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In this paper, we consider the SEIR (Susceptible-Exposed-Infected-Recovered) epidemic model
by taking into account both standard and bilinear incidence rates of fractional order. First, the non-
negative solution of the SEIR model of fractional order is presented. Then, the multi-step generalized
differential transform method (MSGDTM) is employed to compute an approximation to the solution
of the model of fractional order. Finally, the obtained results are compared with those obtained by the
fourth-order Runge-Kutta method and non-standard finite difference (NSFD) method in the integer
case.

Key words: Fractional Differential Equations; Epidemic Model; Iterative Method; Non-Standard
Scheme; Differential Transform Method.

1. Introduction

Mathematical modelling has proved its importance
in understanding the dynamics of many infectious dis-
eases. In compartmental models, the time t is an inde-
pendent variable, and derivatives with respect to time
of the sizes of the compartments are the rates of trans-
fer between compartments. One of the early models in
epidemiology was introduced in 1927 by Kermack and
McKendrick [1] which is the starting point of epidemic
models. In their proposed model, they divided the total
population into three classes: the susceptible denoted
by S, the infectious denoted by I, and the recovered
denoted by R. This model, known as the susceptible-
infectious-recovered (SIR) model, could be used to de-
scribe an influenza epidemic and was developed early
in the 20th century. In many infectious diseases there
is an exposed period after the transmission of infec-
tion from susceptible to potentially infective members
but before these potential invectives develop symp-
toms and can transmit infection. That means a disease
may have a latent or incubation time, when the sus-

ceptible has become infected but it is not yet infec-
tious. The incubation period for measles, for example,
is 8 – 13 days. For AIDS, on the other hand, it can be
anything from a few months to many years. This can
be included in the model as a delay, or by introducing
a new class, say E, in which the susceptible remains
for a given time before moving to I class. Many infec-
tious diseases in nature have both horizontal and verti-
cal transmission routes. These include such human dis-
eases as Rubella, Herpes Simplex, Hepatitis B, and the
HIV/AIDS. Horizontal transmission of diseases among
humans and animals occurs through physical contact
with hosts or through disease vectors like mosquitos,
flies, etc. A vertical transmission is the transmission of
an infection from parents to child during the perina-
tal period. In [2], a detailed analysis for integer order
SEIR models with vertical transmission within a con-
stant population can be found. Also other researchers
did a lot of work on epidemic models of integer order
(see for example [3 – 5]).

Nowadays, researchers are working on fractional-
order differential equations because these give a better
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presentation of many phenomena. The fractional cal-
culus represents a generalization of the ordinary dif-
ferentiation and integration to non-integer and com-
plex order and is used to establish new models in
many fields not only in Mathematics. Mathematical
models, using ordinary differential equations with in-
teger order, have been proven valuable in understand-
ing the dynamics of biological systems. However, the
behaviour of most biological systems has memory
or after-effects. The modelling of these systems by
fractional-order differential equations has more advan-
tages than classical integer-order mathematical mod-
elling, in which such effects are neglected. Accord-
ingly, the subject of fractional calculus (that is, cal-
culus of integral and derivatives of arbitrary order)
has gained popularity and importance, mainly due
to its demonstrated applications in numerous diverse
and widespread fields of science and engineering. In
some situations, the fractional-order differential equa-
tions (FODEs) models look more suitable with the
real phenomena than the integer-order models. This
is due to the fact that fractional derivatives and in-
tegrals enable the description of memory and heredi-
tary properties inherent in various materials and pro-
cesses. Hence there is a growing need to study and
use the fractional-order differential and integral equa-
tions (see for example [6 – 10]). In this paper, we con-
sider a SEIR model taking into account both bilinear
and standard incidence rates. First, we show that the
SEIR model of fractional order has a positive solu-
tion. Then, we use the multi-step generalized differ-
ential transform method (MSGDTM) to approximate
the numerical solution. Finally, we compare our nu-
merical results with the results obtained by the non-
standard finite difference (NSFD) method and fourth-
order Runge–Kutta method. This paper is organized as
follows.

In Section 2, we present the formulation of the
model with some basic definitions and notations re-
lated to this work, and in Section 3 we show the non-
negative solution and uniqueness of the model. In Sec-
tion 4, the MSGDTM is applied to the model. Numer-
ical simulations are presented graphically in Section 5.
A conclusion is given in the last section.

2. Formulation of the Model with Preliminaries

For the formulation of the model, we consider the
SEIR model by taking into account both bilinear and

standard incidence rates. The model is as follows:

dS(t)
dt

= bN(t)−β1E(t)S(t)−β2
I(t)S(t)

N(t)
−µS(t) ,

dE(t)
dt

= β1E(t)S(t)− (γ1 + µ)E(t) ,

dI(t)
dt

= β2
I(t)S(t)

N(t)
+ γ1E(t)− (γ2 + µ)I(t) ,

dR(t)
dt

= γ2I(t)−µR(t) (1)

with

S(0) = S0 , E(0) = E0 , I(0) = I0 , R(0) = R0 .

The total population size is N(t) = S(t)+E(t)+ I(t)+
R(t).

By adding all equations of system (1), we obtain

dN
dt

= (b−µ)N. (2)

Here b is the birth rate, β1 is the transmission rate from
susceptible to exposed class due to infected class, β2 is
the transmission rate from susceptible to infected class.

Now we introduce fractional order into the system
(1) which consists of ordinary differential equations.
The new system is described by the following set of
fractional-order differential equations:

Dα
t S(t) = bN(t)−β1E(t)S(t)−β2

I(t)S(t)
N(t)

−µS(t) ,

Dα
t E(t) = β1E(t)S(t)− (γ1 + µ)E(t) ,

Dα
t I(t) = β2

I(t)S(t)
N(t)

+ γ1E(t)− (γ2 + µ)I(t) ,

Dα
t R(t) = γ2I(t)−µR(t) ,

Dα
t N(t) = (b−µ)N(t) .

(3)

Here Dα
t is the fractional derivative in the Caputo

sense, and α is a parameter describing the order of the
fractional time derivative with 0 < α ≤ 1. For α = 1,
the system reduces to ordinary differential equations.
The system (3) is the generalization of system (1). Now
we give some basic definitions and properties of the
fractional calculus theory which are used further in this
paper [5 – 9].

Definition 1. A function f (x)(x > 0) is said to be in
the space Cα (α ∈ R) if it can be written as f (x) =
xp f1(x) for some p > α where f1(x) is continuous in
[0,∞), and it is said to be in the space Cm

α if f (m) ∈Cα

and m ∈ N.
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Definition 2. The Riemann–Liouville integral opera-
tor of order α > 0 with a≥ 0 is defined as

(Jα
a f )(x) =

1
Γ (α)

∫ x

a
(x− t)α−1 f (t) dt , x > a , (4)

(J0
a f )(x) = f (x) . (5)

Properties of the operator can be found in [11]. We
only need here the following:

For f ∈Cα , α,β > 0, a≥ 0, c ∈ R and γ >−1, we
have

(Jα
a Jβ

a f )(x) = (Jβ
a Jα

a f )(x) = (Jα+β
a f )(x) , (6)

Jα
a xγ =

xγ+α

Γ (α)
B x−a

x
(α,γ +1) , (7)

where Bτ(α,γ + 1) is the incomplete beta function
which is defined as

Bτ(α,γ +1) =
∫

τ

0
tα−1(1− t)γ dt , (8)

Jα
a ecx = eac(x−a)α

∞

∑
k=0

[c(x−a)]k

Γ (α + k +1)
. (9)

The Riemann–Liouville derivative has certain disad-
vantages when trying to model real-world phenomena
with fractional differential equations. The Riemann–
Liouville derivative of a constant is not zero. In addi-
tion, if an arbitrary function is a constant at the origin,
its fractional derivation has a singularity at the origin
for instant exponential and Mittag–Leffler functions.
Theses disadvantages reduce the field of application
of the Riemann–Liouville fractional derivative. One of
the great advantages of the Caputo fractional derivative
is that it allows traditional initial and boundary con-
ditions to be included in the formulation of the prob-
lem [12, 13]. Therefore, we shall introduce a modified
fractional differential operator c

0Dα
a proposed by Ca-

puto in his work on the theory of viscoelasticity.

Definition 3. The Caputo fractional derivative of f (x)
of order α > 0 with a≥ 0 is defined as

c
0Dα

a ( f (x)) =
1

Γ (m−α)

∫ x

0
(x− t)m−α−1 dm f (t)

dtm dt ,

m−1 < α ≤ m .

(10)

For the case of Riemann–Liouville, we have the fol-
lowing definition:

(Dα
a f )(x) = (Jm−α

a f (m))(x)

=
1

Γ (m−α)

∫ x

a

f (m)(t)
(x− t)α+1−m dt

for m−1 < α ≤ m, m ∈ N,x≥ a, f (x) ∈Cm
−1.

The Caputo fractional derivative was investigated by
many authors. For m−1 < α ≤m, f (x)∈Cm

α , and α ≥
−1, we have

(Jα
a Dα

a f )(x) = JmDm f (x)

= f (x)−
m−1

∑
k=0

f (k)(a)
(x−a)k

k !
.

(11)

For mathematical properties of fractional deriva-
tives and integrals one can consult the mentioned ref-
erences [11 – 15].

3. Non-Negative solutions

Definition 4. For T > 0 a real function u : [0,T ]→Rn

is a non-negative function if u(t) ≥ 0 on the interval
[0,T ].

Let R5
+ = {X ∈ R5 : X ≥ 0} and X(t) =

(P(t), L(t), S(t), Q(t), N(t))T. For the proof of the
theorem about non-negative solutions, we shall need
the following Lemma [15].

Lemma 1 (Generalized Mean Value Theorem). Let
f (x) ∈ C[a,b] and Dα f (x) ∈ C[a,b] for 0 < α ≤ 1.
Then we have

f (x) = f (a)+
1

Γ (α)
Dα f (ξ )(x−a)ξ

with 0≤ ξ ≤ x, for all x ∈ (a,b].

Remark 1. Suppose f (x) ∈ C[0,b] and Dα f (x) ∈
C[0,b] for 0 < α ≤ 1. It is clear from Lemma 1 that
if Dα f (x) ≥ 0 for all x ∈ (0,b), then the function f is
non-decreasing, and if Dα f (x) ≤ 0 for all x ∈ (0,b),
then the function f is non-increasing.

Theorem 1. There is a unique solution for the initial
value problem given by (3), and the solution remains
in R5

+.

Proof. The existence and uniqueness of the solution
of system (3) in (0,∞) can be obtained from [7, The-
orem 3.1 and Remark 3.2]. We need to show that the
domain R5

+ is positively invariant. Since

Dα
t S(t)|S=0 = bN(t)≥ 0 , Dα

t E(t)|
E=0

= 0 ,
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Dα
t I(t)|I=0 = γ1E(t)≥ 0 , Dα

t R(t)|R=0 = γ2I(t)≥ 0 ,

Dα
t N(t)|N=0 = 0 .

On each hyperplane bounding the non-negative or-
thant, the vector field points into R5

+.

4. Multi-Step Generalized Differential Transform
Method (MSGDTM)

Now, we apply the MSGDTM to find the approx-
imate solution of system (3), which gives an accu-
rate solution over a longer time frame as compared to
the standard generalized differential transform method
(GDTM) [16 – 18]. Taking the differential transform of
system (3) with respect to time, we obtain

S(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)

·

(
bN(k)−β1

k

∑
s=0

E(k− s)S(s)−β2ISN(k)−µS(k)

)
,

E(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)

·

(
β1

k

∑
s=0

E(k− s)S(s)− (γ1 + µ)E(k)

)
,

I(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)
· (β2ISN(k)+ γ1E(k)− (γ2 + µ)I(k)) ,

R(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)
(γ2I(k)−µR(k)) ,

N(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)
(b−µ)N(k) .

(12)

Here S(k),E(k), I(k),R(k), and N(k) are the differen-
tial transformations of S(t),E(t), I(t),R(t), and N(t),
respectively. Also, ISN(k) is the differential transfor-
mation of the function ISN(t) = I(t)S(t)

N(t) and is defined
as

ISN(k) =
1

N(0)

·

[
k

∑
s=0

I(s)S(k− s)−
k−1

∑
s=0

ISN(s)N(k− s)

]
.

The differential transforms of the initial conditions are

S(0) = S0 , E(0) = E0 , I(0) = I0 ,

R(0) = R0 and N(0) = N0 .

In view of the differential inverse transform, the dif-
ferential transform series solution for system (3) can
be obtained as

S(t) =
K

∑
k=0

S(k)tαk, E(t) =
K

∑
k=0

E(k)tαk,

I(t) =
K

∑
k=0

I(k)tαk, R(t) =
K

∑
k=0

R(k)tαk,

N(t) =
K

∑
k=0

N(k)tαk.

(13)

Now according to the MSGDTM, the series solutions
for system (3) is suggested by

S(t) =



K
∑

k=0
S1(k)tαk , t ∈ [0, t1]

K
∑

k=0
S2(k)(t− t1)αk, t ∈ [t1, t2]

...
K
∑

k=0
SM(k)(t− tM−1)αk, t ∈ [tM−1, tM]

(14)

E(t) =



K
∑

k=0
E1(k)tαk , t ∈ [0, t1]

K
∑

k=0
E2(k)(t− t1)αk, t ∈ [t1, t2]

...
K
∑

k=0
EM(k)(t− tM−1)αk, t ∈ [tM−1, tM]

(15)

I(t) =



K
∑

k=0
I1(k)tαk , t ∈ [0, t1]

K
∑

k=0
I2(k)(t− t1)αk, t ∈ [t1, t2]

...
K
∑

k=0
IM(k)(t− tM−1)αk, t ∈ [tM−1, tM]

(16)

R(t) =



K
∑

k=0
R1(k)tαk , t ∈ [0, t1]

K
∑

k=0
R2(k)(t− t1)αk, t ∈ [t1, t2]

...
K
∑

k=0
RM(k)(t− tM−1)αk, t ∈ [tM−1, tM]

(17)
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N(t) =



K
∑

k=0
N1(k)tαk , t ∈ [0, t1]

K
∑

k=0
N2(k)(t− t1)αk, t ∈ [t1, t2]

...
K
∑

k=0
NM(k)(t− tM−1)αk, t ∈ [tM−1, tM]

(18)

Here Si(k),Ei(k), Ii(k),Ri(k), and Ni(k) for i =
1, 2, . . ., M satisfy the following recurrence relations:

Si(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)

(
bNi(k)

−β1

k

∑
s=0

Ei(k− s)Si(s)−β2 ISNi(k)−µSi(k)

)
,

Ei(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)

Fig. 1. Solid line: MSGDTM, dotted line: Runge–Kutta
method.

Fig. 3. Solid line: MSGDTM, dotted line: Runge–Kutta
method.

·

(
β1

k

∑
s=0

Ei(k− s)Si(s)− (γ1 + µ)Ei(k)

)
,

Ii(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)
· (β2ISNi(k)+ γ1Ei(k)− (γ2 + µ)Ii(k)) ,

Ri(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)
(γ2Ii(k)−µRi(k)) ,

Ni(k +1) =
Γ (αk +1)

Γ ((αk +1)+1)
(b−µ)Ni(k)

such that

Si(ti−1) = Si−1(ti−1) , Ei(ti−1) = Ei−1(ti−1) ,
Ii(ti−1) = Ii−1(ti−1) , Ri(ti−1) = Ri−1(ti−1)

and

Ni(ti−1) = Ni−1(ti−1) , i = 2,3, . . . ,M.

Fig. 2. Solid line: MSGDTM, dotted line: Runge–Kutta
method.

Fig. 4. Solid line: MSGDTM, dotted line: Runge–Kutta
method.
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Finally, we start with the initial conditions

S0(0) = S0 , E0(0) = E0 , I0(0) = I0 , R0(0) = R0 ,

and

N0(0) = N0 .

With the use of the recurrence relation given in the
above system, we can obtained the MSGDTM solution
given in (14) – (18).

Notation Parameter description Value/day

µ Natural death rate 0.0021
β1 Transmission rate from susceptible to exposed class due to infected class 0.014
β2 Transmission rate from susceptible to infected class 0.014
γ1 Recovery rate of exposed class 0.0095
γ2 Recovery rate of infected class 0.0165
b Natural birth rate 0.0045

Table 1. Parameter values
for the numerical simula-
tion.

Fig. 5. Solid line: MSGDTM, dotted line: Runge–Kutta
method.

Fig. 7. Solid line: α = 1.0, dashed line: α = 0.95, dot-dashed
line: α = 0.85, dotted line: α = 0.75, and star line: α = 0.65.

5. Numerical Methods and Simulations

We solved analytically the system (3) with trans-
form initial conditions by using the MSGDTM. We
also used NSFD method and the fourth-order Runge–
Kutta method for numerical results. For numerical sim-
ulation, we used a set of parameters given in Table 1.
To demonstrate the effectiveness of the proposed algo-
rithm as an approximate tool for solving the nonlinear
system of fractional differential equations descrided in
system (3) for large time t, we applied this algorithm

Fig. 6. Solid line: α = 1.0, dashed line: α = 0.95, dot-dashed
line: α = 0.85, dotted line: α = 0.75, and star line: α = 0.65.

Fig. 8. Solid line: α = 1.0, dashed line: α = 0.95, dot-dashed
line: α = 0.85, dotted line: α = 0.75, and star line: α = 0.65.
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Fig. 9. Solid line: α = 1.0, dashed line: α = 0.95, dot-dashed
line: α = 0.85, dotted line: α = 0.75, and star line: α = 0.65.

on the interval [0-30]. It is to be noted that the MS-
GDTM results are obtained for K = 10 and M = 3000.

We also assumed the initial conditions to be S0 =
153, E0 = 55, I0 = 79, R0 = 68, and N0 = 355.

Figures 1 – 5 show the approximate solutions for
S(t), E(t), I(t), R(t), and N(t) obtained by using the
MSGDTM and the classical Runge–Kutta method
when α is one.

From the graphical results in Figures 1 – 5, it can be
seen that the results obtained by using the MSGDTM
match the results of the classical Runge–Kutta method
very well, which implies that the presented method can
predict the behaviour of these variables accurately for
the region under consideration.

Fig. 11 (colour online). Plot of the approximation for S(t)
with respect to time t.
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Fig. 10. Solid line: α = 1.0, dashed line: α = 0.95, dot-
dashed line: α = 0.85, dotted line: α = 0.75, and star line:
α = 0.65.

Figures 6 – 10 show the approximate solutions for
S(t), E(t), I(t), R(t), and N(t) obtained for different
values of α using the MSGDTM.

From the numerical results in Figures 6 – 10, it is
clear that the approximate solutions depend contin-
uously on the time-fractional derivative α . It is evi-
dent that the efficiency of this approach can be dra-
matically enhanced by decreasing the step size and
computing further terms or further components of
S(t), E(t), I(t), R(t), and N(t).

Figures 11 – 15 show the approximate solutions for
S(t), E(t), I(t), R(t), and N(t) via NSFD [12], the clas-
sical Runge–Kutta method, and the algorithm ode45
when α is one.

Fig. 12 (colour online). Plot of the approximation for E(t)
with respect to time t.
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Fig. 13 (colour online). Plot of the approximation for I(t)
with respect to time t.

Fig. 15 (colour online). Plot of the approximation for N(t)
with respect to time t.

6. Conclusion

In this paper, a fractional-order system for SEIR
(susceptible-exposed-infected-recovered) epidemic

Fig. 14 (colour online). Plot of the approximation for R(t)
with respect to time t.

model is studied and its approximate solutions are pre-
sented by using the MSGDTM. The approximate so-
lutions obtained by this method are highly accurate
and valid for a long time in the integer case. The MS-
GDTM introduces a new idea for constructing the ap-
proximate solution. In this approximation, the interval
is divided into subintervals of equal length, and ini-
tial conditions are chosen as mentioned in Section 4.
That is, in every subinterval a new initial condition
is determined by functions obtained in these subin-
tervals. This gives a way of finding accurate approx-
imate solutions at points far from the first initial point.
This is the main advantage of the present method. But
there is no such a situation in built function prece-
dures provided by Mathematica or Maple softwares.
That is, the first initial condition is never changed.
For this reason, generally accurate approximate so-
lutions can not be obtained at points far from the
first initial point. This method is very applicable and
is also a good approach for obtaining the solutions
of differential equations of such order. This tool is
the best one for modelling in science and engineer-
ing.
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