0<v<l (F.29)
o v T _’I”V v T 5 Sl_y, 14 . .

We recall that the Laplace transform pairs in (F.28) were formerly
considered by [Pollard (1946)], who provided a rigorous proof based
on a formal result by [Humbert (1945)]. Later [Mikusiiski (1959a)]
achieved a similar result based on his theory of operational calcu-
lus, and finally, albeit unaware of the previous results, [Buchen and
Mainardi (1975)] derived the result in a formal way, as stressed in
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Chapter 5. We note, however, that all these authors were not in-
formed about the Wright functions. To our actual knowledge, the for-
mer author who derived the Laplace transforms pairs (F.28)-(F.29) in
terms of Wright functions of the second kind was [Stankovich (1970)].

Hereafter, we will provide two independent proofs of (F.28) by car-
rying out the inversion of exp(—s"), either by the complex Bromwich
integral formula, see [Mainardi (1994a); Mainardi (1996a)], or by the
formal series method, see [Buchen and Mainardi (1975)]. Similarly,
we can act for the Laplace transform pair (F.29).

For the complex integral approach we deform the Bromwich path
Br into the Hankel path Ha, that is equivalent to the original path,
and we set o = sr. Recalling (F.14)-(F.15), we get

L7 [exp (—s")] = I T / e? — (/1) 4y
Ha

- 2mi g, 2mir

= %Fy (1/r") = ry—V+1 M, (1/r%) .

For the series approach, let us expand the Laplace transform in
series of negative powers and invert term by term. Then, after re-
calling (F.12)-(F.13), we obtain:

(e 9]

—1)" X (_1\n povn—1
£ fep (=) = 30 gt gy - 3 EUN
n=0 n=1

v v
oS M, (1/r%) .
We note the relevance of Laplace transforms (F.24) and (F.28) in
pointing out the non-negativity of the Wright function M, (x) and

= R(/") =

the complete monotonicity of the Mittag-Leffler functions E,(—x)
for # > 0 and 0 < v < 1. In fact, since exp (—s") denotes the
Laplace transform of a probability density (precisely, the extremal
Lévy stable density of index v, see [Feller (1971)]) the L.H.S. of (F.28)
must be non-negative, and so also must the L.H.S of (F.24). As a
matter of fact the Laplace transform pair (F.24) shows, replacing s
by x, that the spectral representation of the Mittag-Leffler function
E,(—x) is expressed in terms of the Wright M-function M, (r), that
is:

o
E,(—x) :/ e "' M,(r)dr,0<v<1,2>0. (F.30)
0
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We now recognize that Eq. (F.30) is consistent with Eqs. (E.19)-
(E.21) derived by [Pollard (1948)].

It is instructive to compare the spectral representation of E, (—x)
with that of the function E,(—t"). From Eqgs. (E.56)-(E.57) we can
write

o0
E, (—t") = / e "V K, (rydr, 0<v<1,t>0,  (F.31)
0
where the spectral function reads
1 r’~1 sin(v)

K,(r)=

— . F.32

T 4271 cos (vm) + 1 (F.32)
The relationship between M, (r) and K, (r) is worth exploring. Both
functions are non-negative, integrable and normalized in IR, so they
can be adopted in probability theory as density functions. The nor-
malization conditions derive from Eqs. (F.30) and (F.31) since

“+o00 +oo
M, (r)dr = K,(r)dr =E,(0)=1.
0 0

In the following section we will discuss the probability interpreta-
tion of the M, function with support both in IR and in IR whereas
for K, we note that it has been interpreted as spectral distribution
of relaxation/retardation times in the fractional Zener viscoelastic
model, see Chapter 3, Section 3.2, Fig. 3.3.

We also note that for certain renewal processes, functions of
Mittag-Leffler and Wright type can be adopted as probability distri-
butions of waiting times, as shown in [Mainardi et al. (2005)], where
such distributions are compared. We refer the interested reader to
that paper for details.

F.5 The Wright M-functions in probability

We have already recognized that the Wright M-function with sup-
port in IRT can be interpreted as probability density function (pdf).
Consequently, extending the function in a symmetric way to all of
R and dividing by 2 we have a symmetric pdf with support in IR.
In the former case the variable is usually a time coordinate whereas
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in the latter the variable is the absolute value of a space coordinate.
We now provide more details on these densities in the framework of
the theory of probability. As in Section F.3, we agree to denote by
x and |z| the variables in IR" and IR, respectively.

The absolute moments of order 8. The absolute moments of
order § > —1in IR" of the Wright M-function pdf in IR" are finite
and turn out to be

o0 (6 + 1)
)
/O:UMV(:c)dx Ti+ 1) d>-1, 0<v<l (F.33)

In order to derive this fundamental result we proceed as follows,
based on the integral representation (F.15).

> o0 1 v d
/ 20 M, (z)dz :/ e [—/ e? %0 1? } dz
0 0 211 J g, ol=v

— i eO’ |:/ooexa” x& d.’]?:| dO'
271 ) Ha 0 ol=v

_F(5+1)/ o T +1)
o Ju

- 211 -

Lovotl 7= T(wé+1)
Above we have legitimated the exchange between the two integrals
and we have used the identity

o v ro+1

/exax6dx: (—’_)’

0 (0-1/)5+1

derived from (A.23) along with the Hankel formula (A.19a).
In particular, for § = n € IN, the above formula provides the

moments of integer order that can also be computed from the Laplace
transform pair (F.24) as follows:

Foo dar F'(n+1)
n — 15 1\ = — — __
/0 " My (x) doe = limy (=1)" 95 B (=s) = 50275 -
Incidentally, we note that the Laplace transform pair (F.24) could
be obtained using the fundamental result (F.33) by developing in
power series the exponential kernel of the Laplace transform and
then transforming the series term-by-term.
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The characteristic function. As well-known in probability the-
ory the Fourier transform of a density provides the so-called charac-

teristic function. In our case we have:
“+o0o

FM ()] =5 [ Mfla) o -
= /0 cos(kx) M, (x) dx = EQV(_K/Z) .

For this prove it is sufficient to develop in series the cosine function
and use formula (F.33),

o) oo 2n 00
cos(kx z)dr = ol i z)dz
[ costen) M)t = 30 G [ o)

H2n
= ;}(—1)nm = EQV(_K/2) .

Relations with Lévy stable distributions. We find it worth-
while to discuss the relations between the Wright M-functions and
the so-called Lévy stable distributions. The term stable has been as-
signed by the French mathematician Paul Lévy, who, in the twenties
of the last century, started a systematic research in order to general-
ize the celebrated Central Limit Theorem to probability distributions
with infinite variance. For stable distributions we can assume the fol-
lowing DEFINITION: If two independent real random wvariables with
the same shape or type of distribution are combined linearly and the
distribution of the resulting random variable has the same shape, the
common distribution (or its type, more precisely) is said to be stable.
The restrictive condition of stability enabled Lévy (and then other
authors) to derive the canonic form for the characteristic function of
the densities of these distributions. Here we follow the parameteri-
zation in [Feller (1952); (1971)] revisited in [Gorenflo and Mainardi
(1998b)] and in [Mainardi et al. (2001)]. Denoting by LY () a generic
stable density in IR, where « is the index of stability and and 6 the
asymmetry parameter, improperly called skewness, its characteristic

function reads: o

L8 (@) = Lh(k) = exp [~ (k)] wl(w) = ||/ (SiER RO/,
(F.35)
0<a<2, |0 < min{a,2—a}l.
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We note that the allowed region for the parameters o and 6 turns
out to be a diamond in the plane {a, 0} with vertices in the points
(0,0), (1,1), (1,-1), (2,0), that we call the Feller-Takayasu dia-
mond, see Fig. F.4. For values of # on the border of the diamond
(that is 0 = taif 0 <a<l,and § = +(2—a) if 1 < a < 2) we
obtain the so-called extremal stable densities.

0.5

05 1 15

-1

Fig. F.4 The Feller-Takayasu diamond for Lévy stable densities.

We note the symmetry relation L2 (—x) = L;%(x), so that a stable
density with 8 = 0 is symmetric.

Stable distributions have noteworthy properties of which the in-
terested reader can be informed from the relevant existing literature.
Here-after we recall some peculiar PROPERTIES:

- The class of stable distributions possesses its own domain of attrac-
tion, see e.g. [Feller (1971)].

- Any stable density is unimodal and indeed bell-shaped, i.e. its n-th
derivative has exactly n zeros in IR, see [Gawronski (1984)].

- The stable distributions are self-similar and infinitely divisible.

These properties derive from the canonic form (F.35) through the
scaling property of the Fourier transform.

Self-similarity means

L9 (2,t) + exp [—mg(ﬁ)} = L (x,t) = = L0 (z/t*)], (F.36)
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where ¢ is a positive parameter. If ¢ is time, then L (2,t) is a spatial
density evolving on time with self-similarity.

Infinite divisibility means that for every positive integer n, the char-
acteristic function can be expressed as the nth power of some char-
acteristic function, so that any stable distribution can be expressed
as the n-fold convolution of a stable distribution of the same type.
Indeed, taking in (F.35) 6 = 0, without loss of generality, we have

@ a]m *

e tRl — [e_(t/")w ] = L0(x,t) = [, t/n)]™,  (F37)

where
[Lg(x,t/n)]*n = LO(x,t/n) * LO (2, t/n) * --- % L2 (x, /nt)
is the multiple Fourier convolution in IR with n identical terms.

Only for a few particular cases, the inversion of the Fourier trans-
form in (F.35) can be carried out using standard tables, and well-
known probability distributions are obtained.

For a =2 (so 8 = 0), we recover the Gaussian pdf, that turns out
to be the only stable density with finite variance, and more generally
with finite moments of any order § > 0. In fact

1 2/
L9() = Jme " /4. (F.38)

All the other stable densities have finite absolute moments of order

d € [-1,a) as we will later show.
For a =1 and |0 < 1, we get
1 cos(fm/2)

Li(z) = = F.39
1) = o sm@r 2R + [cos(@r D) (F.39)
which for 8 = 0 includes the Cauchy-Lorentz pdf,
1 1
0 _ -
Li(z) = g (F.40)

In the limiting cases 8 = +1 for o = 1 we obtain the singular Dirac
pdf’s

Lil(z) =6z +1). (F.41)

In general, we must recall the power series expansions provided

in [Feller (1971)]. We restrict our attention to z > 0 since the eval-

uations for < 0 can be obtained using the symmetry relation. The
convergent expansions of LY (x) (x > 0) turn out to be;
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for0<a<l, |f<a:

I (z) = % S (—aoy W sin [0 —a)] : (F42)
n=1
forl<a<2, |f|<2—-a:
L (z) = % S (—a) W sin[S20-a)] . (F3)
n=1

From the series in (F.42) and the symmetry relation we note that
the extremal stable densities for 0 < a < 1 are unilateral, precisely
vanishing for x > 0 if § = «, vanishing for z < 0 if § = —a. In
particular the unilateral extremal densities L “(z) with 0 < a < 1
have support in IR" and Laplace transform exp(—s®). For a = 1/2
we obtain the so-called Lévy-Smirnov pdf:

-3/2
-1/2, Ny _ T —1/(4x
L1/2 (x)—ﬁe / ),
As a consequence of the convergence of the series in (F.42)-(F.43)
and of the symmetry relation we recognize that the stable pdf’s with
1 < a < 2 are entire functions, whereas with 0 < o < 1 have the
form

z>0. (F.44)

(@) = {(1/95)@1(95—&) forz >0, (F.45)

T (2] @o(|x| ) forx <0,

where ®1(z) and ®2(z) are distinct entire functions.The case o = 1
(16| < 1) must be considered in the limit for « — 1 of (F.42)-(F.43),
because the corresponding series reduce to power series akin with
geometric series in 1/x and x, respectively, with a finite radius of
convergence. The corresponding stable pdf’s are no longer repre-
sented by entire functions, as can be noted directly from their explicit
expressions (F.39)-(F.40).

We omit to provide the asymptotic representations of the stable
densities referring the interested reader to [Mainardi et al. (2001)].
However, based on asymptotic representations, we can state as fol-
lows; for 0 < a < 2 the stable pdf’s exhibit fat tails in such a way
that their absolute moment of order § is finite only if —1 < § < a.
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More precisely, one can show that for non-Gaussian, not extremal,
stable densities the asymptotic decay of the tails is

Lf(z)=0 (|xr<a+1>) , 1 — 00, (F.46)
For the extremal densities with « # 1 this is valid only for one tail
(as |z| — o0), the other (as |z| — oo0) being of exponential order.
For 1 < a < 2 the extremal pdf’s are two-sided and exhibit an
exponential left tail (as z — —o0) if § = +(2 — ), or an exponential
right tail (as x — 400) if § = —(2 — «) . Consequently, the Gaussian
pdf is the unique stable density with finite variance. Furthermore,
when 0 < a < 1, the first absolute moment is infinite so we should
use the median instead of the non-existent expected value in order
to characterize the corresponding pdf.

Let us also recall a relevant identity between stable densities with
index o and 1/a (a sort of reciprocity relation) pointed out in [Feller
(1971)], that is, assuming x > 0,

a—HL‘{/a(x—a) =10 (z), 1/2<a <1, 0" =a(@+1)—1. (F47)
The condition 1/2 < a < 1 implies 1 < 1/a < 2. A check shows that
0* falls within the prescribed range [0*| < o if |§] < 2 —1/a. We
leave as an exercise for the interested reader the verification of this
reciprocity relation in the limiting cases a = 1/2 and o = 1.

From a comparison between the series expansions in (F.42)-(F.43)
and in (F.14)-(F.15), we recognize that for x > 0 our auziliary func-

tions of the Wright type are related to the extremal stable densities
as follows, see [Mainardi and Tomirotti (1997)],

—a 1 —a o —a
1 1
L& (z) = — Fija(®) = = Mya(), 1<a<2. (F.49)
In Egs. (F.48)-(F.49), for a = 1, the skewness parameter turns out
to be # = —1, so we get the singular limit
LiNx) = My(x) = 6(z — 1). (F.50)

More generally, all (regular) stable densities, given in Eqgs. (F.42)-
(F.43), were recognized to belong to the class of Fox H-functions,
as formerly shown by [Schneider (1986)], see also [Mainardi et al.
(2005)]. This general class of high transcendental functions is out of
the scope of this book.
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The Wright IM-function in two variables. In view of time-
fractional diffusion processes related to time-fractional diffusion
equations it is worthwhile to introduce the function in two variables

M, (z,t) ==tV M,(st7"), 0<v<l1l, =ztecR", (F51)
which defines a spatial probability density in x evolving in time ¢
with self-similarity exponent H = v. Of course for x € IR we have to
consider the symmetric version obtained from (F.51) multiplying by
1/2 and replacing z by |z|.

Hereafter we provide a list of the main properties of this function,
which can be derived from the Laplace and Fourier transforms for
the corresponding Wright M-function in one variable.

From Eq. (F.29) we derive the Laplace transform of M, (x,¢) with
respect to t € IR,

v

LM, (2,t);t — s} =s""Le ¥, (F.52)
From Eq. (F.24) we derive the Laplace transform of IM,(z,t) with
respect to z € IR,

L{M,(z,t);z — s} = E, (—st”) . (F.53)
From Eq. (F.34) we derive the Fourier transform of IM,, (|x|,¢) with
respect to x € IR,

F{M,(|z|,t);z — &} = 2Es, (—£*") . (F.54)

Using the Mellin transforms [Mainardi et al. (2003)] derived the
following integral formula,

M, (z,t) = /000 My (z,7) M, (1,t)dr, v=Au. (F.55)

Special cases of the Wright IM-function are simply derived for
v =1/2 and v = 1/3 from the corresponding ones in the complex
domain, see Eqgs. (F.16)-(F.17). We devote particular attention to
the case v = 1/2 for which we get from (F.16) the Gaussian density
in IR,
2
Myjs(ja 1) = gz e~ /() (F.56)

For the limiting case v = 1 we obtain

M, (J2], ) = % 6(x — 1)+ 6(z +1)] . (F.57)
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F.6 Notes

In the early nineties, in his former analysis of fractional equations
interpolating diffusion and wave-propagation, the present author, see
e.g. [Mainardi (1994a)], introduced the functions of the Wright type
F(2) :=W_,o(—2) and M,(2) :=W_,1_,(—2) with 0 <v <1, in
order to characterize the fundamental solutions for typical boundary
value problems, as it is shown in Chapter 6.

Being then only aware of the Handbook of the Bateman project,
where the parameter A of the Wright function W) ,(z) was erro-
neously restricted to non-negative values, the author thought to have
originally extended the analyticity property of the original Wright
function by taking v = —\ with v € (0,1). So he introduced the
entire functions F;,, and M, as auziliary functions for his purposes.
Presumably for this reason, the function M, is referred to as the
Mainardi function in the treatise by [Podlubny (1999)] and in some
research papers including [Balescu (2007a)], [Chechkin et al. (2008)],
[Germano et al. (2009)], [Gorenflo et al. (1999); (2000)], [Hanyga
(2002b)], [Kiryakova (2009a); (2009b)].

It was Professor B. Stankovi¢, during the presentation of the pa-
per [Mainardi and Tomirotti (1995)] at the Conference Transform
Methods and Special Functions, Sofia 1994, who informed the au-
thor that this extension for —1 < A < 0 had been already made by
Wright himself in 1940 (following his previous papers in the thirties),
see [Wright (1940)]. In his paper [Mainardi et al. (2005)], devoted
to the 80th birthday of Professor Stankovi¢, the author used the
occasion to renew his personal gratitude to Professor Stankovi¢ for
this earlier information that led him to study the original papers by
Wright and to work (also in collaboration) on the functions of the
Wright type for further applications.

For more mathematical details on the functions of the Wright
type, the reader may be referred to [Kilbas et al. (2002)] and the ref-
erences therein. For the numerical point of view we like to highlight
the recent paper by [Luchko (2008)], where algorithms are provided
for computation of the Wright function on the real axis with pre-
scribed accuracy.
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Furthermore, from the stochastic point of view, the Wright M-
function emerges as a natural generalization of the Gaussian density
for time-fractional diffusion processes. In fact, when these self-similar
non-Markovian processes are characterized by stationary increments,
so that they are defined only through their first and second moments,
which indeed is a property of Gaussian processes, the Wright M — pdf
plays the main role as the Gaussian. Thus, such a class of pro-
cesses, denoted as generalized grey Brownian motion, generalizes the
Gaussian class of the fractional Brownian motion and covers stochas-
tic models of anomalous diffusion, both of slow and fast type. See
for details [Mura and Mainardi (2008)], [Mura and Pagnini (2008)],
[Mura et al. (2008)] and the recent tutorial survey by [Mainardi et al.
(2009)].
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Time—spectral function, 41, 43, 64
Transient—state response, 99
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