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Abstract In this paper, a fractional temporal SEIR measles model is considered. The
model consists of four coupled time fractional ordinary differential equations. The
time-fractional derivative is defined in the Caputo sense. Firstly, we solve this model
by solving an approximate model that linearizes the four time fractional ordinary
differential equations (TFODE) at each time step. Secondly, we derive an analytical
solution of the single TFODE. Then, we can obtain analytical solutions of the four
coupled TFODE at each time step, respectively. Thirdly, a computationally effective
fractional Predictor-Corrector method (FPCM) is proposed for simulating the single
TFODE. And the error analysis for the fractional predictor-corrector method is also
given. It can be shown that the fractional model provides an interesting technique to
describe measles spreading dynamics. We conclude that the analytical and Predictor-
Corrector schemes derived are easy to implement and can be extended to other
fractional models. Fourthly, for demonstrating the accuracy of analytical solution
for fractional decoupled measles model, we applied GMMP Scheme (Gorenflo-
Mainardi-Moretti-Paradisi) to the original fractional equations. The comparison of
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the numerical simulations indicates that the solution of the decoupled and linearized
system is close enough to the solution of the original system. And it also indicates
that the linearizing technique is correct and effective.

Keywords Time fractional model - SEIR measles model - Analytical solution -
Predictor-corrector method - GMMP Scheme
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1 Introduction

Health issues are considered a serious threat for public health throughout the world.
As such, epidemiology study has gained popularity and importance due to its grow-
ing needs in assessing and predicting numerous epidemics or any disease outbreak.
Furthermore, it leads the health researcher to determine the nature of the disease and
suggest recommended actions.

Several approaches have been adopted to study the dynamics of epidemics and
one consists of models that include derivatives of ordinary differential equations. As
known, ordinary differential models have certain restrictions due to local operator
properties [1]. Therefore, modification is needed and it is seen that fractional calculus
plays an important role in turning classical ordinary derivatives into fractional ordi-
nary derivatives. The fractional system can be represented by operator symbol D%;
o = 1 coincides with the ordinary differential operator [2]. Suitability of fractional
derivatives in modeling certain complex dynamics lies in the property exhibited by
the non-locality of the systems that means that the processes dynamics has a certain
degree of memory, as opposed to ordinary derivative. This makes the system possess
hereditary properties—a powerful instrument in a fractional model [3—6]. In addition,
fractional calculus has an important role in superdiffusive and subdiffusive processes
that also makes it a useful tool in epidemiology [7].

The theory of derivatives of non-integer order originated from the de 1’Hospital
letter to Leibniz discussing the meaning of the derivative or “what does the derivative
of order 1/3 or +/2 of a function mean?” in 1695. Leading from that, it has caught
the interest of mathematicians during eighteenth to nineteenth centuries to study this
area. A well-known scientist, Abel in 1823 has become the first scientist to implicitly
apply fractional calculus for investigating tautochrone problems [1]. Later, several
fundamental works on various aspects of fractional calculus have appeared [2, 8—10].

As one would expect, since fractional order differential equation systems allow
greater degrees of freedom and incorporate memory effect in the model, they have
become an excellent tool in modeling epidemiology properties. Although the frac-
tional derivative is more complicated than the classical model, there exist several
numerical methods for solving such systems [11, 12]. Several works on modeling
epidemiology systems can be seen in [13—19].

Here, the focus is devoted on establishing a mathematical model to control
measles diseases. Measles, also known as rubeola, is a highly contagious respiratory
infection that is caused by a Paramyxovirus virus and has higher incidence if there
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is no high coverage in vaccination [20]. Measles is also one of the causes of death
for young children despite the presence of an effective vaccine [20]. The disease has
been known to be highly contagious and can be easily transmitted by coughing and
sneezing or direct contact with infected nasal secretions [20]. Much research has been
attempted to reveal the biological and dynamical processes of measles such as [21-
23]. These studies respectively investigated the measles dynamics using bifurcation
theory [21] and studied the effect of vaccination and area on measles transmission
dynamics [22, 23]. There are also other studies that use metapopulation models to
control measles and other infectious diseases [20, 24, 25]. These studies focused on
dynamics of individuals between patches which may be towns, cities, and so forth.
Generally, the model is described in the form of ordinary differential equations to
describe disease spread in an environment divided by patches. Following previous
work on a SEIR metapopulation model, [25] has then extended the system into a frac-
tional SEIR metapopulation model. However, they did not justify the order parameter
used in their fractional model.

In this recent work, we follow [25], who described a metapopulation measles
model by a fractional order differential equation system. Their work is motivated by
measles outbreak in New Zealand. The outbreak is believed to have originated in the
Philippines, arriving in New Zealand via a dance competition in Sydney, which was
attended by a South Auckland 18-year-old [26]. In Australia, measles is considered
rare due to widespread use of vaccine; however, cases still occur [27]. Although the
cases are under control, infections will still happen from persons’ travel and spread-
ing infection to others over wide distances. A basic measles model was developed in
New Zealand by a group of researchers in 1996 and it successfully predicted the 1997
measles epidemic; the model was later enhanced to become a prediction/prevention
model [28]. It turned out that fractional calculus used in [25] is able to represent the
well-posedness of the measles dynamics.

Actually, one of the difficulties in a fractional derivative model is due to its
analytical investigation. As a matter of fact, this limits the understanding to the
dynamics of the fractional model itself. Several works have been devoted to con-
structing analytical methods, for instance in 2012, [29, 30] have proposed an idea for
deriving analytical solutions for time-fractional diffusion equations. Recently, [31]
have derived an approximate analytic method called the fractional reduced differen-
tial transform method for solving time fractional order biological population models.
As far as we are aware, there are no relevant papers in the published literature dis-
cussing the derivation of analytical solutions to the measles model. Furthermore, [25]
has only derived a numerical approximation to the model with no analytical solution
attached to it.

Next, the essential part of this paper is to construct an analytical technique scheme
that is applicable to solve the defined model. Firstly, we solve this model by lin-
earizing technique the four time fractional ordinary differential equations (TFODE)
at each time step. This linearizing technique has been used for numerical simulating
of complex dynamical systems [32] and assured that the solutions of the coupling
system is in agreement with the original system. Secondly, we derive an analytical
solution of the single TFODE. Then, we can obtain analytical solutions of the four
TFODE at each time step, respectively. The analytical solution technique proposed
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in this manuscript is compared to numerical solutions in order to show that it has
good agreement and furthermore, this analytical technique can be considered as an
alternative and well-organized technique in attaining analytical solutions not only for
fractional time measles model, but other time-fractional model as well. These analyt-
ical solutions are only involved in two-parameter function of the Mittag-Leffler type,
which can be calculated by MATLAB.

Furthermore, for demonstrating the accuracy of analytical solution for fractional
decoupled measles model, we applied GMMP scheme (Gorenflo-Mainardi-Moretti-
Paradisi) and Newton method to the original fractional ordinary differential equations
(TFODE). Then, the comparison of the numerical simulations indicates that the solution
of the decoupled and linearized system is close enough to the solution of the original
system. And it also indicates that the linearizing technique is correct and effective.

Here, we limit the interpretation to the order of the fractional system as our main
intention is to propose an analytical solution technique for time fractional systems.
We believe that the results will be very helpful for a number of fractional epidemic
applications.

The remainder of the paper is arranged as follows. In Section 2, an introduction
to the basic SEIR measles model is given. In Section 3, we give some preliminaries
that are useful throughout the paper. In Section 4, we derive analytical solutions of
the decoupled model. In Section 5, a computationally effective fractional Predictor-
Corrector method (FPCM) is constructed for this decoupled model. The error analysis
for the fractional predictor-corrector method is carried out in Section 6. Comparisons
using GMMP scheme and the analytical solution for fractional temporal model are
given in Section 7. Some results from numerical and analytical findings are given
to compare and illustrate the behavior of the solution in Section 8. We then extend
the developed techniques into two examples in epidemiology areas. Finally, some
discussions and conclusions are given.

2 Basic metapopulation model

In this model, a population is divided into different classes, disjoint and based on their
disease status. At time ¢, S = S(¢) is the fraction of population representing indi-
viduals susceptible to measles, E = E(¢) is the fraction of population representing
individuals exposed to measles, I = I(¢) is the fraction of populations represent-
ing individuals infectious with measles, and R = R(¢) is the fraction of population
representing individuals recovered from measles. The recruitment is done by birth
to the susceptible class and occurs at constant birth rate b. The constant rate for
nondisease-related death is 1, with - referring to the average lifetime. In this case,
standard mass balance is used B(¢) S/ to indicate successful transmission of measles
due to effective contact dynamics by the infectious individuals. Once infected, a frac-
tion of exposed people becomes infectious with a constant rate o, so that é is the
average incubation period. Some infected individuals will recover after treatment
or over a certain period of time at a constant rate {, making % the average infec-
tious period. The model is called metapopulation dynamics because the population is
spatially spread into patches. In this model, the population is spatially spread into four
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patches representing four cities. We consider the set o = {A, B, W, D} representing
four patches. The m;y is the rate of travel from city x to city y in compartment ¢ with
¢ = S, E, I, R which represents the transfer rate of individuals in the compartment
¢ of city x moving to the same compartment ¢ in city y. It is clear that m$, = 0, for
allx e pandc € {S, E, I, R}.

The basic metapopulation model is given by

ds
5= b= (B O+ ) o+ ) Symi — S Y my, 1
YERP yeEp

dE, E E

- = B OSele — O+ I Ec+ Y Eymy, — E Y mi, ()

YER YER
dl, I I
E = UxEx_(§x+ﬂx)lx+zlymyx_lx mey7 3)
YER yegp
dR, R R
T = Glo— R+ > RymP — Ry mf. )
YER YER

The fractional temporal model is formulated by the following differential equations
[25]

DYy = by — (Be(O L + ) Sx + Y Symy, — S Y m3,, (5)
yep yep
CD;XEX = ,Bx(t)lex — (ox + ) Ey + Z Eymfx —E, meyv (6)
yep yeEP
CD;XIX = oy Ex — (& + )l + Z Iym;x — I Zmiys @)
yep yep
‘DYRy = {ely — R+ Y Rymf — R D mf. ®)
yeEp yep
where
1 t /
‘Dlu(t) = i) dr, ©)

ra—ow)jo ¢t —r)@
with 0 < a < 1 the fractional derivative of the function u(¢) in the sense of Caputo
and I" is the Gamma function.
3 Preliminaries

This section will outline important definitions and lemmas used throughout the paper.

Definition 1 A two-parameter function of the Mittag-Leffler type is defined by the
series expansions [2]

Eup(z) = ;F(akJrﬂ) (@ >0,8>0).
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For a one-parameter generalization, the Mittag-Leffler function can be denoted by [2]

00 k
Z J—
Eu(z) = ;m = Eq1(2), (@ > 0).

Definition 2 Let A € R"*". The matrix o —Exponential function eéA is defined by [2]

o0 AkZak

zZA _ _o—1 o a—1
= E, A) = E _.
Ca . aa(@A) =2 = I'(ak + @)

Definition 3 The definition of function spaces are based on ([35]). Let f(¢), t > 0
be a real or complex-valued function. The function is said to be in the space C,, p €
N, if there exists a real number s, s > p, such that

f=1fir), t>0,

with a function fi(¢) in C[0, co). Obviously, C, is a vector space and the set of
spaces C,, is ordered according to

C,CCp & p=8.

Definition 4 A function f(¢), t > 0, is said to be in the space C”', m € Ny =
N U {0}, iff f* € C),.

Lemma 1 (see [29,35]) Let 4 > 1 > -+ >y = 0,m; — 1 < uij < mj,m; €
No=NU{0},d; € R,i =1, ..., n. Consider the initial value problem

{ €DEy)(x) = Y1, di(CD y)(x) = g(x),

y®(0) = ¢x € R, k:Q“”m—Lm—l<u§m} (10)

where the function g(x) is assumed to lie in C_1 if u € N, in Cll if u ¢ N, and
the unknown function y(x) is to be determined in the space C",. For the definition
of C_y, Cil and C™,, we refer to ([35]). This has solution

m—1
YO =y () + Y cuur(x), x>0, (11)
k=0
where
X
yg(x) =/0 " EQ), (g (x — tdt, (12)
and
k n
_x kb _
up(x) = o + dix EQklep—p; X),  k=0,....m—1, (13)

i=l+1
fulfills the initial conditions u,((l) ) =841, k, 1 =0,...,m — 1. The function

E(),p0) = Eppy,oopi—pun, p (1 XHTH o dyxTHY) (14)
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is a particular case of the multivariate Mittag-Leffler function (see [35]) and the

natural numbers I, k =0, ..., m — 1, are determined from the condition
my, > k+1, 15
{ mip+1 <k (15
Inthe casem; <k,i =1,...,n,wesetly :=0,andifm; >k+1,i =1,...,n,
then I = n.

Lemma 2 For the case of single u, let u > 0 and consider the initial value problem

{ Dy y)(x) — dyy(%’;)jfé’“,l’_ } | 16
This has solution
y(x) = yg(x) + cu(x), (17)
where
yg(x) = foxr“—lE,L,M(z)g(x — nydt, (18)
and
u(x) = 14+dx"E; 14,(x). (19)
Here the function
Eu.p(x) = Eppdx"). (20)

4 Analytical solution of a decoupled model

In this section, an analytical solution for fractional decoupled measles model will be
constructed.

Let
Sx (1) Hi (1)
E, Ho,
Ix((;)) —H= H;g; L t=to.11,....1n, X €9 ={A, B,W,D}. (1)
R, (1) Hyx (1)
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Rewriting the system in (5)—(8), we have

D Hie (1) = —(Be(t) Ha (1) + jux + Y mi) Hyo (1)

Yep
+> " Hiy(tym!h + b,
YER
‘D Hyx(t) = Px(t) H3x () Hix (1) — (0% + px + Zm 7)) Hox (1)
YER
+ Y Hyy(m?R,
Yep

(22)

(23)

D Ho (1) = 0 Ho (1) = (G + i + Y mI Ha () + Y Hzy(mi,  (24)

yep yep

DY Hax(t) = CoHae (1) — (e + Y mI) Hyp (1) + ) Hay ()ym
yep yep

(25)

The model consists of four coupled time fractional ordinary differential equations
(TFODE). Firstly, we solve this model by linearizing technique the four time frac-
tional ordinary differential equations (TFODE) at each time step, i.e., we solve a

single TFODE at each time level 1 = #,,:

“Df Hi(tn) = —(Be() Hay(ta—1) + pa + Y mI) Hic (1)

Yep
+ Z Hly(tn)m;-;] + by,
YER
“Df Hax(tn) = Be(t)Hax (tn—1) Hix (1) — (0 + o + ) m{2) Hoo (1)
yep
+ ) Hay(t)m]2,
YERP
“Df Hyx(tn) = 0 Hor(t) = (o + i + ) miY) Hay (1)
Yep
+ Z H3y(tn)m§1)?,
YER
CD;XHM(tn) = O Hsx () — (uy + Zm ) Hay (t,) + Z H4y(tn)myx s
YER yERP

n=12...,N.
We can simplify each of the above equations in the following form as

CD;YHix(tn) =aiHi; () +g; i =1,2,3,40<a =<1,
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where aj, a3, a3, a4 and g1, g2, €3, g4 are given as

a1 = —(Be() Hay (ta- )+ 1+ y_mBD: gi=>" Hiy(t)m5 +b,; 31)
yEP YEP

ay=—(ox+iuct Yy mi2): ga=" Hyy(tn)m!2 4By (t) Hay (tn1) Hix (tn): (32)
yegp yep

ay=—(ltit Y mi); ga= " Hy(ta)m B +oHy(tn); (33)
yep YeEP

ag=—(ue+y_ mi); ga=" Hay(t)mi+0, Hax (1), (34)

yegp yep

In our case, the equation in (30) is in the form of single TFODE:
“Di Hix(t) — aiHix (1) = gi; (35)
Hx0)=ced, i=12340<a<l,t>0. (36)

Using Lemma 1, the analytical solution of the single TFODE (35) with initial
condition (36) is derived as the following form:

Hix (1) = Hix g;(t) + cjui(r) (37)
where
t
Hiy (1) = / 141 By o (1)gi(t — T)dT (38)
0
and
ui(t) = 1+ ajt* Eq 144 (ai1%). 39)

Finally, the full analytical solutionsatt =1, (n = 1,2, ..., N) for (26)—(29) are

_ oty _ _ _

Hix(ty) = /0 1" Eqo(Dg1dt | + [er(1 + art? Eq 14o(a1t%)) |, (40)
_ S -

Hy, (tn) = / Ta_lEa,ct (T)g2dt + CZ(l + aZIy?Ea,l+a (aZty?)) s (41)
L 0 . L .

(42)

_ oty _ _ _
H3x (tn) = f Ta_l E()t,Ol (T)g3d7: + C3(] + a3t,(1x Ea,l+a (331‘3))
L O - L -

_ oty _ _ _
Hyx (1) = / Ta_lEot,ot(T)g4dT + |cq(1 + a4ty?Ea,1+a (a4ty?)) ,  (43)
L 0 . L .

where ay, aj, a3, a4 and g1, g2, g3, g4 are based on (31)—(34). Plots for analytical
solutions are shown in Section 7 using Matlab mathematical software version 7.0.

5 A fractional predictor-corrector technique

In this section, we suggest the use of the predictor-corrector technique of Adams-
Bashforth-Moulton formula where, for the sake of simplicity, we assume that we are
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working on a uniform grid t, = nt, n =0,1,..., N with integer N andt = T/N
where T represents the final time.
The following is the time fractional measles model

D?Hix(t) = ajH; (1) + gi; H;x (0) = lxv i=1,2,3,4

It is known that the classical Adams-Bashforth-Moulton method for first-order
ordinary differential equations is reasonable and practical in the sense that its stability
properties allow for a safe application to mildly stiff equations without undue prop-
agation of rounding error, whereas the implementation does not require extremely
time consuming elements [38]. Thus, a fractional Adams-Bashforth and a fractional
Adams-Moulton scheme are chosen as our predictor and corrector formulas.

The predictor Hlf;’ k41 18 determined by the fractional Adams-Bashforth method
[12, 39]:

k

1
Hzx k+1 — Htx 0 + = F(Ol) Z bn,k+l[aiHix,n + gi ()], (44)
n=0

where
o

T
bnk+1 = 3[(/6 +1—=n)* — (k —n)*].
The fractional Adams-Moulton method determines the corrector formula [12, 39]:

k
1
I{ix,k+1 zx O+ I'@) <Z Apn, k+1 [ai H; ix,n + g(tn)] + ag+1, k+1[al ix, k+l + gi(tk-i—l)]) ,

(45)
where
L@ ket — (k= a)(k + 1), ifn =0,
anr1 = ————=1 (k—n+2)*" + (k—n)* =20k —n+ 1)** if 1l <n <k,
al@+1) | ifn=k+1.
(46)

Therefore, we obtain the following fractional predictor-corrector method for
solving the system (5)—(8).

Hlx k+1 — Htx0+ an k+1[al ix,n +g,(tn)] i —1 2 3 4,

F()

k
1
Hix k1 = H,x ot —=—— r@ ( E an,k+l[ai1'1ix,n+gi(ln)]+ak+l,k+1[ail"1il;k+1 + gi(lk+1)]>,
=0

(47)

where aj, az, a3, a4 and g1, 2, 23, g4 are referring to (31)—(34). The plots for the
numerical solution of (47) are exhibited in the next section using Matlab 7.0.

6 Error analysis for the fractional predictor-corrector method

In this section, we present the theorems concerning the error of our fractional
predictor-corrector method.
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Lemma 3 Let z € CL[0, T, then

1
< N lleo iy (48)

Ti+1 k
[ s = 0201 = 3 bz
0 n=0

Proof See [40]. O

Lemmad Ifz € C?[0, T), then there is a constant Cy depending only on « such that
k+1

Tk+1
‘fo (trs1 — D2t =Y an kr12(tn)
n=0

< Collloo 1y T2 (49)

Proof See [40]. O
Theorem 1 IfD%H;, € C*[0,1], (i = 1,2,3,4), then

max_|Hiy(ty) — Hixn| = O(z'%). (50)
0<n<N

Proof Using given condition * DY H;, € C2[0, T], i =1,2,3,4), Lemma 4 and
Lemma 5, we have

<Cufr, (D

Tk k
) f (kg1 — O DY Hip (1)dt — ) by i1 DY Hix (1)
0 n=0
and

fit k+1
( / (te41 — D DY Hyx ()t = ap o1 “Df Hyx (1)
0
n=0

<Gl th. (52)

We show that, for sufficiently small t = T/N,

max ‘Hix(tn) - Hix,n = O(TH—a)- (53)

0<n<N

The proof will be based on mathematical induction. In view of the given initial
condition, the induction basis (n = 0) is presupposed.
Now assume that (53) is true forn = 0,1, ...,k (k < N — 1), thatis

max [Hi () = Hig| = 0). (54)

0<n<N

‘We must then prove that the inequality also holds for n = k4-1. To do this, we look
at the error of the predictor H if; 1 i =1,2,3,4. By construction of the predictor
formula, using (51), assumption (54), and [6]

k Ti+1 , 1 1
> buis =/ (k1 — 07Nt = —1f, | < ~T°, (55)
=0 0 o o
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we find that
¢ CoT*”
lx k+l = 1 T+ > TH_D{
(@) r'+a)
Now we begin the analysis of the corrector error. For j = k + 1, arguing in a

similar way to the above, by construction of the predictor formula, using (52), (56),
assumption (54), and [6]

zx(tk+l) ) i = 17 27 35 4. (56)

1 |
E An k1 = / (ty — )% ldr = —1tf < —T°, (57)
o

o

we find that

’Hix(tk+l) - Hix,k+1‘

(cm CoT® T CoT* a> I+a
T )
o) T+a) T@l(@+2) e+ DHl(@+2)
<ct'te, i=1,2,3,4 (58)
This completes the proof. U

We obtain not only an approximation for the solution H;(¢) but also approxima-
tions for its (Caputo type) derivatives of order «. Apart from this useful feature, the
method has simple structure and easy to implement to other fractional models.

7 Comparisons using GMMP scheme and the analytical solution
for fractional temporal model

For demonstrating the accuracy of analytical solution for fractional decoupled
measles model, we applied GMMP scheme (Gorenflo-Mainardi-Moretti-Paradisi)
[47] to the original fractional ordinary differential equations (TFODE) (22-25).
Then, the comparison of the numerical simulations indicates that the solution of
the decoupled and linearized system is close enough to the solution of the original
system.

For the sake of simplicity, we assume that we are working on a uniform grid ¢; =
a+jh,j=0,1,2,--- , N, Nh = t — a. Then, Riemann-Liouville and Griinwald-
Letnikov fractional derivative can be approximated using the following formula,

a i f@6)=JED f @) = lim —chf(m VN chfmv 0. (59

k=0

and the Caputo fractional derivative can be approximated using the following relation

Y — o) FD
CD“f(r)~—ch fan—p) - ZM : (60)

i
Jj=0 I

where ¢ff = (— l)k( ) are binomial coefficients.
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This scheme is first introduced in [47] and known as GMMP scheme [48]. Based
on this GMMP scheme (60), numerical techniques for simulating fractional order
differential equations are presented. For explaining this method, we consider the
following fractional order nonlinear equation:

EDYx(t) = f(t,x(), 0<t<T,
Pay=xP, k=01, ,n—1, (61)

where § D¥ denotes the fractional derivative of Caputo definition.
It follows from formula (60) that

— ) x)
ch x(ty—k) — Z("”.—x(‘” = h® f (i, x(iN)), (62)

=0 J!
ie.
t—a) xP(a t—a)/xY(a
M =Kl 30 +5 M—Z ¢ [an0— Z tma @),
=0 J! J!
(63)
Especially, let 0 < o < 1, the formula (63) can be simplified as follows:
N
x(ty) = h® f(tn, x(tn)) + x(a) — Z cx (x(tn—p) — x(@). (64)

k=1

Based on the Griinwald-Letnikov formula, an implicit difference scheme (64) has
been presented. We can consider the formula (64) as an equation with respect to
an unknown variable x(zy), which is in both sides of the nonlinear equation. As
we known, the Newton method is a quick and effective method of solving nonlin-
ear equations. In the following, the GMMP scheme and Newton method are used
to obtain the numerical solution of the fractional differential (22-25). With the
o = 0.85,1 € [0, 17] and initial condition [H{,(0) = 15, Hy,(0) = 15, H3,(0) =
0, Hy (0) = 017 By = 04,2, = 0.14, 4y = 0,0, = 0.09,b, = O and k = 1],
Fig. 1 gives the comparisons using the GMMP scheme form and the analytical
solution (40)—(43), which demonstrates the validity of analytical solution of the
decoupled and linearized system.

8 Numerical results

This section will provide comparisons for solutions derived from (40) to (43) and
numerical solutions with the predictor-corrector technique in (47).

Example 1 Comparisons for analytical and numerical solutions in (40)—(43) and (47)
for system in (5)—(8).

Figure 2 shows the numerical plots with « = 0.85,¢ = [0, 17] with initial con-
ditions [H1,(0) = 15, Hyc(0) = 15, H3,(0) = 0, Hsx (0) = 0]7; By = 0.4, ¢, =
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=== Numerical solution
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Fig.1 Comparisons using GMMP scheme from 64 and the analytical solution (40)—(43) for the decoupled
problem

0.14, uy = 0,0, = 0.09,b, = 0 and k = 1 [25]. Note that, in this simulation,
we only consider the evolutions of the disease in the city x = A (Auckland) as an
example for the four compartments with o« = 0.85.

We display some of the results in Tables 1, 2, 3, and 4 for the measles model in
the case of @« = 0.85. In each table, the leftmost column shows the step size used; the
next column gives the maximum error of analytical and predictor-corrector schemes,
and the third column gives the convergence rate values. According to our theoretical

analytical

Suscepible (S,(1)
Exposed (E, (1)

Numerical

0 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Time(t) (days) Time(t) (days)

6 T T T T T T T T 14

12

08

0.6

Infectious (1,(1)
Recovered (R, ()

0.4

0.2

2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Time(y) (days) Timel) (62ys)

Fig. 2 Comparisons using predictor-corrector scheme from (47) and the analytical solution (40)—(43) for
the decoupled problem
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Table 1 Errors for H; with

a=0.85 T Emax Convergence rate
1/4 0.0576
1/8 0.0154 1.91
1/16 0.00392 1.97
1/32 0.000947 2.04

consideration, we can conclude that the behavior of the maximum error displayed in
Tables 1-4 behave as
1E lmax < €'+

Figure 2 shows the numerical approximations converge rapidly to the analytical
solutions. Apparently, we need to use smaller values for step size to increase the accu-
racy of the numerical solution. We have also tested the predictor corrector scheme
with a variety of « values for t = [0, 17] as shown in Fig. 3. Obviously, different «
affects the behavior of measles transmission to every compartment in the model.

Next, we give two numerical examples using Matlab to illustrate the applicability
of the developed scheme. As mentioned in the objective of this paper, this method and
technique can be extended to other epidemic models. By considering two examples
from HIV/AIDS model and Bovine babesiosis and tick populations model, we can
demonstrate the usefulness of this technique.

Example 2 Consider the homogeneous-mixing population model for HIV proposed
by [15], is given by

I
D“S:H—%—sS—uS+yv, (65)
Vi
pov —es—PYL vy (66)
cBISI  chVI
Dol = - 1, 67
N + N (u+1) (67)

where « is the order of the model, S, V ,and I denote the numbers of susceptible,
vaccinated, infected at time ¢, respectively. Here, y is the ratio converting to suscep-
tible people due to losing efficacy, N denotes the total population size at time ¢, I1
is the rate of recruitment of individuals per unit time, ¢ is the number of the con-
tact partners per unit time, B is the transmission probability of a susceptible ()
by the infectious fraction (//N), u is their death rate and & denotes the fraction of

Table 2 Errors for H, with

o =0.85 T IE || max Convergence rate
1/4 0.0646
1/8 0.0204 1.66
1/16 0.00485 2.07
1/32 0.000972 2.32
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Table 3 Errors for H3 with

a=0.85 T Emax Convergence rate
1/4 0.0480
1/8 0.0158 1.603
1/16 0.00362 2.12
1/32 0.000795 2.18

the vaccinated population. In this model, it is assumed that the vaccines do not offer
total protection against infection, vaccinated individuals also acquire infection from
symptomatic individuals. In this case, B>, (82 < B1) is a transmission probability of
a vaccinated (V) by the infectious fraction (//N), T is the rate of progression to full-
blown AIDS. This model incorporates anti-HIV preventive vaccines to exhibit the
efficiency of vaccines for controlling HIV/AIDS.

Using Matlab, numerical simulations for (65), (66), and (67) using a predictor-
corrector scheme are established. We consider Example 2 with the following
parameters [T = 20,¢c = 10, 1 = 0.06,& = 0.12, x = 0.02,y = 0.003, B, =
0.007, t = 0.125. Simulations are then performed with ¢ € [0, 500] and S(0) =
400, V(0) = 400 and 7 (0) = 400 number of individuals as their initial conditions
with varying « values. Figure 4 exhibits the dynamics of this model.

Example 3 Consider the fractional-order model for Bovine babesiosis disease and
tick population by [16]. The system is described as

Ir (1)

DYSp(t) = up(Sp(t) + Cp(t)) + apCp(t) — upSp(t) — ﬂBSB(r)N—(t), (68)
T
0 - = It (1) - -
D7Ip(t) = uplp(t) + BpSp(t)= — uplp(t) — Aplp(?), (69)
Nt (1)
DPCp(t) = rplp(t) — [up +aplCh(1), (70)
_ _ _ _ I _
DSy (t) = pur(Sr(t) + plr(t)) — BrSr (1) —B(t) — ur St(?), (71)
i Np(1)
07 < IB (t) 7 7
D"Ir(t) = BrSr(t)—= + A =purlr @) — urlr(r). (72)
Np(1)
Table 4 Errors for Hy with
o =0.85 T HE|max Convergence rate
1/4 0.0221
1/8 0.0085 1.37
1/16 0.00257 2.44
132 0.000465 2.46
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Fig. 3 Comparisons of solution for different values of « using the predictor-corrector scheme from (47)

In this model, the total of bovine population Ng(¢) is divided into three subpop-
ulations, susceptible bovine Sg (1), bovine infected by Babesia parasite Ip (1), and
treated bovine Cp (7).

The parameter pp is the birth rate of bovine and assume to be equal to natural
death. The total population of ticks N7 (¢) is comprised of susceptible ticks Sz () and
ticks infected by Babesia parasite I7(¢). The parameter w7 is the ticks birth rate that
is assumed to be equal to death rate. Other parameters are Sp the transmission rate
of infected ticks, 87 the transmission rate from infected bovine, p is the probability
that a susceptible tick was born from the infected one, A p is the controlled infected

3s0ft
300

250

Susceptible(S(t))

200

150!

100

py—————
T T

Vaccinated(V()

750! .

700! ‘

650! 4

600! ,

550! /

450!

Time(t)(days)

400 500

Time(t)(days)

Time(t)(days)

Fig.4 The HIV model with S(0) = 400, V (0) = 400, I (0) = 400, and varying « values using predictor-
corrector scheme
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bovine against Babesia parasite and « g, is the fraction of controlled bovine that may

return to the susceptible state.

Based on [16], they simplified the (68)—(72) by taking the bovine populations con-
stant equal to Np and the tick populations equal to N7 and introduce the following

proportions
Sp(t) Ig(t) Cp(t)
= — T — bV, - = .
Sp(t) Np)' () No )" Cp(®) Na)'
Sr(t) Ir (1)
T(1) Nr ) (1) Nr ()

Finally, the resulting fractional system is given by

DSp(t) = (up +ap)(1 — Sp(t) — Ip(1)) — BSp(t)Ir (1),
DIg(t) = BpSp(t)Ir(t) — Aplp(t),
DIr(t) = Br(1 — Ir (1)) Ip(t) — urplr(t),

0.8 T T

sl

0.7

e
1||1m|n1 ILERAY
"

e

YRS
[EAANY

LI

T

0.6

0.5 B

Population number

S
]
0.1F “H"“H.u\ s
"“Hu. r
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Time(days)

Fig. 5 Dynamics of Bovine babesiosis disease and tick populations for € [0, 6000] with 6

(73)

(74)
(75)
(76)

=1

(continuous line) and 6 = 0.85 (dotted line) based on (74)—(76) using the predictor-corrector scheme
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with 8 € (0, 1) and defined in the region Q2 = {Sp, Ip, IT : 0 < Sp+1Ip <1, 0 <
It < 1} [16].

Here, Fig. 5 shows the dynamics of the bovine Babesiosis disease and tick with
initial conditions of Sg = 0.3756, Ip = 0.5184, and It = 0.6 [16]. The com-
parison between two different values of fractional order (6) is also given in Fig. 4,
with the following parameters up = 0.0002999, ap = 0.001, Bp = 0.006, Ap =
0.000265, Br = 0.00048, ur = 0.001609, and p = 0.1 All initial conditions and
parameters are based on [16]. For both cases of 6, the disease transmission goes to
the endemic equilibrium point but gets slower as 6 decreases.

9 Discussions and conclusions

For example 1, in the case of Susceptibles, Infectious and Exposed, there is a cor-
respondingly heavier tail in the solution with much slower convergence to a steady
state as « decreases from 1. We also see that for the Infectious individuals the peak
arrives slightly later as o decreases, with much slower convergence. In the case of
the Recovered individuals, decreasing « slows the rate of recovery.

In the second example, there is a much less pronounced dip for both Susceptible
and Vaccinated as a decreases. Furthermore, as o decreases, both the rate of Vac-
cinated and the rate of Infectious slows with heavier tails in the latter. In the third
example, we are looking at the dynamics of the bovine babesiosis disease and it was
found that the system will decay to its equilibrium condition similar to the power ¢ ~?
[16].

Epidemiology has become an important research area due to existence of many
‘new’ diseases and health problems nowadays. The transmission of diseases and con-
comitant health problems needs to be properly managed as it can impact people’s
well-being. As part of this effort, researchers have introduced epidemiological mod-
eling systems that can describe real problems in disease transmission. Apparently,
some established epidemiological modeling are not capable of describing properly
the dynamics behavior and need some modification. Fractional differential equations
are then proposed as a modification to the original integer model. However, analyti-
cal techniques available in the literature for fractional models are quite complicated
and hard to implement. Therefore, from this work, we have proposed a simple and
effective analytical technique for fractional model systems by first linearizing the
time fractional ordinary differential equations model. Of course, further analysis is
needed to show under what circumstances the full model and the coupling model are
close in terms of the solutions.

In this paper, the fractional measles model is used to construct the analytical tech-
nique and predictor-corrector scheme. We also explore the average error estimates
for the measles model to verify with the theoretical analysis. We use the GMMP
scheme to show the accuracy of the analytical solution for the time coupled fractional
differential equations. The best features of the techniques proposed in this work are
that they can be easily extended to other fractional epidemic models. As outlined in
the introduction, we limit the discussions on the effect of differential order but put
more effort into constructing a simple and effective analytical technique that can be

@ Springer



Numer Algor

easily applied to other fractional models. We present two problems in epidemiol-
ogy areas—HIV/AIDS and Bovine babesiosis disease models. The displayed results
from the given examples show the applicability of the derived techniques. In some
circumstances, the solutions from the derived techniques can also help to understand
the underlying mechanisms that influence the epidemic pattern. Finally, it can be
concluded that the analytical technique presented in this paper is reliable and yet an
alternative for the analytical evaluation to other time fractional differential equations
models.

Acknowledgments This research is partially supported by the National Natural Science Foundation of
China under grant 11772046. Abdullah would like to acknowledge the financial support from Fundamen-
tal Research Grant Scheme (FRGS 203/PMATHS/6711570) by Ministry of Higher Education, Malaysia,
RCMO Universiti Sains Malaysia and School of Mathematical Sciences, Universiti Sains Malaysia,
Penang Malaysia. Abdullah F. A. also wish to thank School of Mathematical Sciences, Queensland Univer-
sity of Technology, QLD Australia for providing computing facilities. We would like to thank the referees
for their careful reading of the paper and many constructive comments and suggestions.

References

1. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical
Methods. World Scientific Publishing, Singapore (2012)

2. Podlubny, L.: Fractional Differential Equations. Academic Press, New York (1999)

3. Liu, F,, Anh, V., Turner, I.: Numerical Solution Of The space fractional Fokker-Planck equation. J.
Comput. Appl. Math. 166(1), 209-219 (2004)

4. Liu, F,, Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and Convergence of the difference Methods
for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12-20 (2007)

5. Zheng, M., Liu, F,, Turner, I., Anh, V.: A Novel High-Order Space-Time Spectral Method for the Time
Fractional Fokker-Planck Equation. SIAM J. Sci. Comput. 37(2), A701-A724 (2015)

6. Yu, Q., Liu, F,, Turner, L., Burrage, K.: Numerical simulation of the fractional bloch equations. J.
Comput. Appl. Math. 255, 635-651 (2014)

7. Skwara, U., Martins, J., Ghaffari, P., Aguiar, M., Boto, J., Stollenwerk, N.: Fractional Calculus and
Superdiffusion in Epidemiology: Shift of Critical Thresholds. In: Proceedings of the 12Th Inter-
national Conference on Computational and Mathematical Methods in Science and Engineering,
CMMSE 2012 La Manga, Spain (2012)

8. Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and
Applications. Science Press, Beijing (2015)

9. Ross, B.: The development of fractional calculus 1695-1900. Hist. Math. 4(1), 75-89 (1977)

10. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

11. Chen, J., Liu, F, Burrage, K., Shen, S.: Numerical techniques for simulating a fractional model of
epidermal wound healing. Appl. Math. Comput. 41, 33-47 (2012)

12. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of
fractional differential equations. Nonlinear Dynam. 29(1), 3-22 (2002)

13. Rihan, FA., Baleanu, D., Lakshmanan, S., Rakkiyappan, R.: On fractional SIRC model with
salmonella bacterial infection. Abstr. Appl. Anal. 2014, 136263 (2014)

14. Area, 1., Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Torres, A.: On a fractional order Ebola
epidemic model. Adv. Difference Equ. 278, 1-12 (2015)

15. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in fractional order HIV
model. Nonlinear Anal. Real World Appl. 26, 289-305 (2015)

16. Carvalho dos Santos, J.P., Cardoso, L.C., Monteiro, E., Lemes, N.H.T.: A fractional order epidemic
model for Bovine Babesiosis Disease and Tick populations. Abstr. Appl. Anal. 729894, 2015 (2015)

17. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever.
Nonlinear Dynam. 71(4), 613-619 (2013)

@ Springer



Numer Algor

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

39.

40.

41.

42.

43.

Pooseh, S., Rodrigues, H.S., Torres, D.EM.: Fractional derivatives in dengue epidemics. AIP conf.
Proc. 1389, 739-742 (2011)

Erturk, V.S., Odibat, Z.M., Momani, S.: An approximate solution of a fractional order differential
equation model of human T-cell lymphotropic virus i(HTLV-i) infection of CD4+ T-cells. Comput.
Math. Appl. 62, 996C1002 (2011)

Mpande, L.C., Kajunguri, D., Mpolya, E.A.: Modeling and stability analysis for measles metapopu-
lation models with vaccination. Applied and Computational Mathematics 4(6), 431-444 (2015)
Abubakar, S., Akinwande, N.I., Abdulrahman, S., Oguntolu, F.A..: Bifurcation analysis on the mathematical
model of measles disease dynamics. Universal Journal of Applied Mathematics 1(4), 212-216 (2013)
Adewale, S.0., Mohammed, I.T., Olopade, I.A.: Mathematical analysis of effect of area on the
dynamical spread of measles. IOSR Journal of Engineering 4(3), 43-57 (2014)

Momoh, A.A., Ibrahim, M.O., Uwanta, 1.J., Manga, S.B.: Mathematical model for control of measles
epidemiology. International Journal of Pure and Applied Mathematics 87(5), 707-718 (2013)

Ma, Z., Zhou, Y., Wu, J.: Modeling and Dynamics of Infectious Diseases: Series in Contemporary
Applied Mathematics CAM 11. Higher Education Press, Beijing (2009)

Doungmo, E.F., Oukouomi, S.C., Mugisha, S.: A fractional SEIR epidemic model for spatial and
temporal spread of measles in populations. Abstr. Appl. Anal. 2014, 781028 (2014)

Lewis, J.: Warning Over Measles Outbreak, Otago Daily Times, http://www.odt.co.nz/news/dunedin/
293581/warning-over-measles-outbreak (2014)

Maclntyre, C.R., Gay, N.J., Gidding, H.F,, Hull, B.P,, Gilbert, G.L., Maclntyre, PB.: A mathemat-
ical model to measure the impact of the measles control campaign on the potential for measles
transmission in australia. Int. J. Infect. Dis. 6(4), 277-282 (2002)

Roberts, M.G., Tobias, M.L.: Predicting and preventing measles epidemics in New Zealand. Epi-
demiol. Infect. 124, 279-287 (2000)

Jiang, H., Liu, F., Turner, 1., Burrage, K.: Analytical solutions for the multi-term time- fractional diffusion-
wave/diffusion equations in a finite domain. Comput. Math. Appl. 64(10), 3377-3388 (2012)

Jiang, H., Liu, F., Meerschaaert, M.M., McGough, R.: Fundamental solutions for the multi-term
modified power law wave equations in a finite domain. Electron. J. Math. Anal. Appl. 1, 55-66 (2013)
Srivastava, V.K., Kumar, S., Awasthi, M.K., Singh, B.K.: Two-dimensional time fractional order bio-
logical populations model and its analytical solution. Egyptian Journal of Basic and Applied Sciences
1(1), 71-76 (2014)

Petras, 1.: Systems Fractional-Order Nonlinear Modeling, Analysis and Simulation. Springer, Beijing
(2010)

Liu, F, Zhuang, P.,, Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-
D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain. J. Comp
Physics 293, 252-263 (2015)

Yang, Z., Yuan, Z., Nie, Y., Wang, J., Zhu, X., Liu, F.: Finite element method for nonlinear Riesz
space fractional diffusion equations on irregular domains. J. Comp. Phys. (2016). https://doi.org/10.
1016/.jcp.2016.10.053

Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the
Caputo derivatives. Acta. Math. Vietnam. 24(2), 207-233 (1999)

Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk
approach. Nonlinear Dyn. 29, 129-143 (2002)

Murillo, J.Q., Yuste, S.B.: On three explicit difference schemes for fractional diffusion and diffusion-
wave equations. Phys. Scr. 014025, T136 (2009)

. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II-Stiff and Algebraic

Problems. Springer, Switzerland (1993)

Yang, C., Liu, F.: A computationally effective predictor-corrector method for simulating fractional
order dynamic control system. ANZIAM J. 47, C168-C184 (2006)

Diethelm, K., Ford, N.J., Freed, A.D.: A detailed error analysis for a fractional Adams method. Numer.
Algorithms 36, 31-52 (2004)

Ochoche, J.M., Gweryina, R.I.: A mathematical model of measles with vaccination and two phases of
infectiousness. IOSR Journal of Mathematics 10(1), 95-105 (2014)

Salmani, M., Van den Driessche, P.: A model for disease transmission in a patchy environment.
Discrete Contin. Dyn. Syst. Ser. B 6(1), 185-202 (2006)

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential
Equations. Elsevier, The Netherlands (2006)

@ Springer


http://www.odt.co.nz/news/dunedin/293581/warning-over-measles-outbreak
http://www.odt.co.nz/news/dunedin/293581/warning-over-measles-outbreak
https://doi.org/10.1016/j.jcp.2016.10.053
https://doi.org/10.1016/j.jcp.2016.10.053

Numer Algor

44,

45.

46.

47.

48.

Bonilla, B., Rivero, M., Trujillo, J.J.: On systems of linear fractional differential equations with
constant coefficients. Appl. Math. Comput. 187(1), 68-78 (2007)

Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Bull.
Math. Biol. 53, 33-55 (1991)

Odibat, Z.M.: Analytic study on linear systems of fractional differential equations. Comput. Math.
Appl. 59(3), 1171-1183 (2010)

Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk
approach. Nonlinear Dyn. 29, 129-143 (2002)

Yuste, S., Murillo, J.: On three explicit difference schemes for fractional diffusion and diffusion-wave
equations. Phys. Scr. T136, 14-25 (2009)

@ Springer



	Novel analytical and numerical techniques for fractional temporal SEIR measles model
	Abstract
	Introduction
	Basic metapopulation model
	Preliminaries
	Analytical solution of a decoupled model
	A fractional predictor-corrector technique
	Error analysis for the fractional predictor-corrector method
	Comparisons using GMMP scheme and the analytical solution for fractional temporal model
	Numerical results
	Discussions and conclusions
	Acknowledgments
	References


