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Abstract A pandemic caused by a new coronavirus (COVID-19) has spread world-

wide, inducing an epidemic still active in Argentina. In this chapter, we present

a case study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion

model of fractional order in time to analyze the evolution of the epidemic in Buenos

Aires and neighboring areas (Región Metropolitana de Buenos Aires, (RMBA))

comprising about 15 million inhabitants. In the SEIR model, individuals are divided

into four classes, namely, susceptible (S), exposed (E), infected (I) and recovered

(R). The SEIR model of fractional order allows for the incorporation of memory,

with hereditary properties of the system, being a generalization of the classic SEIR

first-order system, where such effects are ignored. Furthermore, the fractional model

provides one additional parameter to obtain a better fit of the data. The parameters of

the model are calibrated by using as data the number of casualties officially reported.

Since infinite solutions honour the data, we show a set of cases with different val-

ues of the lockdown parameters, fatality rate, and incubation and infectious periods.

The different reproduction ratios R0 and infection fatality rates (IFR) so obtained

indicate the results may differ from recent reported values, constituting possible al-
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ternative solutions. A comparison with results obtained with the classic SEIR model

is also included. The analysis allows us to study how isolation and social distancing

measures affect the time evolution of the epidemic.

1 Introduction

We present an SEIR subdiffusion model of fractional order ν, with 0 < ν ≤ 1 to ana-

lyze the time evolution of the COVID-19 epidemic in Buenos Aires and neighboring

areas (Region Metropolitana de Buenos Aires, (RMBA)) with a population of about

15 million inhabitants. RMBA consists of Ciudad Autónoma de Buenos Aires

(CABA) plus forty municipalities covering an area of about thirteen thousand

square kilometers. Some of these municipalities have rural areas. Thus RMBA

has an average population density of 1100 persons/sq.km. But in CABA and

many of its neighboring cities this number increases significantly. For example

CABA has a population density of about 14000 people/sq.km. In this work we

consider that RMBA has a uniform distribution of its population.

The epidemic started officially on March 9th with the number of cases and deaths

still increasing at July 15th. The classical SEIR model (ν = 1) has been used by

Carcione et al. [1] and Santos et al. [2] to model the COVID-19 epidemic in Italy

and Argentina, respectively.

Fractional calculus has been used to define diffusion and wave propagation mod-

els in biological and viscoelastic materials [3, 4, 5, 6, 7, 8, 9, 10]. One important

property of the fractional-order SEIR model is that incorporates memory and hered-

itary properties into the epidemic equations, a behavior exhibited by most biological

systems. When fractional order derivatives are used in epidemic models, they

modify the duration, peaks of infected and dead individuals per day and num-

ber of casualties in the population.

Among other authors that have applied fractional calculus to obtain solutions

of the SEIR model, we mention Scherer et al. [11], that used a Grünwald-Letnikov

time-discrete procedure, introduced by Ciesielski and Leszczynski [12] (CL method).

Besides, Zeb et al. [13] presented an analysis of several numerical methods to solve

the SEIR model of fractional order. For general works on fractional calculus includ-

ing numerical methods, we refer to Podlubny [14] and Li and Zeng [15].

We first formulate an initial-value problem (IVP) for the SEIR subdiffusion equa-

tions of fractional order ν at the continuous level using the Caputo definition of the

fractional derivative [6]. Existence and uniqueness of the solution of this IVP, with

positive values, is demonstrated in [13]. The numerical solutions of the continu-

ous IVP are computed by using the time-explicit algorithm of Gorenflo-Mainardi-

Moretti-Paradisi (GMMP method) [16, 17]. The conditional stability of the time-

explicit GMMP method (and also of the CL method) was demonstrated by Murillo

et al. [19] [see their equation (19)]. The validation of the GMMP method is per-

formed by comparison of its results against those of the classic SEIR model and
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those of the fractional Adams-Bashford-Moulton method (ABM method) as defined

in [15].

The parameters of the SEIR model are the birth and death rates, infection and

incubation periods, probability of disease transmission per contact, fatality rate and

initial number of exposed individuals. These parameters, together with the order of

the fractional derivative, are obtained by fitting the number of fatalities officially

reported. This is an inverse problem with an infinite number of solutions (local min-

ima) honouring the data, which is solved by using a quasi-Newton technique for

nonlinear least squares problem with the formula of Broyden-Fletcher-Goldfarb-

Shanno [20]. The numerical simulations give an effective procedure to study the

spread of the evolution of virus, analyze the effects of the lockdown measures and

predict the peak of infected and dead individuals per day.

2 The Caputo derivative and initial value problems

For 0 < ν ≤ 1, the time fractional Caputo derivative Dν
c (u(t) is defined as [3, 16,

17, 6]

Dν
c ( f (t) =

1

Γ(1 − ν)

∫ t

0

[
∂

∂ f (τ)

]
dτ

(t − τ)ν
, (1)

where Γ(·) denotes the Euler’s Gamma function.

Note that the Caputo derivatives of constant functions f (t) = 1 vanish and those

of powers of t, f (t) = tk are

Γ(k + 1)

Γ(k − ν + 1)
tk−ν .

The advantage of using the Caputo derivative in Caputo-type IVP’s is that the initial

conditions are the same as those of the classical ordinary differential equations.

For details on the Caputo derivative and its relation with the Riemann-Liouville

fractional derivative we refer to [6].

To approximate the time-fractional Caputo derivative, we use a backward Grünwald-

Letnikov approximation at time tn = n∆t,n = 0,1, , · · · , with fn = f (n∆t), ∆t being

the time step, as follows [16, 17]:

Dν
c ( f (t) |tn+1

≈
1

(∆t)ν

n+1
∑

j=0

(−1) jcνj

(

ν

j

)

fn+1− j . (2)

The coefficients

cνj = (−1) j
(

ν

j

)

can be obtained in terms of Euler’s Gamma function using the recurrence relation
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(

ν

j

)

=
Γ(ν + 1)

Γ( j + 1)Γ(ν − j + 1)
=
ν − j + 1

j

(

ν

j − 1

)

,

(

ν

0

)

= 1. (3)

The work by Abdullah et al. [18] presents an analysis of the fractional-order SEIR

model formulated in terms of the Caputo derivative and its GMMP time discretiza-

tion.

3 The classical and fractional-order SEIR models

The IVP for the classic SEIR system of nonlinear ordinary differential equations is

Ṡ = f1(S,E, I,R)(t) = Λ − µS(t) − βS(t)
I (t)

N (t)
, (4)

Ė = f2(S,E, I,R)(t) = βS(t)
I (t)

N (t)
− (µ + ǫ )E(t),

İ = f3(S,E, I,R)(t) = ǫE(t) − (γ + µ + α)I (t),

Ṙ = f4(S,E, I,R)(t) = γI (t) − µR(t),

with initial conditions S(0),E(0), I (0) and R(0). A dot above a variable indicates

the time derivative, while N (t) is the number of live individuals at time t, i.e.,

N = S + E + I + R ≤ N0, N0 being the total initial population. In (4), S is

the number of individuals susceptible to be exposed while E is the number of ex-

posed individuals, in which the disease is latent; they are infected but not infectious.

Individuals in the E-class become infected (I) with a rate ǫ and infected become

recovered (R) with a rate γ. People in the R class do not move back to the S class

since lifelong immunity is assumed. Furthermore, 1/γ and 1/ǫ are the infection and

incubation periods, respectively, Λ is the birth rate, µ is the natural per capita death

rate, α is the average fatality rate, and β is the probability of disease transmission

per contact. All of these coefficients have units of 1/time. Given the short period

of the epidemic in Argentina (6 months at the time of writing), and that the av-

erage life expectancy is about 76 years, it is reasonable to assume that Λ = µN ,

so that the deaths balance the newborns.

Dead individuals D(t) are computed as D(t) = N0−N (t), so that the dead people

per unit time Ḋ(t), can be obtained as [21]:

Ḋ(t) = αI (t). (5)

Next, we reformulate the system (4) into a fractional-order system by using the

Caputo derivative in (1):
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Dν
c S(t) = f ν1 (S,E, I,R)(t) = µν N − µνS(t) − βνS(t)

I (t)

N (t)
,

Dν
c E(t) = f ν2 (S,E, I,R)(t) = βνS(t)

I (t)

N (t)
− (µν + ǫν )E(t) (6)

Dν
c I (t) = f ν3 (S,E, I,R)(t) = ǫνE(t) − (γν + µν + αν )I (t),

Dν
c R(t) = f ν4 (S,E, I,R)(t) = γν I (t) − µν R(t).

The reproduction ratio, R0, indicates the number of cases induced by a single

infectious individual. When R0 < 1, the disease dies out; when R0 > 1, an epidemic

occurs. Al-Sheikh [22] analyzes the behavior of the SEIR models in terms of R0.

For the SEIR model, R0 is given by [23]

R0 =
βνǫν

(ǫν + µν )(γν + αν + µν )
. (7)

The infection fatality rate (IFR) is defined as

IFR (%) = 100 ·
αν

αν + γν
≈ 100 ·

αν

γν
, (8)

where this relation holds at all times, not only at the end of the epidemic.

3.1 Time discretization

An explicit conditionally stable GMMP algorithm for the fractional order system

(6) is formulated as follows [16, 17]:

Sn+1 = −

m+1
∑

j=1

cνj S(m + 1 − j) + S0

m+1
∑

j=0

cνj + (∆t)ν f1(Sn ,En , In ,Rn ) (9)

En+1 = −

m+1
∑

j=1

cνj E(m + 1 − j) + E0

m+1
∑

j=0

cνj + (∆t)ν f2(Sn ,En , In ,Rn ) (10)

In+1 = −

m+1
∑

j=1

cνj I (m + 1 − j) + I0

m+1
∑

j=0

cνj + (∆t)ν f3(Sn ,En , In ,Rn ) (11)

Rn+1 = −

m+1
∑

j=1

cνj R(m + 1 − j) + R0

m+1
∑

j=0

cνj + (∆t)ν f4(Sn ,En , In ,Rn ) (12)

The results of the GMMP method (9)-(12) will be validated against the solution of

the classical SEIR model (ν = 1) and the Adams-Bashford-Moulton (ABM) time-

explicit scheme as defined in [15] and included in the Appendix.
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4 Numerical results.

4.1 Validation of the GMMP algorithm

The results of the GMMP algorithm are cross-checked with those of the ABM solver

for the classical SEIR model (ν = 1 ) and SEIR models of fractional orders ν = 0.9

and 0.8.

We use the following parameters, given in Chowel et al. [24] and used by

Carcione et al. [1] to perform a parametric analysis of the model. Average dis-

ease incubation 1/ǫ = 3 days, infectious period 1/γ = 8 days, induced fatality

rate α = 0.006/day, β = 0.75/day, and Λ = µ = 0. The initial conditions are

E(0) = 1,S(0) = N (0) − E(0) − I (0), I (0) = 1 and R(0) = 0. The time step is dt

= 0.01 day and N0 = 10 million. This case corresponds to a high reproduction ratio

R0 = 5.72.

Figures 1–6 show the results of the four classes, S,E,I,R, and the dead and dead

per day individuals computed by using the GMMP and ABM algorithms. First, an

excellent agreement between the results of the two algorithms is observed for all

values of the fractional order derivative ν. In particular, the results for ν = 1 agree

with those of Figures 1 and 2 in [1]. Figure 1 shows that decreasing the order of the

fractional derivative causes a delay and an increase in the number of susceptible in-

dividuals. While for the classical model the number of infectious individuals vanish

at long times, this is not the case for the orders ν = 0.8 and ν = 0.9 (Figure 3). We

run the simulator up to a very long time but the individuals do not vanish, so that

the epidemic never ends (in theory). This happens because R0 ≥ 1. We run other

examples with different parameters such that R0 < 1 and as expected the number of

infectious individuals vanish and the epidemic dies out. For brevity these plots are

not shown. In this work the case R0 < 1 occurs and is analyzed in subsection 4.2

when simulating the evolution of the epidemic in the RMBA using fractional

derivatives. This value of R0 is associated with the strict lockdown imposed by

the government, with the corresponding decrease in the number of infected

individuals.

Regarding the exposed infected classes (Figures 2-3), a decrease in ν causes de-

lays and reduces the amplitude of the peaks of these classes. Furthermore, as ν de-

creases the number of casualties increase as seen in Figure 4 while Figure 6 shows a

delay and increase of the peak in the number of dead individuals per day.Also note

that Figure 5 shows a delay and decrease in the number of recovered individu-

als as the order of the fractional derivative decreases.

These simulations consider a single value of β, the lockdown parameter. In a re-

alistic case, β is a function of time and the procedure is that every time β changes,

the algorithm has to be fully initialized from the beginning. Changing β in the same

time loop yields wrong results. This fact has been verified by cross-checking differ-

ent algorithms and several fractional orders.
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Fig. 1 Susceptible individuals for the classical SEIR model (ν = 1) and fractional-order derivatives

ν = 0.8 and 0.9
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Fig. 2 Exposed individuals for the classical SEIR model (ν = 1) and fractional-order derivatives

ν = 0.8 and 0.9
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Fig. 3 Infected individuals for the classical SEIR model (ν = 1) and fractional-order derivatives

ν = 0.8 and 0.9
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4.2 Analysis of the COVID-19 epidemic in the RMBA

We model the COVID-19 epidemic in the RMBA, with a population N0 = 14839026

individuals according to the 2010 Census (https://www.indec.gob.ar/indec/

web/Nivel4-Tema-2-41-135). The prediction of the time evolution of the epi-

demic is very difficult due to the uncertainty of the parameters defining the SEIR

model. Virus properties such as the infectious and incubation periods (γ−1 and ǫ−1)

and life expectancy of an infected individual (α−1) lie in certain bounded intervals.

Instead, the parameter β is time dependent, due to changes according to the lock-

down and social-distance measures imposed by the government. Most authors use

the infectious individuals to calibrate the model, e.g., González-Parra et al. [25], who

model the AH1N1/09 influenza epidemic in Bogotá, Colombia and in the Nueva Es-

parta state in Venezuela.

Since the number of asymptomatic, undiagnosed infectious individuals in RMBA

is unknown, we choose to calibrate the model with the number of officially reported

casualties as the most reliable data, from day 1 (March 9, 2020) to day 198 (Septem-

ber 22th, 2020) (https://www.argentina.gob.ar/coronavirus/informe-diario).

Concerning the parameters, fractional order and initial conditions of the model, we

assume µ= 3.6 × 10 −5/ day, corresponding to a life expectancy of 76 years. Changes

in the β parameter are associated with different measures of lockdown and social

distance imposed by the goverment. Thus, we assume that β is a piecewise con-

stant function, where its variations are related to the inflection points observed in

the curve of casualties. After the initial time t0 = 1 day, this curve shows two in-

flection points at times t1 = 31 day and t3 = 50 day. The fractional-order derivative

ν, the values of α, β, ǫ , γ and the initial exposed individuals E(0) are estimated by

minimizing the L2-norm between the simulated and actual casualties, which is an

inverse problem with an infinite number of solutions due to the existence of local

minima. The estimation is also performed for the classical case ν = 1. This inverse

problem is solved by using a quasi Newton approximation technique for nonlinear

least-squares problems, based on the formula of Broyden-Fletcher-Goldfarb-Shanno

[20]. Application of this technique to solve inverse problems in reservoir engineer-

ing can be found in [26]. Table 1 shows ranges of the fractional derivative ν, of the

parameters α, β, ǫ , γ and the initial exposed individuals E(0) used in the inversion

procedure. Table 2 displays the initial values and results of three outputs (Cases) of

the fitting procedure.

Table 1 Constraints and ranges of the estimation procedure

Variable→ ν α β ǫ−1 γ−1 E (0)

day−1 day−1 day day

Lower bound 0.8 10−5 0.1 3 3 102

Upper bound 1.0 10−1 0.9 9 9 104
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Table 2 Initial values and results of the estimation procedure.

Variable→ ν αν βν

1
βν

2
βν

3
(ǫ−1)ν (γ−1)ν E (0)

(day)−ν (day)−ν (day)−ν (day)−ν (day)ν (day)ν

Case 1

Initial 0.92 6.00×10−3 0.4 0.2 0.3 5.0 4.0 1000

Optimum 0.944 2.713166×10−4 0.261784 0.149850 0.200793 3.382071 7.963157 2248

R0 2.080 1.191 1.596

IFR =0.216

Case 2

Initial 0.87 6.00×10−3 0.4 0.2 0.3 5.0 4.0 1000

Optimum 0.867 3.334494× 10−4 0.609331 0.161422 0.301018 6.311652 6.257098 1125

R0 3.805 1.008 1.880

IFR = 0.209

Case 3

Initial 1 6.00×10−3 0.4 0.2 0.3 5.0 5.0 1000

Optimum 1 2.980430 ×10−4 0.300620 0.158880 0.224090 6.339952 6.878178 4464

R0 4.28 1.00 1.44

IFR = 0.24

Let us analyze three cases, resulting from the minimization algorithm. We ob-

tained the SEIR parameters, the fractional order and the initial exposed humans

values fitting the data. In all the cases, the initial number of infected individuals is

assumed to be I (0) = 100.

Figures 7 and 8 show the dead individuals and dead individuals per day for

Case 1. The inflection point at t1 = 30 day related to a change of R0 from 2.08

to 1.191 shows a decay in the simulated curves, because of the effect of the lock-

down. After t1 = 50 day, the curves exhibits a continuous increase in casualties

due to the relaxation of the lockdown measures with R0 = 1.596. Figure 9 shows

the behavior of all classes, with a a peak of 804 thousand infected individuals

at day 188 (September 12th, 2020) while Figure 10 exhibit a death toll of 19340

after 800 days (May 17th, 2022) and at day 188 a peak of 218 casualties.

The parameters of Cases 2 and 3 in Table 2 also fit the data, with graphs

similar to those in Figures 7 and 8. Case 2 estimates peaks of 296 deaths and

886 thousand infected individuals at day 194 (September 18th, 2020). At day

800 (May 17, 2022), we have 21 thousand deaths and 9590 thousand recovered

humans. Note that the estimations are higher but quite similar to those of the

previous case.

Case 3, which corresponds to the classical SEIR model (ν = 1), exhibits a

peak of 160 casualties at day 186 and 537 thousand people infected. The end of

the epidemic is consider the day at which the number of infected individuals is

smaller than 1, which is day 626 (November 26th, 2021) for this case. At this
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day, the total number of recovered and dead individuals are 8861 thousand and

18.5 thousand, respectively so that the total number of infected people at the

end of the epidemic is 8880 thousand individuals. This is the case predicting the

smallest number of casualties.
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Fig. 7 Dead individuals. The red dots represent the data and the solid line the fit using the SEIR

model of fractional order with ν = 0.944

In the following, we compare the behavior of all classes for the different

orders of the fractional derivative used in this analysis, i.e. ν = 1,0.944 and

0.867. Figure 11 displays the number of infected individuals, where there is a

delay and increase of the peak values as the order of the fractional derivative

decreases. This delay is consistent with that observed in Figure 3. Figure 12

shows an increase in the number of casualties by decreasing the order of the

fractional derivative, with a 14 % increase between ν = 1 and ν = 0.869. More-

over, it can be seen that the curves stabilize at later times as the fractional order

decreases. Finally, Figures 13 and 14 exhibit the esimated recovered and sus-

ceptible individuals for the three values of ν. Almost the same results behavior

are observed for ν = 1 and ν = 0.944, while more recovered and consequently

less susceptible individuals are estimated in the case ν = 0.867. The curves ex-
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Fig. 8 Dead individuals per day. The red dots represent the data and the solid line the fit using the

SEIR model of fractional order with ν = 0.944
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ν = 0.944
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Fig. 10 Total number of deaths and deaths per day for the SEIR model of fractional order with

ν = 0.932

hibit asymptotic values at later times as ν decreases, and the lower the value

of ν the later individuals recover from the virus infection. Note that the gen-

eral trends of Figures 11–14 are similar to those of Figures in Subsection 4.1,

in spite of the fact that parameters obtained from the adjustment are different

for the three cases.

Concerning the chosen value of initially infectious I (0), if R0 > 1 increasing

I (0) anticipates the spread of the epidemic, so that the location of the peak of

infected people depends on I (0), with similar amplitude. Furthermore, if R0 <

1 an increase in I (0) induces more exposed and infected individuals, but the

location of the peak does not significantly change. The figures are not included

for brevity.

As a general remark, we may state that when the order of the fractional

derivative decreases, i.e., higher subdiffusion of the virus, the duration of the

epidemic is extended, and the peak of infected individuals and number of ca-

sualties increase.



Title Suppressed Due to Excessive Length 15

0 100 200 300 400 500 600
Time (days)

0

0,2

0,4

0,6

0,8

In
fe

ct
ed

 i
n
d
iv

id
u
al

s 
(M

)
ν = 1
ν = 0.944
ν = 0.867

Fig. 11 Infected individuals for the SEIR model of fractional orders ν = 1, 0.944 and 0.8679

0 100 200 300 400 500 600
Time (days)

0

5000

10000

15000

20000

D
ea

d
 i

n
d
iv

id
u
al

s

ν = 1
ν = 0.944
ν = 0.867

Fig. 12 Dead individuals for the SEIR model of fractional orders ν = 1, 0.944 and 0.867
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Fig. 13 Recovered individuals for the SEIR model of fractional orders ν = 1, 0.944 and 0.867
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Fig. 14 Susceptible individuals for the SEIR model of fractional orders ν = 1, 0.944 and 0.867
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5 Conclusions

BLA BLA

6 Appendix

The Adams-Bashford-Moulton explicit scheme for the fractional order SEIR

equations is formulated as follows [15]

Predictor

S
p

n+1
= ((n + 1)∆t)S0 +

n
∑

j=0

bj,n+1) f ν1 (Sj ,E j , I j ,Rj ) (13)

E
p

n+1
= ((n + 1)∆t)E0 +

n
∑

j=0

bj,n+1) f ν2 (Sj ,E j , I j ,Rj )

I
p

n+1
= ((n + 1)∆t)I0 +

n
∑

j=0

bj,n+1) f ν3 (Sj ,E j , I j ,Rj )

E
p

n+1
= ((n + 1)∆t)R0 +

n
∑

j=0

bj,n+1) f ν4 (Sj ,E j , I j ,Rj )

N
p

n+1
= S

p

n+1
+ E

p

n+1
+ R

p

n+1
+ I

p

n+1
.

Corrector

Sn+1 = ((n + 1)∆t)S0 +

n
∑

j=0

a j,n+1 f ν1 (S
p

n+1
,E

p

n+1
, I

p

n+1
,R

p

n+1
) (14)

En+1 = ((n + 1)∆t)E0 +

n
∑

j=0

a j,n+1 f ν2 (S
p

n+1
,E

p

n+1
, I

p

n+1
,R

p

n+1
)

In+1 = ((n + 1)∆t)I0 +

n
∑

j=0

a j,n+1 f ν3 (S
p

n+1
,E

p

n+1
, I

p

n+1
,R

p

n+1
)

Rn+1 = ((n + 1)∆t)R0 +

n
∑

j=0

a j,n+1 f ν4 (S
p

n+1
,E

p

n+1
, I

p

n+1
,R

p

n+1
)

Nn+1 = Sn+1 + En+1 + Rn+1 + In+1.

In (13)-(14) the coefficients bj,n+1,a j,n+1 are
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bj,n+1 =
1

Γ(1 + ν

[

(n − j + 1)ν − (n − j)ν
]

a j,n+1 =
1

Γ(2 + ν)
=



(n)ν+1 − (n − ν)(n + 1)ν , j = 0,

(n − j + 2)ν+1 + (n − j)ν+1 − 2(n − j + 1)ν+1, 1 ≤ j ≤ n − 1

1, j = n + 1.

Concerning the error of the numerical scheme ABM, Abdullah et al. [18]

give a bound in therms of the time step size ∆t. On the other hand, Li and Zeng

[15] and Li et al. [27] show that the fractional forward Euler and ABM methods

are stable and convergent of order one in ∆t.
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