Appendix A Numerical fractional derivatives

The SEIR equations are of the form

DYf(t) = glf(t)], with £(0)= fo, (A1)

where f and g are functions of time and we omit the spatial variable.

A.1 Euler derivative

The most simple time approximation in fractional calculus is the Euler method,

it =0 +hyzaj(n+1)9(fj)» (A2)
=0
where
4t = gyl =i+ D7~ (= 0)" (A3)

(Hassouna et al., 2018).

A.2 Griinwald-Letnikov-Caputo derivative

A widely used time approximation in fractional calculus is the backward Griinwald-

Letnikov (GL) derivative. The GL fractional derivative of a function f is

n+1 n+1
W DY ~ Z ckf"+17k _ fn+1 + Z Ckfn+1fk = (71)k (Z) (A.4)
k=0 k=1

where h is the time step and ¢t = (n + 1)h. The derivation of this expression can be
found, for instance, in Carcione et al. (2002). The binomial coefficients can be defined

in terms of Euler’s Gamma function as

(V), I'iv+1)
k) =T+ 0O)I(v—Fk+1)

and can be calculated by a simple recursion formula

()= 2) (1)
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If v is a natural number, we have the classical derivatives. The GL approximation is of
order O(h). The fractional derivative of f at time ¢ depends on all the previous values
of f. This is the memory property of the fractional derivative. In our calculations we
consider the whole memory history since for ¥ < 1 it is not possible to use the short-
memory principle, i.e., less terms in the sum of equation , as can be used in the
simulation of wave propagation (Carcione et al., 2002). Waves “forget” the past but
diffusion fields “remember” it.

The time discretization of equation using the GL-Caputo derivative is given

in Scherer et al. (2011) [Eq. (4.3)],
n+1
= =S T R g fo + 9 (™)), (A.5)
k=1

where

t*l/

Tn4l = Ta=0) t=(n+1)h. (A.6)

A.3 Adams-Bashforth-Moulton scheme

Baleanu et al. (2012) report the predictor-corrector Adams- Bashforth-Moulton scheme
(Egs. 2.3.7, 2.1.7 and 2.1.9) to solve equation (A.1)). For 0 < v < 1 and one corrector

iteration, the method is

™ = fo+h" Z;L;OI ajng(fj), predictor,
(A7)
f" = fo+ B X020 bing(£7) + B bung(f™7),  corrector,
where aj, is given by equation (A.3)), and
1 (n—D —(n—v—1)n" j=0,
bin= Fagpy | Mmi+ DT A M- - DT 2" 1<i<n-1,
7 =n.
(A.8)

Equation (A.2) is the predictor in the Adams-Bashforth-Moulton scheme. Abdullah et

al. (2017) solve the SEIR model using this methodology.
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A.4 Examples

A.4.1 Ezample 1

Let us consider the particular case
Df(t) = af(t), with f(0)= fo, (A.9)
whose exact solution is
f(t) = foEva(at”) = foEy(at”) (A.10)

(Garra and Polito, 2010; Scherer et al., 2011), where E denotes the Mittag-Leffler
function.

A.4.2 Ezample 2

We consider the following differential equation

L)~ 3r@Gt~r  2r@et

v —
DO =F6—0 " Te-» T Ta-0" (A-11)
The exact solution for 0 < v < 1 and f(0) =0 is
Fe) =7 —2t* 4+ 263 (A.12)

Appendix B SEIR semi-analytical solution

We consider the solution obtained by Abdullah et al. (2017), neglecting their metapop-
ulation terms, spatial diffusion and natural births and deaths. Then, the governing

differential equations at t =ty become

Dl/Sn — 7ﬁl/snln71
N ’

vpn _ Qv Inili vV n
DVE" = 'S~ — 'E",
DVI" = Y E™ _,yuln7

DDRn — ,yl/[n’
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whose solution is

™ = S(0)[1 — YL I" L E, L (t58V 1Y),

t’Vl
E" = £ YIS T E, ydr + E(0)[1 — “th Ey i1 (—€/th)],
. (B.2)
"= [ BT By ydr £ 101~ 7t Byt (<11,
tn
R™ = R(0) +j; AWMV TLE, Ldr.
Equations (B.1) and (B.2)) are particular case of equations (26)-(29) and (40)-(43) in

Abdullah et al. (2017), respectively.
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Fig. 1 SEIR model. The total population, N, is categorized in four classes, namely, susceptible,
S, exposed E, infected I and recovered R (Chitnis et al., 2008). A and p correspond to births
and natural deaths independent of the disease.



