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Foreword

Fractional calculus is often regarded as a branch of mathematical analysis which
deals with integro-differential equations where the integrals are of the convolution
type and exhibit (weakly singular) kernels of the power-law type. It has a history of
at least three hundred years, since it can be dated back to a letter from G.W. Leibniz
to G. L’Hopital, dated 30 September 1695, in which the meaning of the one-half or-
der derivative was first discussed and some remarks about its possibility were made.
Subsequent mention of fractional derivatives was made by L. Euler (1730), J.L.. La-
grange (1772), P.S. Laplace (1812), S.F. Lacroix (1819), J.B.J. Fourier (1822), N.H.
Abel (1823), J. Liouville (1832), B. Riemann (1847), H.L. Green (1859), H. Holm-
gren (1865), A.K. Griinwald (1867), A.V. Letnikov (1868), N.Ya. Sonin (1869), H.
Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), O. Heaviside (1892), S.
Pincherle (1902), H. Weyl ( 1919), P. Lévy (1923), A. Marchaud (1927), H.T. Davis
(1936), A. Zygmund (1945), M. Riesz (1949), and W. Feller (1952), to cite some
relevant contributors up to the middle of the last century. For the entire history of
fractional calculus, refer to K.B. Oldham and J. Spanier’s book— The Fractional Cal-
culus: Theory and Applications of Differentiation and Integration to Arbitrary Order
(Academic Press, New York, renewed 2002). Some complementary materials can be
found from J.A. Tenreiro Machado, V. Kiryakova and F. Mainardi’s posters (poster
depicting the recent history of fractional calculus, Fractional Calculus and Applied
Analysis 13(3), 329-334, 2010; poster depicting the old history of fractional calcu-
lus, Fractional Calculus and Applied Analysis 13(4), 447-454, 2010) and a brief
introduction also by them (Recent history of fractional calculus, Communications in
Nonlinear Science and Numerical Simulation 16, 1140-1153, 2011).

Roughly speaking, fractional calculus underwent two stages: from its beginning
to the 1970s, and after 1970s. In the first stage, fractional calculus was studied mainly
by mathematicians as an abstract area containing only pure mathematical manipula-
tions of little or no use. In the second stage, the paradigm began to shift from pure
mathematical research to application in various fields, such as long-memory pro-
cesses and materials, anomalous diffusion, long-range interactions, long-term behav-
iors, power laws, allometric scaling laws, and so on.

Due to applications of fractional calculus, various kinds of numerical methods
have independently appeared in periodicals. This book aims to collect and sort out
these studies, including the authors’ work. Loosely speaking, the present book con-
tains (1) numerical methods for fractional integrals and fractional derivatives, (2)
finite difference methods for fractional ordinary/partial differential equations, and (3)
finite element methods for fractional partial differential equations. Due to the rapid

X1



Xii Foreword

development of fractional numerical methods, more and more publications are emerg-
ing. However, very recent publications are not included or introduced since this book
is designed for beginners.

Last but not least, we thank Professors Vo Anh, Kevin Burrage, Guanrong Chen,
Wen Chen, YangQuan Chen, Qiang Du, Jinqiao Duan, Roberto Garrappa, Ben-
yu Guo, Haiyan Hu, George Em Karniadakis, Virginia Kiryakova, Jiirgen Kurths,
Fawang Liu, Francesco Mainardi, Igor Podlubny, Zhongci Shi, Yifa Tang, Ian Turner,
Blas M. Vinagre, Hong Wang, Xiaohua Xia, Dingyu Xue, and Weiqiu Zhu for their
strong support, unselfish cooperation, and for providing suggestions for revision. We
greatly appreciate Sunil Nair and Sarfraz Khan for sparing no pains to inform us,
replying to us and explaining various details regarding this book. The first author
particularly thanks his PhD students Fanhai Zeng (who is also the second author
of this book) and An Chen for collecting the materials and difficult typesetting. He
also thanks his PhD students Jianxiong Cao, Hengfei Ding, Peng Guo, Yutian Ma,
Fengrong Zhang, Zhengang Zhao, and Yunying Zheng for their careful reading and
for providing correction suggestions. CL acknowledges the financial support from
National Natural Science Foundation of China (10872119, 11372170) and the Key
Program of Shanghai Municipal Education Commission (122Z084).

Changpin Li and Fanhai Zeng
April 2015



Preface

Fractional calculus (which includes fractional integration and fractional differentia-
tion) is as old as its familiar counterpart, classical calculus (or integer order calculus).
For quite a long time it developed slowly. However, in the past few decades, frac-
tional calculus has attracted increasing interest due to its applications in science and
engineering. Fractional derivatives have provided excellent tools to describe various
materials and processes with memory and hereditary properties, etc.; and fractional
differential equation models in these applied fields are thus established.

There are several analytical methods used to solve very special (mostly linear)
fractional differential equations (FDEs), such as the Fourier transform method, the
Laplace transform method, the Mellin transform method and the Green function
method. Hence, developing efficient and reliable numerical methods for solving gen-
eral FDEs is of particular usefulness in application. The book mainly focuses on
investigating numerical methods for fractional integrals, fractional derivatives, and
fractional differential equations.

There are five chapters in this book. In Chapter 1, the basic definitions and prop-
erties of fractional integrals and derivatives are introduced, including the most fre-
quently used Riemann-Liouville integral, the Riemann—Liouville derivative, the Ca-
puto derivative, and some other fractional derivatives. Furthermore, important and/or
complicated properties are studied. Also, the corresponding physical meaning of frac-
tional calculus and the definite conditions for fractional differential equations are
included.

In Chapter 2, numerical methods for fractional integrals and fractional derivatives
are displayed in detail. We first derive the numerical schemes based on polynomial
interpolation, Gauss interpolation and linear multistep methods for the fractional inte-
grals (or Riemann-Liouville integrals). Then we investigate the Griinwald—Letnikov
approximation, L1, L2 and L2C methods for the Riemann-Liouville derivatives. The
natural generalization of the above methods for the Caputo derivatives and the Riesz
derivatives are also introduced. These discretized schemes are useful for the discus-
sions in the subsequent chapters.

In the next chapter, the finite difference methods for fractional ordinary differen-
tial equations are investigated. These finite difference methods mainly include the
fractional Euler method, the fractional Adams method, the high order method, the
fractional linear multistep method, and their various variants. The stability, conver-
gence, and error estimates of these methods are also carefully studied.

Next, the finite difference methods for fractional partial differential equations
are presented in Chapter 4. The fractional partial differential equations in this chap-
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ter include (1) the time-fractional differential equations (with Riemann—Liouville
derivative or Caputo derivative) in one spatial dimension, (2) the space-fractional
differential equations (with one-sided Riemann—-Liouville derivative, or two-sided
Riemann-Liouville derivative, or the Riesz derivative) in one spatial dimension, (3)
the time-space fractional differential equation in one spatial dimension, and (4) the
fractional differential equations in two spatial dimensions. The derived numerical
methods mainly consist of the Euler method, the Crank—Nicolson method and the
fractional linear multistep methods. The stability, convergence, and error estimates
are studied. Many numerical examples are also displayed, which support the theoret-
ical analysis.

Generally speaking, the fractional finite difference methods are convenient to im-
plement but the smooth conditions of the solutions often need to be assumed. If the
solutions have good smoothness (and the domains are regular), then spectral methods
are possibly the best solvers. However, fractional calculus seems to be a useful tool
to deal with nonsmooth problems. So the finite element method is often regarded as
one of main methods for solving fractional differential equations. In the last chapter,
the finite element methods for fractional partial differential equations are presented
and analyzed. We first introduce the basic framework of the finite element methods
for fractional differential equations. Then we establish the fully discrete schemes for
time-space fractional equations, where the time-fractional derivatives are discretized
by the finite difference methods, and the space-fractional derivatives are approxi-
mated by the finite element methods. The stability, convergence, and error estimates
for the established methods are also studied. Additional material is available from
the CRC Web site: http://www.crcpress.com/product/isbn/9781482253801

Due to broad applications of fractional calculus, seeking numerical algorithms
with high accuracy, rapid convergence, and less storage is becoming more and more
important. This book is just a primer in this respect. We hope it can offer fresh stimuli
for the fractional calculus community to further promote and develop the cutting-
edge research on numerical fractional calculus.
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Chapter 1

Introduction to Fractional Calculus

In this chapter, we first introduce fractional calculus (i.e., fractional integration and
fractional differentiation). Generally speaking, the fractional integral mainly means
(fractional) Riemann-Liouville integral. The fractional derivatives consist of at least
six kinds of definitions, but they are not equivalent. Here, we present the most fre-
quently used fractional integral and derivatives, i.e., the Riemann-Liouville integral,
the Riemann-Liouville derivative, the Caputo derivative, etc. Then we study their im-
portant properties, some of which are easily confused. Besides, we further introduce
the definite conditions of fractional differential equations which are often misused.

1.1 Fractional Integrals and Derivatives

Fractional calculus is not a new topic, in reality it has almost the same history as
that of classical calculus. It can be dated back to the Leibniz’s letter to L’Hopital, see
[72, 115, 118], dated 30 September 1695, in which the meaning of the one-half order
derivative was first discussed with some remarks about its possibility. Nowadays,
fractional calculus is undergoing rapid development, with more and more convincing
applications in the real world, see [74, 75, 80, 85] and references therein. Maybe one
notices that another word “fractal” sometimes takes the place of “fractional calculus”
in some situations. However, this may be not proper. As far as we know, fractal [108]
is in the realm of geometry, while fractional calculus belongs to analysis. Although
some studies displayed the relations between them, they are different.

It is known that calculus means integration and differentiation. Fractional calcu-
lus, as its name suggests, refers to fractional integration and fractional differentiation.
Fractional integration often means Riemann—Liouville integral. But for fractional dif-
ferentiation, there are several kinds of fractional derivatives. In the following, some
definitions are introduced [68, 124, 134].

Definition 1 The left fractional integral (or the left Riemann—Liouville integral) and
right fractional integral (or the right Riemann—Liouville integral) with order a > 0
of the given function f(t), t € (a,b) are defined as

1

!
_ a1
o fa (t— ) f(s5)ds, (1.1)

D, f(t) = rtD,5 f(1) =
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and

D f(t) = reD, f(1) = = @ f (s—0)* ' f(s)ds, (1.2)

respectively, where T'(+) is the Euler’s gamma function.

Definition 2 The left and right Griinwald—Letnikov derivatives with order a > 0 of
the given function f(t), t € (a,b) are defined as

GLDg f(t) = hm = Z( 1)’( )f(t jh), (1.3)
Nh t a J=0
and
LDy, f( = lim n™ Z( 1)’( )f(t+Jh) (1.4)
Nh b t J=0
respectively.

Definition 3 The left and right Riemann—Liouville derivatives with order a > 0 of
the given function f(t), t € (a,b) are defined as

RDg S0 = T [DL 0]

1 m—a—1
= Tim- a)dt’”f( s) f(s)ds,

(1.5)

and

RIDY,f(0) = (= 1)'" [D )

_ ( 1)m m—-a—1
- T(m- a)dt’”f(s 2 f5)ds,

respectively, where m is a positive integer satisfyingm—1<a <m.

(1.6)

Definition 4 The left and right Caputo derivatives with order a > 0 of the given
function f(t), t € (a,b) are defined as

D f(6) =D, f"™ 0]

d (1.7)
~Tn-a) f (1= sy s,
and . .
D f(0) = FE;_) o f; (s—= )" f™ (s)ds, (1.8)

respectively, where m is a positive integer satisfyingm—1<a <m.
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Definition 5 The Riesz derivative with order a > 0 of the given function f(t), t € (a,b)
is defined as

rzZDJ f(1) = co (RLDG SO +RrLD; f(f)), (1.9)
where ¢, = —m,a #2k+1,k=0,1,---. gzD{ f(?) is sometimes expressed as
ﬁ;f(t)

[

In the above definitions, the initial value a is often set to zero. When we say the
fractional integral (or Riemann—Liouville integral), the Griinwald-Letnikov deriva-
tive, the Riemann-Liouville derivative, and the Caputo derivative, we often mean the
left fractional integral (or the left Riemann—Liouville integral), the left Griinwald—
Letnikov derivative, the left Riemann—Liouville derivative, and the left Caputo deriva-
tive, respectively if no confusion is caused.

Generally speaking, the above definitions of the Griinwald—Letnikov derivative,
the Riemann-Liouville derivative, and the Caputo derivative are not equivalent. If
f(?) is suitably smooth, i.e. f € C"[a,b], then the Griinwald—Letnikov derivative of
f(¢¥) and the Riemann-Liouville derivative of f(¢) are equivalent, that is

RLDGf (1) = 6LDg f(),  riD7,f(0) = 6LDy, f (D). (1.10)

The Riemann-Liouville derivative and Caputo derivative of f(¢) have following rela-
tion [124]

T P@e-ate

rRLDG f() = cDg, f(t) + , (L.1D)
! ! ; I'k+1-a)

where m— 1 < @ < m, m is a positive integer, f€C"![a,] and "™ is integrable on
[a,?]. In fact, (1.11) can be obtained by repeatedly performing integration by parts.
Furthermore, if feC™[a,t], then from (1.11) or the Taylor series expansion, we have

RLDG[f (D) = p()] = DY, f (1), (1.12)

where ¢(7) = Z G Jf‘f; (t—a)*. On the other hand, it is easy to find that

rLDG, f(1) = cDg, f(1) (1.13)

if fP@)=0(k=0,1,2,---,m—1,m—1<a<m),ora=—co.
For the continuous function f(¢), one has

lim D7 /(1) = f(1). >0,

Suppose that f(#) is suitably smooth, m— 1 < @ < m, m is a positive integer. Then one
has

lim g Df (1) = F™(), a—>1(£111nl ReDE (1) = £V (o),

1.14
hm_cDZ,tf(o:f(m)(r), lim D, /()= ") = f"(). (9
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Obviously, the Riemann-Liouville derivative is reduced to the classical derivative
when the fractional order a approaches an integer for the fixed 7, but it is not the case
for the Caputo derivative if the homogeneous initial conditions are not satisfied.

Because of the relations (1.11) and (1.10), we mainly focus on introducing
the properties of the Riemann-Liouville derivative operator below. Next, we intro-
duce some further properties for the fractional integral operator and the Riemann—
Liouville derivative operator.

Proposition 1.1.1 ([131]) The left and right Riemann—Liouville fractional integral
operators satisfy the following semi-group properties

D¢D,% f(1) = DD f(5) = D5 7 f (o), (1.15)
DD, 5 f(1) = DD 5 f(5) =D,y f(0), (1.16)

where a, 8> 0. If f(t) is continuous on [a,b], then
}i_r)r;D;ff(t) = }EI;Dng(t) =0, VYa>0. (1.17)

Proposition 1.1.2 ([124, 131]) The left and right Riemann—Liouville fractional
derivative operators satisfy the following properties

rLDg, D7 f() = f(1), (1.18)
1D [0 = f(), (1.19)

where a > 0.

Proposition 1.1.3 ([124, 131]) The left and right Riemann—Liouville fractional
derivative operators satisfy the following properties

—a)¥J
D32 (kDL F0) = F0- 3 e 0] e 020
j=1
b1y
D72 (12, F0) = £ - Z WD 0], fees (2

J=

where m—1<a < m, m is a positive integer. Furthermore,
at RLDG, (1) = f(), D, riDy, f(1) = f(2)
when
D5 f0] _ =0, [mD] f0]_, =0, j=1.2.m. (1.22)

If f(t) has a sufficient number of continuous derivatives, then the conditions (1.22)
are equivalent to

fD@)=0, fIPb)=0, j=0,1,---,m—1. (1.23)
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In effect, (1.22) and (1.23) are generally not equivalent. (1.23) is often chosen to
take the place of (1.22) in numerically studying Riemann-Liouville type differential
equations, mainly for convenience.

Note that

hmcD SO = hmcD SO =0, a>0, (1.24)

if f(¢) is sufficiently smooth and f(’”) is bounded [164]. So the equivalence of (1.22)
and (1.23) can be derived easily from (1.11) and (1.24).

Next, we present the more general cases of (1.18)—(1.21).

Forany m—1<a <m,n—1<f <n, m,n are positive integers, one has [124]

DS, (D2 F(0) = DS F(0), DS, (D5 F(0) = rLDY,P £(1) (1.25)
and
-B a _ a—p S a—j (t— a)ﬂ_j
D/, (RLDa,;f(f)) =rD, " f(1)- Z [RLDa,,jf(f)][:a TA+5—))
(b—tp-] (1.26)
-B o _ ) A
D, 7 (kD¢ f(0) = rD5 P f(0) - Z TR

Next, let us consider the composition of two Riemann-Liouville derivative op-
erators: g Dy, (m—1 < a <m) and RLD’fJ (n—1 < B < n), where m,n are positive
integers.

Proposition 1.1.4 ([90, 91, 124]) Ifm—1 <a <m,n—1 < B < n, where m,n are pos-

itive integers, rLDy;" (), DS, (LDl £ (1)), RLDC”ﬁ £(0), and gLD?, (rLDY, £(0)) ex-
ist, then

o o (t—a) "/
RLDg, (RL a,,f(f)) =rLD, ﬁf(f) Z RL atjf(f)]t_a 1"(1—a—a/—j)’ (1.27)
o o (b-n/
rLDY, (RL ,,bf(f)) =rLD, ﬁf(f) Z RL ,bjf(f)]t P TI—as ) (1.28)
Furthermore,
rRLDG, (RL art (f)) =rLD), (RLDZ,zf (f)) = RLD(Hﬁ f@, (1.29)
rLDY, (RLDﬁbf (t)) =rLDy, (RLD;fbf (t)) RLD(Hﬁf (), .

if f(¢) satisfies the following homogeneous conditions
[eeDl F 0] _ = [reD), )], [ 0] _, = [eDi F®] _, = 0. (1.30)

where j=1,..., n, k=1,..., m.
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In some situations, (1.30) is substituted for f(a) = fP(b)=0,j=0,1,---,r—
1, r = max{m,n}, but this is not mathematically reasonable.
If @ or B is a positive integer in (1.27) and (1.28) (for example, & = m is a positive
integer), then
reDY (R, f(0) = RLD P £(1). (1.31)

Eq. (1.31) can be derived directly from (1.27) by letting @ = m, where one can see

that ,
: (t-a)"
D leeDl 10, s =0

j=1
due to 1"(1+m—1) = 0 for the nonpositive integer (1 —m — j). For the operator

RLD,, (RLDg;)» the relation

m +m
RL a,zRLDa,t = RLDf,z

generally does not hold. Actually, we have

(m—J)
RLD) (RS (0) =Rl f (1)~ Zr{1 ,8( D (i ay B

m—1

_ +m (a) _ Nj-B-m
=R DG " (1) - Z—F(H e Gl

(1.32)

Of course, the above relation can be directly deduced from (1.27) by letting 8 =m
and a = 6.

In most real applications, the fractional order between 0 and 2 is of great interest.
Now we consider some properties of a special case, which also has much simpler
forms. Here, we must suppose that the function f(¢) is sufficiently smooth on [a,b]
and a certain number of derivatives of f(¢) are bounded.

From (1.27) we have

reDS (D), f(0) = DG F(1), O<af<l, (1.33)

where we have used |
| Dl f(t)]tza =0, O<pu<l

due to the sufficiently smooth assumption. Actually from (1.26), (1.27) and (1.28),
forany 0 < < 1, € R, we have

’eDS (D f(0)) = DG f(0), rDf, (reD, f(0) = ReDP L. (1.34)

In the following, we introduce several properties for the Caputo derivative op-
erator in the real line. And the properties in complex planes can be found in [76].
Using (1.12) and (1.26), we have the following properties for the Caputo derivative
operator.
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Proposition 1.1.5 Let a > 0,n—1 < B <n, n is a positive integer, f € C"[a,b]. Then
D¢ (cDf (D) = cDL " f(1),  a#p, (1.35)
D, (cD, f(0) = D), f(0),  a#p, (1.36)
where CDB Dﬁt and CDB;I = Df;a if B < a. Especially

1P (a)

D, (cDS, f) = f(n) - ZF(k+1) (t—a), (1.37)
D’B (b) ok
D (D], f®) = - Zr(k+1)( o (1.38)

Proof. We first prove (1.35) and (1.37). By the Taylor series expansion, one has

(k)( ) k —n ¢(n) )
f= Z Tk+1) (r-a)" +D, f (1= ¢(t)+Da’tf (0.

Using (1.12) and (1.26) gives

D% (cD),f(H) =D ( LD, LF(D) - ¢(0)])

(t—a)y™ @/
— DL ()= p(0)] - Z /D O =00, 50—
- (1.39)
o —j—n p(n —a)"”
D, [f(r>—¢(r)]—;[RLD§,/ 0,1 T

=r DL L (D) - 9],

where we use [RLDg;j - f(")(t)]l:a =0 when (83— j—n) <0 and f() is bounded.

If B = a, then g, D) “[f(1) = $(1)] = f(1) = §(1). If B # @, then LD, "[£(1) — ¢()] =
cDﬁ;a f(®). The proofs of (1.35) and (1.37) are completed. The proofs of (1.36) and
(1.38) can be similarly given. All this completes the proof. O

For the operators cDﬁ Da, and chbD[b, a,B > 0, we have

Proposition 1.1.6 Suppose that ., > 0, f(¢) is sufficiently smooth, cDﬁ, ug S (@D,
cDl (), cDP D2 f(1), and cDP° f(1) exist. Then

b t.b

D, P (1), B<aora<p, acN,

—m

- )(a) ta—
D}, (D75 £(0) =1 DL, f(t)+2m(t—a)k B, (1.40)

a<fB,m—-l<a<mn-1<B<n, mneN.
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D" Pf), Bsaora<p acN,

BT B O I A )
CD’f:b (Dt,bf(t)) - Cl)ﬁb f(t) + ; m(b— l)k ﬁ, (141)

a<B, m—-l<a<m,n—-1<B<n, mneN.

Proof. We first prove (1.40). For S<a, we have

D, (D2 £(0)) =D, P gDz D¢ f() = D, D™D £(r)

at
=D, "7 11y = D f(a),

at

where we have used n <m and (1.15).
For the positive integer a, i.e., « = m,m < 3, we have

i, (D1 f(0) =D, " P rL Dl D f(1) = D, P r D" f(0).
Using n > m and (1.32) yields
Dl (D1 f(0) =D, r, D" f(0)

n—-m—1 P
_pm /) mpj
—RLDf,z @ - j—ZO m(l—a) J

o g X IP@
=ruD" O =00+ Dy "6~ ) r—

J=0

(t _ a)m—ﬁ+j

=rL D" (f(1) = p(0)) = <DL, (1),

n—m-1 . .
where ¢(f) = 'Zo 1]:( jff;(t—a)f.
j=
Fora<Bn—-1<B<nandm—-1<a<m,onehasn-m<n—a<n—-m+1.By

using the Taylor series expansion, one has

i) f(k)(a) k —(n-m) £(n—m) —(n—m) g(n—m)
= (t—a) +Da’ (@) = (1) +D FUT).
= I'tk+1) d

a,t

f®

Hence,

F(@®)=¢() =D,V fr=m ).

Therefore,
DSLf(5)— ¢(0)] = D, "™~ fr=mp),

which implies that gD , [DZ¢(f(1) - W»]z:a —0fork=0,1,--,n—m. Combining
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(1.12) and (1.25) gives
Dy, (D2 £(0) =cD), DS LF(1) - p(1)] + Dy D5 p(6)

=k D/} DLf (1)~ $(1)] +cDL, DS (1)
=re D2 Lf (1) = ¢(D] + D D2 (1) (1.42)

Y@ rap
f(mz Thk+lva—p @

The proof of (1.40) is completed. The proof of (1.41) can be similarly given. All this
ends the proof. O

For the Riemann-Liouville derivative operators, we have the relation RLDZ'Z(R L

f (t)) RLD"HB f(@) for any 8 > 0 and any nonnegative integer m. While for the Caputo
derivative operators, we have

DS, cDI f(t)=cDlP f(1), B>0,meN. (1.43)

For CDZZZCDB

. n—1 < <n,mand n are positive integers, one has

CDa tCDB [f([) RLDa tRLD —-(n ’B)f(")(t) RLDm n—ﬁf(n)(t)

m+f (a) _ j—m—_3
=reD} P f(0) - Zrim G

(1.44)

where Eq. (1.32) is used. Denote it by

m+n—1 f(j)(a)
TG+ 1)

o(t) = (t—a).

Then

V m+p m+p3 f(J)(a) i—m—

DDl f(1) =cDy” f(0) + reDy P (1) - Zmﬂ Gl
(1.45)

m+n—1 f(/)(a)

_ M@ s
Tt i—m—p)" @

=cDIP f(1) +
Jj=n

By (1.43) and (1.45), the interchange of the Caputo derivative operators in (1.43) is
allowed under the following conditions:

f2a)=0, j=nn+1,---.m+n—1,m=0,1,2,---. (1.46)

From (1.46) we see that there are no restrictions on the values f(j)(a) =0( =
0,1,---,n—1).
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For cDg’thgt, m—-1<a<m,n—1<p<n, mand n are positive integers, one

can obtain
DY cD} (1) = Dy P £(1) +y(o). (1.47)

In fact, /(¢) is more complicated than the second term of the right-hand side of (1.27).
Here, we present two special cases of cDa ,CDB J@) = cD(Hﬁ f(¢) with no restrictions
on f(t) att =

Assume thatf € C"[a,t], nis apositive integer,n— 1 < <n.Hence,0 <n—-£< 1.
So for 0 <n—-B < 1, one has

D FeDl £ = DDLU () = f7 ), (1.48)

where (1.40) has been used.
LetO<a<l,n—-1<a+B<nn-1<p<n,nis apositive integer, f € C"[a,1].
Then one has

D2, cDL f(t) =riD&,cD, £(1) = reDERLDE (F() — (D)), (1.49)

where ¢(r) = 312 o ljf(jﬁ;(t— a)l. It is easy to verify that (f® —¢®)(a) = 0 for k =

0,1,---,n—=1.So

¢DZ,cDE f(t) =i D2 rDE (F(1) - $(1)
=rDLP(F() - (1)) (1.50)
=cDIP ().

1.2 Some Other Properties of Fractional Derivatives

In this section, we introduce some more interesting properties of fractional inte-
gration and differentiation. These properties include the linearity, the Leibniz rule,
the behaviors near and far from the lower terminal, the Laplace transform, and the
Fourier transform.

From the definitions of the fractional integrals (see (1.1) and (1.2)) and deriva-
tives (see (1.3)—-(1.9)) in the previous section, it is easy to verify that the fractional
integrals and derivatives are linear operators, i.e.,

D (Af (1) + ug(n)) = AD° f (1) + uD"g(1), (1.51)

where D® denotes any fractional integral or derivative hereafter.

1.2.1 Leibniz Rule for Fractional Derivatives

Next, we investigate the Leibniz rule for the fractional derivative. Let f(¢) and
g(?) be two functions with derivatives up to n. Then the Leibniz rule for evaluating



Chapter 1 Introduction to Fractional Calculus 11

the n-th derivative of g(¢) f(¢) gives:

n n

d
—(sf )= (Z)g“’(r)ﬂ"‘k’(r). (152)

n
dr —

Let us replace n with the real-valued parameter « in the right-hand side of (1.52),

and denote
n

CHOEDY (a)g(")(t)f(“"‘)(t),

k
k=0

where @R (r) = RLDZ;]‘ (@) or fO07) = GLDZ;]‘ f(r). We now wonder if there ex-

ists a positive integer n such that Qf is just the @-th order derivative of g(¢) f(¢). This

is not the case when « is not an integer. In fact, gDy ,(g(1)f(2)) has the following
form [124]

n

RUDS(DFD) = (Z)g(k)(t)f(“"‘)(t) Ry (1) = Q5/(1) = Ry (1), (1.53)

k=0
where n>a + 1 and

1

[ !
R =—— | -0 ' f(D)dr | (r-&)"g"V(&)d¢. (1.54)
n'I'(-a) J, -

Leté =7+ ¢(t—17) and 7 = a +1n(t—a), we obtain the following expression of R;(f)

as:
(_ 1)"([ _ a)n—a+1

Ry = nT(—a)

1
0
where
Fo(t,4,m) = fa+n(t=a)g™ Da+ - a) ¢ +n-Lm).
From (1.55), one obtains
lim R () =0,
n—oo
if f(7) and g(r) together with their derivatives are continuous in [a,f]. Under these
conditions the Leibniz rule for fractional differentiation takes the form:

o)

VRCOUOESDY (Z)g(")(t)f @R (7). (1.56)

k=0

Obviously, the above rule (1.56) is especially useful when g(¢) is a polynomial.

1.2.2 Fractional Derivative of a Composite Function

The Leibniz rule for the fractional derivative can be used to obtain the fractional
derivative for a composite function.
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Let f(#) =1 in (1.56), then

(t-a) e o®
F(l () Z( )F(l o (1.57)

Suppose that g(#) is a composite function, i.e., g(f) = F(h(#)). Then the k-th derivative
of g(7) is evaluated with the help of the Faa di Bruno formula [124]

5\
—F(h(t))—k'ZF(”’)(h(t))Zn ! (h (’)) , (1.58)

where the sum } extends over all combinations of non-negative integer values of
ai,az, - ,ax such that

rLDg,8(t) =

k k
Zrarzk and Za,zm.
r=1

r=1

Inserting g(¢) = F(h(?)), (1.58) into (1.57) gives the formula for the fractional
derivative of a composite function as:

(t-a)™®
T(1-a)

KE=a) ™ < o L (KOm\"
+Z( )m a2 (h(r))Z]_[ ( ,

where the sum ), and coefficients a, have the meaning explained as above.

rRLDG F(h(D) = F(h(n)

(1.59)

1.2.3 Behaviors Near and Far from the Lower Terminal

For the sufficiently smooth function f(r), for example, f(¢) is a polynomial, the
classical derivative of f(¢) exists and is bounded, but this is not the case for the
fractional derivative operators.

For the simplicity of the theoretical analysis, we suppose that f(¢) has an arbitrary
order derivative at the lower terminal (¢ = a). Therefore, f(#) can be represented by
the Taylor series

(k)( ) ' )
f() ZF(1+I<) t—a) +Da,t.f (0. (1.60)

Applying the Riemann-Liouville derivative operator on both sides of (1.60) and
using term-by-term differentiation yields

a - f(k)(a) k—a a—n p(n)
DL (D= ————(t-a) " +DL" "), a<n (1.61)
! ;F(lﬂ’c—a)
Ast—a+0,
S A (1.62)

(1 -a)
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Hence
0, a<0,
hm RLD SO =1f@, a=0, (1.63)
oo, a> 0.

The simplest example for illustrating (1.63) is to set f(#) = 1. This means that the
fractional initial value(s) in the sense of Riemann—Liouville must be very carefully
given.

Next, we study the behavior of the fractional derivative far from the lower termi-
nal (or, upper terminal), i.e.,  — co. First consider RLDZ’, f(), m—1<a<m, where
f(®) is sufficiently smooth. By the definition of the Riemann-Liouville derivative
operator we have

B e i o f (1= /" f(s)ds

_ - _ m—a—1
_F(m a) dt’” f(t ) fs)ds
m—-a—1
F(m @) i f (t—s) f(s)ds
— @ 1 m—a—1
=R S0~ o o f (1= )" f(s)ds.
For sufficiently large ¢ (|| > |a|) and bounded f(¢) (|f(¢)| <C), one has
1 d” ¢ m—a—1
'Fi(m—a)w fo (t—s) f(s)ds|

_ 1 —a—1
_‘mj:(;—s) f(s)ds| (1.65)

[t—a)™ @ =1"]>0 (t— ).

(1.64)

C
<—
IF(-a)l
Therefore, for large enough ¢ we have
rRLDG, f(1) ~ rLDg f(1), (It > |al). (1.66)
For the sufficiently smooth f(7) and @ > 0, one has also the following relation [124]

al'(a + 1) sin(an) f(0)

RLDG, f() = reDy  f (1) + : , (lt] > |a]). (1.67)
ﬂ-t(1+
For the Caputo derivative operator ¢Dg ,, we get
D, f(0) = cDg, f(1), (It > lal) (1.68)

if [ £ (1)] is bounded, m—1 < a < m.
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For the fixed ¢ and sufficiently large |a|, i.e., a — —oo, we can similarly obtain

RUDELF(D) :ﬁ " f (- 5y" o f(s)ds
| o (1.69)
=rLD{_,  f (D)~ m a fa (1— )" f(s)ds.
Similar to (1.65), we can obtain
_ & f H(z— 5" f(5)ds — 0 (1.70)
I'm—-a)dm J,
when |f?"~D(7)| is bounded and a — —co. Hence,
RLDG, f(1) ~ LD f (D), lal > |1]. (1.71)
In a similar manner, we can obtain
Dg, f(t) = D, f(@),  lal> I (1.72)
if |f“(¢)| is bounded, m— 1 < & < m.
1.2.4 Laplace Transforms of Fractional Derivatives
The Laplace transform of a given function f(7) is defined as
F(s)=L{f(1);s} = j:o e f(pdt. (1.73)

The existence of the integral (1.73) requires that the function f(#) must be of expo-
nential order u such that for positive constants M and T

f(H|<Me*"  holds forall ¢>T.

The original function f(¢) in (1.73) can be restored from F(s) with the help of the
inverse Laplace transform

Cc+ico

f() =L YF(s);t) = 2%” f e"F(s)ds, c¢=Re(s)> co, (1.74)
c—I100
where cg lies in the right half plane of the absolute convergence of the Laplace inte-
gral (1.73).
Next, we present two important properties that will be useful in obtaining the
Laplace transform of the fractional derivative operators.
The first property states that the Laplace transform of the convolution

5 5
f(t)*g(t)=f0f(t—S)g(S)ds=fof(S)g(t—S)ds (L.75)
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is given as
L{f(n) +g(1); s} = F()G(), (1.76)

where F(s) and G(s) are Laplace transforms of f(¢) and g(¢), respectively, and f(¢)
and g(7) are equal to zero for ¢ < 0.
The second property states that the Laplace transform of f(f) is given by:

n—1 n—1

LU @05} = L5 = )" fO0) = " Lif@yish = ) s 1D o),

k=0 k=0
1.77)
which can be obtained from the definition of the Laplace transform (1.73) by integrat-
ing by parts under the assumption that the corresponding integrals exist (for instance,
£ is bounded).
Next, let us start with the Laplace transform of the fractional integral. Let a > 0
and g(¢) = t*~!. Then the fractional integral Da,‘;‘ f(%) can be rewritten as

—a — 1 ' a-1 _ 1 a—1
Dy, f(1) = @) fo (t=5)"" f(s)ds = ) * £(1). (1.78)
It is easy to calculate that
G(s) = Lit" !5} = T(a)s ™. (1.79)
Hence
1
LDy f(1); s} = mL{ﬂ—l % f(1);8) = sTOL{f(1);5) = sUF(s). (1.80)

Now let us turn to the Laplace transform of the Riemann—Liouville derivative
operator with order o,m—1 < @ <m. Let

g =DV f(1). (1.81)
Then
RLDE (1) = g™ (). (1.82)
Applying (1.77) gives
m—1
LD, f(0; 5} = LIg™ ;5 = " Lig(0); s} = ) 8" *0). (1.83)
k=0
By (1.80) one has
L{g(t): s} = LD, " f(1); s} = s " L{£(1); 5). (1.84)

Combining (1.81)-(1.84) gives the Laplace transform of the Riemann—Liouville
derivative as

LireDf, £ 5} = s"LUf ;5= ) s DG 0] )0 m=1<a<m. (1.85)
k

3

Il
(=}
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Next, let us turn attention to the Laplace transform of the Caputo derivative oper-
ator. The a-th order Caputo derivative of f(f) can be written as

cD§ () =D g(r),  g()=F"). (1.86)
Using (1.80) and (1.77) gives

L{cD§, f(t): s} =L{D, "V g(0); s} = s~ Lig(1);s)

m—1
——(m—a)| m . m—k—1 p(k)
=s STLAf(D); s} = ) s 17(0)
; (1.87)
m—1
=s"L{f(@);5)= ) s f90).
k=
Therefore, the Laplace transform of the Caputo derivative operator reads as
m—1
LicDg f(1);s) =s"L{f(); 5} = » s** ' fP©0), m-1<a<m. (1.88)

k

Il
(=}

1.2.5 Fourier Transforms of Fractional Derivatives

The Fourier transform of a continuous function f(f) that is absolutely integrable
in (—oo0,00) is defined by

Fif(t);w) = f " gror f@dt. (1.89)

0o

The original function f(¢) in (1.89) can be restored from F{f(¢); w} with the help of
the inverse Fourier transform:

=5 f : FI0; wle® f(1)dw, (1.90)
Similar to (1.75) and (1.76), the Fourier transform of the convolution
sg0= [ - 9g)ds = | 8- s (191)
satisfies
FL)* 8(0):0) = FU @ 0} Flg(); o). (1.92)

A useful property of the Fourier transform is the Fourier transform of the deriva-
tives of £(r). If f®(r) (k=0,1,2,---,n— 1) vanish as t — oo, then the Fourier trans-
form of f"(¢) is given as

F{f"(1):0) = (i)' F{f(1):w). (1.93)
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Next, we investigate the Fourier transform of the fractional integral operator D,
witha=—-coand O <a < 1. Let

a1
no={t@ 7% (1.94)
0, t=0.
Then
DZg,  f (1) = hy(0)  f(2). (1.95)
It is easy to calculate that
F{hi(t);w} = (iw)™. (1.96)
Therefore
F{DZG,  f(1);w} =F{hs (1) * f(1); 0} = F{h (); W} F{f(1); 0} (1.97)
=(iw) " F{f(1);w}.
For the right fractional integral operator D; (, one has
D, o f(#) = hi(=t)* f(D). (1.98)
Note that
F{hi(-0);w} = (—iw) ™. (1.99)
Hence
F{D, & f(1); 0} = F{he(=1); }F{f(1); 0} = (—iw) " F{f (1), w}. (1.100)

Next, we discuss the Fourier transform for the fractional derivatives. Suppose
that m — 1 < @ < m, f(¢) is sufficiently smooth and f®(—c0) (k=0,1,---,m—1) are
bounded. Then from (1.10) and (1.11), we see that the left Riemann-Liouville deriva-
tive, the left Grilnwald—Letnikov derivative, and the left Caputo derivative have the

same form:
LD f(1)

RID o S} = D2 fM (D), m—1<a<m. (1.101)
CD(—Yoo,tf(t)
One can similarly obtain
LD} f (1)
RIDEGF(D b = (=)D, fM (), m—1<a<m. (1.102)
CDgoof(t)
Now, let us turn to the evaluation of the Fourier transform of (1.101). From (1.97)
and (1.102) one has

F(riD% f();w} = F{reDZ07® £ (1); )
=(iw) "I F{f"(1); 0} = (i0)” " (iw)" F{f (1), w) (1.103)
=(iw)*F{f(1);w}.

We can similarly obtain

F{riD{o f(1); w} = (—iw)* F{f(1); w}. (1.104)
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1.3 Some Other Fractional Derivatives and Extensions

In this section, we introduce some extensions of the fractional derivatives.

1.3.1 Marchaud Fractional Derivative

Consider the Riemann—Liouville derivative (1.5) with a = —co and 0 < @ < 1. For
convenience, let us suppose that f(7) is a sufficiently “good” function, for example,
f(®) is continuously differentiable with its derivatives, f’(¢), vanishing at the infinity
as |f|*~17¢€, € > 0. Then we obtain

RLD% o f(1) = f (1— 5 f(5)ds

r(1 @) dr

=r<1 o f (=5 f ()

S (1.105)
L f EOF (- 8)dE
f fo-su=o
F(l—a) §1+a
One can similarly get
D () =3 [ LDZSD o, (1.106)

I'(l-a) Jo gl

for sufficiently “good” function f(¢).

From the structures of (1.105) and (1.106), the so called Marchaud fractional
derivatives can be derived. The left and right Marchaud fractional operators with
order @ (0 < @ < 1) are defined as

@ CfO-fa-9)

Di’f(t):r(l_a) ) Fie dé, (1.107)
e S0 -f+9)
@ @ +

wDLfO = ). Fire dé. (1.108)

If f(¢), with its derivatives f(k)(t) (k=1,2,---,m), is continuous and vanishes at
infinity as |f|*"17¢, € >0, m— 1 < & < m, then it follows from (1.5) that

o " e e} © fD@) - D=6
R0, f 0 = o7 DU f O =g = fo e dz;
(1.109)

where {a} = a—m+ 1, and (1.105) is used.
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Hence, for any @ > 0, we can define the left and right Marchaud fractional deriva-
tives as

o A _ } A O R M U7
wD (0 = o [P O] = p s i FEn d¢
(1.110)
and
m—l (m—1) (m—1)
@ ple _ SO -+ 6
mDZf(0) = dm- qpm—1 [ - f(t)] F(l )f §1+{a} ’
(1.111)

respectively, where {a} =a-m+1,m—1 <a <m.

1.3.2 The Finite Parts of Integrals

From (1.105), we know that if f(7) is “good,” then gL D%, f(r) = D{ f(z). One
can also find that g, D?, ,f(7) can be obtained from DZ¢, , f() if we replace a with

—a. We know that
f S (t—f)
F(l ) glte

is divergent to infinity. In spite of this, its finite part in the sense of Hadamard is
introduced below.

Definition 6 Let a function ©(t) be integrable on an interval (€,A) for any A (> € > 0).
The function ©(¢) is said to possess the Hadamard property at the point t = 0 if there
exist constants ay,b and A > 0 such that

N

A
1
f DO(r)dr = Zake_ﬂk +bln—+ Jo(e), (1.112)
€ €

k=1

where liné Jo(€) exists and is finite. Set
€E—

A
p.f. f (1) dr = lim Jo(e). (1.113)
O (i

The limit (1.113) is called a finite part of the divergent integral fOA O(r)dt in the
Hadamard sense or simply an integral in the Hadamard sense. The constructive re-
alization of the function Jo(€) is sometimes called a regularization of the integral

Jrowa.

It is not difficult to find that the constants ai,b and A; > 0 in (1.112) are not
dependent on A. Hence, one can easily obtain

00 A 00
p.f. f O(r)dt = p.f. f D(r)dt + f (1) dt, (1.114)
0 0 A

where A is arbitrarily chosen with A > 0.
Next we introduce several properties of the finite part of integrals due to
Hadamard.
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Lemma 1.3.1 ([134]) Let 0 < a < 1 and f(t) be locally Holderian of order A > a.
Then the function ®(s) = f(t— s)s~ '~ possesses the Hadamard property at the point
s =0 for each t and if |f(s)|<c|s|*"¢, € >0, as s — —oo, then

AU P Gl (G

p-1. 0 sl+a 0

Lemma 1.3.2 ([134]) Let f(¢r) € C™ and f(t) be locally Holderian of order A, 0 <

A < 1. Then the function ®(s) = f(t—s)s~ '~ possesses the Hadamard property at the

point s =0 for each t and a < m+ A If |f(s)|<c|s|*€ also holds, € > 0 for s — —oo,
then

Sl+a

N ff(t—S) So(-DkG f(")(t)
I'-a) slta F( a)

1 NGDR Z( DE D)
I'(—a) Jo sl*@ k' T(-a)k-a)

sl+a

(1.115)

where a <m+A,a #0,1,2,---

Theorem 1 ([134]) Let f(¢) satisfy the assumption of Lemma 1.3.2 with m—1 <
a<m. Then the Liouville fractlonal derivative gD lf(t) coincides with (1.115)
forany a>0,a#1,2,--

1.3.3 Directional Integrals and Derivatives in R?

Definition 7 Let a > 0, 8 € [0,21) be given. The a-th order fractional integral in the
direction of 0 is given by

D,%u(x,y) = % fomga—lu(x—gcose,y—gsine)dg. (1.116)

Remark 1.3.1 It is easy to see that for special directions as 0 =0, n/2, m and 3n/2,
the directional operator is reduced to left and right Riemann—Liouville integral oper-
ators, i.e.,

Dy “u(x,y) = D, (u(x,y),

D “u(x,y) = Dy o u(x,y),
n/zu(x y)=DIg y”(x’y),
D3”/2u(x,y) = y’mu(x,y).

(1.117)

The directional derivatives can be similarly defined as in (1.5).

Definition 8 Let n be a positive integer satisfying n—1 < a <n, 6 € [0,2n). Then the
a-th order fractional derivative in the direction 0 is defined by

D3u(x,y) = DiD, " u(x,y), (1.118)

where Dy is given by

0 9\
Dyu(x,y) = (cos@— +sinf—| u(x,y). (1.119)
Ox ady
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Next, we list some properties of the directional integrals and derivatives, which
are similar to those of the fractional integrals and derivatives.

Proposition 1.3.1 ([131]) The fractional directional integral operator satisfies the
following semi-group properties

D,D, u(x,y) = D, Pu(x,y), (1.120)
where a, B> 0, 0 € [0,27), u € L*(R?).

Proposition 1.3.2 ([131]) For a >0, 6 € [0,27), u € L*(R?), the following relation
holds
DED; u(x,y) = u(x.y). (1.121)

Proposition 1.3.3 ([131]) The fractional directional integral operator D, satisfies
the following Fourier transform property

F{D,"u(x,y); w} = (iwy cos 6+ iw sin€) ™ F{u(x,y); w}, (1.122)

where w = (w1, w>) and
Flu(x,y);o) = f O ) drdy.
RZ

Proposition 1.3.4 ([131]) Forue Cg" (Q),Q eR? and @ > 0, we have

F{Dyu(x,y); w} = (iwg cosd + iw; sin @) F{u(x,y); w}. (1.123)

1.3.4 Partial Fractional Derivatives

Similar to the classical partial derivatives, we can also define the partial frac-
tional derivatives [134]. For example, let 0 < a,a> < 1, the partial fractional deriva-
tive RLDQ:} 2 u(x,y) is defined by

RLDQT;ZZQ u(x,y) = RLDS?}, [RLD&IXM(X»Y)]

@ 1 o o
:RLDo,zy [m Ix fo (x—15) lu(s,y)ds] (1.124)
1 % r o .
T —aN(1-a) 6x6y£ L (x=95)""(y—7)""u(s,7)drds.

Obviously, if u(x,y) is “good” enough, then one can easily obtain

a1 +ap _ ay+a)
RLD (ay jar (X, Y) = RLD gy o (X, ).

For any a1,a2 > 0, we can give the following definition of the partial fractional
derivative.
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Definition 9 The partial fractional derivative operator RLDZH) of,é

) is defined by

with order (a) +

1 6m+n
I'(m—-a)l'(n—az) dx"oy"

Xy
X f f (x— )"l (y- )2y (s, 1) dr ds,
o Jo

N
LD u(x,y) =

(1.125)

where m—1 < a; <m, n—1 < ay <n, m, n are positive integers.

Similar to (1.125), the definition of the partial fractional derivative in the
Riemann-Liouville sense can be given below.

Definition 10 The partial fractional derivative operator RLD“&;r (f,z;"'x” with order
Xy Xpm Xy
(a1 + a2 + -+ +ay) is defined by
1 am|+m2+-»-+m[
ay+ay+-tap
LD ay] _ap ap u(xl?... ’xf) = ¢ mj myp me
XXXy _T(mg —ay) 0x;'0x,%---0x
kal ( k k) 1 2 ¢ (1.126)

X1 Xp
xfo fo (= Y™ e (= £ () dE - dE,

where my — 1 < ay <my (k=1,2,---,{), my are positive integers.

We can define the partial fractional derivative in the Caputo sense.

Definition 11 The partial fractional derivative operator CDQJ:r (22;22” with order
T

(a1 +ap + -+ ay) is defined by

a)+tay+tay
cDa) oy o ux,y)
Xy Xpme Xy

1 X1 x¢
R _ g yne—ae—l _ g ymi—a;—1
Hi_lf(mk—ak)fo fo (xe=£0) (1 =41) (1.127)

am1+mz+---+m[
T
‘951 Iaggh ...5%"5

where my — 1 < ay <my (k=1,2,---,0), my are positive integers.

u(éy,--,&)dér -+ déy,
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Similar to (1.14), one has

i
ay+ay+-tap (11+ @t ety
lim RLD e « M(.XI, .X[) RLD a; o a o « m; M(.XI,' o ,X{),
l 2. X 4 i lx i+1, x 4 6 i
@i—m; S B R e T e X
m;—1
. a)tapt+- +(1/[ _ ayt+ta_ptait+t+ay .
hm +RLD (1| (12 u(-xl’ -xf) - RLD ay (yl-_lz a; ! ap mi—1 u(xl?. o 7-x€)’
a;—(mi—1) Xy X [ XX Xy ﬁxi’

o
(1/1+ @it ety

a)tap+-tay
lim ¢D o @ @ u(xy,- - ,xp) = X1, @iyl m; (X1, Xe),
@j—m; XXy, 'Xz 1 Y Y ox

i
6m,—1
) tay+-tay (ll+ tapotai+tay
Doy oy ap ulx1, -, x0) = CD g i
xl x2 '")C[ =X X. X [

i

Tu(xn, -, xe)

a;j—(m;—1)* Axm!

6111,-—1
D(1|+ tajptaitetay
C (l/| (Il 2 (Il (Z[

. m;—1
Xip "X Xy 6xl.’

u(xy, -+, %i-2,0,x;,- -, x¢).

(1.128)

1.4 Physical Meanings

It is known that classical calculus (or “calculus” for brevity) means integra-
tion and differentiation. So fractional calculus also means fractional integration and
fractional differentiation. Different from the typical derivative, there are more than
six kinds of definitions of fractional derivatives. They are not mutually equivalent.
Among these definitions, the Riemann-Liouville derivative and the Caputo deriva-
tive which are defined on the basis of fractional integral (or, Riemann—Liouville in-
tegral) are most frequently used. Stochastic experts, pure mathematicians and physi-
cists would rather use the former, while applied mathematicians and engineers prefer
to utilize the latter, mainly due to their respective research backgrounds [46, 107].

In the following, we explain that fractional calculus is not the mathematical gen-
eralization of classical calculus.

For the Caputo derivative, if we fix ¢ and let the order « € (n — 1,n) vary, so we
have

lim DS x(1) = xX""V(1) - x""D(0), lim ¢D§ x() = x™(2).
a—(n-1)* ’ a—n ’
It follows that the Caputo derivative is not the mathematical extension of a typical
derivative. More explanations can be found in [77].
Next consider a simple function below,

—t,te€[0,1],
x(’){ —1,re(1,1+1).

D¢ 0 XD (@€ (0, 1)) exists on the interval (0, 1 +#y], while x’(¢) exists on the domain
[0 1) U (1,1 +1]. If RLD X(@) (a € (0,1)) is the generalization of x’(¢), then the in-
terval (0,1 + #p] should be “bigger” than the domain [0,1) U (1,1 +#9]. But it is not
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true. So the Riemann-Liouville derivative is not the mathematical generalization of
the typical derivative, either. More illustrations are given in [81, 91].

Overall, fractional calculus, closely related to classical calculus, is not direct gen-
eralization of classical calculus in the sense of rigorous mathematics. In the follow-
ing, we give possible physical and geometrical interpretation.

Recalling the integral A = fa b f(x)dx, from the viewpoint of geometry, it means
the area of the domain {(x,y) |a < x < b, 0 <y < f(x)} presuming that f(x) > 0. From
the viewpoint of physics, it implies the displacement from a to b if f(x) indicates the
velocity at time x. The geometrical and physical meaning of the derivative is well
known to us. For example, f’(x) indicates the slope of the curve f(x) at x. On the
other hand, if s(z) is the displacement at time ¢, then, s’ (¢) stands for the velocity at
time ¢, s”'(¢) the acceleration at time ¢. Now, we give a possible interpretation of the
fractional calculus.

The fractional integral with order «

1

!
D¢ f(t) = reD,5 f(1) = @ f (1— ) f(s)ds

can be rewritten as

!
D7 £(1) = f FOAYa(D),

where
(t—1)%

o ={ 7T

7€ [a,1],

This is the standard Stieltjes integral. Y, (7) is a monotonously increasing function in
(—o0,1]. The positive number « is an index characterizing the singularity: the smaller
a, the stronger singularity the integral. If Y, (7) = 7, the above integral is reduced to
a typical one. So D, f(7) indicates the generalized area in the sense of length Y,(7)
(geometrical meaning) or the generalized displacement in the sense of Y, (7) if f(7)
means the velocity at time ¢ (physical meaning).

The Riemann-Liouville derivative with order a € (0, 1) can be written as

d !
rLDG f(1) = T f F(@dY1-o(7),

where

_@-pl
Y o(7) = { To—a T €la1],
0, T<a.

Obviously, Y1_,(7) is a monotonously increasing function in (—o,7]. So g Dg (1)
indicates the generalized slope in the sense of length Y|_,(7) if f(f) means the slope
(geometrical meaning) or the generalized velocity in the sense of length Y|_,(7) if
f(#) means the velocity (physical meaning). If Y1_,(7) = 7, it is reduced to the classi-

cal case.
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Similarly, the interpretation of the Caputo derivative can be also given. In effect,
the Caputo derivative with order a € (0, 1) is written as

!
DI f(1) = f £V (D),

where

_ '
YI—Q(T) = { l"(2—a/) b T e [a? t]?
0, T<a.

So ¢Dg,f(2) indicates the generalized displacement of the curve f(7) in the sense
of length Y|_,(7) (physical meaning) if f(r) means the displacement, or represents
the generalized curve in the sense of length Y1_,(7) if f(¢) is a curve (geometrical
meaning). If Y;_,(7) = 7, the above integral is reduced to the typical one.

1.5 Fractional Initial and Boundary Problems

How to determine the definite conditions for fractional differential systems seems
to be a ticklish matter [91]. But after careful analysis, one can grasp it. In the follow-
ing, we first study the Caputo case.

Consider the following Caputo-type differential equation

D x(t) = f(x,0), n—1<a<n ezZ*.

Noticing that ¢ D§ x(1) = D(;E"_Q)D"x(t) = D(;(ln_a)x(")(t), acting gD}, in both sides
of the above equation yields

X(t) = gD, (1) = m o f (1= " f(x(1), D) =: F(x,1).
It immediately follows that the initial value conditions of the Caputo-type differential
equation are given as x(k)(O) = xg‘), k=0,1,...,n—1. So the initial value condition(s),
boundary value condition(s), the initial and boundary value conditions of the Caputo-
type (ordinary or partial) differential equation are the same as those of the classical
(ordinary or partial) differential equation. Therefore we do not discuss the definite
conditions of the Caputo-type differential equation any more.
In the following, we consider the Riemann—Liouville type differential equation,

LDg x(®) = f(x,0), n=1<a<n ezt

Noting g.Dj x(t) z" RLD (n= a)x(t), the above equation can be changed into

dﬂ

o (RLD5 ™ x(0) = ),
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therefore the initial value conditions of the Riemann—Liouville type differential equa-
tion should be given as

@( D, %(r)) = RLDE X (Oli=0 = ¥y k=0,1,...,n 1.
When k = 0, the corresponding initial value condition is the integral initial value con-
dition. Such definite conditions for this Riemann—Liouville type differential equa-
tion makes the Cauchy problem well-posed. Here “being well-posed” means the ex-
istence, uniqueness and stability of its solution. Please note that the above initial
value conditions can not be replaced by the classical initial value conditions x¥(0) =
x(ok),k =0,1,...,n—1; otherwise, the problem will be ill-posed. In effect, if x(¢) is
a solution to the above Riemann-Liouville-type differential equation, then x(0+) =
lim,_,¢+ x(#) is often unbounded. Under RLD"*”‘ "x(H|=0 =0,k=0,1,...,n—1, the
initial value conditions of the Rlemann—Llouvﬂle type differential equation is often
transformed as x(k)(O) 0,k=0,1,...,n—1. However, this is not mathematically true.
If some extra conditions are imposed, then we can do it like this. Ref. [39] seems to
give a suitable choice.

Based on the above analysis, we can give two point boundary value conditions
for the Riemann-Liouville type differential equation as follows,

RLDg (%) = f(x,y), x € (a,b), 1 < <2,

its boundary value conditions can be given as:
: ~2 -2
1) RLDG T Y(O)x=a = €1, REDT 7YX x=p = €2,

or,
i) REDG S Y(O)lv=a = €3, RID, Y(X)lamp = Ca,
or,
iii) RE DG Y(O)leza = €1, RIDY V()b = €4,
or,

: -1 -2
V) REDG L Y(X)|x=a = €3, REDT7Y(X)|x=p = C2.

Next, we only list the initial-boundary value problem of the Riemann-Liouville
type partial differential equation,

RLDG u(x, 1) = reDq cuu(x,1), > 0, x € (a,b), @ € (0,1), B € (1,2),

where gDy u(x,7) means the a-th order partial derivative of u(x, ) with respect to

and RLDﬁw(x, t) means the S-th order partial derivative of u(x,¢) with respect to x.
The initial value condition of this fractional partial differential equation is given as

RLD u(x,)li=0 = ¢(x).

Its boundary value conditions can be of Dirichlet type (the first class), or of Neumann
type (the second class), or of Rubin type (the third class), which are presented below:
i) Dirichlet type

RUDG U, Dl vma = €1(0), RLDP P u(x, )=y = £(0).
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ii) Neumann type

LD U, Dleeq = £10), LD u(x,D]m = £2(0).
iii) Rubin type

(RL a;lu(x, NH-oy RLDf;Czu(x, t)) , =610, 01>0,

(D ue, 0+ 02 gD 7u(x, ) _, = €20, 02> 0.

If @ € (1,2) and S remains unchanged, then two initial value conditions are needed
which read as below,

RLDG2u(x =0 = (). RLDG, ue. Dlimo = ().

The boundary value conditions are unchanged.

For the fractional partial differential equation, the definite conditions need to be
properly proposed, otherwise the corresponding initial-boundary value problems will
be ill-posed.



Chapter 2

Numerical Methods for Fractional Integral
and Derivatives

In the previous chapter, the important properties of the most frequently used
fractional integral and fractional derivatives are introduced. In this chapter, we
mainly construct the efficient algorithms for Riemann—Liouville integrals, Riemann—
Liouville derivatives, Caputo derivatives, and Riesz derivatives, etc.

2.1 Approximations to Fractional Integrals

The fractional integral operator plays an important role in fractional calculus,
which is useful for converting the fractional differential equations into integral equa-
tions with a weakly singular kernel. So it is necessary to study the numerical methods
for approximating fractional integrals. This section introduces numerical approaches
used to approximate the fractional integrals based on the polynomial interpolation.

Suppose that f(r)e C(I),I = [0,T]. Let At be the step size with At =T /ny,nr €N,
and denote by #;, = kAt. Next, we investigate how to numerically calculate the follow-
ing integral

1 [
Dafif(t)=@fo(t—s)““f(s)ds, a>0. 2.1

One way to numerically calculate (2.1) is to approximate f(f) by a certain func-
tion f(f) in order that Daﬁ f(?) can easily be calculated exactly. We naturally think of
the polynomial approximation of f(f) on the interval [0, T]. Theoretically speaking,
Da,(;l £(#) can be calculated exactly if f(7) is a polynomial. For t = t,, n€ N, we rewrite

[D(;,? f (t)]t=tn as the following form

1
[P0, = 7o fo (ta = )" f(5)ds
Lol . 2.2)
=@Zf (ta — ) f(5)ds.

k=0 V'

Next, we introduce the numerical methods based on the polynomial interpolation
to calculate (2.2).

29
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2.1.1 Numerical Methods Based on Polynomial Interpolation

This subsection extends the numerical methods for the classical integrals to the
fractional integrals.

e Fractional Rectangular Formula

On each subinterval [#,fx+1],k=0,1,--- ,n— 1, the function f(¢) is approximated by
a constant, i.e.,

FOlttey 2 Ol = F@s (2.3)
one obtains
1 Tk+1
Do s, = Zf ty— )" f(5)ds
k=0
1 n=l ap ol
z@; f (ta— 9 (1) ds (2.4)

n—1
= Z bu—k—1f (),
k=0

where A
t(l
by = F(a+1)[(k+1)a_ka]' 2.5)
Hence,
n—1
D5 £ _, ~ D" bt f10). 2.6)
k=0

Similar to the classical left rectangular formula, we call (2.6) the left fractional rect-
angular formula.
Similarly, if
SOl e 12 Ol = Sa1)s (2.7)

then we get the following right fractional rectangular formula

[Dys £ _ ank Lf(t). 2.8)
k=0

The formulae (2.7) and (2.8) can be seen as the special cases of the following
weighted fractional rectangular formula

n—1

[Dgs )] .- an“efm)m Ofn], 0<6<1.  (29)

Of course, one can also obtain the following formula

n—1

[Dos ] _ anklf(zk+(1—e)m) 0<o<1. (2.10)
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Remark 2.1.1 If 6 = 1 (or 0) in (2.9) (or (2.10)), the left fractional rectangular
Jormula (2.6) (or right fractional rectangular formula (2.8)) will be recovered. If
a =1 (or 12)in (2.9) (or (2.10)), then the formula (2.9) (or (2.10)) is reduced to
the composite trapezoidal formula (or midpoint formula) for the classical integral
[127].

¢ Fractional Trapezoidal Formula

On each subinterval [#, #x+1], f(¢) is approximated by the following piecewise poly-
nomial with degree of order one

f(t)|[tk tk+l]~f(t)| [trestrr1] =

(2.11)
one obtains the fractional trapezoidal formula as follows
(Do /@], ~[Dos 0],

1 = e ot —1 f—ty
—> ftk (tn=D" 1(tk:l_ S+ f(fk+1))df

[a) &4 Ik Tke1 — Ik

= Z g f (),
=0

(2.12)

where

(t,,—t)“ ”' dt k=0
ak,n=L f"”( -0 i ‘dt+f" (t,— D% ‘”" L dy, 1<k<n-1,
k=n

I(a) t/}.n Ty 1~ (k-1
ftnil(tn—t)a el dr, =
(2.13)
By simple calculation, one has
. n-D"*'—(n-1-a)n?, k=0,
- - _ a+1 1\t _ _ o+l _
Aken T@+2) m—k+D*"" +(m—-1-k) 2m—-k)*, 1<k<n—-1,
1, k=n.
(2.14)

¢ Fractional Simpson’s Formula

On each subinterval [, #%+1], denote by ¢, 1= % Interpolating f(¢) at the grid

points {#x, tx+1/2, tk+1} on the subinterval [#, #x+1], 1.e., () is approximated by a piece-
wise quadratic polynomial on the whole interval [0, #,], which is given by

f(t)l[tk,tk+1]zf(t)|[tk,l‘k+l] = Zf(ti)lk,i(t)’ (215)

ieS
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where {/; ;(#)} are Lagrangian base functions defined on the grid points {¢;, j€S}, S =
{0, %, 1}, which are given by
t—1t;
k=[] —= ies.

1,
jes. it

Replacing f(7) in (2.2) by f(t) defined by (2.15), one obtains the fractional Simp-
son’s formula as follows

n—1

Do F0],_, ~[Dys 0], chnf<rk>+zcknf(tk+l) (2.16)
k=0

where
4[(n+1)2+”—n2+“]—(a+2)[3(n+1)1+”+n1+a]
+(@+2)(a+ Dn+1)4, k=0,
A(Y
ck,nzr(T:m —(@+2)|[(+ 1= +6(n )"+ (n—k-1D'| (2.17)
+4[n+1-0* - (-1-0™], 1<k<n-1,
2—a, k=n,
and
4A*
Chn =m{(a’+2) [(’H' 1-k)+os (n—k)lm]

(2.18)
—2[(n+1 —k)2+"—(n—k)2+“]}, 0<k<n-1.

¢ Fractional Newton—-Cotes Formula

Theoretically speaking, higher order methods such as fractional Newton—Cotes for-
mulas can be derived if f(¢) is approximated by polynomials with higher degrees. On
each subinterval [#, 1], f(¢) can be interpolated by a polynomial py (f) of degree

r on the grid points {#; = t(k),t(lk) . tik)l, t(k) fr+1}. Letting
(k)
r r— t .
i = | | m’
J=0,j#i %

we get

Pir(®) = > FEN ().
i=0

Setting £ (Dl xes11 = Prr(£), we can calculate [Daf fi (t)]tzt analytically, which yields
the fractional Newton—Cotes formula

n-1 r

[DS,(,’f(t)][:ln [ f(t) ZZAf"n)f(t(k)) (2.19)

k=0 i=0
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where

1 Tk+1
A(."):—f t— 1) U i(Hde
in ~ T(a) " (ta—1) k,z( )

is computable for big k. Here, we do not give the explicit expression of Af];) .

If f eC™1([0,T)), reN, then the error estimate of f(t) on each subinterval
[k, tx+1] can be expressed by

(r+1) r
lfo-jol, = L&) [ [(-47),  &elmnal
=0

il (r+ 1!

Therefore, we can get that the error estimate of (2.19) is O(Af*1), which can be
simply derived by the following calculation

[D52 0., - [D5z 7)., |

RSN I D)
<—— > f (ta= 0" 1) = P (o)t

F(CZ) k=0 Ik

1 n—1 Lir]

r+ 1 a— -
< ma 1)(5)'}(r+1)!@;frk "y lg"‘fﬁ'k)‘d’ (220)

_ oyl b gy
< (r+1) (Tt — 1) f ty—t a—1 dr
< e O G By 2 ), @

tll’
— (r+1) n Atr+l.
Jmax {17} G+ DM@+ D)

Remark 2.1.2 It is known that the error estimate for the classical composite
Newton—Cotes formula is of order 0(At’+2)f0r the odd number r [127]. This is not
applicable for the fractional composite Newton—Cotes formula (2.19), which is due
to the nonsymmetry of the weakly singular kernel (t, —t)*~" that leads to the nonsym-

p
metry of the remainder term (t, —)*~' [] (t— ti.k)) in the integrand.
Jj=0

Remark 2.1.3 The fractional rectangular formulae (2.6) and (2.7), the fractional
trapezoidal formula (2.12) and the fractional Simpson’s formula (2.16) are special
cases of the fractional Newton—Cotes formula (2.19). Hence, the convergence orders
of these methods are O(At) ,O(Atz) and 0(At3) for the noninteger number a > 0. If
a = 1, these formulae reduce to the corresponding classical formulas of the classical

integral except that the formulas (2.9) and (2.10) with 6 = 1/2 are reduced to the
classical trapezoidal formula and the midpoint formula, respectively.

e Cubic Spline Interpolation
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On each subinterval [#,t;4+1], k=0,1,--- ,n—1, f(t) is the cubic spline interpolation
given by the following expression [73]

2 2
f(r>|[,k,zk+.]=(1—2 i )(H"”)f(rk>+(1—2"”‘“)( il )f(rk+1>

T — k1 ) \ Tk — T+ 1 Teel — I\ Tkt 1 — Tk

2
+<r—tk)( ”‘“) f >+(t—rk+1)( k) f ().

(2.21)
Then, [Da;’ f (t)][:ln can be approximated by

[ o;f(t)] [ s F( )]t N F(A::){Zej,nf(tj)+AtZéj,nf'(tj)}, (2.22)

j=0
where
eon ==6(n—1)>""(1+2n+a)+n"(12n° =63 + )’ + (1 + )2 + )3 +a)),
ejn =6(4n— )+ (n—-j- ?*2j-2n—1-a))
+(1+n-)**Qj-2n+1+a), j=12,---,n—1,
enn =6(1 +a),
Gon==2(n—1)*""Bn+a)+n'" (60> =43 + )n+ 2+ )3 +)),
jn=2n—j-1)""23j-3n-a)-2n-j+ D"?3j-3n+a),
enn =—2a.
(2.23)
The error estimate of the formula (2.22) is of order O(Ar*), which is determined by
the error of the cubic spine interpolation, see [73].

2.1.2 High-Order Methods Based on Gauss Interpolation

The procedure that leads to the fractional Newton—Cotes formula can be used to
generate the following more generalized formula of the form

[Daf;f(t)]l:[n [ le(t) Z Wi, & f (),

where py(?) is an approximate polynomial of f(¢) with degree of order N. For exam-
ple, pn(?) is an interpolation of f(¢) on the collocation points {tk}k 0 k€ [0,T] or an
orthogonal projector. When N is big enough, {w;x} are not easy to compute, though
they can be calculated exactly.

Next, we introduce an algorithm to compute {w} effectively. As is known, any
polynomial py(?), t € [0,T] can be written in the following form

N N
pr(®) = D PP QL=1)= 3 ¢4 (x) = (), (2.24)

j=0 Jj=0
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where ¢ = @ e[0,L],xe[-1,1], {P?’b(x)} are Jacobi orthogonal polynomials de-
fined on [—1, 1] with respect to the weight functions w@? (x) = (1 = x)*(1 +x)* (a,b >
0). The coeflicients {c;} can be easily calculated due to the orthogonal property of
Jacobi polynomials (see Theorem 3.9 in [135]). Here we do not present the explicit
expression of ¢;, which will be illustrated later on when py(#) is an interpolation
polynomial of f(z).

Next, we consider the ath-order fractional integral of py(x), i.e.,

D= pn(x), xel-L11

In order to derive the fractional integral of py(x), we need to introduce the Jacobi
polynomials. The three-term recurrence relation of Jacobi polynomials {Pj’b(x)} is
given by [135]

1 1
PiPoy=1,  PPw= Sa+b+2x+-(a=b),

2.25
P (x) = (A% x— BY")PYP () - COP P (), j2 1 229
gt J J J j j-1 ’ J=z 1,
where
qab_ Gitatb+ DQ2j+a+b+2)
I 20+ D(+at+b+1)
2 2vin:
ab_  (b"=a)2j+a+b+1) 226

I 20+ D(j+a+b+ D)Q2j+a+b)
ab _ (Jra)(j+b)2j+a+b+2)
I T (G+D(j+a+b+DQ2j+a+b)

The Jacobi polynomials are orthogonal with the weight function w®?(x) = (1 —
041+ x)°, e,

1 b b b 0, m#n,
f PP (x) PP (x)w™’ (x)dx = b (2.27)
-1 oo, m=n,
where
wp_ 2P T(n+a+ DI(n+b+1) (2.28)
" @n+a+b+DnlTn+a+b+1) '
Some other properties of the Jacobi polynomials are shown as follows
i+a\ I'(j+a+1) b T(j+b+1)
Py =’ =——— PYCD=(-1)yY—=. 2.29
i (1) ifarn . L D=0 TR (2.29)
" b b pa+m,b+
28 _ ja, a—+m, m .
T PJ. (x) = dj’ij_m (x), j=m,meN, (2.30)
where - bal
+m+a+b+
ab _ (] m+a ) (231)

Jm = omP(j+a+b+2)
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—p d oy d . d .
P?’b(x) = A?’b—Pj‘.’_bl (x)+ B?’b—P?’b(x) + c;f”’—P“.fl (x), j>=1. (232)

dx dx dx /
Here _ .
Tub _ —2(j+a)(j+Db)
I (j+a+b)2j+a+b)2j+a+b+1)
o~ 2(a—Db)
a,b
i = , 2.
J 2j+a+b)2j+a+b+2) (2.33)
—ub 2(j+a+b+1)

I Qj+a+b+DQ2j+a+b+2)

Ifj=1, A\?’b in (2.32) is set to be zero.
The key to calculating D:ﬁ’,xﬁN(x) rests on computing D:‘f’XPj’b(x) effectively

when py(x) has the expression py(x) = 7: o€ ij.’b(x). Let

_ 1
b, — - b _ —1 pa,b
P? “(x) —D_‘ixP? (x) = @ ﬁl(x—s)“ P? (s)ds, xe[-1,1].

For fixed x, Fq’b’a(x) (j=0,1,---,N) can be evaluated with O(N) operations, we will
give the detai{ed deduction below.
For simplicity, we denote
b, N _ pab, \ _ Fubpab Ba.b pab =a,b pab
Fj (x) = P‘;. (x) —A‘;. P‘;._l(x)+B‘;. P? (x)+C? P‘;,H(x). (2.34)

From (2.25), one has

— 1 X
b, _ ~1pab
P;l“(x) "I f_l(x— 5)“ Pjﬂ(s) ds

1 x _
) f l(x—s)“ 1[(Aj’bs—Bj,’b)Pj’b(s)—C?’bP‘;’_bl ()] ds
Aa,b x
_(Aab . pabypaba _ rabpaba J @ pab
_(Aj X Bj )Pj (%) Cj Pj_1 (x)+F—(a) [l(x s) Pj (s)ds.
(2.35)
From (2.32) and (2.34), one has
"X
f (x—s)"Pj’b(s)ds
-1
2
d
= f (x—s)“d—PjJ’(s)
-1 § (2.36)

=(x=5)"P}"(s)

X

1 X
+—f (x—5)* ' F*(5)ds
1 aJ J

1 . i
_ apab, ~ [aa.bpab a,bpa,b a,bpa,b
=(x+ D)*P( 1)+a[AJ. P20 (x)+ B P4 (0 + C Pj+1(x)].
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Note that Fg’b “*(x) and ﬁ‘l”b’“(x) can be obtained very easily. Therefore, we can

derive the recurrence formula to calculate F?’b’o‘(x) from (2.35) and (2.36) as follows

- (x+ 1)
Pa,b,a — ,
0 T T D
Febay a+b+2(x(x+1)* a(x+1)**\ a- bPaba()
X) = - )
1 2 T(a+1) T(a+2) 2
a,b ab _ a,bpa,b a,b abyab
Poba(yy = X-B;"-aA;7B; pa,b,a(x)_cj +aAA; Foba s
Fin 1+aA%CYh / 1+aA%PCyr
a,Aab(Aab ab( 1)+BabPab( 1)+Cab ab( 1))
j+1 a -
+ YT x+D% j=1
r(a+1)( +aA"CY )

2.37)
Hence, D~ pn(x) = J o€ ]P“ b2 () can be evaluated effectively with O(N) op-
erations for a ﬁxed number x.

Denoting by 1 = L(x+1) € [0,L],x € [-1,1], we can easily derive
Do v = s f (1= 9" pn(s)ds
a—1 A
I et _ d 2.38
(2 @) Il(x ) pa(s)ds ( )
L a
=(5) porpne. w=2e1-1,

Hence, we have the desired formula to calculate Dj,pn(7) as follows.

N
_ L\* -
Dy pw() = (5) Z(;cjpj»b»“(zz/L— 1. (2.39)
=
If pn(?) is the Jacobi—-Gauss—Lobatto interpolation of f(f), then we have the
explicit expression of ¢; defined in (2.24) (see also (2.39)) as follows

¢j= 6ab2f(fk)P (ka—6a,,Zf(L(ka)/z)P“b(xk)wk, (2.40)

J j k=0
where wy is the weight with respect to the Jacobi—Gauss—Lobatto point xi, and
')’l;’b, j:O’l"“’N_ls

o4’ = +b+1
J (2+ 4 )y;’\;b.

ya.’b in the above equation is defined by (2.28). The Jacobi—-Gauss—Lobatto points
{xx} are defined as the roots of the following polynomial

d
— P4

)
=5
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Readers can refer to [135] for more properties of the Jacobi polynomials.
We briefly denote the matrix D(L_”’”’b) € RV+DX(N+D) with

(B(L—a,a,b))lj — abar(xl) i,j=0,1,---,N. (2.41)
Then from D%, pn(x) = (Fg’b’”(x)f‘f””“(x), . Fxb’a(x))(co, c1,--+,cn)T, one can ob-
tain

[ ()ZPN(f)] [ - xpN(x)] ‘o
[ Osz(t)] L\* [ 0 xPN(x)] L\ j~aapny| €1
-(z - (&) Beny| ©
: 2 : 2 L :
[Da,‘fPN(ﬂ]l:,N [D:iixﬁzv(x)]x:w N

If the Jacobi—Gauss—Lobatto point x; in (2.41) is replaced by other collocation points,
i.e., Jacobi-Gauss point ( or Jacobi—Gauss—Radau point, one can also obtain the cor-
responding matrices as D

The above formula (2. 39) has the rapid convergence rate if f(r)e C"([0,T]). The
error bound for (2.39) is given by

IDGS £(1) - D pu()] <CN>4,

when a = b =0 and py(?) is the interpolation of f(¢) on the Legendre—Gauss—Lobatto
points {f;},k =0,1,---,N. Of course, if py(¢) is the interpolation of f(¢) on any other
Gauss points, then the spectral accuracy can be still achieved under the condition that
f(?) is suitably smooth. See [9, 135] for more error estimates of the Jacobi—Gauss
interpolations and orthogonal projections.

2.1.3 Fractional Linear Multistep Methods

The fractional linear multistep methods (FLMMs) based on the convolution
quadrature were studied by Lubich [104], who got pth order (p = 1,2,---,6) ap-
proximation of D7 f(7). The FLMMs have a very close relationship to the classi-
cal linear multlstep methods (LMMs). If f(#) is suitably smooth, then the pth-order
(p=1,2,---,6) FLMM:s for [ O,tf(t)],:,n are given by

n S
[Dge f(t)][:ln = At Z wffj)j ft)+ A Z wﬁlf'} f(t)+O(AP), (2.42)
j=0 j=0
where {w(q )} are called convolution weights defined by the coefficients of Taylor ex-

pansions of the following generating functions
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-

. p=12,-.6, (2.43)

P
1 .
W(")(z) — { —(1-g)

W@ == [yo+yi(1 -2 +y2(l =27+ +y, (1= ] 2.44)

11+z\*

@y [__"% —
w (z)-(zl_z), p=2, (245)

in which {y;} in (2.44) satisfy the following relation

nz ¢ « X a
(z——l) —Zyk(l—z), v=Ly=-3.

k=0

The starting weights {w } are chosen such that the asymptotic behavior of the func-
tion f (?) near the 0r1g1n (t = 0) is taken into account [28]. One way to determine
{w o k} for the suitably smooth function u(z) is given [28, 104] by

S T(g+1)
waqu [‘(q_?_a,_,_l) nat Zw(a/) k1, ¢=0,1,---,p—1. (2.46)
k=1

The above choices of {WS’YZ} imply that (2.42) is exact for f(r) =#*,u=0,1,---,p—1.

If f(2) is not suitably smooth with expression f(1) = 3;_ Fiet”® + (1), where
¢(?) is smooth and u > p — 1 > o (k), then one can still construct the pth-order FLMMs
asin (2.42). In such a case, we can obtain the starting weights {wf,i} in the following
way

[Dys7] = At Zw(")(kAt)"(f) + A Zw<“> (kADTD (247
k=0
through inserting f(r) = ) into (2.42) and letting (2.42) be exact. We rewrite (2.47)
as the following equivalent form

S

. I'c(j)+ 1) ; 2 ; .
(@) ,0(j) — o(j)+a (@) 1.0() —
E w k = - E w k7Y, =0,1,---,s. 2.48
pr nk I'(o(j)+1 +a)n pe n—k J s ( )

The derivation of the FLMM s for the fractional integral is more complicated than
that of the classical LMMs; readers can refer to [104] for detailed information.
Remark 2.1.4 Let wy(z) = I; . 1(1 —2). Then wp(z) is just the generating func-
tion of the (p + 1)-point backward dlﬁ”erence method. For any a € R, the coefficients
W@ of the Taylor expansions of the generating function (2.43) can be easily and ef-
fectively calculated by the fast Fourzer transform method. Of course, there exists a
recurrence formula to calculate w ) which is given below [28]

j—1
1 J
(@) _ N (@
w; = EO (@(j—D)-Dw; "uj-i,
=
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where uj satisfies wp(z) = Zi:o ujzj.

Remark 2.1.5 If @ <0, « is not an integer, D)5 f(1) is just the finite-part integral
[124], which is equivalent to the (—a)th-order Riemann—Liouville derivative of f(t).
In this case, the formula (2.42) is the corresponding pth-order approximation of the

(—a)th Riemann—Liouville derivative of the given function f(t).

The coefficients y, in (2.44) can be calculated by the following formula (see
Theorem 2 in [54])

n .
(l1-a)j—-n
:1’ n= . n—j» :1,2,"" 2.49
Yo Yn JZ}:( n(+1) Yn-j, I ( )

The first six coefficients are given by

vo=1,
a
’)/1__55
=-a - —q,
2ERY T
13,521 (2.50)
=——a' +-—-a - cq,
VETRY TRY Ty
1, 5 5 97 , 251
Y4

= 384% T192% T 1152 " 2830%
s, 5 4 6l 5 401, 19
= 73820% T1152% T 2304Y T5760% T 288"

2.2 Approximations to Riemann-Liouville Derivatives

For a class of functions, both the Griinwald—Letnikov derivative and the
Riemann-Liouville derivative are equivalent, especially for applications. Therefore,
the Riemann—Liouville definition is suitable for the problem formulation, where the
Griinwald-Letnikov definition is utilized to obtain the numerical solution [106, 124].
This section mainly focuses on the approximation of the Riemann-Liouville deriva-
tive.

We mainly consider the numerical methods for the Riemann-Liouville derivative
with fractional order 0 < @ < 1 and 1 < @ < 2, which has special importance in real
applications, such as the modeling of the anomalous diffusion [92, 113, 114]. In this
section, we investigate the numerical discretization of the Riemann—Liouville opera-
tor. Here, we only introduce the numerical methods for the left Riemann-Liouville
derivatives; the methods for the right Riemann-Liouville derivatives can be similarly
obtained.
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2.2.1 Griinwald-Letnikov Type Approximation

o Griinwald-Letnikov Approximation

If f(¢) is suitably smooth, the Griinwald-Letnikov derivative is equivalent to
the Riemann-Liouville derivative. Therefore, using Eq. (1.3) to approximate the
Riemann-Liouville derivative is natural. Denoting by w(a) =(-1) ( ) one gets

kDG, S0 _, ~~z Zw“’)f(rn - 2.51)

The above formula (2.51) is convergent of order 1 for any a > 0 [124]. We call
(2.51) the standard Griinwald—Letnikov formula, which may contribute to unstable
numerical schemes in solving FDEs [111] for 1 < @ < 2. The shifted Griinwald—
Letnikov formula is useful for constructing the stable numerical schemes. The
right shifted Griinwald—Letnikov formula (p shifts, p € N) to approximate the left
Riemann-Liouville derivative is defined by

n+p

|reDg, f (f)], w A Zw("’f(tn p)- (2.52)

The above shifted Griinwald-Letnikov formula gives the first-order accuracy; the
best performance comes from minimizing [p — /2| [111, 118]. If 1 < @ <2, the opti-
mal choice is p = 1. The case of @ = 2 reduces to the second order central difference
method for the second order classical derivative.

Theorem 2 If 1 <a <2, f(¢t) =1, u is a nonnegative integer, t = t,, = nlAt, then the
following relations hold [140]

LY @ _[..pe (- ~
e Ew 9 flta-i) = [RDGFO)]_, +(1= D r ey O(AR), =0,
@ T+ D1
A[Q Zw f(tn J) = [RLD [f(t)] (—Q)WAI'F O(Atz), M > 0,
(2.53)
and
n+l ( a')t_l_a
(@) — 2 _
v Zw flin-js) = [RDG,FO)] _, +G~ O 3r—ay A+ O, =0,
n+l 1=
@ " C(u+ D=1
G Zw Flt-jo1) = [@DGf O], +2- SO, 0.
(2.54)

The leading terms of the truncation errors for the standard Griinwald—Letnikov for-
mula (2.51) and the shifted (one shift) Griinwald—Letnikov formula (2.52) are slightly
different.
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From Theorem 2, we find that the Griinwald—Letnikov formula (2.52) does not
have first-order accuracy for the smooth function f(¢) if f(0) # 0. The remedy is to
use the following technique

i . O
|reDGf0],_, =[reDE,(F@ = F O], + -3

NI A JO),”
Yo ;wj [t = O]+ £

(2.55)

The advantage of such a remedy is that the above formula (2.55) is exact when f(¢)
is a constant.
For f(t) = #*,u > 0, we can obtain from (2.53) and (2.54) that

@-a) 5 Zw“”f(rn ) =Q2-a)[rDg, f0)] _,

(2.56)
[+ D= )
+(2- a,)(_a,)zr(ﬂ——a')At + O(A?)
and
n+l
Zw ? fltn-je1) =a[rLDG, )] _,
(2.57)
C(u+ 1= 5
+a2—-a) mﬂ—_g)Al‘ + O(Ar?).
Eliminating the term a/(2 — a)%m from (2.56) and (2.57) yields
1 2 o n+1
kD5 f0] _, = 5= e 0‘) Z O ft-p)+ 5 Zw fltnjeD) |+ OAP).
(2.58)

Hence, for a suitably smooth function f(¢) with f(0) = 0, a second-order method
(2.58) is obtained to approximate RLD& , f(@.
Similar to (2.55), we can obtain the following second-order method

1

[RLD f(f)]t_ =1

5_ n+l
( C’)Z SO fla )~ f<0>>+22w(”’<f<rn o) f<0>>]

+ f(tO)tn

2
i +O(AP)

(2.59)

for any suitably smooth function f(z).
Tadjeran et al. [145] proved that the shifted Griinwald—Letnikov formula (2.52)
has first-order accuracy for suitably smooth function f(¢) satisfying f(0) = 0 by the
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Fourier transform method. Tian et al. [146] proposed a class of second-order methods
as in (2.58) to discretize the Riemann—Liouville derivative of f(¢) satisfying f(0) =0,
which are given as follows

n n+1
1 |(@-2q9) (@) 2p—a @
D - 2 D rr Z ) e
[RL O’Zf(t)]z:tn At | 2(p—q) =0 “i Htnjep)+ 2(p—q) =0 “ T

+O(AP),
(2.60)
where p, g are integers.

e Fractional Linear Multistep Methods

In Subsection 2.1.3, we know that the FLMMs for the fractional integral are intro-
duced. The formula (2.42) is also suitable for the discretization of the Riemann—
Liouville derivative. The FLMMs for the ath-order Riemann—Liouville derivative
are presented below

[reDg, £ _ _“Zw( 2 f(t)) +At‘“Zw( D)+ OAP)  (2.61)

(—a)

where w; " are called convolution weights defined by the coefficients of Taylor ex-

pansions of the generating functions w(=®(z), which can be derived from (2.43)—

. . . . (—a@)
(2.45) with a being replaced by (—a). The starting weights w, ; are chosen such
(@)
J

that (2.61) is exact for some f(f) = #, which is determined the same way as w,
defined in (2.42).

If f(¢) is suitably smooth and f®(0)=0,k=0,1,---,p—1, then one can re-
move At Zj:o " ”) f(tj) in (2.61) to obtain the corresponding discretization with
the same pth-order accuracy

2.2.2 L1, L2 and L2C Methods

This subsection concerns the numerical methods for the Riemann-Liouville
derivative with fractional order 0 < @ < 1 and 1 < @ < 2. The classical L1 method
[71, 96, 118, 144] is suitable for the case of 0 < @ < 1. The L2 and L2C methods are
suitable for the case of 1 < @ <2. Next, we simply introduce the construction of these
methods.

e L1 method

Here we introduce the detailed derivation and theoretical analysis of the LI method,
since the L.1 method is often used by some researchers for the discretization of the

time fractional differential equations, which can lead to unconditionally stable algo-
rithms [56, 65, 66, 71, 96, 130, 144, 166, 176].
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By (1.12), we get

SO o

RS0 = CDE )+ 55—

Letting t =1, and 0 < @ < 1, one gets

1 n
[cDg,;f(l)]t:t = (1 O/)f (tn _S)_a/f/(s)ds
n - tO
1 n=l gy o
- F(l—a),;ffk (ta— )" F (5)ds
-l (2.62)
L] ft“‘(t _S)_af(fkﬂ)_f(tk) ds
- &, N
n—1
= > baket (i) = Fl),
k=0
where A
_ _ e l-a _ j1-«a
to=0, by= fo o |[k+ D!~ — k=]
Therefore,
N WA
(D5 0], ~ 5+ kZ:“Obn_k_l [f ) = £(20)]. (2.63)
The above L1 method (2.63) has the following error estimate [71, 96, 144]
SO S . e
rioat kZ; bkt [f (1) = (0] = [eD5, f )], [ <CAP™,

where C is a positive constant only dependent on @ and f.

The derivative of the classical L1 method can be extended to the more general
case on the nonuniform grids [172].

Let {s;} be the any division of [0,7] with 0 = so<s;<--- <sy-1<sy =T and
7j = sj+1 — 5. Then one has

Sn n=l nspyy
[Foimoroas=y [
S0 k=0 Sk

n-l Sk+1 —
=y f k (sn—s)‘“fi(s"”ik T60 sk 264

k=0 * Sk

n—1
= Sl Flsern) = Fs0)+ R,
k=0



Chapter 2 Numerical Methods for Fractional Integral and Derivatives 45

where

1

Sk+1 1
1 = f (50— ) “ds = m[(sn—sk>1‘“—(sn—sk+1)1‘“].
Sk

Hence, one derives

n—1
(€D, £0],_, = D it FCsta) = F5) +R",
k=0

| (2.65)
n— O —a
0D O], = 3 B (s = Fso+ H 7 e
k=0
in which R" = R*/T(1 - @), and
nooo_ a;<1+1 _ 1 _ l-a _ _ 1-a
bra = M-a) TC-amn [(Sn Sk) (Sn = Sk+1) ]

It can be proved that if Tmax/Tmin<Co, Tmax = Maxo<j<y-1{7;} and Tyin =
ming<j<y-1{7;}, then |R"| <C(Tmax)*™?; see [172].

Theorem 3 Let 0 <« < 1 and f(f) € C?[0,T). Then it holds

n—1

n
f (5= 8 f () ds = Y allyy (Fste) = f(510)| < Clrman)™™" max | (),
fo — <t<
0 (2.66)

IR"| =

where C is only dependent on a and Tmax / Tmin-

Obviously, when {s; = t;} are uniform grids, then the method (2.65) is reduced
to the classical L1 method, see (2.62) and (2.63). Next, we introduce a special case
with so =t0,5; =tjy12 = (tj+tj+1)/2,j=0,1,2,--- . In such a case, (2.65) is reduced

to
n

[cDg,,f(t)][:lnH/2 =bo f(tn+1/2) = Z(bn—j —bp_j 1) f(tj-172)
=1

<
—(by— By) f(t12) = Buf (t0) + O(AF™™),

(2.67)

where

A ® 2AF¢
— 1 l-a _ 1-a —
b= oo [+ = =n'=]. B, T2—a)

Replacing f(zj-1/2) with (f(z;) + f(2j-1))/2 in (2.67) yields

n ! —-n . .
[(n+1/2)7 =0, (2.68)

b 1 v
[eD§ O], =5 Py + 1) = 5 D (bu = bumju)(F-0) + £(07))
j=1

=tyi1/2

1
- E(bn = By)(f(10) + f(t1)) = Buf (t0) + O(AP™).
(2.69)
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By (2.69) and cD&[f(t) = RLDg’l(f(t) — f(0)), we obtain

b 1<
[ReDG, O] _, | = Pl + £ = 5 D (buej = b je) [ 150) + (1))
j=1
1 _
— A\Wn— Dp 0)+ 1)) —An 0)+ 5
2(17 Bu)(f(t0) + £(11)) — Auf (t0) + O(AP™™)
(2.70)
where A, = B, — M, and b, and B, are defined in (2.68). For simplicity,

TC-a)A”
we call the method usin(é (2.69) and (2.70) the modified L1 method.

We will find that the discretization (2.70) is useful to obtain the Crank—Nicolson
method for the time-fractional subdiffusion equation [166], which can be seen as a
natural extension of the classical Crank—Nicolson method.

e L2 and L2C Methods

The L2 method and its variant L2C method [105, 118] are used to discretize the
Riemann-Liouville derivative of order « (1 < @ < 2), which can be obtained in a way
similar to that of the L1 method. For the Caputo derivative with order 1 < @ <2, one
has

1 tn
[cD§. /0], = TC—a) fm (ta =)' ""f" (s)ds

1 S flrd l—a prr
—m%f% (ta—9) "“f"(s)ds (2.71)
— 1 S Tl 1-a g1
_F(2—a);,[k sty — s)ds.

On each subinterval [f, fx+1], one gets

i1 fn—trs1) = 2f (ty — 1, Iy — T— fict1
f sl_“f”(tn—s)dszf(" k+1) f(n2 1)+ f (tn — 1 1)f Ja g
7% At t

Hence, one has

@ 1 fltn—k=1) = 2f(tn-1) + ftn-k+1) T+ 1 o
[CD ;f(f)];:;n ~ T2 -a) AL Ik sl ds

n 2.72)
= Z Wi f(tn-k),

k=—1

which leads to the following L2 method for Riemann—Liouville derivative

)T 70 1-a n
SO0 TOh S w0, 2.73)
k=-1

[=eD5S O], * F e * T
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where
1, k=-1,
22 _3, k=0,
= F(A;:aa) k+2)>=3(k+ 1) +3k> Y= (k= 1>,  1<k<n-2, (2.74)
—2n%7 4 3(n- 17— (n-2)>, k=n-1,
= (n—-1)>"°, k=n.

On the other hand, we have ¢Dg,f(1) = CDg;l f'(f). Hence, the L1 method can
be used to discretize the (@ — 1)-order Caputo derivative of f’(f). We use (2.67) to
discretize ¢ Dy, f* (1), which yields

[cDGfD],_, | =b0f (w12 = D (buj=bueje)f (t112)
j=1

J
= (b, - Bn)f,(tl/Z) - an,(t()) + 0(At3_a),

I=lne1/ (2.75)
where b, and B,, are defined by

_2A
" TG-a)

Atl—(l

bn = TG-a)

[+ 122 -],

[+ 1727 =] (2.76)

Obviously, f’(tj-12) satisfies f'(tj-1/2) = W

Hence, we can derive the following discretization

+O(AP) = 6, f(tj-12) + O(AF).

=it (2.77)
— (bn = Bp)S:f(t12) = Buf' (10) + O(AF™).

[€D§ @], ., =b00tf tns1y2) = D (bacj = buje)5uf W1 2)
j=1

The L2C method can be derived by letting

Ti+ 1
f sUTOf (1, — 5)ds

I

St =t52) = fltn = t1) + [t = t5—1) = f(tn — 1) fl/m -
= s %ds.
I

2AL

So the L2C method for Riemann-Liouville derivative is given by

0\« 7(0)l - n+l R
[k, 10 _, ~ 2 T N, 2.78)
k=-1

"Td-a) TQ2-a)
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where
1, k=-1,
2272, k=0,
32—(1_22—(2’ kz 1’
—Q
Vi = AT k+2)7 =2k + 1)+ 2k- D)= (k-2)"% 2<k<n-2,
2r(3—-a)

_n2—(1_(n_3)2—(1/+2(n_2)2—(1/, k: n— 1,

—n 4 2(n—- 1) (n-2)*"°, k=n,

> —(n-1)>", k=n+1.

(2.79)

The accuracy of the L2 and L2C methods depends on a. If @ = 1, the L2 and
L2C methods reduce to the backward difference method and the central difference
method for the first order derivative, respectively. If @ = 2, the L2 method reduces to
the central difference method for the second order derivative, and the L2C method
reduces to

f) _ fts2) + @) = ftr1) = (i)
- 208
with accuracy of order 1. In fact, the L2 method converges with order O(AF™®).
Experiments show that the L2 method is more accurate than the L2C method for
1 <a < 1.5, while the reverse happens for 1.5 < @ < 2. Near a = 1.5, the two methods
have almost similar results [105].

Remark 2.2.1 The numerical methods based on the polynomial interpolation for the
fractional integral in the previous section can be directly extended to the Riemann—
Liouville derivative. By (1.12), we get

f(")(O)t"‘

D, f(5) = ¢Df f(1) + Z S

m—1<a<m. (2.80)

Hence, we only need to develop numerical methods for CD& J(0). From the definition
of the Caputo derivative, we find that the ath-order (m—1 < a < m) Caputo derivative
of a given function f(t) can be seen as the (m — a)th-order fractional integral of the
function fU(t). Therefore, the numerical methods developed in Section 2.1 can be
directly extended to simulate the numerical solutions of the Caputo derivative, which
leads to the numerical methods for the Riemann—Liouville derivative. Here, we do
not list these methods, which will be discussed in the following section.

2.3 Approximations to Caputo Derivatives

Since the Riemann-Liouville derivative and the Caputo derivative have the rela-
tion (1.12), almost all the numerical methods for the Riemann-Liouville derivative



Chapter 2 Numerical Methods for Fractional Integral and Derivatives 49
can be theoretically extended to the Caputo derivative if f(¢) satisfies suitable smooth

conditions. We first list some algorithms that are often used in the simulation of the
Caputo derivative in FDEs.

2.3.1 L1, L2 and L2C Methods
e The LI method for the Caputo derivative is given by:

n—1

|cDg @], an 1 (i) - f(0) + O(AP™), 0<a<1, (281)

where by = (o [k + 1) = = k17,

o The modified L1 method for the Caputo derivative is given by:
N by IS
(D5, 0] _, |, =5 ) + 0~ 5 j_Zl(bn_ 5= b)) + £(27)

1
= 5(ba = B)(flt0) + f(11)) = Buf (t0) + O(AP™™),

(2.82)
where b, = i [(n+ 1)1~ ~n'=| and B, = 255 [(n+ 1/2)! == n!~].
o The L2 method for the Caputo derivative is given by:
n
D = AP, 1 2
D D], = D Wifltn-i) + O™, 1<a<2, (2.83)
k=—1
where {W;} are defined by (2.74).
o The L2C method for the Caputo derivative is given by:
n+l
(D5, f0] , = 3 Wefthn+0@F ™), 1<a<2, (2.84)
k=—1

where {W;} are defined by (2.79).

2.3.2 Approximations Based on Polynomial Interpolation

From the definition of the Caputo derivative, we can find that the ath-order
(m—1 < @ <m) Caputo derivative of a given function f(f) can be seen as the (m—a)th-
order fractional integral of the function f(’”)(t). Therefore, we can extend the numer-
ical methods developed in Section 2.1 to simulate the numerical solutions of the
Caputo derivative. Here, we give the generalized formulae and some of their special
cases and modifications.

¢ Fractional Rectangular Formula
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From (2.9), one gets the following formula:

n—1

[cDG, ], D Wit [07™ @)+ (1 =0/ ten)], 0<0<1, (2385
k=0

where
Atm—(l

T T(m+1-a)

If the mth-order derivative of f(f) is known, the formula (2.85) provides easy
implementation of the method. In many cases, f"(¢) is not given, so it is necessary
to combine (2.85) and the numerical methods of the classical derivative to give the
more convenient formulae. In order to illustrate the numerical method clearly, we
denote by

Wi [(k+ 1) —m=e].

S (terr) = f (1)
At ’
S(te1) =2 (1) + f(tr-1)
AP '
Next, we give the two cases with the same accuracy as (2.85).
Case I: If 0 < a < 1, then we use f’(tx) =8, f () to get the following formula

Orf(tr) =

§Hf(t) =

n-1
DG fO] _, ~ D wamica[6ef (@) + (1 =06, f )|, 0<0<1, (2.86)
k=0

where
Atl —a

“T2-a)

Case II: If 1 < @ < 2, then we use f”(t) zétz f(t) to get the following formula

Wk [(k+1)1‘“—k““].

n—1
|cD, 0], ~ D wamia 667 (1) + (1 =057 ftan)|. 0<0<1,  (2.87)
k=0
where '
_ r 2-a _ 12—«
e [(k+ 12—k ]

It is easy to see that formulas (2.86) and (2.87) are convergent with order O(Atf).
¢ Fractional Trapezoidal Formula

The fractional trapezoidal formula for ¢ Dy, f(?) is given by

n

DY O] =Y aaf ™ (), (2.88)
[ g ]lftn Z



Chapter 2 Numerical Methods for Fractional Integral and Derivatives 51

where
n-D" " =1 -m+a)n®, k=0,
A =k + D" e (- 1= k)"
Qkp=—————
"TTm+2-a) —2(n—ky" et 1<k<n-1,
1, k=n.
(2.89)
Similar to (2.85), we list the two special modifications of (2.88).
Case I: If 0 < @ < 1, one can get the following modified formula of (2.88)
n
[cDG 0], ~ D aradif (), (2.90)

k=0

where ay , is defined by (2.89), and

f(fk+l)—f(fk—1)'

Orf(tr) = TAs

For the suitably smooth function f(f), the formula (2.88) has convergence of order
O(Ar). Since ;£ (1) — f(tx) = O(Ar?), therefore, the formula (2.90) still keeps con-
vergent of order O(Atz). In (2.90), f(z-1) = f(—At) is used. In order to avoid using
f(—7), one can use f’(tg) = %]AW +O(AP) to get the following formula

n

=3f(t0)+2f(t1) - f(t2)

a ~ ~
[cDg 0], ~ Zak,n 5of (1) +ao,n = 2.91)
Case II: If 1 < @ < 2, we can get the following second order formula
n
|cD§f0)],_, = D a6t fwe), (2.92)

k=0
where ay, is defined by (2.89), and f(z-1) = f(—At¢). Similar to (2.91), one can get

n

[eDG, O] _, ~ D axad? f(t) + o

S@)=2f () + f(1-1)
AP )

(2.93)

¢ Fractional Newton—-Cotes Formula

Similar to (2.19), the fractional Newton—Cotes formula for the Caputo derivative are
given by

n-1 r

|cDg, 0], Sty =) " AL G, (2.94)

k=0 i=0
where

A(.k’m) — 1 i1 (ty — t)m—(l—llk (1)
Ln F(O() 4 n Sl .
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2.3.3 High-Order Methods

Suppose that py(?) = p(x), t = L(x + 1)/2 has the following representation

N N
pn() = Zc QL= 1) = Zc P () = plx),  1€[0,T). (2.95)
=0 =0

Using the property (2.30), we can easily get

dm
_lejb(x) = f (o= sy —[P4"(5)] ds
_ m—a—1 ja,b patm. b+m (2.96)
“Tin- a)f o Py (s

da b a-+m, b+m,m— a/(

where d“ > and Pa+m brmm=a ) are defined by (2.31) and (2.37), respectively, with

Pj”" e ¥(x)=0for j=0,1,---,m—1. On the other hand, we have

CDO 1PN = a)f(t sy 1d .
L\ ¢ x ) a1
2(5) mfl (Zt‘l‘s) pn(s)ds (2.97)
L\~ |
~(3) D%\ gpv@iL-D=(3) "D neo,

Therefore, for any a > 0, from (2.95)-(2.97) one has [89]

N
L o L\™ m,
D v =(3) DIV =(3) D edh B, (298)
j=0

Lett; (j=0,1,---,N) be collocation points on [0,T]. Then x; = 2¢;/L -1 are collo-
cation points on [—1, 1]. We can obtain CDg (PN(D) atr=1;as follows

|eDg, v ], [eD v ‘o
[C DG.PN (t)]ml _ ( L )_“ [cD‘foﬁ N (x)]x=x1 _ <£ )_Q (bm,a,b)) €1

: “\2 : “\2 Lc S0
|cDg v )] _, D) v _ N

where the matrix E(LC'C“ b s given by

A a@.a,b) a,b pa+m,b+mm—a
(D¢ ),J Lim P jm ().

If pn(¢) is the Legendre—Gauss—Lobatto interpolation of f(#), f € H'([0, L]), then
the following error estimate holds

|cDg,f(1) = DG, pn (1) <CNY*27 | fllgr, r22m.



Chapter 2 Numerical Methods for Fractional Integral and Derivatives 53

Remark 2.3.1 Generally speaking, py(?) is not necessarily the interpolation of f(¢).
pn(t) can be any approximation of f(t) that is expressed in the form of (2.95). For
example, pn(t) can be the orthogonal projection of f(t) [135], the formula (2.98) is
still valid and efficient with high accuracy if f(¢) is suitably smooth.

Next, we introduce another operational matrix to approximate the Caputo deriva-
tive, which is based on the explicit expression of the Jacobi polynomials. The Jacobi
polynomial Pj’b(x),x € [0, 1] has the following explicit expression

Py = LUFTbTD [(j+b+1) Z(‘ 1y I'G+k+a+b+1)

k
J I(j+a+b+1)4 T(k+b+1)k!(j_k)g2k(1+x) . (2.99)

It is easy to get

D) XP“b( )= 1+ k> a.

TG+b+1) Zjl (-1 T(j+k+a+b+1)
I'G+a+b+1) “ Tk+b+1D)(j—k)'T(k+1—a)2k
(2.100)
Hence, for any py(?), t € [0, L] of the form py(f) = pn(x) = Zjio chj’b(x) (x=2t/L-
Dandm—-1<a<m, meZ", we have

a N

L I'G+b+1)
D? z:(—) DY, pn(x) =Y cj—rt
cDo v () 7)) € 1PN ;Cfr(j+a+b+l)

Z’] (~1)/*T(j+k+a+b+1)

: (1+x)@
LIT(k+b+1)(j—k)T(k+1—a)2*

zi"' T(j+b+1) Zjl (—1Y*T(j+k+a+b+1) e
- T(G+a+b+ D) STk +b+1)(j = )Tk +1-a)Lk
(2.101)
It is clear that this technique gives an exact expression of cDg’ L pn(t), but it seems
a little tedious.
Let @“P(x) = (P2 (x), PP (x), -+, PSP (x)T e = (covc1,-+,en)T. Then py(x) =
T @%b (x). It is known that % Ppn(x) can be simply expressed in the following form

d,
PN = " DV (x),

where DU can be easily derived from (2.32). For example, if a = b = 0, then

22j+1), j=i—-kk=13,---,m, kisodd
DY = (d;)) = or k=1,3,---,m—1, kis even, (2.102)

0, otherwise.

Does there exist a matrix D® such that cD?, .PN(x)= ¢! D@WdP(x)? Obviously
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this is not true for a noninteger number a, since ¢/ D ®®**(x) is a polynomial while
cD?, .pn(x) is not a polynomial.

Some researchers construct matrix D® such that CD"1 An(x) = eI DOPP(x),
for example, see [43, 44, 45, 132]. Their methods are derived from further expanding
(1+x)*"%in (2.101) in the series of Jacobi polynomials, i.e.,

N
(1427 > b PP (0. (2.103)

Hence, one has

N . J ik .
. I'G+b+1) D" T(j+k+a+b+1)
D¢ ~ ~
cDZy Pn(x) ;cfr(j+a+b+1)];1r(k+b+1)(j—k)!F(k+1—a)2k

N (2.104)
X > baPr (x)

=0
=’ D@D (x).

This approach seems somewhat complicated. For a = b =0, by, in (2.103) is given
by

! I+r
_ =D (1+r)!
b’“"(z”l)z, A=nrPk+r—a+1)

And the matrix D@ is given by

0 0 0
0 0 0
m m m
2 0ok 2 Omik X OmNk
k=m k=m k=m
p@=| S (2.105)
i i i
2 6ok X Ok o 2 Oink
k=m k=m k=m
N
Z ON Ok Z N1k - X Onwk
=m k=m k=m
where 6; j is given by
( 1)i+j+k+l(i+k)y(l+ -);
ljk_(2J+1)Z 2J
—)KTk—a+DG=DIIN2k+1-a+1)

The operational matrix as D defined by (2.105) based on Chebyshev polyno-
mials is established in [43, 44]. The operational matrix based on generalized Jacobi
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polynomials is developed in [45]. The operational matrices based on the Legendre
wavelets for the fractional integration and Caputo derivative are presented in [128].
The operational matrix based on the B-spline functions is constructed in [70]. For
other related works, see [1, 2, 12, 15, 48, 51, 61, 79, 84, 129, 133, 142, 155, 162] and
the references cited therein.

2.4 Approximation to Riesz Derivatives

In this section, we derive some high-order algorithms for the Riesz derivative
with order a (1 < a < 2) defined as follows [68, 157]

0%u(x)
I x| =-%, (RLDz,x + RLDZ[,) u(x), (2.106)

rzD{u(x) =

1
where ¥, = 3 sec(%), rLDY , and RLDib are the left and right Riemann—Liouville

derivatives. We take the mesh points x,, = a+mh, m = 0,1,...,M, where h =
(b—a)/M, i.e., h is the uniform spatial stepsize. The numerical schemes come from
a series of papers by Ding and Li, et al. [37, 38, 39]. It should be noted that the
high-order algorithms for Riemann-Liouville derivatives are first proposed by Lu-
bich [104], while the high order algorithms for Riesz derivatives are constructed by
Ding and Li [37, 38, 39].

2.4.1 High-Order Algorithms (I)

For every a (1 < @ < 2), we assume that the left, right Riemann-Liouville deriva-
tives exist and coincide with the left, right Griinwald—Letnikov derivatives under
suitable conditions, respectively, where the definitions of the left, right Griinwald—
Letnikov derivative with order @ are given below [124]

1 m
GLDG um) = 75 D @ Ui + O,
k=0

and
M-m

1
GLDibM(Xm) = e Z wza)u(xmk) +O0(h),
k=0

a)_ (DT + @)

: hich (@) =(=1 k( — .
inwhich @, == U\ )= Fivord va—n

So, the Riesz derivative with order @ € (1,2) can be discretized in the following
ways.

¢ By the standard Griinwald-Letnikov formula
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Based on the above assumption and the equation (1.9), we can obtain the first
order approximation formula

6“u(xm)
0|x|¥

- Zw(“)u(xm )+ Z (i) [+ Oh).
k=0

¢ By the shifted Griinwald-Letnikov formula
In [111], Meerschaert and Tadjeran show that above standard Griinwald—
Letnikov formula is often unstable for time dependent problems. Hence, they propose

the following shifted Griinwald—Letnikov formulas for the left and right Riemann—
Liouville derivatives in order to overcome the instability,

m+1

RLDZ’xu(xm) - Z wl(((l) u(Xm—r+1) + O(h)
k=0
and
M-m+1
RLD?C[J?”(X’") = Z wia/)u(xm+k—1) + O(h).
k=0

Therefore, the modified first order approximation scheme is constructed as fol-
lows,

m+1 M-m+1

0%u(x,y,) Y
o :-h—(‘; Zw}(”)u(xm—k+1)+ Z wf’)u(xmk-n
X =0 k=0

+O0(h).

¢ By the L2 approximation method

Note that the left, right Riemann—Liouville derivatives can be rewritten as (1 <
a<?),

. S ) Pu(é) I-a
RLD”’X"(X)sz:ér(k+1—a) o T(2- a)f a2 T A

and

1
N (b- )k dub) 1 b 52u(&) "
RLDpu(x) = kz_é Thk+l-a) ok  T2-a) fx a2 & 0! dg.

Hence, we can obtain a first order scheme for the left and right Riemann—
Liouville derivatives [157],

RLDG u(xm) =

1 {(1 —a)(2 — @)u(xp) N (2 — @) [u(x1) — u(xo)]

'3 -a)he me me-1

m—1
# 2 d [Uiier) = 2 ) + u(xm_k_m}

k=0
+0(h),
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RLDS yu(xm) =

T3 - a)he (M—m)" v

M-m—1
+ Z 4 [u(xm+k-1)—2u(xm+k)+u(xm+k+1)]}
k=0

+0(h),

where d” = (k+ 1> = k> k=0,1,...,m—1,0rk=0,1,....M~m~-1,
Therefore, applying the above two formulas and (2.106) gives

1 {(1 ~ Q- ulxy) (2= ) [ulxy) = ulxy-1)]

e T T@-ah? me ma=1

u(xm) Y, {(1 ~ D)2 -aulx) | (2= [ux1) ~ulx)]

m—1

+ Z A\ [uCtm—te1) = 2u(Ctn—k) + U(X—-1)]
k=0

(I -a)(2 - a)u(xpy) N 2 —a) [u(xy) — ulxp-1)]
(M —m)@ ma-1

M—-m—1
* Z a4 [u(xm+k-1)—2u(xm+k)+u(xm+k+1)]}
k=0

+0(h),
in which dl((a) is defined as above.

¢ By the spline interpolation method

In [139], Sousa proposed a second-order scheme by linear spline interpolation

method for the left and right Riemann—Liouville derivatives,

m+1

1
rRLDg cu(xm) = Ta—an Z Zfﬁu(xk) +0(h),
=0

where
E'm—l,k_2E'm,k+z'm+l,k» kSm—l,
@) _2Em,k+Em+l,k» k=m,
Tk =
m, —
Cmilh, kK=m+1,
0, k>m+1,
in which

(-1 = 2(j-3+a), k=0,
Cik=1 G=k+1 20—k +(j-k-1)>7 1<k<j-1,

1, k=,

(2.107)
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and
1 M
RLDibu(xm) = m Z Zl(;z?(u(xk) +O(h?), (2.108)
k=m—1
where
0, k<m-1,
Z’m—l,m—l, k=m-1,
s@ _
Zm,k - N B
_2cm,m + Cm-1,m>» k=m,
-1k = 2Cmk +Cms1 ks, M+1<k< M,
in which
17 k = j»

Eip=13 k=j+ 1> =20k= >+ *k-j-D¥ j+l1<k<M-1,
BG-a-M+)HM—- )" +M~-j-1)*7 k=M,

with j=m—-1,mm+ 1.
Combining (2.107), (2.108) and (2.106) gives

o _ M
86L|£z(cl)f*m) TT@ B T ; Gt + OUR?),
where
A k<m—1,
Zf::,)m—l +2§,(,1,3n_1, k=m-1,
2 = 2D, k=m,
Zfif,im +2§Z:n+1, k=m+1,
Z,(;E(, k>m+1.

¢ By the fractional central difference method

In [119], Ortigueira introduced a symmetrical fractional central difference oper-
ator as follows

(o8]

o (DM@ +1) ~
M= 2, r(g—k+1)r(g+k+1)u(x -

k=—0c0

Later on, Celik and Duman [14] proved that the above symmetrical fractional
central difference operator for the Riesz fractional derivative has the following esti-

mate O uCer) !
ulx,
a|x|am = =37 MyuCom) + O(?).
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¢ By the weighted and shifted Griinwald-Lentikov formulas

In [146], Tian and Deng proposed the second-order and third-order numerical
schemes for the left and right Riemann—Liouville derivatives:

N m+{ N m+{y

I 2 2

RUD cttCim) = 25 D T U ) + a D @ uks) + O,
=0 =0

and
v M-m+{; v M-m+(y
1 2
D) = 0 D o uen) 5 Y @ Gkt +O0F),
k=0 k=0
. . a—20
where €| and ¢, are two arbitrary integers and £} — €, # 0, v| = m, vy =
1—t2
251 -
2(61-62)
And
p m+{; X m+{y
1 2
RLDG u(xy) = h_a Z @ u(Xnre,) + a Z @ Uity
k=0 k=0
X m+{3
3
b Do T unkaey) + O,
k=0
and
p M-m+{; p M-m+(y
1 2
RDu) = 35 Y o uCen) o Y @ s
k=0 k=0
P M-m+{3
3
taw D, @ uCmaiet) +O0),
k=0

in which €1, ¢» and {3 are three arbitrary integers and (€1 — £2)(€2 — €3)(€1 — €3) #
12063 — (662 + 603 + Da +3a? oy = 1206— (6L +603+ Da+3a>
T Tt — €1 6a— 6163 +3) 2T T2l — 1 6s — bats +03) B
126,65 — (6€1 + 66, + Da + 3a?
12(616, = L1633 — L2l3+€3)
Naturally, we can obtain the following second-order and third-order numerical
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formulas for the Riesz fractional derivative

m+{] m+{y
0%u(xp,) _ Y (@) (@)
e - e V1 Z @, U(Xm—k+,) + V2 Z @, U Xp—k+t,)
k=0 k=0
M-m+{; M-m+{o
a a
+ Z w,(( )”(xm+k—€1) +v2 Z w,(c )u(xm+k—€2)
k=0 k=0
+0(h),
and,
m+{; m+{y
"u(xp) Y. (@) (@)
e - A Z @ U(Xpr ) + K2 Z @ U(Xp—k+£,)
k=0 k=0
m+l’3 M-m+{;
(@) (@)
+K3 Z @), U(Xm—k+t3) T K1 Z @, U(Xpmrk—t,)
k=0 k=0
M-m+{o M—m+f3
(@) (@)
+K2 @, U(Xprk—t,) + K3 @, U(Xmrk—t3)
k=0 k=0
3
+0(h),
respectively.

Here, we construct another second-order scheme and two kinds of fourth-order
numerical schemes for the Riesz derivative. In order to construct the new computa-
tional schemes, we introduce the following theorem.

Lemma 2.4.1 ([49]) Let a >0, u(x) € C5’(R), the Fourier transforms of the left and
right Riemann—Liouville derivative are,

F (RLD oo 2(1)) = (i) it(w),

and
F (RLDY ott(0) = (—i)” ilw),

where iil(w) denotes the Fourier transform of the function u(x), i.e.,

(w) = f exp (—iwx) u(x)dx.
R

In [148], Tuan and Gorenflo introduce the following left fractional central differ-
ence operator:

AT u(x) = iwgf’u(x— (k-3 )1)- (2.109)
k=0
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Similarly, we define the following right fractional central difference operator:
cAYu(x) = Zwl(:')u(x+(k—%)h). (2.110)
k=0

Analogous to the integer-order finite difference formula, we define the following
fractional average operator,

u(xi(s— %)h)+u(xi(s+ %)h)

5 2.111)

Meu(x—sh) =

Then we can get the following fractional left and right average central difference
operators based on (2.109), (2.110) and (2.111), respectively.

A u(x) =, (cA?,u(x)
b o @ . a
_ ;(—I)J(j),u_h(u(x—(]—E)h)) 2.112)
= %Z(_ly(‘?)(u(x_jh)+u(x_<j-a>h)>
=0 J
and
acA$u(x) = :uih(CAihu(x))

- Seolhablerbgh) e

| — ,
= Z(—l)/(of)(u(xwh) +u(x+(j = ah).
24 J
j=0
Here, we always assume that ,uih can commute with the infinite summation.

For the fractional left and right average central difference operators defined in
(2.112) and (2.113),we have the following result.

Theorem 4 Let u(x) and the Fourier transforms of RLD?;%Xu(x) and RLDfﬁou(x)

both be in Li(R), then

A% u(x)
LD oo u(x) = Ach—g +O(H?) 2.114)
and A ()
AC ux
RLD oott(x) = == +0(h?)

uniformly hold for x e R.
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Proof. Here, we only prove (2.114). As u(x,t) with respect to x belongs to

L1(R), then the Fourier transform of the fractional average central difference oper-
ator (2.112) exists and has the following form

gc{ ACA}%SM(X) ;w}

= ZIW Zo(—l)j(j) (exp (—iw jh) + exp(—iw(j — a)h)) ii(w)

(2.115)
= [Z( 1)]( )exp( uwh)](w)aw
 (iw)® ( - exii(h—lwh) )0 ( 1+ expz(iwa/h) ) (W),
Note that the function ( 1= exil; (h—iwh) )0‘( 1+ expz(iwozh)) has the following Tay-

lor expansion:

(1 — exp(—iwh)) (1 + exp(iwah)) M( iwh)? + Oiwh))*.  (2.116)

iwh 2 24
If we denote
. AcAZ,u(x)
d(w,h) = ‘F{T,w} F (RLD o u(x)),
then from (2.115), (2.116) and Lemma 2.4.1, we have
|B(w,h)| < C1A*|(iw)™ 2 (w))|.

In light of the condition F (rLD"3,u(x)) € Li(R), i.e.,

—00,X

fR 17 (kD222 )| do < C,
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we obtain

AcAZ,u(x)

p $(c, )

- RLD(—Yoo,xu(-x)

= i‘ f exp(iwh)(z(w,h)dw‘
27'1' R

1 N
< EL|¢(w,h)|dw
< 9( f |(iw)“+212(w)|dw)h2
2r R
¢ a+
= 2—2_(1&? RLD_‘X,zxu(x))‘dw)h2
< 2

= o).

where C = C;—gz This finishes the proof. O

Next, we construct two classes of fourth-order difference schemes for the left
and right Riemann—Liouville derivatives based on (2.112) and (2.113) through the
following theorem:

Theorem 5 Let u(x) and the Fourier transforms of RLD‘_Y;'fxu(x) and RLDgﬁou(x)
both be in Li(R), then

a/(3oz+ 1)

rRLD o yu(x) = e ( Y

) acA%,u(x) + O(h*)

and

RLDx +00 u(x)

a(3a+1)
a(“T

) AcA%,u(x) + O(h*)

uniformly hold for x € R, where 6)26 denotes second-order central difference operator
and is defined by 6§u(xj) =u(xje1) — 2u(x)) +u(xj_1).

Proof. The proof is almost the same as that of Theorem 4, so is omitted here. O

Combining (2.106), Theorems 4 and 5, we can get the following difference
schemes for the Riesz derivative

0%u(x)
dxje 2ha

Z( 1>f( )(u(x )+ 1= (j - ah)
(2.117)

+Z( 1)1( )(u(x+]h)+u(x+(] ®h)|+O0(?)
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and
9 v, 3 1
6|’/;(|:) = Z( 1)J ( )( a( at ) x) (u(x— jh) +u(x—(j—a)h))

+Z( 1)1( )( M(SZ) (uCx+ jh) + uCx+(j = )h) | + O(hY),

(2.118)
Moreover, let
i) = u(x), x€la,b), (2.119)
U700, xelabl, '
then formulas (2.117) and (2.118) change into
u(x) ¥, i
Tl = ahe Z( 1)( )(u(x Jh)+ux=(j—a)h)
(2.120)

+Z( 1)/( )(u(x+]h)+u(x+(] @h)|+0h?),

and

Fulx) W 'S (o aBa+1) L\ _ _
S = o Z(—n/(j)(anﬁ) (u(x — jh) +u(x—(j— a)h))

7]
+Z(—1)J’(Of)(1 M#) (u(x+ jh) +uCx + (j— @)h) |+ O(h*).
= Jj 24

(2.121)

Finally, we derive another kind of fourth-order numerical method for the Riesz
derivative which is presented in the following theorem.

Theorem 6 Let u(x) lie in C*(R) whose partial derivatives up to order seven belong
to Li(R). Set

Lou(x) = Z 8@u(x—(k+6)h), 6=-1,0,1,
k=—c0

in which
@ _ (-D'T(a+1)

& T($—k+1)r(§+k+1)
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then we have

0"u(x) 1
0|x|¥ " he

[ Lou(x)— (+E)LOM(X)+ 2 Lo+ o).

Proof. Here, we use the Fourier transform method to prove it. From [119], we
know that the generating function with coefficients g,E“) satisfies

2sm( )' Z 2@ exp(ikx). (2.122)

From (2.106) and Lemma 2.4.1, we get the Fourier transform of the Riesz deriva-
tive as follows

0%u(x)
olxe ’

w} = W, [(i0)* + (—iw)*] i(w) (2.123)

= —|w|*(w).

Applying the Fourier transform to the difference operator

a a
e [—L 1u(x) = (1 + E)Lou(XH ﬂlilu(X)]
and using equation (2.122), gives

T{h—a [—L 1u(x) — (1 + %)Lou(x) + %Llu(x)];w}

= ha [24 Z g(a/) exp (—i(k — Dwh) ii(w)
( 12) Z g exp (=ikwh) d(w)

Z 8@ exp (~i(k + l)wh)ﬁ(w)]

k——oo
wh
2
sin ( B )

a

! (w).

= e - cosm)

Set

|l t(w) =

2.124
Clh,w) - T{ [ .Elu(x)( %)Lou(x)+%&u(x)];w}, @129
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then

. wh
2sin (7

7) }ﬁ(w)
w

Clh,w) = |w|? {1 - [1 + % (1- cos(wh))] :

= ol {1 - [1 + %(whf ~ Y byt 0(wh)6]

288 (2.125)

[07 2 1 a-1 4 6 N
.[1 - ﬁ(wh) +a(% + @)(wh) + O(wh) ]}u(w)

— ol de[ - L ot —ownsla
= —|w| {0(1152+2880)(wh) O(wh) }u(w).

Since u(x) € C’(R) and its partial derivatives up to order seven belong to L;(R),
there exists a positive constant C; such that

liw) < Cr (1 +w)™". (2.126)
So, using (2.125) and (2.126) leads to

|C(h,w)| < Coh* lw*Ja(w)| < Coh* (1 +]w)**|i(w)|

. (2.127)
< C3h* (1 + )3,
where C3 = C,Cs.
At this moment, taking the inverse Fourier transformation on both sides of (2.124)
and noting (2.123) gives
0%u(x) 1

o a a
- [ﬁ_ﬁ_lu(x) _ (1 N E)Lou(X) + ﬁzluu)] —Chw).

In view of (2.127), we have

[C(h,x)| = i‘fvCA‘(h,cu)exp(iw)c)dw‘
2w R
1 A
< 5 L |C(h, w)| dw
< 9([(1+|w|)“—3dw)h4
2r R
= Cht,
. C; .
h = h
where C (2—a)7r’t at is to say
ux) 11« a a 4
PG = g [zg w0 =(1+ 35 ) Louto + 7 Lo 0w @a29)

This finishes the proof. O
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Furthermore, equation (2.128) can be rewritten as

u) - _ @ @ (@
el Zg = er D= (1+-2) o Zg u(x— ki)

+3 4ha Z 8@u(x— (k- 1h) + O(h*).

Combining (2.119) one can get

ulxy) « mzl

e 24k 8, un-s 1)

k=—M+m+1
@ m—1
t Sane Z 8 un—-1)) (2.129)
k=—M+m+1
—(1+3)L mi &P u(xm—i) + O™
12/ h® "
=—M+m+1

2.4.2 High-Order Algorithms (II)

In the above subsection, a new kind of second-order scheme and two classes of
fourth-order schemes were established. In this subsection, we continue to construct
much higher-order schemes. Next, we show how to build much higher-order numer-
ical schemes for the Riesz derivative.

Define

Hou(x) = Z gD uCx—(k+60)h), 6 € x = (0,£1,%2,%3,..},

k=—c0
where
@ _ (-D'T(a+1)
& ¢ _k+ )T(2+k+1)
F(§-k+1)r(5+k+1)
Let 0u()
u(x
T = MO0 922

where Zy , are coefficients determined by the Fourier transform method. Obviously,
in view of the above equation, we can obtain arbitrary order difference schemes by
choosing various combination of 6 values.

In this subsection, we give two different high-order difference schemes via the
following theorem:

Theorem 7 Suppose that u(x) € C '(R) and all the derivatives of u(x) up to order 11
belong to Li(R), then we have
0%u(x) D“u(x)
dxle —  he

+ 0%, (2.130)
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and

0%u(x) 3 DSu(x) p
T +0(h°), (2.131)

where
DSu(x)=  ArH_au(x) + Ay H_1u(x) + Az Hou(x)

+ Ay Hiu(x) + A Hou(x),
Dou(x) = BiH_zu(x) + BoyH_ru(x) + B3H_ju(x) + BsHou(x)
+B37'{1 u(x) + Bﬂ'{zu(x) + 817‘{314()6),

TR AL P B2 1 PO G
=7 1152 7 2880 2= 2887 720) "7 T 12 " 160 T

g (2, e 191 g o (2, o 21
' =\82944 " 69120 " 362880) " 77~ 13824 " 3840 " 30240)"

[ 502 Lo 783\ 5a° +29az+5297a+1
37127648 T 512 7 120960) T* T "\ 20736 T 3456 © 45360 |

D%u(x,t
2,050 ';lff ) with

Proof. Applying the Fourier transform to the difference operator

respect to x yields

Dfu(x)
At

ha {ﬂl Z g(a) —i(k—2)wh +ﬂ2 Z g(a) —i(k—1)wh

k=—c0 k=—c0

+ A Z g]Ea) ekl 4 g1, Z g]Ea) itk Dwh 2.132)

k=—c0 k=—c0

+A, Z gl(ca)e—i(k+2)wh}/u~(w)

k=—o0
1 (a) ikwh
[23{1 cos Qwh) + 2A; cos(wh) + Az Z 8, u(w).

k=—c0
wh
2sin| —
Sln( 3 )

a

, that is to

Note that the generating function of the coefficients g * is

2511’1( ) Z g(a/) zk(uh

k=—0c0

say [119]
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According to Euler’s formula exp(ix) = cos(x) + isin(x), we easily obtain

a 1 a T @ na .
e = — [|§| exp (17318”(5))+ €1 6XP(—17szgn(§))]
Zcos(%)
= ———[@)"+(-i&)"].
Zcos(%)
2sin(‘”7h)
Let& = Y € R, then the above equation becomes
w
2Sln(aéh) 1 [{ZSin(%h).Ja { 2Sin(%h).J(1“
= il +|- j
wh ZCOS(%) wh wh
L S 1 4
= —_— 1 -
2cos(%)[ G’ +(1920+ 1152)““‘””
B 1 a-1 (a—D(a-2) 6 g
(322560 T 36080 T T 82944 )a(wh) + O(wh)
- @ 2, 1 -1
- [1 24 (1920 ’ 1152)““‘””
B 1 a-1 (a—D(a-2) 6 g
(322560 T 46080 T 82944 )a(wh) + O(wh)®|.
At this moment, one can rewrite (2.132) as
D¢ N
7"{ Ahli(x) ;w} = hi” [2A; cos (2wh) + 2A; cos (wh) + A3] ZSin(%h) W)
2sin “'Zh)
= |w|”[2A; cos Qwh) + 2A, cos (wh) + Az W)
= |w|” (—1 + O(wh)G)’u\(w).
From [49], one has
m.w —_ _|w|a”\(w)
e " Ww).
Let - .
ot = 9:{ M(X)"”}_?{#;“’}' (2.133)
X [e2

Since u(x) € C'Y(R) and its p\artial derivatives up to order eleven belong to L;(R),
there exists a positive constant C; such that
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fiw)| < Cr (1 +lwh ' (2.134)
So, using (2.132) and (2.133) leads to

[6w, )| < o ol®** fitw)| < Coh (1 -+1o)** itw)

R (2.135)
< GRS (1 +|w)?3,

where 53 = 51 52.
Furthermore, taking the inverse Fourier transform in both sides of (2.133) and
combining with (2.135) give

0%u(x) B DS u(x)

1 — .
16(w, h)| = —' f 6(a),h)e””hdw‘
27T R

J|x|¥ he
1 63 a-5 6
< ﬂleg(w,h)‘dwgg(fR(lﬂwb dw)h
= Ch,
1.€e.,
0%u(x) 3 D%u(x) 6
alxla, - ha, + O(h )5
— Cs
h = .
where C -
Let Do o
S(w,h)=F eu(x);w -F u(x);w .
he O|x|¥

Similarly, we can obtain

Sw.h) = |l {[2(B1+By+B3)+ By~ (98 +48, + B3) (wh)?
27, 4, 1 . (81, 8 1 6
+( 7B+ 3B 1283)(wh) (4081 t Bt 36033)(wh)

25in(“’7h)

+0(a)h)8] —

+ l}ﬁ(w)

0%u(x)  Dgu(x)
axle ~  he

(Il () O(R®).

It immediately follows that

+0(hd).

Thus all this finishes the proof. O
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If u* is defined by
. u(x), x € [a,b],
u(x) =
0, x¢[a,b].

such that u* € C''(R), and all derivatives up to order 11 belong to L (R), then (2.130)
and (2.131) at point (x;,,1,) can be rewritten as

0% u(xy) _

e

1 m-2 m-2

h_a{ﬂl Z 8 u(xn-4-2)) + Ao Z 8 u(Xm--1))
k=—M+m+2 k=—M+m+2
m=2 m=2 (2136)

+As Z 8 U ) + Ay Z 8 UCxm—+1))
k=—M+m+2 k=—M+m+2
m—2

+A Z gia)u(xm—(k+2))}+0(h6)s
k=—M+m+2

and

0"u(xm)

axlr

1 m—3 m-3

h_“{Bl Z 8P uCin-e-3) + B2 Z 8 u(n-k-2))
k=—M+m+3 k=—M+m+3
m-3 m-3

+8y Y UG+ Bs ). &Pl kot (2.137)
k=—M+m+3 k=—M+m+3
m=3 m-3

+ 83 Z gia)u(xm—(lﬁl))‘*'BZ Z gia)”(xm—(k+2))
k=—M+m+3 k=—M+m+3
m-3

Y g§“>u(xm_<k+3>)}+0<h8>,
k=—M+m+3

respectively.

Remark 2.4.1 In fact, we can use almost the same method to construct much higher-
order difference schemes for the Riesz derivative, such as, 10th-order, 12th-order
schemes, ..., and so on, for more details see [39].

2.4.3 High-Order Algorithms (IIT)

Although higher-order schemes can be constructed as above, we still think that
it is necessary to reconsider the pth order schemes (p = 2,3,---,6) with new meth-
ods due to the fact that such cases are mostly noticed. In [104], the asymptotical
properties of the coefficients of the higher-order schemes for the Riemann-Liouville
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integrals (also derivatives) were given. In this subsection, we not only explicitly ex-
press these coefficients of the higher-order methods for Riesz derivatives, but also
study their monotonicity.

If fO@a+)=0(k =0,1,....,p—1), then it follows from [104] that the left
Riemann-Liouville derivative has the following approximations

RLDG L f(x) = hia D @ = thy+ 0P, (2.138)
=0

in which 4 is the stepsize. Here we only show interests in p = 2,3,4,5,6.
The convolution (or weight) coefficients w; in the above equations are those of

the Taylor series expansions of the corresponding generating functions W[(, )(z),
W(Q)(Z) Zw(ﬂl)zf a € (O 2)

where

Wéa)(z) = (g —2z+ —zz)a,
2 2 "
Wi (@) = (% —3z+ %zz - 523) ;
Wff)( ) = (?—5 474377 - %f + iz4)a,
Wé“)( ):( %0 -5z 5z2—13—0z3+§z4 %ZS ,
Wéa)(z) = (% —6z+ gzz - 23—013 + 14—514 215 + ézﬁ)a.

By tedious but direct calculations, one has

@ _ 3V v (1) @ @
a) _ a (43
Whe = (5) Z (g) D10, Pty

£1=0

1
(1= 2
2 (€1 —0)!
(@) 0 <) _\e172)- (o) (@)
i ( ) ZZ( b (11) (7) GG —26) -0 P

01=0 £,=0

34] [362] -, ) A
25‘”[3 2 23\(172 (13\76 1 3\"
(@) (%)
=) N X enE) (5 (5)
12 0120 0220 £3=max{0.26,—C; ) 23 13
(61— 0)! F@ @
61 (6 —20) (61 + &3 —26,)!  LE-0 T LO=0?
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o ¢ l30] 3] 2]

o 137 163\1172 (137\276
a1 Y0 YD YD WS (5 B (-

£1=0 £,=0 £3=max{0,2,~{, } 4=max{0,263~{5}

[83) (4 (61 =) 5@ @
137 21) €4V (L3—2L0)! (61 + 03— 20) ! (Lr+ €4 — 203)) LG T LO-6°

and

Cpp el B
) _ [ ____
Do —( 60 ) Z Z
f] =0 l’2:0 f3:max{0 2fz—f1}f4:max{0 2f3—fz}f5:max{0 2{4—{3}
A EE (0 1237\275 163\ 74 62 \475 (5 "SX
147 213 237 163 31
(61 —107)! BN R ()
55!(54—255)!(51+53—252)!(52+54—2€3)!(f3+f5—2€4)! Li=6, 7 1,0 -0°

£=0,1,....
Here w(o‘). is the first order coejﬁczents defined by w(o‘). =(-1)/ %, j=
0,1, If] >2, then @'\")_| < w'") for a € (0,1) whilst w@ > @'\") for a € (1,2).

See [78] for more details.
On the other hand, if f(k)(b—) =0(k=0,1,...,p—1), then one has the approxi-
mations below,

RLDL, (%) = hazw(a)f(xHhHO(h") p=2,,6, (2.139)

where £ is also the stepsize.
Based on (2.138) and (2.139), if f(x), together with its derivatives, has homoge-
neous boundary value conditions, one easily gets

0"f(x) 1
dxje ZCos(ﬂa/Z)hC’

Zw@ (fx—Ch)+ f(x+Ch)+ O(hP).  (2.140)

Since « € (0,2) is commonly used, we limit our interests in @ € (0,1) and @ € (1,2).
When a = 1, we often set 6;& I(‘f) = f’(x) which is the trivial case, so is omitted here.

The second-order coefficients have interesting properties some of which (for a €
(0,1)) have been studied in [78]. Here we have the further results.
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Theorem 8 The second-order coefficients w(z(fz € =0,1,...) satisfy

3\ 4a (3\*
0 wgfg:(z) -0, =22 (2) <o
@ aBa-3)(3\" @ da@—1)Ba-7)(3\
BTy (3) 0 ms e |5) <O
2
o _ a(a-1)(640> - 176 +123) 3\
24 486 2]
(2) When 0<a<1 w <O and w(a)<w(za;+l for €>4,
(3) When 1 <a <2, w >O and w(a)>w(zag+1 for €>5.

Proof. (1) Direct calculations can finish it, so we omit the proof details.

(2) See [78] for details.

(3) Now we show the case a € (1,2). We firstly show that w(a) > 0 for £ > 5. For
convenience, denote @ = 1 +y, where 0 < y < 1. Lengthy calculatlons give

3 I+y ¢ lm (4y)_(149)

(@ _ +y +y

Whe = (5) Z(§) Dim Plem
m=0

3\ (1+y) _(1+7)
y y
10 @

1 I (ta) a1+
_ - Y)
L T3P T TP P

-1
<1+y) <1+y) 1 (+y)_(1+y)
) "'(3) @y wl,é’—l}

(I+y) _(1+y)
- w
2
1
3
3 1+‘y£’ 2
(_) ( ) o) (1)
2
3
2

1 m 1,6—m

( *{1 y+1 +y()/+1) Q-1

3 (- 2 T I8 (-2-9)(-3-y)
¢ 3(y+1) (+y) (3 AT (1+y) _(1+y)
()(1 i (3) ) etre

2 3 1,m 1,6—m

m=3
244 28(y+1) ¢ Yy+1) €L-1) (14)
> + w
243 81 (£-2-7) 18 (£=2-y)2| It
1+y -2 1 (14y)_(L4y)
+ +
+(§) 2(5) wlmywl,é’—ym’ t=5.
m=3
Let
244 28(y+ 1) x yiy+1) x(x-1)
Fx,y) = —— + ,x>5,
243 81 (x—2-7) 18 (x—2-y)?
and
G(x,y) = 486(x—2-y)*F(x,y)

488(x—-2 —7)2— 168(y + Dx(x =2 —y) +27y(y+ Dx(x—1), x = 5.
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Then
Gy(x,y)=976(x—2—-y)—168(y + )2x -2 —y) +27y(y+ 1)(2x—1)
and
Gx(x,7) = 54y% — 282y + 640.
Obviously,

Gy(x,7) =0 for 0 <y <1,

it immediately follows that G (x,7) is an increasing function and G(x,y) > G.(5,7y)
for x > 5.
Note that

G(5,y) = 411)/2 —1909y+1585>0, 0<y< 1.
Hence G(x,v) is an increasing function too, and G(x,y) > G(5,7v) if x > 5. Simple

calculations yields

767 131
=1 2_ 1872 > Gpi = — |=612—
G(5,y) = 1868y” —3068y + 1872 > Gyin(5,7) g(S, 934) 6 267

s0, G(x,y) = 0. Therefore, the following inequality holds

G(x,y) >0

Flxy)= —25Y)
@Y= e—2-72 2

which means @' 7 > 0 for £> 5.

2,j
Next, we show that w;az > w(za; ., for £>5. Note that

1+y ¢t 4
@ (@ _ 3 1 3 (14y)_(1+7)
@2t~ P41 —(2+7’)(§) (g) {Z()gl+1wl,€1 D=t

BTNy J2y) o
2 3 +1) 1L
3\"7 (1Y 39 iy (s _ 1y
2(5) (g) (2"'7)25 1010 P T3P0

2+7 3 y (1+y)
€+1 2

1 :
>3 N 3‘ e ey _ L ey
=LeFYN 5 1010 Pre-a T g

il
S
>

3 1+y 2+ 3 1+y 1 {+1
:(2+y)( ) ( PLy)@ ) + 7(—) (—) @'

€+1 2 3

3 1+y {’l’ 3 351 (L) (1+9)
+y +y
o2 (3 S 2ot
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Here

Pty F_ 3o+ | Sy D) ]

6 2(6-2-7y) 2(-2-y)(-3-7)
3€

+
+1

_erDoth) DI
30-2-y) 18(t=2-9)({-3-y)|

Obviously, the last two terms in the right-hand side of the last equality are both
nonnegative, so we only need to prove that the factor P(¢,7y) in the first term is posi-
tive.

Let
5 3ty | B+ hee-1)
Pty = 6 2(5—2—)’)+ 2(6-2-y)(t-3-y)
L @HDOHD |y DACHD
Py = = o Y 8= 2=y i=3=y)
then
3(’
P(&)’) = Pl(&)’)"‘ €+—1P2(€»7)
If £ =5, then

_2(3/+1)+ Sy(y+1)
G-v) 3C-72-7y)

Now we consider the case £ > 6. Let

Py(5,y)=1

O(x,y) =18(x=2-y)(x—2.5-y)P3(x,y), x€[6,00),

where
x+Dy+1) y(iy+ Dx(x+1)

3(x-2-7v) * 18(x=2-y)(x=2.5-7y)

P3(x,y)=1-

Then
Oxx(x,y) = 2’)/2 -10y+24>0, O<y<1.

So Qx(x,y) is an increasing function and
0:(x,7) > 0(6,7) = 199> —80y+72>0, x> 6, 0<y < 1.
It immediately follows that Q(x,y) is an increasing function with respect to x and
0(x,y) = 0(6,y) = 102y> - 198y +105>0, 0 <y <1,
i.e., P3(x,y) > 0. Noticing P>(£,y) > P3({,y) yields

P>(£,y) >0, €€[5,00).
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Therefore,

3¢ 81
Pl(&)’) + —PZ(&)’) 2 Pl(&)’) + _PZ(&)’)

P(Ly) = -
_ 124 3041)(100+9) 3ty + TS+ )
3 2(-2-y)  Al-2-9)(-3-7)
12430+ D(10(+9) 30y + 1)(55+ 1)
3 2(6-2-y) 4(E-2—y)2

When ¢ =5, we easily know that P(£,y) > 0 by direct calculation. Next, we dis-
cuss the case £ > 6. Let
124 3(y+1)(106+9) 3ly(y+1)(5¢+1)

Py = = Ty Y a2y

and
R(x,y) = 12(x =2 —y)*P4(x,y), x > 6.

Differentiating twice with respect to x gives
Ryx(x,7) = 90y% =270y + 632,

which is positive when y € (0, 1).
So, R,(x,7) is an increasing function and

R:(x,7) > Ry(6,7) = 729y% — 2225y + 2006 > 0.
Furthermore, R(x,v) is an increasing function as well and
R(x,7) > R(6,7) = 3412y — 6020y + 2968 > 0, x € [6,0).

So, P4(£,y) > 0 implies P(€,y) > 0. It follows that @'") > @'%)  for £ > 5. The

5 ; 2,6 = Woret
proofis thus finished. O

The monotonicity of the second-order coefficients w( ) is often used to prove the
stability and convergence of the constructed algorithms for the time fractional differ-
ential equations. For the space fractional differential equatlons we use the following
theorem instead of the monotonicity of the coefficients = ; to show the stability and
convergence for the derived algorithms. Now we estabhsh the following theorem.
Here we focus on studying the case a € (0, 1).

Theorem 9 For 0 < a <1, then the following relation holds:
D @ycos(td) 20, 6 € [-mxl, p=2,3,5,6.
=0

Proof. We only prove p = 2, the other cases can be almost similarly shown so are
left out here. Let

fi(@,0) = Zw@ cos(¢6),



78 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

which can be expanded as

fi(a,0) = Zw cos(£0) = Zw(a) (exp(i€0) + exp(—ith))

=0

; [(1 —exp(if))” (E - lf:xp(l@)) +(1 — exp(—if))* (E - lexp( 10)) ]

Note that fi (e, 0) is a real-value and even function, so we need only consider 8 € [0, 7r].
Using the following equations
6\* 60—
(1 —exp(xif))* = (2 sin 5) exp(tia(Tﬂ))
and Y
2

(x—yD)* = (x +y) exp (iag), ¢=—arctan2.
X

Now we can rewrite fi(a,0) as

fi(a,0) = (251n2) (/12(0)+,ul(0))%cosa/<0_7ﬂ +¢1),

where ©
. M1
A1(6) =3 —cosb, 6) = sind, = —arct .
1(6) cosl, ui(0)=sin6, ¢ arc an/h(e)
Let
2(0) = T+¢l’ 0<f<nm
Then 2o
0—r ’ 3sin“(5
2O =(S2+) = —22) >0,
2 1+ 3sin (g)

Hence z(6) is an increasing function in [0,7] and

-2, Znax(6) = 2(1) = 0.

Zmin(0) = 2(0) = )

It is simple to see that @ € (0, 1) and 6 € [0, 7] imply cosa(e_T” + ¢1) > 0, so one has
0\ g 60—
fi(e,0) = (2 sin 5) (11O +1i®) cosa(T7r + ¢1) > 0.

All this ends the proof. O

For p = 4, a can not be very close to 1. But we have the following theorem.

T

Theorem 10 If 0 < a < ~ 0.8439, then the following

1 191 V6
7T —arccos 5 + 2 arctan 317

relation holds:

Z @) cos(£0) 2 0, € [~ 7],
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Proof. Let fr(a,0) = wff}) cos(€6). By almost the same reasoning as that of
=0

Theorem 9, we can get

AN 2000\ 2 O-n
fr(a,0) = (251n 5) (/12(0) +,uz(0)) cosa/(T +¢2),
where
A2(60) =25—-23cosf+ 13cos26—3cos36,
(&)
H2(60) =23sin6— 13sin26 + 3sin36, ¢y = —arctan'uZ( ).
A2(0)
Since 5
1 5 .2 (0\ 17
12(0) = 14{cos(6) — = | +24cos?(9)sin (—)+ Lo,
2 2 2
and

2
u2(6) = [12(005(6) - %) + 2 sin(6) > 0,

24

s0 ¢ € [—5,0]. We need only consider 0 < 6 < , therefore —r < a(e_T” + ¢2) <0.
Obviously, if cosoz(e_T’r +¢2) > 0, then f2(a,0) > 0. A sufficient condition for
cos.a(e‘T’r +¢2) >0is
z < min (6_ﬂ+ )<0
2 HE[O,n]a 2 92)<0,

1.€e.,
. T
O<a< min { —— .
96[0,n]{ﬂ—9—2¢2}
Let y(6) = m— 0 —2¢», then
1920(5cosf - 1)sin*(§)

’ 0 —
O a2(0)+b2(6)

It is clear that 8 = arccos % is a unique maximum point of y(6) when 8 € [0, 7], so

191 V6
317

1 1
Ymax (0) = Ymax (arccos §) = T —arccos 3 + 2arctan

it follows that

) n prs
min { 5 } = 7 ~ (0.8439,
OO (M =0=202) 1 _arccos % +2arctan 193176

1.€.,
0<a<0.8439.

This finishes the proof. O

Now we again return to discuss the properties of the other high-order coefficients.
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Remark 2.4.2 The monotonicity of the coefficients w(;[) with respect to € (see Theo-

rems 8) are often used for stability and convergence analysis for the time fractional
differential equations.

Although it is not facile to prove the monotonicity of the coefficients wg’;, p=

3,--+,6, we can explicitly write their expressions; see the beginning part of this sub-
section for more details. The coefficients are explicitly expressed which are beneficial

for numerical calculations. Besides, through numerical simulations, one can find the

monotonicity of the coefficients w;"z, p=3,4,5.

0
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-0.008

504
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FIGURE 2.1: The values of coefficient wg“; (¢=4,5,---) fora=0.4.

Figs. 2.1 and 2.2 show the monotonicity of the coefficients wéag for @ € (0,1),
Figs. 2.3 and 2.4 for a € (1,2). Figs. 2.5 and 2.6 display the monotonicity of the
coefficients @) for a € (0, 1), Figs. 2.7 and 2.8 for @ € (1,2). Figs. 2.9 and 2.10

present the monotonicity of the coefficients wgag fora € (0,1),and Figs.2.11and 2.12

for @ € (1,2). But through the numerical simulations, w(gg, a€(0,1)and a € (1,2)
seem not to have the monotonicity.

In the following, we provide a conjecture which is seemingly primary but is hard
to prove.

Conjecture 2.4.1
(O If 0< 05)< 1, t(hfn wg’lg Swé‘?H for £>4, wf&z < wf&zﬂ for €217,
and ws(} < ws(f“l {o)r 52(1)2. " "
2) If1< a/(<)2, th(er)z w;; > wfgﬂ for £>1, wfg > wfgﬂ for €>12,
(03 (07
and W5, 2 W5,y for £=16.
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FIGURE 2.2: The values of coeflicient wgaz (¢=4,5,---)fora=0..8.
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FIGURE 2.3: The values of coefficient wg“; ¢=1,8,---)fora=1.2.
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FIGURE 2.4: The values of coefficient wgaz ¢=1,8,---)fora=1.6.
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FIGURE 2.5: The values of coefficient wgaz ¢=1,8,--+) fora=0.4.



Chapter 2 Numerical Methods for Fractional Integral and Derivatives 83

0 5 10 15 20 25 30 35 40 45
|

FIGURE 2.6: The values of coefficient wgaz ¢=1,8,--+) fora =0.8.
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FIGURE 2.7: The values of coefficient @) (¢ = 10,11,---) for a = 1.2.
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FIGURE 2.8: The values of coefficient wgaz (¢=10,11,---) fora = 1.6.
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FIGURE 2.9: The values of coefficient @) (¢ = 12,13,---) for a = 0.4.
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FIGURE 2.10: The values of coeflicient wg.ag (¢=12,13,---) fora=0.8.
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FIGURE 2.11: The values of coefficient wé‘lf) (¢=16,17,---) fora =1.2.
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FIGURE 2.12: The values of coeflicient wg.“g (¢=16,17,---) fora =1.6.

These properties of high-order coefficients are generally suitable for stability and
convergence analysis of the designed algorithms for the time-fractional partial differ-
ential equations.

2.4.4 Numerical Examples

Now we test the higher-order schemes for Riesz derivatives.

Example 1 Consider the function f,(x) = x"(1 -x)?, x€[0,1], p =2,3,4,5,6.
The Riesz derivative of the above function is analytically expressed as

O 1 Z”:(_l)[ plp+D)!
O|x|® 2cos(ra/2) e (p-DT(p+t+1-a)

[xp+f—a/ +( _x)p+€—ar] )

We first verify the convergence orders for numerical scheme (2.120) and (2.121).
The computational results are showed in Tables 2.1-2.2. These computational results
confirm the second-order and fourth-order of the numerical formulas (2.120) and
(2.121), respectively.

Then, we numerically solve the Riesz derivative of f,(x) by using numerical
scheme (2.140). The numerical results are presented in Tables 2.3-2.7. From these ta-
bles, the experimental orders are in line with the theoretical orders p (p =2,3,4,5,6).
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TABLE 2.1: The absolute error, convergence order of Example 1 by numerical

scheme (2.120) with p = 2.

a 1/h L*-error Order

02| 10 [ 3.630966e—03

20 | 9.120270e-04 1.9932

40 | 2.285315e-04 1.9967

80 | 5.719787e-05 1.9984
04| 10 |[5.124542¢-03

20 | 1.289681e-03 1.9904

40 | 3.234889¢—-04 1.9952

80 | 8.100606e—05 1.9976
0.6 10 | 4.629914e-03

20 | 1.164707e-03 1.9910

40 | 2.920982e-04 1.9954

80 7.314118e—-05 1.9977
0.8 10 | 2.652282e-03

20 | 6.653815e-04 1.9950

40 | 1.666617e—04 1.9973

80 | 4.170691e-05 1.9986
1.2 10 | 2.371107e-03

20 | 5.878877e-04 2.0119

40 | 1.464631e-04 2.0050

80 | 3.655831e-05 2.0023
1.4 10 |3.614913e-03

20 | 8.891952¢—04 2.0234

40 | 2.207491e-04 2.0101

80 | 5.500869e-05 2.0047
1.6 10 | 3.311900e-03

20 | 8.088550e—04 2.0337

40 2.001866e—-04 2.0145

80 | 4.981273e-05 2.0068
1.8 10 | 1.748268e-03

20 | 4.265789¢-04 2.0350

40 | 1.055454e-04 2.0149

80 | 2.625954e—-05 2.0069
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TABLE 2.2: The absolute error, convergence order of Example 1 by numerical
scheme (2.121) with p = 4.

a 1/h L*-error Order
02| 20 |[1.571776e-08
40 |[9.923695e-10 3.9854
80 |6.218021e-11 3.9963
160 | 3.888658e—12 3.9991
04| 20 |[6.255711e-08
40 | 3.955450e—-09 3.9833
80 | 2.479333e-10 3.9958
160 | 1.550707e—11 3.9990
0.6 20 [ 1.660570e—07
40 | 1.051535e-08 3.9811
80 | 6.593628e-10 3.9953
160 | 4.124394e-11 3.9988
0.8 20 |[3.501076e-07
40 | 2.219986e-08 3.9792
80 | 1.392502e-09 3.9948
160 | 8.711096e-11 3.9987
1.2 20 |7.029869¢-07
40 | 4.446255e-08 3.9828
80 | 2.787163e-09 3.9957
160 | 1.743236e-10 3.9990
1.4 20 |4.372243e-08
40 | 3.985260e—09 3.4556
80 |2.690303e-10 3.8888
160 | 1.712778e—11 3.9734
1.6 | 20 | 3.751536e-06
40 | 2.440706e—-07 3.9421
80 1.540687e—08 3.9857
160 | 9.653215e-10 3.9964
1.8 20 | 1.592788e—05
40 | 1.034107e-06 3.9451
80 | 6.524548e—-08 3.9864
160 | 4.087469e¢—09 3.9966
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TABLE 2.3: The absolute error, convergence order of Example 1 by numerical

scheme (2.140) with p = 2.

1/h

L*®-error

Order

0.1

20
40
80
160
320

9.799438e—-05
2.468338e-05
6.158789e-06
1.536039e—-06
3.834192e-07

1.9892
2.0028
2.0034
2.0022

0.5

20
40
80
160
320

1.093549e-03
2.557319e-04
6.143944e—-05
1.503151e-05
3.715825e-06

2.0963
2.0574
2.0312
2.0162

0.9

20
40
80
160
320

6.874862e—-03
1.269052e-03
2.603644e—-04
5.793868e—-05
1.358819e—-05

2.4376
2.2851
2.1679
2.0922

TABLE 2.4: The absolute error, convergence order of Example 1 by numerical

scheme (2.140) with p = 3.

a

1/h

L>®-error

Order

0.2

40
60
80
100
120

3.146678e—-07
1.576085e—07
7.991483e—-08
4.501080e—-08
2.761993e—08

1.7052
2.3608
2.5726
2.6786

0.5

40
60
80
100
120

1.015756e—05
3.330915e-06
1.470163e-06
7.721886e—07
4.542595e—-07

2.7499
2.8430
2.8856
2.9100

0.9

40
60
80
100
120

3.110547e-04
9.436636e—05
4.020332e-05
2.069282e-05
1.201409e-05

2.9418
2.9659
2.9764
2.9821
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TABLE 2.5: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 4.

a [ 1/h L>-error Order
0.2 | 20 | 3.254967e—-06
25 | 1.421712e-06 | 3.7121
30 | 7.061638e—07 | 3.8381
35 | 3.863551e—07 | 3.9123
40 | 2.279637¢-07 | 3.9509
0.5 20 | 2.352556e-05
25 19.541773e—06 | 4.0441
30 | 4.506623e—06 | 4.1143
35 | 2.379569e—06 | 4.1429
40 | 1.366626e—-06 | 4.1531
0.8 | 20 | 1.466022¢-04
25 | 5.460563e—05 | 4.4258
30 | 2.420431e—05 | 4.4625
35 | 1.216174e—05 | 4.4647
40 | 6.707129¢-06 | 4.4568

TABLE 2.6: The absolute error, convergence order of Example 1 by numerical
scheme (2.140) with p = 5.

a |1/h L>®-error Order
0.3 | 80 | 2.498729¢-10
100 | 1.091359e-10 | 3.7122
120 | 5.108016e—11 | 4.1641
140 | 2.599689¢—11 | 4.3816
160 | 1.423638e—11 | 4.5096
0.6 | 80 | 5.385482e—09
100 | 1.900398e—09 | 4.6680
120 | 7.985621e—10 | 4.7554
140 | 3.806168e—10 | 4.8071
160 | 1.994064e—10 | 4.8412
0.9 | 80 | 9.315443e-08
100 | 3.135150e—-08 | 4.8803
120 | 1.279618e—-08 | 4.9150
140 | 5.979648e—-09 | 4.9353
160 | 3.088216e—09 | 4.9484
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TABLE 2.7: The absolute error, convergence order of Example 1 by numerical

scheme (2.140) with p = 6.

a |1/h L*®-error Order
0.3 | 20 | 1.224183e-07
40 | 5.170505e—09 | 4.5654
80 | 8.866763e—11 | 5.8658
160 | 1.345871e—12 | 6.0418
320 | 2.028938e—14 | 6.0517
0.6 | 20 | 1.564617¢-06
40 | 3.647148e—08 | 5.4229
80 | 5.062291e—-10 | 6.1708
160 | 6.799919e—-12 | 6.2181
320 | 9.539537e—14 | 6.1555
0.9 | 20 | 2.577647¢-05
40 | 3.796038e—-07 | 6.0854
80 | 3.895063e-09 | 6.6067
160 | 4.007447e—-11 | 6.6028
320 | 4.600099e—13 | 6.4449

2.5 Matrix Approach

This approach is based on using a triangular strip matrix to discretize the dif-
ferentiation and integration operators with arbitrary order (integer and noninteger)
[125, 126]. Using this technique one can obtain all the numerical solutions at the
mesh grids at once, avoiding the traditional step-by-step method by moving from the
previous time layer to the next one. The matrix approach is quite simple to put into

implementation.

The matrices with the special structure such as the triangular strip type are intro-
duced in order to describe this approach. The following two kinds of triangular strip

matrices are needed:

Lower triangular strip matrices

Ly =

wo 0

w1 wo

w2 w1
WN-1

WN WN-1

0 O

0 O

w( 0
wy w1 wo
wy Wi

o o

, (2.141)

wo
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and upper triangular strip matrices

wy W W2 ... WN-] wWN
0 wy wi - o wn-
Uy=[ 0 0 w - .. ey | (2.142)
0 O ’
w( w1
o 0 o0 .. 0 wo

Denote by u?” = ([eDg, 0], \[eeDf, 0], . [wDE, f(f)]mo)T’ and

let wy = (—1)’<(§§) in (2.141), we get

1=ty—1

ul® ~ B [uto), - ,ulty-1),u(ty)] ", (2.143)

where Bg\(f) = %. (2.143) is just another representation of the Griinwald—Letnikov

formula for the left Riemann—Liouville derivative. In fact, BE,Q) can be seen as a kind
of fractional differential matrix . If a = 1, Bf,a) is just the differential matrix for the
classical first-order derivative corresponding to the first-order backward difference.

The right Riemann-Liouville (or Caputo) derivative can be approximated in a
similar way, where the upper triangular strip matrix (2.142) is used accordingly. The
symmetric Riesz derivative can also be approximated by this approach, while the
fractional differential matrix is different from the Riemann—Liouville or Caputo case;
refer to [126] for details.

In [125, 126], this approach is successfully adopted to solve the classical differ-
ential equations such as classical diffusion equations, and the FDEs such as diffusion
equations with time-fractional derivatives, diffusion equations with spatial deriva-
tives in the Riesz sense, general diffusion equations with time-space fractional deriva-
tives and fractional diffusion equations with delay. This method can also be extended
to the cases of nonlinear problems, see [125, 126] for more details.

2.6 Short Memory Principle

Unlike the classical differential operator, the fractional differential operator is not
a local one. From the definitions of the fractional Griinwald—Letnikov, Riemann—
Liouville and Caputo derivatives, one can easily find that these fractional derivatives
of a given function f(#) depend on the whole interval (0,7), which means the frac-
tional derivatives of f(f) depend on the “historical” behavior of the function f(r)

[124]. However, it follows from the expressions of the coefficients {wé“)} in the

Griinwald-Letnikov definition (1.3) that for large j, w'®

i is reduced to zero (In fact,
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TABLE 2.8: Variation of Griinwaldian expansion
coefficients with different «

j a=0.5 a=15 a=25

1 1.0000e+00 | 1.0000e+00 | 1.0000e+00
2 | -5.0000e-01 | -1.5000e+00 | -2.5000e+00
3 | -1.2500e—01 | 3.7500e-01 | 1.8750e+00
4 |-6.2500e—02 | 6.2500e—02 | -3.1250e—01
5 ]-3.9063e—-02 | 2.3438e—02 | -3.9063e—02
10 | -1.0910e—02 | 2.1820e—-03 | -8.3923e—-04
50 | -8.2880e—04 | 2.6172e-05 | -1.4071e-06
100 | -2.8747e—04 | 4.4226e—-06 | -1.1458e—-07
500 | -2.5326e—05 | 7.6361e—08 | -3.8449¢—-10
1000 | -8.9374e—06 | 1.3440e—08 | -3.3717e—11
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{Iw(q )|} is a monotone decreasing sequence for j>J,, J, is a positive integer only

J
dependent on «). Table 2.8 gives the coeflicients wg.“) with different @. We can find

that Iwi.a)l decreases rapidly when « increases.

Actually, wg.“) =0( j“"l) [104] for any @ > 0, which means that for large j, the
behavior of function f(f) near the lower terminal (r = a in (1.3)) can be neglected
under certain conditions. Those observations lead to the formulation of the “short
memory” principle, which takes into account the behavior of f(¢) only in the “recent
past.” For the Griinwald-Letnikov definition (1.3), it means that there exists a positive
integer N,, such that [120]

No

6.Dg, f(t)]tth zAt‘“Zw;a) fln-j). (2.144)
=0

Denote by

N No N
RWN.Na) = A ) P flan-) = A ) o flan-p = A 7w flay-)).
Jj=0 Jj=0 J=Na+1

Noticing that wg.“) =0, ie. |a)5.a)| <Cj* !, we have

N N
ROV.N = (87" D o flon-p| <A D7 || [faw-p)
Jj=Ng+1 Jj=Ng+1 (2145)
N
<CAT® max |fan-p| D

No+1<j<N N+

For the fixed Az, when N, is big enough, |R(N, Ny)| can be small enough for a > 0.
Next, we discuss the “short memory” principle for the Riemann—Liouville deriva-
tive, which gives the theoretical standard to determine N, in (2.144). The Riemann—
Liouville derivative can be written in the form of a finite-part integral (see [124]
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p.-194)
!
RLDG f(1) = r(%p.f.f(t—s)_a_lf(s)ds. (2.146)

@)

Let L be a positive number, denote by
R(t,L) = reDg, f(t) = rLDY (D).

Using (2.146) leads to

-

ML
IR(t, L) = |reDg (1) — rLD:.f f(DI < a-op “F L<i<b, (2.147)

where |f(t)]< M, M > 0. For any € > 0, letting

IR(1, L) <€,

M 1/a
LZ(GIF(I—a)I) ’

RLD ; f()=RLDg f(t) = R(t,L)

one has

which means that

1
with |R(t,L)|<e when L> (m) /a. Here, L is also called the “memory length.”

Therefore, N, can be chosen as

1/a
w5 L(%) '

Deng [22] considered this approach to solve time fractional differential equations.
Up to now, the short memory principal has not been thoroughly studied so is seldom
used in the real applications.

2.7 Other Approaches

In [159], Yuan and Agrawal proposed a method to calculate the Caputo derivative
of order @ (0 < @ < 1), in which the weakly singular kernel is removed. Using the
definition of the gamma function and the formula of complement variable below

T(@)I(1-a)= prom—t

they transformed the Caputo derivative into the following equivalent form

. . )
cDg f(1) = @ fo yz“‘l( fo e‘“‘”yzf’(s)ds) dy. (2.148)
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Denote by
!
d(y,1) = y2¢1—1 (f e—(t—s)ny/(s) dS) )
0

Then, the integral fooo ¢(y,t)dy is approximated by the Laguerre integral formula [21]

00 N
fo (0 dy ~ ) wie" g(yi,1),
i=1

where w; and y;, i=1,2,---,N € N are Laguerre weights and node points, respectively.
Therefore,

2sin(na) al
D f() » =—— ; Wi (yi,1). (2.149)

Obviously, ¢(y;,t) can be integrated by the standard integration method, and the nu-
merical calculation for cDgJ f(?) is accomplished.

Remark 2.7.1 The case of 1 < a < 2 is considered in [147], where the equivalent
form of the ath Caputo derivative is given by

. ~ . .
cD§ f(1) = w f y2a3 ( f et f”(s)ds) dy. (2.150)
0 0

There exist other methods to approximate the fractional integrals and derivatives.
The algorithm based on Haar wavelet approximation theory for the fractional inte-
grals was proposed in [57]. The definitions of variable-order derivatives and their
numerical approximations were investigated in [143, 149, 177]. The Griinwald for-
mula for vector fractional derivatives was developed in [110].



Chapter 3

Numerical Methods for Fractional
Ordinary Differential Equations

In the previous chapter, various kinds of numerical methods for fractional integrals
and fractional derivatives are displayed. In the present chapter, we focus on introduc-
ing numerical methods for fractional ordinary differential equations. Since Riemann—
Liouville derivatives can be changed into the Caputo ones (see Eq. (1.11)) under
suitable conditions, we study only the Caputo-type ordinary differential equations.

3.1 Introduction

In this chapter, we study the numerical methods for the typical initial-value prob-
lem below.

{CDgtu(l) = f(t,u(®), m—1<a<meZ",
’ (3.1)

U0y =ul), j=0,1,--,m~1.
The following Theorems 11 and 12 of existence and uniqueness for initial-value

problems (3.1) can be found in [29].

Theorem 11 (existence) Assume that 7 :=[0,x*] X [u) - 6,ul) + 5] with some x* >0
and some & > 0, and let the function f : 9 — R be continuous. Furthermore, define
x :=min{y*,(6T(a+ 1)/||f||oo)1/"}. Then, there exists a functionu : [0,x] — R, solving
the initial value problem (3.1).

Theorem 12 (uniqueness) Assume 7 := [0,x*] X [u)—6,u)+ 6] with x* >0 and 6 >
0. Furthermore, let the function f : 2 — R be bounded on 2 and fulfill a Lipschitz
condition with respect to the second variable, i.e.,

|f(t,.x) = f(t.y)|<Llx -yl (3.2)

with constant L > 0 independent of t,x and y. Then, denoting x as in Theorem 11,
there exists at most one function u : [0, x] — R solving the initial value problem (3.1).

If the initial value problem (3.1) has a unique solution u(#), and f(¢,u(?)) satisfies
some smooth conditions, then one can obtain the following properties of the solution
u(t), see [32].

97
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Theorem 13 (a) Assume f € C(G). Define v =[1/a]— 1. Then there exist functions
W € C'[0,T) and c1,--- ,c; € R such that the solution u(f) of (3.1) can be expressed
in the form

u(t) = Yt + Z e,
v=1

(b) Assume that f € C3(G). Define ¥ = [2/a]—1 and v = [1/a] - 1. Then there
exists a function € C%[0,T], c1, - ,cy € R andd,, - ,dy € R such that the solution
u(t) of (3.1) can be expressed in the form

v

u(t) =Y+ ) e+
v=1

dvt1+va'
1

v=

There are several ways to discretize equation (3.1); the most often used two tech-
niques are based on the following ideas:

o Discretizing the Caputo derivative directly to get the numerical schemes.

o Transforming the original fractional equation (3.1) into the fractional integral
equation, then applying the corresponding numerical methods to discretize the
fractional integral to get the numerical schemes.

In the following, we introduce the typical numerical methods for equation (3.1).

3.2 Direct Methods

In the section, we discretize the Caputo derivative operator directly to get the
numerical schemes for equation (3.1). Obviously, we can use the numerical methods
for Caputo derivative operator developed in Section 2.4. Next, we just list some of
numerical methods, and we do not give the stability and convergence analysis, which
will be discussed in the following section.

e L1 Method

For 0 < @ < 1, L1 method (2.81) is often used to discreteize the Caputo derivative. L1
method for the initial value problem (3.1) is

n—1

D bumj1 W =u) = flt ), (3.3)

J=0

where uy, is the approximate solution of u(t,), and b; = 1{‘2’—:(;)[(j+ DI — j17], see
(2.81) for more details.
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e Product Trapezoidal Method

This approach is based on the fact that the Riemann—Liouville derivative is equivalent
to the Hadamard finite-part integral [26, 48, 124], i.e.,

1 T u(s)
DY =——nf —ds, 0,1,2,---. 3.4
rLDy u(t) ) p j; T s, a# (3.4

For 0 < @ < 1, the above quadrature is approximated by the first-degree compound
quadrature formula [25, 26, 34], which is given by

1 e u(s) <
£ =245 Y ), 35
et el ;a”"u("’) o
where
v (L j=0,
= ——— 1 (j+ Do)y (o 1)ie, 0<j<n, (3.6)
FC=@ | (1—amr—n-t+n-1)-, j=n.

Using the relationship
RLDG  [u(®) —u(0)] = cDg u(®), O0<a<l,

we get the numerical scheme for (3.1) as follows

n

> ajnlttn = u0) = Flt.un), 3.7)

J=0

where u,, is the approximate solution of u(t,).
In [25], when f(z,u) = Bu(t) + f(¢), B < 0, the error estimate for the above method
(3.7) is given by
lu(t) — ] < CAPC. (3.8)
¢ Griinwald-Letnikov Formula

One knows that the Riemann-Liouville derivative can be approximated by the
Griinwald-Letnikov formula (2.51)

L v, @ @ (@
RLDgJuan,:,nzFZ;w;’ i), o =)
J:
By the relationship

gk
RUDG [u)) = " u®(0)] = ¢Df u(o),
k=0 "
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one gets the following method for the initial value problem (3.1) as

MZM@ iﬁ Fltwsttn). (3.9)

k=0

Of course, one can use the shifted Griinwald-Letnikov formula (2.52) to approx-
imate the Caputo derivative.

The above method (3.9) is valid for any @ > 0. One can construct high-order (pth-
order, p = 1,2,---,6) methods of the form (3.9), where {w(q )} are coeflicients of the
Taylor series expansions of the following generating functions [28, 87]

p a
wp(2) = {Z Le- 1)1} :
=

3.3 Integration Methods

Consider the classical ordinary differential equation (ODE)

"= f(tu),
u'= fitu) (3.10)
u(0) =
If we integrate (3.10) on the interval [#,,1,+1], we can get
In+1
u(tys1) — ulty) = S(s,u(s))ds. (3.1D)

n

Therefore, the classical numerical methods (such as the rectangular formula, the
trapezoidal rule, and Simpson’s formula, etc.) for the integral fl tt! f(s,y(s))ds can
be used to derive the corresponding numerical methods for the ODE (3.10).

This idea can be adopted for the numerical solution of the FODE (3.1). Similarly,
if we apply D ¢ on the both sides of (3.1), we can obtain the following equivalent
Volterra 1ntegral equation [32]

m—1 m—1

zmzzyﬁ’H)fagmﬂmmm~27ﬁumﬂmmmum

j=0 j=0

Next, we adopt the numerical methods developed in Section 2.2 for the fractional
operator Dy to derive the numerical methods for (3.1) or (3.12).

e Fractional Euler Methods
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(1) Fractional forward Euler method: [Da;’ f(, u(t))]l:t 1 is approximated by the

left fractional rectangular formula (2.6)

m—1 ]
i1 —Z fnt ud + A ij,ﬁlf(tj,u]) (3.13)

where |
a1 = ———[(n— j+ )%= (1= ). 14
bjn+1 F(a+1)[(n J+ D= (- )" (3.14)

(2) Fractional backward Euler method: [Daf f (t,u(t))]t . is approximated by
’ =In+1
the right fractional rectangular formula (2.8)

m=1 ,j
t
= g+ A meﬂf(ml,um (3.15)
j=0 Jj=0

where b1 is defined by (3.14).

(3) Fractional weighted difference method: [Daf f, u(t))]t . is approximated
’ =In+1
by the weight fractional rectangular formula (2.9)

m—

U1 = Z o u + AL Zb,n+1[ef(t,,u,)+(1—0>f(t,+1,u,+1>] (3.16)

Jj=0 Jj=0
where b1 is defined by (3.14).

Remark 3.3.1 If a = 1, the methods (3.13), (3.15), and (3.16) with 8 = 1/2 are re-
duced to the classical forward Euler method, the backward Euler method, and the
trapezoidal formula for the classical ODE (3.10), respectively.

Next, we investigate the stability and convergence of the methods (3.13), (3.15)
and (3.16). The following generalized discretized Gronwall’s inequality [42, 87]
plays a crucial role in the stability and convergence analysis for numerical methods
for the FODE:s.

Lemma 3.3.1 ([87]) Suppose that b, = (n— NG =1,2,--,n=1) and bjn=0
n
for j=n, a,At, M,T > 0, kAt<T and k is a positive integer. Let }, bjle;| = 0 for
j=m

m>n>1.If
n—1
IenIsMAt“ij,nlejHlnol, n=12,--k (3.17)
j=1
then
|ek|SC|770|, k: 1’2""~ (3.18)

where C is a positive constant independent of At and k.
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Remark 3.3.2 If a>1, Lemma 3.3.1 is reduced to the commonly discretized Gron-
wall inequality, and the bound in (3.18) can be determined by C = exp(MT?).

Now, we consider the stability of the fractional forward Euler method (3.13).

The stability here means that if there are perturbations in the initial conditions,
then the small changes would not cause large errors in the numerical solutions.

For instance, the fractional forward Euler method (3.13) is stable if uj and v;,(j =
1,2,..,n) are two solutions of the method (3.13); then there exists a positive constant
C independent of At and n, such that

|ty — vl < Clug — vol.

Suppose that u(i) (i=0,1,---,m-1)and u;(j=0,1,--- ,k+1) have perturbations
() and i}, respectively. Denote by 79 = Inax {ZT 01 %F(DI + #ﬁy’j’;’; |ﬁo|}. Then we
get the perturbation equation as follows
m—1 ZJ ) ) n
Upy1 +fips1 = ZO ”Til(ug’ +a)) + Al Zobnﬂ,jf(zj,uj +ii)), (3.19)
j= Jj=

We also suppose that f(¢,u) satisfies the following Lipschitz condition
lf(t,u)— fEW|<Llu—v|, L>0. (3.20)

By (3.13), (3.19), and (3.20), one has

|un+1|—|z fi g+ Ar" Zb,n+1<f(r,,u,+u,> ftjup)

j=0

sno+Ar‘*2bj,n+1|f<r,»,uj+aj>—f(rj,uj)| (3.21)
j=1

n
<o +LA¢“ij,,,+1|ﬁj|.

j=1

Applying Lemma 3.3.1 yields
|ite+11< Crpo.

Therefore, we get the theorem below.
Theorem 14 Suppose that uj (j = 1,2,--- ,n+ 1) are the solutions of the fractional
forward Euler method (3.13), f(t,y) satisfies the Lipschitz condition with respect to

the second argument u with a Lipschitz constant L on the existing interval of its
unique solution. Then the fractional forward Euler method (3.13) is stable.

By almost the same reasoning, we can prove that the methods (3.15) and (3.16)
are stable too.
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Remark 3.3.3 In Theorem 14, we have supposed that f satisfies the global Lipschitz
condition, which is a little strong. In fact, if f(t,u) satisfies the local Lipschitz condi-
tion with a Lipschitz constant L (or |%| <L) on the suitable domain, then Theorem
14 still holds. One can refer to [87] for more details.

Next, we investigate the convergence of the methods (3.13), (3.15) and (3.16).
We first consider the fractional forward Euler method (3.15).

Theorem 15 Assume that u(t) is the solution of (3.12), f(t,u) satisfies the Lipschitz
condition with respect to u with a Lipschitz constant L, and f(t,u(t)),u(t) € c'io, 1],
uj (1< j<N) are the solutions of the fractional forward Euler method (3.13). Then

we have
|u(tk+1)_uk+1|SCAt9 k:09199N_1’ (3'22)

where C is a positive constant independent of At and k.

Proof. Denote by e, = u(t,) —u"(n=0,1,--- ,k,k+1). By (2.20) (see also Theo-
rem 2.4 in [32]), we get

<CAt (3.23)

n 1 In+l
At b, u(t}) — —— — ) f(s,u(s))d
a ,20: ) - fo (et — 975, u(s))ds
By (3.12) and (3.13), we get the error equation
1 Tn+1 n
W(tne1) = Unel = 5 f (tns1 =D F(Eu (@) At = M"Y b f(2,3)).
(@) Jo =

Therefore

1 In+1 _ o k
lensil =|5 fo (a1 =07 f(u(0) di = At FZObj,k+1f(tj,uj)|

1 In+l o o n
<l [ =0 - jzzobj,,l+1f(rj,u(r,~))1

n
#AF D bl 5, u1) = f05.) G2
=1
n
<SCAt+ LA™ ) bjpiile)l

Jj=1
n
<CAt+CA® Yy (n+1- ) ey,

j=1

Applying Lemma 3.3.1 leads to the desired result. The proof is completed. O

By similar reasoning, one can prove that the methods (3.15) and (3.16) are con-
vergent of order one.
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e Fractional Adams Method

If [D(;,? f (t)]tztn+1 is approximated by the fractional trapezoidal formula (2.12), the

following fractional trapezoidal rule is derived

m—1 ] n+1

1 —Z 2 <”+Zajn+1f(z,,uj> (3.25)
where
A - (n—a)n+ 1), j=0,
Gl = Fa T (n JH)H 22—+ Dy (-, 1<j<n, (3.26)
« 1, j=n+1.

The above scheme (3.25) is implicit, which needs much more computation. On
one hand, we can use an approximation method to get u,; in (3.25), such as the
Newton iterative method, the Adomian decomposition method [83], and so on. On
the other hand similar to the predictor-corrector method for the ODEs, we first use
(3.13) to get un .1 (predictor), then we use (3.25) to get u,+1 (corrector) by replacing
Uys1 With un 1 on the right-hand side of (3.25), which leads to the fractional Adams
method [27, 31, 32, 33, 82]

m—

j=0
-1
“n+l

t
1
Up+1 = (J) +Zajn+1f(tj9uj) + anit et f(Tne1, 1 n+1)
Jj=0 : Jj=0

ug + Z bins1 ftju)),
(3.27)

Remark 3.3.4 If a = 1, the fractional Adams method (3.27) is reduced to the classi-
cal predictor-corrector method for (3.10)

P
Uy, g =Unt At f(tn, Un),

At (3.28)
Up+1 = ?(f(tn» Up) + f(tn+1 P M5+1)).
Remark 3.3.5 In[117], a predictor-corrector algorithm was presented based on the
generalized Taylor’s formula, which is similar to (3.27), except that the predictor is

chosen as N

MP

il = Unt T+ l)f(tn»un)

Remark 3.3.6 The detailed error analysis of the fractional Adams method is inves-
tigated in [30] and [82], where the error estimates were proved by the mathematical
induction method for the small enough T. Using Lemma 3.3.1, one can easily get
the error bounds for the fractional Adams method (3.27). The stability of the method
(3.27) can be also proved similarly to that of the fractional Euler method, see [87]
for more information.
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¢ High Order Methods

Based on the polynomial interpolation, one can theoretically construct high order
methods for FODEs (3.1) [13, 69, 73, 165].
Consider the discretization of the fractional integral

!
D10 = [ (=5 f(5)as. (3.29)
’ 0
We first let ¢ = #,,41 in (3.29), which yields from (2.16)
n+l n
(Do 7], = D kst fi)+ ) eknat f1, 1) +OAP), (330)
k=0 k=0

where ¢k »+1 and g »+1 are defined by (2.17) and (2.18), respectively.
Then, we choose r =1, 1 in (3.29), which leads to

1 losl
D5 @), 1=@f0 (1 =97 f(9)ds,

)Hj
1= ptia -
_@onf,j (1,1 =9 f(s)ds (3.31)

1 %+% a-1
+@fzn (tn+%—s) f(s)ds.

On each subinterval [#},7;41],7=0,1,---,n—1, f(2) is approximated by the quadric
polynomials defined on the nodes {tj,tj ) stj+1}. On the interval [z, 1 1, f(®) is
with

approximated by the quadric polynomial defined on the nodes {1, 1 - 1 }

Lyt =(tn+1,,1)/2. Let S ={j.j+5.j+1}and §5 = {n.n+ 3.n+ 3}, we obtain

D Fweix), 1€t il

~ keS|
fO=f@)= (3.32)
D WD, 1€t 4]
keS%
where -
w(0) = —L, kes/,
%,k() | lj_[ et €S
zESlJik
and e
— —h n
wa= || = kesy.
lES;J#k
Substituting f(¢) for f(f) in (3.31), we have
n—1
(D55 r0],, =2 D, A+ Y i fw)+0be), (3.33)

2 Jj=0 ](ESJI kES;
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in which
Lj+1
j,k r(a)f n+ %k(s)ds
and
_ n+ 1
1 = F(a)f G nid =) Ynp(s)ds.

Note that we have used the value f(z, 1 ). We find that

3 3 1 3
f@,1)= gf(tn) + Zf(t,ﬁ%) - gf(fnﬂ) +O(Ar).

Therefore, we get the following approximation of [Da‘; f (t)]l:[ 1

n+x

n—1

D3 s, =20 D S+ dif e+ dr, 1)

" s (3.34)
. 3 1
&y |30+ 370, - 5|+ 0,

Suppose that u;,j=0,1,---,n and u},r%,j =0,1,---,n—1 are known. Then, by
(3.30), (3.12), and (3.34), we derive the following high order numerical scheme

m— l[j
n+l A
Mn+21 Z : (]) +Z Z dnkf(tk) + f(tn»un) +dZ+lf(tn+%»un+%)
Jj=0 Jj= OkeS’ 2
d 3 ~ 3 1 (3.35)
1 1> Un) + f(tn+1,u,,+%) Snt1,un+1) |,
m—1 ] n+l
Un+1 _Z n+1 (J)+chn+1f(tk»uk)+chn+1f(tk+ uk+1)

Obviously, the method (3.35) is implicit and nonlinear, which can be solved by
the iteration method. It needs more computational time to get u,+1 and u, 1 from
the nonlinear system (3.35). The predictor-corrector method is a good approach to
present the explicit high order method to solve the nonlinear equation as (3.12),
which costs less computational time.

One simple way is to use the fractional Adams method to obtain u” g1 as a pre-
dictor of u, based on the grid points {zg, 1, ,#,,f+1}. The predictor u Ll ofu,,

+2

can be similarly derived by the fractional Adams method based on the grld pomts
{to,t%,m ,t _%,tﬁ%}. So, u,+1 and un+% can be calculated from (3.35) by replacing

n

Up+1 and 1 on the right-hand side of (3.35) with u,  and “f+1'

Next, we introduce another predictor-corrector method [73] based on the frac-
tional Simpson’s formula (2.16) for (3.1) or (3.12).



Chapter 3 Numerical Methods for FODEs 107

Let ¢t = t,41 in (3.12). By (2.16), one gets the following implicit method

m—1 ] n+1

Uns1 —Z e <f>+chn+1f<rk,uk>+chn+1f<rk+. i 1)s (3.36)

where ¢k »+1 and g ,+1 are defined by (2.17) and (2.18), respectively.

In order to get u,+1 from (3.29), the nonlinear equation about u,.; needs to be
solved. One way to solve this problem is to use the fractional rectangular formula
(2.8) to get the predictor of u,.1, which is given by

mlj

Uy = Z n]+1 (])+an S (T uge), (3.37)

=0

where by = ré—fjl) [(k+ 1)*—k“] is defined by (2.5).
Noticing that u, 1 is unknown, one can also use the fractional rectangular for-
mula (2.8) to approximate u, 1 which reads as

m—

Z i <”+an et ), (3.38)

j=0

where by, 1 = gaipl(n+§ -k = (n—§ —k)°].
Hence, we get the initial predictor-corrector method developed in [73] as follows

m— llJ
Up+l = Z r;l (J)+Zékn+1f(tk,uk)+cn+1n+1f(tn+1, n+1)
=0 7
+Zak,n+1f(tk+%,uk+%>, (3:39)
k=0
m—1 ZJ
Uy = Z n;,l (J)+an e f (ti, ui), (3.40)
=0 7
AN ”’1”% G\
Uy = G +an o f (tes ). (3.41)
=0 7

The error estimate of the above method (3.39)—(3.41) is similar to that of the frac-
tional Adams method. In fact, the implicit method (3.36) has higher order accuracy
due to the quadric interpolation of f if f is smooth enough. If the accuracy of the
predictors u,’; aandu, 1 in the method (3.39)—(3.41) is improved, then one can get

the higher order method. It is easy to prove that the predictor ”5 qandu, 1 in (3.39)-

(3.41) have first-order accuracy. An improved algorithm with high-order predictors
is described below.
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Improved algorithm

Step 1: Use the fractional Simpson’s formula to get the implicit method (3.36) based
on the nodes {tk,tk+% ,k=0,1,---,n—1}U {tn+% }. Replace u,,+1 on the right-hand

side of (3.36) by the predictor u”_, which leads to (3.39).

n+1°

Step 2: Use the fractional Adams method (3.27) based on the grid nodes {t,k =
0,1,---,n+ 1} to get the approximate value of u,1, which is denoted by uf: o
that is given below

m—ltj n
LG
Ve = Z —"JJ; u{{’ + ij,nﬂf(tj,uj)’
-0 J =0
= ! (3.42)
m—1 ,J

7 n

t .

P _ 2 n+l (j) P

U, .1 = Tuo + aj,n+1f(tj»uj) +an+1,n+1f(tn+1»V,H_l)-
j:O : j:()

Step 3: Use the fractional Adams method (3.27) based on the grid nodes {t,k =

0,1,---,npU{z, | 1 } to get the approximate value of u, 1 which is given by
”"”,LL L&
Uy :'Zo j!z ”g)+§€k,n+1f(lk,uk)+€n+1,n+1f(tn+%,uf+%),
. ) (3.43)
P _ "2 () p
| —Z Tuo +an—kf(tk,uk),
Jj=0 k=0
where
1 a+1 1 a 1
(”+7) —£n+§) (”—z—al), 1 k=0,
a+ a+ a+
e R R P
Ckn+l = F(a+2) 5 arl | ot
i)a _3(‘) ’ k=n,
(%) ’ k=n+1.
(3.44)

Therefore, (3.39), (3.42) and (3.43) give the improved algorithm.

If f(t,u) satisfies the Lipschitz condition (3.20) and f(¢,u(?)) is suitably smooth,
one can easily prove that the predictor-corrector method (3.39)—(3.41) is convergent
of order O(A'*7 @), where o(a) = 1 for @ > 1, and o(@) = @ for 0 < @ < 1. The
Improved Algorithm is convergent of order O(Ar'*?7(@) for the suitably smooth
f(t,u(?)), and the high order method (3.35) is convergent of order 0(At3) for suitably
smooth f(t,u(?)).

Remark 3.3.7 According to Lemma 3.3.1, if we want to prove the stability of (3.39)—
(3.41), we just need to prove

max {lexns1ls ek b Bail ba il < Cn+ 10", (3.45)
0<k<n
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TABLE 3.1: The absolute errors at ¢ = 1 for Example 2 by the fractional forward
Euler method (3.13).

1/At a=0.1 a=03 a=0.5 a=0.7 a=09
10 | 6.9223e—-02 | 6.2373e—-02 | 5.6086e—02 | 5.1208e—02 | 4.7865e—02
20 | 3.7760e—-02 | 3.1940e-02 | 2.8002e—02 | 2.5684e—02 | 2.4474e—-02
40 | 1.9692e-02 | 1.5838e—02 | 1.3749e—02 | 1.2762e—02 | 1.2359e-02
80 |9.9614e-03 | 7.7267e—03 | 6.7202e—03 | 6.3292e—03 | 6.2062e—-03
160 | 4.9498e—-03 | 3.7476e—03 | 3.2891e-03 | 3.1418e-03 | 3.1085e—03
320 | 2.4367e—03 | 1.8175e—03 | 1.6155e—03 | 1.5622e—-03 | 1.5552e—-03
640 | 1.1944e—03 | 8.8363e—04 | 7.9654e—04 | 7.7798e—04 | 7.7776e—-04
EOC 1.0287 1.0404 1.0202 1.0057 0.9997

where C is independent of n and k. Obviously, (3.45) holds by the simple calculation.
The stability of the Improved Algorithm ((3.39), (3.42) and (3.43)) can be proved
similarly. Of course, this is also true for the high order method (3.35).

3.3.1 Numerical Examples

This subsection gives some numerical results for the numerical methods in this
section.

Example 2 Consider the following nonlinear FODE

cDy yO)+Y* () = f(1), 0<a<2, t>0, (3.46)
where
_ IO 5o 306 34 TG 34 5 .4, 432
J = r6-a F(S—a)t F(4—a)t +(P =3t"+20)°.

The exact solution is y(t) = £ = 3t* + 21> with the following initial conditions:
O<a<l1,y0)=0.

In this example, we test the fractional forward Euler method (3.13) and the
Adams method (3.27), respectively. The results are shown in Tables 3.1-3.2 . We
can find that the experimental order of convergence (EOC) of the fractional forward
Euler method (3.13) and the fractional Adams method (3.27) are 1 and 2 respec-
tively, which are in line with the theoretical analysis. The EOC here is computed by
the formula: log, %, where E(AL,T) = [W(T) = yy |-

Table 3.3 displays the long-term integration of the two methods (3.13) and (3.27),
where the step size At = le —5 (10000 steps). We can see that the satisfactory and

reliable results are obtained for the three methods in this example.
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TABLE 3.2: The absolute errors at t = 1 for Example 2 by the fractional Adams
method (3.27).

1/At a=0.1 a=03 a=0.5 a=0.7 a=09
10 | 5.4721e—-03 | 4.1744e—-03 | 3.6407e—03 | 3.4025e—03 | 3.2901e—03
20 | 1.4456e-03 | 9.7613e—04 | 8.5514e—04 | 8.1615e—04 | 8.0180e—-04
40 | 3.4634e—-04 | 2.2288e—04 | 2.0346e—04 | 1.9890e—04 | 1.9779e-04
80 | 7.7788e—-05 [ 5.0421e—-05 | 4.8993e—-05 | 4.8957e—05 | 4.9099e—-05
160 | 1.6044e—05 | 1.1214e—05 | 1.1877e-05 | 1.2118e-05 | 1.2228e-05
320 | 2.7132e—06 | 2.3899e—06 | 2.8839e—06 | 3.0090e—06 | 3.0508e—06
640 | 1.5675e—07 | 4.5897e—07 | 6.9794e—07 | 7.4833e—07 | 7.6184e—-07
EOC 4.1135 2.3805 2.0468 2.0075 2.0016

TABLE 3.3: The absolute errors at ¢ = 1 for Example 2 with At = le - 5.

Methods

a=0.2

a=0.5

a=0.8

Forward Euler method (3.13)
Adams method (3.27)

5.7566e-05
1.7998e-08

4.9565e-05
2.1195e-09

4.9614e-05
3.0764e-09

Example 3 Consider the following fractional differential equation

4-a

ré-oa)’

DY y(1) = —y(0) + O<a<1, y0)=0,¢>0.

Its exact solution is
W)= 1 Eq5(=1),
where E,p(z) = Z,‘f’zo /T (ak + B) is the two-parameter Mittag—Leffler function.

We also apply the fractional forward Euler method (3.13) and the fractional
Adams method (3.27) to get the numerical solutions; the results are shown in Tables
3.4-3.5. The numerical results show good agreement with the exact solution.

The long-term integration (10000 steps) is still tested in this example; the results
are shown in Table 3.6, which shows good agreement with the analytical solutions.

3.4 Fractional Linear Multistep Methods

The fractional linear multistep method (FLMM) for fractional calculus was first
studied by Lubich [102, 103, 104], which can be seen as the generalization of the
linear multistep method (LMM) for classical calculus.
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Euler method (3.13).

111

/At

a=0.1

a=0.3

a=0.5

a=0.7

a=0.9

10
20
40
80
160
320
640

4.1205e-03
2.0192e-03
9.8557e-04
4.8052e-04
2.3428e-04
1.1429e-04
5.5794e-05

4.1397e-03
1.9788e-03
9.4634e-04
4.5427e-04
2.1912e-04
1.0623e-04
5.1741e-05

4.2821e-03
2.0515e-03
9.8894e-04
4.8032e-04
2.3490e-04
1.1553e-04
5.7071e—-05

4.5571e-03
2.2207e-03
1.0892e-03
5.3731e-04
2.6625e—04
1.3235e-04
6.5923e—-05

4.9388e—03
2.4550e-03
1.2222e-03
6.0937e-04
3.0416e-04
1.5192e-04
7.5914e-05

TABLE 3.5: The absolute errors at t = 1 for Example 3 by the fractional Adams
method (3.27).

1/At

a=0.1

a=0.3

a=0.5

a=0.7

a=09

10
20
40
80
160
320
640

8.3901e-03
4.0702e-03
1.7756e—03
7.4735e-04
3.1280e-04
1.3159e-04
5.5820e-05

2.8610e—-03
1.0375e-03
3.7406e—-04
1.3656e—04
5.0689e-05
1.9114e-05
7.3069e—06

1.4115e-03
4.4345e-04
1.4182e-04
4.6334e—05
1.5430e—-05
5.2187e-06
1.7863e—06

8.3648e—04
2.3463e-04
6.7031e—05
1.9468e—05
5.7295e-06
1.7035e-06
5.1041e-07

5.6869e—04
1.4543e-04
3.7535e-05
9.7498e-06
2.5432e-06
6.6531e—07
1.7440e-07

TABLE 3.6: The absolute errors at ¢ = 1 for Example 3 with Af = le - 5.

Methods a=02 a=05 a=0.8
Forward Euler method (3.13) | 3.0345e-06 | 3.5706e-06 | 4.5247¢-06
Adams method (3.27) 5.0991e-07 | 2.7219e-08 | 1.8964¢e-09
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In this section, we introduce the FLMM:s for the FODE (3.1). For simplicity, we
consider the case of 0 <a < 1,1i.e.,

cDg u(®) = f(t,u(1), u(0) = uo. (3.47)
The equivalent form of (3.47) reads
u(t) =up+ —— f (1= ) f(s,u(s))ds. (3.48)
If @ = 1, the FODE (3.47) is reduced to the classical ODE as

u'(t) = f(¢t,u(?)), u(0) = uo. (3.49)

It is well known that the p-step LMM for (3.49) has the form

P 14
Dttt = At Y Biflbskotinss), n=0,1,--. (3.50)
k=0 k=0

The first and second character polynomials of the LMM (3.50) read as

P P
PO =Y e @) =) piE
k=0 k=0

Denote by
o(1/£)
w(&) = . 3.51)
¢ p(1/8)
It is also known that the equivalent form of (3.50) can be written as
S
—up = Atz W fltup)+ Ay wilf(,up), (3.52)
j=0

where {w!! )} are the coefficients of the Taylor expansions of the generatmg function
w(&) deﬁned by (3.51). In fact, At 3_g ! D fj,ut) + AL oW y ) f(tj,u(t))) is just
the pth-order approximation of fO[” f (s,u(s)) = [ o f(t,u(t))]l:[

One can also easily obtain
Atw(e™) = 1+ O(APP),

which yields
(Atwe™h)" = (1+0(AP)" = 1+0(AP). (3.53)

The following theorem states that the FLMM for (3.48) has a similar form as
(3.52).
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Theorem 16 ([104]) Let p(¢) and o (&) denote the first and second character poly-
nomials of the pth-order LMM (3.50). Assume that the zeros of 0(¢) have absolute
value less than 1. Let {w](:')} denote the Taylor expansions of the generating function

_ (c/O\? .
w@(€) = ( o /f)) . Then the convolution quadrature

A Zw@ F))+ A Z Q)

is convergent of order p with respect to D = rL.D)7, i.e.,

[reDog @], = [Dosr0],, =" Zw@ J(t)+ A Zw(“)f(t )+ O0(A),

(3.54)
(@)

. . . o
where w, j are starting weights such that the above equation is exact for f(t) =t*,u <

p.
By Theorem 16 one can construct the pth-order FLMMs for (3.48) as follows

o — 1o = AL Zw“‘) S(ju))+ AL Zw(a)f(tj,uj) (3.55)

where wia; are the starting weights that are chosen such that the asymptotic behavior

of the function f(z,u(f)) near the origin is taken into account [28, 104], and w?a) can
be the coefficients of the Taylor expansion of the following generating functions

0(1/5))0
p(1/&)

w@O(g) = ( (3.56)

In fact, w@(z) can be also other generating functions; we just list some often
used generating functions (see also (2.43)—(2.45)) and their convergence orders as
follows

(% —i) , order 2,
w® (&) = [21 7(1 —f)jJ_a ) order p, (3.57)
({ =& ()’0 +y1(1=9+--+y,1(1 —§)p‘1), order p,
where 7y; satisfies

Z%(l ~¢f —( e )

Remark 3.4.1 The fractional order « in (3.56) and (3.57) can be negative. In such
a case, the convolution quadrature (3.54) is just the pth-order approximation of the
(—a)th-order Riemann—Liouville fractional derivative operator.
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It is known that ©'® = O(n®!) and w;a), = O(n®") when the generating functions

(3.56) or (3.57) are used [104]. So the éonvergence of the FLMM (3.55) can be
easily obtained by using the generalized Gronwall’s inequality from Lemma 3.3.1.
See [87, 95, 102] for more details.

Next, we investigate the stability properties of the FLMMs (3.55). For simplicity,
we consider the following linear model problem

DS u(t)=Au(®), O<a<l,
{C 01 (3.58)

u(0) = ug.

The above FODE (3.58) is equivalent to the following Abel integral equation of the
second kind

/l t
u(t)—up = —— f (t—)"u(s)ds, O<a<l. (3.59)
(@) Jo
The more general form of the Abel integral equation of the second kind reads
/l t
ut) =g+ —— | t—9""u(s)ds, O<a<l. (3.60)
@) Jo

The equation (3.59) can be seen as a special case of (3.60). Here we mainly study the
FLMM for (3.60), which reads

Up = gn+ At“/lZwi‘i)juj, n>s. (3.61)
=0
Here wff_)j are the Taylor expansions of the generating functions defined by (3.56) or
S
(3.57), gn = g(t,) + At*A 3, wff;uj, up,u1,- -+ ,Us are given starting values which are
=0 "

usually computed by a different method.

Theorem 17 ([103]) Consider the integral equation (3.60) with geC[0,00) and
|arg A —m|<(1 - %a)ﬂ. Then there exists a unique solution u € C[0, c0) which satisfies
(a) u(t) — 0 as t — oo when g(t) has a finite limit as t — oo.
(b) u(t) is bounded on [0, 00) when g(t) is bounded.

In the following, we introduce several concepts of stability based on Theorem 17
which extend the classical stability concepts [103].

Definition 12 The FLMM (3.61) is called A-stable if the numerical solution u, given
by (3.61) satisfies

u, — 0 as n — oo whenever {g,} has a finite limit

for every stepsize At and for all A in |arg A —m|<(1 — %0/)71', the analytical stability
region of (3.60).
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Definition 13 The stability region S of the FLMM (3.61) is the set of all complex
7 = At® A for which the numerical solution {u,} given by (3.61) satisfies

u, — 0 as n — oo whenever {g,} has a finite limit.

The method is called strongly stable, if for any A with |argAd — r|<(1 — %a)n there
exists ho(A) > 0 such that At® A is constrained in S for all 0 < At < hy(A). The method
is called A(0)-stable if S contains the sector |argd—n| < 6.

Theorem 18 ([103]) If wff) is the coefficients of the Taylor expansions of w'® (&)

with
@ _ na—l

W = Fa (n=1) with ;|vn|<00, (3.62)

then the stability region of the FLMMs (3.61) is

C\{1/w@e) < 1)

Proof. In order to prove this theorem, we need the following two properties.

(a) (Wiener’s inversion theorem) If {a,} is in £! and a(¢) = 3 a,&" # 0 for |£]<1,
n=0
then the coefficients of the Taylor expansions of 1/a(¢) is again in £!.

(b) Assume that the coefficients of the Taylor expansions of a(¢) is in £'. Let
|€0] < 1. Then the coefficients of the Taylor expansions of

a(é) —a(é)

b =
© &=%o

converge to zero.

Let z = At®A. Since 0 is neither contained in the stability region S nor in § = C\
{1/w=9(€) : |¢€]< 1}, we can from now on assume z # 0. In terms of the corresponding
power series we can rewrite (3.61) as

u(é) = g(&) + W (Eu(é),

or equivalently,

1 =&)X
o= 8O (-9

_ - , 3.63
1—z2w@(&) (1=l —zw@(&)] (3.6)

where

o)

U@ = ut", 9= ignf".
n=0

n=0

Next, we prove that § ¢ S. By the property (a), the sequence of the coefficients of
the Taylor expansions of (1 —&)?[1 —zw@(¢)] is in £'. If z€ §, we have

1-z2w @@ £0 for |£<1 with £#1.
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Since .
(—1)"(_:) = ;ﬁ Sl o), (3.64)
the condition (3.62) is equivalent to
w® = % +v, (n=0) with glvnl < oo, (3.65)
Hence -
W@ = (1= +v(), v&) = Zovnf". (3.66)

Therefore, (1 —&)?[1 —zw@(&)] = (1 = &)?[1 — zv(€)] - z, which leads to
A= 1 - PE]#0 for &#1.

Wiener’s inversion theorem now yields that the sequence of the coefficients of the
Taylor expansions of

1
(1 =61 —zw®(&)]

Let 2, = g, — gco, SO that we can write

isin £ (3.67)

g(&) = 1% +3(6).

We now show that the coefficient sequence of
(1-8)8(&) = (1= foo + (1= €)°8(©)

converges to zero. By (3.64), the coefficient sequence of (1 —&)®~! tends to zero.
Also the coefficient sequence of (1 —&)*g(£) converges to zero, since the coefficient
sequence of (1 —&)® is in ¢! and

'« Cyc Co, (3.68)

where * denotes convolution, and Cy is the space of sequences convergent to 0; for-
mula (3.68) is a result of dominated convergence (see [121]): for {I,} and {d,} € Cy

we have
n

nh_)I{.l<J ljdn_j =0.
j=0
Using (3.63), (3.67), and (3.68) we can finally conclude that the coefficient sequence
{u,} of u(¢) tends to zero. Hence z € §'.

In order to prove that S is exhausted by § we assume that

1—zw(&) =0 forsome |&|<1. (3.69)
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By assumption (3.66) we have &) # 1. We show that z ¢ §. We choose

A-8% _d-"-d-&)" (-1
&=¢%o &=¢%o &=%o

The coefficient sequence of the first expression of the sum tends to zero by the prop-
erty (b) whereas the coefficient sequence of

ﬁ - _ Zfan—lfil

n=0

u&) = (3.70)

diverges. Hence {u,} also diverges. From (3.63), (3.69), and (3.70) we obtain

8@ =[1 -2 O = (1 -1 2w (N1 =)™ u()
_ (1= = 2w @] = (1 = &)1 2w V()]
- £-% '
Now the property (b) yields g, — 0, but, as we have seen before, u, + 0. Hence
z¢S. O

Corollary 3.4.1 If the FLMM (3.61) with the condition (3.62) is used, and At* 1€ S,
then
{u,} is bounded whenever {g,} is bounded. (3.71)

Conversely, if (3.71) holds, then At* A€ S is contained in the closure of S.
Corollary 3.4.2 The FLMM (3.61) with the condition (3.62) is strongly stable.

In [103], Lubich proved that there is the order barrier for the A-stable method
(3.55), which is the same as that of the LMM for ODEs [20]. The result is given in
the following theorem.

Theorem 19 ([103]) The order, p, of an A-stable FLMM (3.61) with the condition
(3.62) and (3.53) can not exceed 2.

Remark 3.4.2 Obviously, Theorems 18 and 19, Corollaries 3.4.1 and 3.4.2 hold for
FLMM (3.55) when f(t,u) = Au(?).

As is known, the backward Euler method and the trapezoidal rule are two A-
stable numerical methods for the ODE u/(f) = Au(t), Re(1) <0, u(0) = ug. Next, we
study the corresponding methods for the FODE (3.58). Let us first introduce two
lemmas.

Lemma 3.4.1 ([104]) If y(t) = 1 v>0, then
n
Dysy(@),, =7 Z W' () + O(APP) + O(AF),
k=0

where w](:') can be the coefficients of the Taylor series of the generating functions

defined as (3.56) or (3.57).
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Lemma 3.4.2 ([168]) Denote by
n
= A" w0l Gtk ), (3.72)
k=0

where {w;(a)} are the coefficients of Taylor expansions of the generating function
w@(z) defined by (3.56) or (3.57). Then, (3.72) is equivalent to the following equa-
tion

n n
D Okttt =AY 61 Gt ) (3.73)
k=0 k=0

where wy and 6y are the coefficients of the Taylor expansions of a(z) and 6(z) satisfy-
ing w9 (2) = 6(2) | w(z).

Proof. We first rewrite w(?)(z) = 6(z)/w(z) into the following form

(Sud) D)= Yo
k=0 k=0 k=0
which yields

m
O = W wnk, Mm=0,1,-n, (3.74)
k=0

m
By (3.72), one obtains u,, = At* wﬁg_)kG(tk,uk). Hence, we have
k=0

n n m
Z Wp—mUm = Z Wn—m [Ata Z wf:sz(tk, uk)] (3.75)
m=0 m=0 k=0

Rearranging the right-hand side of (3.75) and using (3.74) yield the desired result.
The proof is completed. O

Using Lemma 3.4.2, the FLMM (3.61) can be written in the following equation

n n n S n
D npt = ALY Oy i+ AT i Y W uj+ Y wkgl). (3.76)
k=0 =0 k=0 =0 k=0

Denote by

W = (- (3.77)

11+&\*

(@) .
= [=—2] ; 3.78
@) (2 - 6) (3.78)

_ a «a

W@ = a-o1-5+ 3¢, (3.79)
Next, we study these three cases of generating functions WEQ)(z),i =1,2,3, which

yields the absolute stable numerical methods for (3.58).
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By Lemma 3.4.2, we obtain the equivalent form of (3.61) as follows

n n

D kltni = gut) = ALY Oy (3.80)

k=0 k=0

Hence, one can obtain the FLMM for (3.58) as
n n

D ki = 1tg) = AN )" Oyt (3.81)
k=0 k=0

e Case (1): If the generating function (3.77) is used in (3.61), then w(¢) and 6(&)
in Lemma 3.4.2 are chosen as w(¢) = (1 —¢)* and 6(¢) = 1. Thus, w; and 6; in

(3.81) are given by w; = (~1)/() and 6 = 1,6, =0, j > 0.

o Case (2): If the generating function (3.78) is used in (3.61), then w(¢) and 6(¢)
in Lemma 3.4.2 are chosen as w(¢) = (1 - &)® and 6(¢) = 1. Thus, w; and 6; in

(3.81) are given by w; = (—1)1(‘;) and 6, = (;L)j wj.

o Case (3): If the generating function (3.77) is used in (3.61), then w(¢) and (&)
in Lemma 3.4.2 are chosen as w(§) = (1 —¢)* and 6(¢) = 1. Thus, w; and 6; in

(3.81) are given by w; = (~1)/(9) and 6 = 1 - $,61 = §,6,=0,j > 1.

Obviously, the method (3.81) is reduced to the classical Euler method for the
classical ODE under the condition of Case (1) with @ = 1. And the method (3.81) is
reduced to the classical trapezoidal rule under the condition of Case (2) or Case (3)
with @ = 1. We can directly prove that the method (3.81) is absolutely stable under
the condition in Case (1), Case (2), or Case (3).

Lemma 3.4.3 ([55]) Let wi = (=1)%(}).0 < @ < 1. Then we have

w():]’ wl’l<0’ |wn+1|<|wn|’ n:1’2"“’

(o) n
woy = —Zwk> —Zwk >0, n=1,2,---,
k=1 k=1

b _"21 _ ITn-0  n®
LT Aol T - a)

(3.82)

+0(n~'"%),  nsuitably large.

Furthermore, b, —b,_| = w, <0 forn>0, i.e., by<b,_i.

Theorem 20 Let u,, be the solution to the method (3.81) under the condition in Case
(1), Case (2) or Case (3), gr = ug, and 1 < 0. Then

leage| <luol- (3.83)

Proof. We only prove |ux| <|g|w under the condition of Case (2), the other two
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cases are very similar so are omitted here. Under the condition of Case (2) and
Lemma 3.4.3, we can rewrite (3.81) as the following form

1

RN Ty

{Z(bk_l —by) [1 - /lAt“(—l)kZ‘”] Un_i + bnuo}. (3.84)
k=1

Note that if wy = by —by_1 <0 and A < 0, one has

n

jtal < 3 (biet = D)l + by, (3.85)
k=1

Next, we use the mathematical induction method to prove (3.83). Let n =1 in (3.85)
yields |u| <(bg—b1)luo| + b1luo| = |up|. Suppose that (3.83) holds for 0 < n < m. Next,
one needs to prove that (3.83) holds for n = m. From (3.85)

|“m|<Z(bk 1= b)lum—i| + bylug| < Z(bk 1 = b)luol + byluol = |uol. (3.86)
] =1

Hence, (3.83) holds for any n > 0. The proof is completed. O
Next, we consider the convergence of the FLMM (3.81) applied to the FODE of

the form

Dy u(t) = f(t,u(t) = Au(t) + g(1), u(0) = uo. (3.87)
Assume that the analytical solution u(¢) to (3.87) is suitably smooth. We first trans-
form the FODE (3.87) into the following integral equation

u(t) —u(0) = Dy f(t,u(t)) = ADgFu(?) + Dy g(0). (3.88)

i’ (0)

For u(f) € C*([0,T1), one has ¢ D u(f) = 5 251!~ + D @~ (1). Using Lemma
3.4.1 yields

u(ty) ~u(0) = [DgY fEu(@)| _, =Mt wa?kf(rk,u(rk»u%n, (3.89)

where R, = O(I,l,_p AP) + O(I;'{‘IAZ2_“) for p = 1 with the generating function (3.77),
and p = 2 with the generating function (3.78) or (3.79).
Applying Lemma 3.4.2 yields the equivalent form of (3.89) as

1 & " 1 & .
v ;Own_k(u(tk) —u(0)) = ;Oen_kf(rk,u(rk» v ;Own_kzek. (3.90)

Whether or not the generating function (3.77), (3.78), or (3.79) is used, we always
have wy = (—1)"(2’), and

Ru= s an (R = AP~ QZwT O(K! p)+Atan 0K, (391
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Exactly speaking, R" has the following expression

O(n~“Ar'™®), p =1 with (3.77) used, (3.92)
" lom A, p =2 with (3.78) or (3.79) used, '
where we have used the following relation [104]
n
an_ka—I =0 " +0m™ Y, y#-1,-2,---. (3.93)

k=1

Let uy be the approximate solution of u(#;). Then we can obtain the numerical
methods for (3.87) as follows

1 n n
g D On k= u0) = D Oy flak.wp). (3.94)
k=0 k=0

where wy = (—l)k(‘,f), and
6o=1,0,=0,k>0, p=1with(3.77) used, (3.95)
1
O = 2—0(—1)kwk,k >0, p=2with (3.78) used, (3.96)

fo=1— %,91 - %,ek —0,k>1, p=2with(3.79)used.  (3.97)

Similar to the proof of Theorem 20, one can prove that the FLMM (3.94) is
unconditionally stable under condition (3.95), (3.96), or (3.97) if f(¢,u(t)) = Au(?) +
g(?). And the global convergence rate is O(Atl_c’).

Theorem 21 Ler u € C%([0,T]) be the solution of (3.87), and uy,k > 0 be the solution
of (3.94) with condition (3.95), (3.96), or (3.97). Then there exists a positive constant
C independent of n such that

u(ty) — tn| <CAL' . (3.98)

Proof. We only prove the error estimate for (3.94) with the condition (3.95); the
other two cases are almost the same. Let e; = u(t;) — ur. Then we can derive the error
equation below

n
D wn e = A ey + ARy, (3.99)
k=0
By Lemma 3.4.3, we can rewrite the above equation into

t(Y

Z(bkl_bk)enk+ A g, (3.100)

n = — A

/lAt

Next, we use the mathematical induction method to prove that

len| <ClR|o = C max |Rg|. (3.101)
O<k<nr
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Forn =1, by ¢p = 0 and A < 0, one has from (3.100) |e;| < At*|R;| < C|R|w. Suppose
that (3.101) holds for O < n < m. For n = m one has

102

1 L At
len] < T- A" k:Zl(bk—l —bp)lem—k| + WUM
< > bkt = b)lem—il + ChylRleo (3.102)
k=1

< > (b1 = BOCIRlo + ChylRleo = CIRlco.
k=1

Hence (3.101) holds for any 0 < n < ny. Hence |e,| < Cmaxo<k<ny [Ri| £ CAt'=® The
proof is completed. O

It is known that the Euler method and the trapezoidal method for the classical
ODE are of first-order and second-order accuracy for the smooth solutions. Next, we
can construct the corresponding schemes for the FODE (3.87). We just need to make
an improvement of (3.94) to get the desired schemes.

e Improved algorithms I:

From (3.88), we have

u(t) - u(0) = ADG? (u(r) - u(0)) + ?(”fl)tf) + D). (3.103)
Applying Lemma 3.4.1 to (3.103) yields
u(ty) = u(0) =2 D (®) - u(O))] _, + ?(” 2% tl) [D5ee],,
AL Zw(“) (u(t) — u(0)) + ?(“((fi ek,

where G,, = [ 0 [g(t)] R, = O(IHQ PAP) + O(I"_lAt ) for p =1 if the generating
function (3.77) is used, and p =2 if the generating function (3.78) or (3.79) is used.
Applying Lemma 3.4.2 yields the equivalent form of (3.104) as

an Ku(t) - uo)—ﬂZH (1) + AByuo + A@Z“’" (Gr+Ry, (3.105)

@
At P

in which w = (-1)*({). and 6 is defined as in (3.95)~(3.97), B, is defined by

r(11+a)Z wn-ik* —ZGk, (3.106)
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and R" is given by

1 n R n n
Ru= < D iR = A Y w0, O ) + A1 Y w0, O™, (3.107)
k=0 k=1 k=1

By (3.93), we can obtain

O(Ar), p =1 with (3.77) used,
= " ) (3.108)
O(n " Ar), p=2with(3.78)or (3.79) used,
From (3.105), we derive the improved algorithms for (3.87)
1 n n 1 n
v Z Oyl = /IZ On-tttx + AByto + 5 an_ka. (3.109)
k=0 k=0 k=0

Note that B, = O(n~!). Similar to the proofs of Theorems 20 and 21, we can
prove that the improved algorithm (3.109) is unconditionally stable and convergent
of order 1. In the real computations, one can find that the improved algorithm (3.109)
can attain second-order accuracy if the generating function (3.78) or (3.79) is used,
since the local truncation error R, = O(n~'Ar) has second-order accuracy when 7 is
big enough. One surprising finding is that the average error satisfies

J AtZ lu(ty) — uil? = O(AF)
k=0

when the generating function (3.78) or (3.79) is used.

o Improved algorithms II:

Now we introduce another two improved algorithms for (3.87) such that the conver-
gence rate is of order two when the solutions are smooth enough.

We still consider the discretization of (3.103). We use the FLMM (3.54) to dis-
cretize D ”‘(u(t) 1(0)) in (3.103), which gives

[ Do () - u(O))]t: = A1 Z w®, (ut) = u(0)) + AW (u(ty) — u(0)) + O(SAP),

(3.110)
where w](:') are the coefficients of the Taylor expansion of the generating function
(3.78) or (3.79), wilal) is the starting weight such that (3.110) is exact for u(¢) = t,
which is given by

. T i

- — (ﬁ) a-1 111
Wl r2+a) k on“ ). (3.111)

k=1
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From (3.103) and (3.111), we can derive the following discretization
Au(0)ty
I'a+1)

u(ty) ~u(0) =4 [Dyf () ~u(O))] _, + +[D5ie0]_,

n,l

—AA® Z @@ (u(te) = u(0)) + AW (u(tr) - u(0)) (3.112)
k=0

Au(0)t N
+G,+ Ry,
T+ " "
where G, = [Da,(tlg(t)]mn R, = o(ty AF?), and the generating function (3.78) or (3.79)

is utilized.
Applying Lemma 3.4.2 yields the equivalent form of (3.112)

+

1 n n
o D ©n-k(u(1x) = 10) =2 ) G-j(r) + AByuto + A, (u(ty) = o)
k=0

k=0 (3.113)

1 n
+ A_ta/ an_ka + Rn,
k=0

in which w; = (-1 )k(z), and 6 is defined as in (3.96)-(3.97), B, is defined by (3.106),
C, is defined by

- I'(2)
C, = Z wn—szal) =
= g I'a+2) par

n

Ok = Y k= 0™, (3.114)
k=1

and R" is given by
1 n R n
Ru= 3 an_kRk = AP an_kO(k“) = 0(AP). (3.115)
k=0 k=1
From (3.113), we obtain the improved algorithm for (3.87) below

1 & n
F Z Wy (g — ug) =4 Z On—tty + ABug + AC, (11 — up)
k=0

k=0 (3.116)

1 '
+ AL Z U)n—kG )
At =

where wy = (=1)¥(§), 6 is defined as in (3.95)~(3.97), and B, and C, are defined by
(3.106) and (3.114), respectively.

Since B, and C, in (3.116) satisfy B, = O(n~!) and C, = O(n~"). So one can
similarly prove that the improved algorithm (3.116) is unconditionally stable and
convergent of order two.

Other related works on the linear stability of the model problem (3.58) can be
found in [53, 54, 55, 58, 59], where the linear stability with the stability region of
the explicit Adams multistep methods, the fractional Adams—Moulton methods, and
the predictor-corrector algorithms were investigated. The implicit Adams product
quadrature rules and their stability properties were studied in [103].



Chapter 4

Finite Difference Methods for Fractional
Partial Differential Equations

In this chapter, several kinds of finite difference methods are derived for fractional
evolutional equations, including time-fractional equations in one space dimension,
space-fractional equations in one space dimension, time-space fractional equations
in one space dimension, and fractional partial differential equations in two space
dimensions. Numerical examples are presented which are in line with the theoretical
analysis.

4.1 Introduction

This chapter is divided into four sections. In the first section, we investigate the
finite difference methods for the time-fractional equation in one spatial dimension,
for example see [11, 35]. In the second section, we construct the finite difference
methods for the space-fractional equations in one spatial dimension, e.g. [145]. In
the following section, we derive the finite difference methods for time-space frac-
tional equations in one space dimension, say, [10, 101]. In the last section of this
chapter, we establish the finite difference methods for the two-dimensional case, for
example, see [4]. Some other topics, such as the homotopy perturbation method for
solving fractional differential equations [93], inverse problems for fractional differ-
ential equations [153], etc., are not going to be presented in this book.

4.2 One-Dimensional Time-Fractional Equations

Denote by I = (a,b). Let At be the time step size and nr be a positive integer
with At = T/nr and t, = nt for n = 0,1, ,n7. Denote by tn+21 = (t, + tys1)/2 for
n=0,1,---,n7 — 1. One can define the space step size Ax = (b—a)/N, N is a positive
integer. The space grid point x; is given by x; = a+iAx,i =0,1,---,N. Let Xyl =

125
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(xj + xi+1)/2. For the function U(x,)e C(I X [0,T1]), denote by U" = U"(:) = U(-,t,)
and U} = U(x;, ).

Next, we introduce the following notations that will be used in the description of
the numerical schemes.

ur . —yr Un —2U0"+U"

UL, == SUf = = = (4.1)
e L U{1+1_U{1

sUTT = L L 4.2

' A 4.2)

Next, we list some formulas for the discretization of the Riemann—Liouville
derivatives and Caputo derivatives.

e The yth-order (y > 0) Riemann-Liouville derivative of U(¢), t€(0,T] att =1,
can be discretized by the Griinwald—Letnikov formula

LU = o Za}” U, e =(-1 )"(Z). 43)

e The yth-order (0 <y < 1) Riemann-Liouville derivative of U(r), r7€(0,T] at
t = t, can be discretized by the L.1 method as

o k+ DY =k
ko T2-y)
(4.4)

The yth-order (0 < y < 1) Caputo derivative of U(¢),t€(0,T] at ¢t = ¢, can be
discretized by the L.1 method as

n—1 _
Ll My _ 1 (y) k+1 k n”’ 0
6 U — b v -uH+—U"],

1 [© (k+ 1)y -k
LI Wy _ ) k+1 k ) _
¢o7U" == [,;_ b”, (U U)] b; = —Tay) 4.5)

e The yth-order (y > 0) Riemann-Liouville derivative of U(¢), t€(0,T] att =1,
can be discretized by the fractional backward difference formula (BDF) as

B (y) n_ (—=y) 7k
BsVy MZ“’ Uk, (4.6)

where wl((_” are coefficients of the Taylor expansions of the generating func-

tions w, ) (2) defined by

P
_ 1 ,
WE, Y)(Z)=(wp(z))y, wp(2) = Z;(l—z)’, p=12---6. 4.7

=
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e The ath-order (a > 0) left Riemann—Liouville derivative of U(x), x€(a,b) at
x = x; can be discretized by the Griinwald-Letnikov formula as follows

1 < fa
6PU; = A Zwi‘a)ui—j, wi‘a) = (—1)](].)- (4.8)
=0

e The ath-order (@ > 0) right Riemann-Liouville derivative of U(x), x€(a,b) at
x = x; can be discretized by the Griinwald-Letnikov formula as

N—i
1 {a
wUi= g ) Uy = (_1),(j)_ (4.9)
J=0

4.2.1 Riemann-Liouville Type Subdiffusion Equations
Consider the following type of time-fractional diffusion equation

a,U = reDy,” (Ky 02U )+ f(x.0),  (x.0) € (a.b)x (0.T],

U(x,0) = ¢o(x), xE€(a,b), (4.10)
U(a,n) = U,(1), Ub,t) = Up(t), t€(0,T],

where K, >0and 0 <y < 1.

Clearly, if y — 1, the above equation is reduced to the classical diffusion equation.
It is known that there are many numerical techniques to solve such an equation, such
as the forward and backward Euler methods, the Crank—Nicolson method, etc. For
the subdiffusion equation (4.10), there also exist several analogs such as the forward
and backward Euler methods, and the Crank—Nicolson methods.

Since the spatial direction is the classical second-order differential operator, al-
most all the classical numerical methods (such as the finite difference method, the
finite element method, the spectral method, the discontinuous Galerkin method, etc.)
can be used to discretize the space derivative of (4.10). Here we mainly focus on the
time discretization of (4.10). In the following, the second-order spatial derivative in
(4.10) is discretized by the second-order central difference method for brevity.

4.2.1.1 Explicit Euler Type Methods

The explicit method is particularly of interest because of its simplicity, easy im-
plementation, and low cost in real computation. Like the explicit Euler method for
the heat equation (y = 1 in (4.10)), we can present the corresponding explicit method
for the fractional subdiffusion equation (4.10), which can be seen as an extension of
the forward Euler method.

Letting (x,7) = (x;,t,) in (4.10) leads to

U (xistn) = Ky (RLDy, 02U ) (X1 1) + f (i ). (4.11)

The integer-order time derivative and fractional derivative in (4.11) are discretized
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by the forward Euler method and the Griinwald-Letnikov formula, i.e.,

U(xi,tnr1) — Uxi, tn)

1
;U (xisty) = m +0(AN = 6,U 2+ 01, (4.12)
(RLDy, 92U ) (xist) = FL6; (G20 (xi)) + O(AD), (4.13)
where GL(SEI_V) is defined by (4.3), and the space is discretized by the central differ-

ence scheme, i.e.,
U (xi,ty) = 2U™(x;) = 62U + O(AX?). (4.14)

Hence, one can obtain
1
§UTT = KOs VG20 + 1+ O(At+ Ax). (4.15)

Replacing U7 by ] and neglecting the truncation error in the above equation, one
can get the following explicit Euler method for (4.10) as: Find ul'.'”(i =1,2,---,N—
1,n=0,1,--- ,ny— 1), such that

(5;u:.l+% = KOy + £, i=1,2,,N=1, n=0,1,---,np -1,
ud = go(x;), i=0,1,2,---,N,
MG = Uq(tn), u;lv = Up(tn),
(4.16)
where GL&EI_Y)iS defined by (4.3).

Of course, the fractional derivative can be approximated by other methods such

as the fractional BDF methods (see [104], GLcSﬁl_") in (4.16) is replaced by gaﬁl‘”

defined by (4.6)) or the L1 method (see Eq. (2.63), 25" in (4.16) is replaced by
IglLégl_y) defined in (4.4)), which lead to the different schemes that have similar forms
as (4.16); we do not list these methods here.

If y = 1, method (4.16) is reduced to the classical forward Euler method.

Letu= Kgfzﬂ. Then method (4.16) can be written as

n
u?” =u] +y2w§ll__ky)(uf+1 - 2u{-‘ + uf_l) +ALf!". 4.17)
k=0
Therefore, the unknowns u?” can be solved if u{‘ (k=0,1,---,n) and fl.” are given.

Next, we analyze the stability of the explicit method (4.16). There are several
methods for the stability analysis, such as the energy method [56], the Fourier method
(also called the fractional von Neumann analysis) [18, 24, 160, 161], and the matrix
method [98]. The Fourier method is relatively simple, which is suitable for the linear
equations with constant coeflicients. Therefore, we first use the Fourier method for
the stability analysis for scheme (4.16).

The fractional von Neumann analysis for the stability analysis of scheme (4.16)
is illustrated below.
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Let £ =0 and u* = pre/7%(j> = —1). Inserting u* into (4.17) yields

., [0Ax\ v _
Pn+1 = pn—4u st(T)Zw;l_ky)pk. (4.18)
=0

According to the von Neumann method [24, 161], we can first assume that p,,..1 =
&(0)py, and €(o) is independent of time. Then (4.18) implies a closed equation for the
amplification factor £ as:

1 apusin? [ Z25) 37 it 4.19
g_—,usmTZwkf. 4.19)
k=0
If |€] > 1 for some o, p, grows to infinity and the method is unstable. Considering the
extreme value £ = —1, we obtain from (4.19) the following stability bound on yu:

A 1
usin® (o-zx) <— =Syn. (4.20)
23 off V1

The bound defined by (4.20) depends on the number n of iterations. Nevertheless, this
dependence is weak: S, approaches S, = lim S, , in the form of oscillations with
n—oo

small decaying amplitudes [161]. Since };7 w](cl_”z‘k =(1-zHl7r= w(ll_”(z‘l)
(see the first equation in (2.43)). Therefore, we find that the explicit method (4.16) is
stable as long as
A 1
psin? [ 28 ) <5, = — — 4.21)
2 2W(1_7)(_1)
1
Since sin’ ((’TAX) <1, we can give a more conservative but simple bound: the explicit
method (4.16) is stable when
K, At 1

1
M= <§,= — =5
A T Iy 22

(4.22)

Obviously, the stability bound in (4.22) is reduced to that of the forward Euler
method if y — 1.

If the fractional derivative is discretized by the fractional backward difference for-
mula (see (4.6)), i.e., GL&EI_Y) in (4.16) is replaced by gégl_”, one can obtain a series
of explicit methods. For example, for p = 2 with wi' 7(z) = (3/2-2z+7%/2)'~7, one
can obtain that the explicit method (4.16) is stable when
_K,AY o 1 1
H= A2 7T 2W(21—y)(_1) R

(4.23)

Next, we consider the convergence. Let e} = U(x;,1,) — u}. Then one can derive
the error equation from (4.15) and (4.16) as

n—1
e?H = +p Z will_;y)(efﬂ - 26? + e{'(—l) + AR} (4.24)
k=0
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Lete? = 1 elTIAY R} = PelTY and y* = 4y sin® ((’TAX) Then one has

n
* 1-
Mur = =4 @ M+ At (4.25)
k=0

From (4.15), we find that the local truncation error of the method (4.16) is
O(At(At + sz)). It is a little difficult to prove the global truncation error. In the fol-
lowing sections, some techniques will be introduced to prove the convergence of the
numerical schemes for the subdiffusion equation (4.10).

4.2.1.2 TImplicit Euler Type Methods

The idea for constructing the backward Euler method can be extended to establish
the corresponding method for the subdiffusion equation (4.10).

In (4.11), if the integer time derivative, the Riemann—Liouville derivative, and
the space derivative are approximated by the backward Euler formula, the Griinwald—
Letnikov formula, and the central difference method, respectively, i.e.,

U(-xi’ tn) - U()Ci, tn—l)

U (xi, 1) = v +0(AN =6, U?‘% +O(Ar), (4.26)

(RLDy, 02U ) (xista) = CL6) ™V (2U" (x1)) + O(AD), (4.27)

U (xi, 1) = 52U + O(AXP), (4.28)
where GL&EI_Y) is defined by (4.3), then one can obtain

1

sU; = KOs (G0N + £+ O(A + AXP). (4.29)

Removing the truncation error O(At + Ax?) in (4.29), and replacing U lk with uf.‘,
we can obtain the backward Euler method for (4.10) as: Find u}(i=1,2,--- ,N-1,n=
1,---,n7), such that

s} 7 = K,OLs TSl f1, = 1,2, ,N- 1,

u? =¢o(xi), i=0,1,2,---,N, (4.30)

MG = Uq(tn), u;lv = Up(tn),
where GL&EI_Y)iS given by (4.3).
Next, we give a simple implementation of the method (4.30). We first rewrite the
scheme (4.30) as

1 1

n
— 1-
W= e > Pl = 2kl )+ A (4.31)
k=0
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where p1 = K, A" /Ax*. Denote Ey € RV as the identity matrix, and

10
0 0
B=|: : , (4.32)
0 0
0 1 (N=1)x2
(2 1 0 - 0 0
1 =2 1 -« 0 0
0 1 -2 - 0 0
N . (4.33)
0 0 0 - -2 1
0 0 0 - 1 =2

HN-1)X(N-1)

Letw” = (@, )7 0 = @l uld)” = Ualtn), Up(t))T s and £ = (1, f3_ )T
Then the matrix representation of (4.31) can be written as

n—1
(En-1 =S y-nu" =u"" 4 > o5V (S v luk>+ﬂ2w“ 2 (Bub) +£".
k=0

We consider the stability of the finite difference scheme (4.30). The Fourier
method and energy method are two powerful tools for the stability and con-
vergence analysis of the numerical methods for fractional differential equations
[18, 160, 161, 183]. We mainly focus on the stability analysis, and the convergence
analysis is somewhat equivalent to the stability analysis for the linear problems.

e Fourier method

We first use the Fourier method [18, 160, 161] for the stability analysis of the method
(4.30).
Let us rewrite the scheme (4.30) as the following form

1 1

A +ﬂzw“ Dk =2k )+ A, (4.34)

where y = KyAty/sz. Supposing that u} has perturbation @, we can obtain the
perturbation equation as follows

1

iy =iy +ﬂZw(l y)(ul+1—2u +uk D- (4.35)

Letting i = p,e/7"4*(j% = —1) and inserting " into (4.35), one gets
A Ax\ v (-
1+4u sin? el Pn = Pn-1—4u sin’ el Zw,((l Y)p,,_k. (4.36)
2 2 —

Next, we introduce a lemma which is useful to prove that |p"| <|p°| from (4.36).
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Lemma 4.2.1 ([18]) Let wil = (—1)"(1?’),0 <y < 1. Then one has
Wy =1, W7 <0, k>0;
o] n
_ _ (4.37)
Zwl(cl V) = 0, —Zw](: " < 1, neN.
k=0 k=1
Based on the above lemma, we give the following stability theorem.
Theorem 22 The finite difference method (4.30) is unconditionally stable.

Proof. We use the mathematical induction to complete the proof. Let u* =
4usin ("A") Then we have from (4.36)

_ 1! [T e
pn-lw*pn_l—lwztuk ok (4.38)

For n =1, it follows from (4.38) and Lemma 4.2.1 that

x (1=
- ”||p0|: 1+u*(1-7)

1+pu* 1 +pu

o1l = lool <lol- (4.39)

Suppose that |ox| <|po| (0<k<n—1). For k = n, we get from (4.38) and Lemma 4.2.1

1—
loal< o1+ 75 *Z| 0" lonsl
1 |
<7 *|,00|+ ool
+u
(4.40)
(1-y)
ryy Clool + 74 { Zw ]Ipol
/.l*
< = .
1+u lool + 1+'u*|,00| ool

Therefore, |p,| <|po|- The proof is completed. O

¢ Energy method

Now we introduce the energy method to prove the stability of the scheme (4.30). Let
u = (ug, Uy, - ,uN)T andu” = (ug,u'f, e ,u’;V)T. Denote by the discrete inner product
(-,-)n and the norm || - ||y as

N_
(w,v)y =Ax Y wv;, u,veRNDxI
i=0
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and
[lully = v(u,u)y. (4.41)

For brevity, we also introduce the following notations

N-1
(8,0,6,V)y =sz Gxtty, 6.V, 4
i=0

NZl (4.42)
(S3u, V)y =Ax Y (S3up)vi,
i=1

|u|1,N =V (0yu,0u)y.

Lemma 4.2.2 Let u = (ug,uy,--- ,uy)’ and v = (vo,vi,--- ,vN)T. If up =un =vo =
vy =0, then
(670, V)N = (U, 67V)N = —(6,1,6,V)y.

Proof. It is easy to calculate

N-1 N-1

(5)2611,V)N =sz v,-éiu,- = Z v,(6xul+_ 6xul._%)
i=1 i=1
N-2

N-1
= Zv,-&xupr% Z Vit10x Upy)
—

i i=0

) %—vaé ul+
i=0

-1
—Z(Vm Vi)t | = ~(Gx, 85V

i=0

=

-1

bII4

> &

One can similarly get (u,6§V)N = —(d,u,0,V)N, wWhich ends the proof. O

Lemma 4.2.3 ([183]) Let u = (ug,u1,--- ,un)’. If ug = uny = 0, then there exists a
positive constant C such that
lally <Clual; N

Next, we use the energy method to prove that the scheme (4.30) is unconditionally
stable.

Theorem 23 Letu” = (ug, u’f, e, u”N)T be the solutions to the finite difference scheme
(4.30), ug = u’I(, =0, and f" = (fo,fl", .- ,fl(l,)T. Then there exists a positive constant
C independent of n, At and Ax, such that

2 0,2 02 k2
|y <[y + AP Ky o] +C max [[f*]|5,.
” 0<k<nt
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Proof. We rewrite the scheme (4.30) in the form below

n—,

n
W = APK Y oDVl + A (4.43)
k=0
From (4.43), one can immediately get

n
" u")y=(u"" u")y + APK, Z WV (6%k uhy + ArE" u")y
k=0 (4.44)

n
=@y - APK, Y oGk oty + AL uy,
k=0
where Lemma 4.2.2 is used. Denote by

n

_ (1-y) _ F(n+y) _ (l’l+ 1)7_1
bn = ;“’k TTore+h | T

+O((n+1)"7).

Then one has b, — b,_; = wfll =) and b, satisfies Cob, A <At<C1b,At”, Cy, C; are
positive constants independent of n [183].
Using the Cauchy—Schwarz inequality, one obtains

2
"l + A Ky luly v

AYK,
2

-2 2
< Sl + laly) +

n—1

§ k2 2
(bp—k—1 = bp-)(u |1,N + |un|1,N)

k=0

N =

1
+ At(en”|? + — |12,
(ellully + 711l
where € is a suitable positive constant. Denote

n
2 k2
E" = W'} +ATKy > by} .
k=0

Then one gets

1
E"+ AP Ky, y<E" + Az(2—||f"||,2v + 2e||u"||,2V)
€
(4.45)
n—1 i 12 n2
<E" + At 7 %]l + 2C2€ll0”|ly |,
€
where Lemma 4.2.3 is utilized. Choosing suitable € = % satisfies

2C2eAt<2C2eC1 b At <Ky b, AL
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Therefore, one obtains

n
E"<E™'+ CMIP'IF < EC+ CAL ) I,
k=1

. (4.46)
=01 + A Ky O  + CAL Y I,
k=1
By the definition of E”, we have
(1% <3 + AP K, )2 +C max [[f*3,. (4.47)
> 0<k<nr

The proof is completed. O

Remark 4.2.1 If w](cl_” in (4.44) satisfies a)(ol_y) >0and 3 _, |w1((1_7)| < w(()l_”, then
the inequality (4.47) holds.

Next, we consider the convergence analysis for (4.30). From Theorem 23, we can
obtain the error bounds for the method (4.30).

Theorem 24 Let U(x,t) and u:l (i=0,1,2,---,N,n=1,2,---, ny) be solutions to
equations (4.10) and (4.30), respectively. Denote by e} = u! — U(x;,1,) and €" =
(eg,e’ll,m ,e’](,)T. Then there exists a positive constant C independent of n,At and
Ax, such that

lle"|ly < C(Ar + Ax?).

Proof. One can get the error equation as follows

1

n
e =l +ATKy Y w5kl + AIRY, (4.48)
k=0

in which R? is the truncation error satisfying R? = O(At+ sz) from (4.29).
By Theorem 23, we only need to estimate

0,12 012 k2
lle”|ly, + Ar7K,le”|7 y +C max |R|[y
’ 0<k<nrt

to get the error bound, where R” = (R",R’ll,--- ,R"N)T with R? = O(Ar + sz). Ob-
viously, |le”]ly = [e°];.x = 0, and ||R¥|ly <C(Ar + Ax?). Hence |le"||y < C(Ar + Ax?),
which ends the proof. O

Obviously, the time fractional derivative in (4.10) can be discretized by different
methods, which yield different backward Euler type methods. For example, the time
fractional derivative in (4.10) can be discretized by the L1 method (4.4), the fractional
backward difference method (4.6).

In (4.30), if the time-fractional derivative in (4.10) is approximated by the L1
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method (4.4), one has the following implicit scheme: Find u;? (i=12,---,N-1,n=
1,2,---,nr), such that
n—1 _
s} 7 = Ky koSl + 1, i=1,2, N-1,
ud = go(x;), i=0,1,2,--,N, (4.49)

Mg = Uq(tn), ur]i/ = Up(tn),
where I’élLégl_y) is given by (4.4).

Using the Fourier method or the energy method, we can similarly prove that
the finite difference method (4.49) is unconditionally stable and convergent of order
O(At+ sz); readers can refer to [71, 86] for more information.

If y = 1, then the two methods (4.30) and (4.49) are reduced to the backward
Euler method. The two methods (4.30) and (4.49) have only first-order accuracy in
time for ye (0, 1).

Cui [19] proposed a compact finite difference scheme to solve (4.10), in which the
time discretization is the same as the method (4.30), while the space was discretized
by the fourth-order compact finite difference scheme. In [17], the explicit and implicit
finite difference methods were presented to solve the fractional reaction-subdiffusion
equation. The implicit method is similar to (4.30), which is unconditionally stable
and convergent of order O(At + sz). The explicit method is also similar to (4.30),
except that the integer-order time derivative was discretized by the forward Euler

nel il
method, i.e., §,u; * in (4.30)is replaced by (51141.”2.

4.2.1.3 Crank-Nicolson Type Methods

We know that the Crank—Nicolson (CN) method for the classical equation (See
(4.10) with y = 1) has second-order accuracy in time. The CN method for the classical
diffusion equation can be constructed by the following direct methods:

e Method I: Letting r =1¢, 1 in (4.10) with y = 1 yields
OU(t,,1) = ﬂaiU(zm% )+ f(t,,1)-
Note that §,U(,, }) = 6:U" + O(Ar?) and U(1,, ) = U™ + O(Ar?), one has
§,U™E = pd2Um T + f(t,, 1)+ OAR),

Letting x = x; and using 92U" = 6§U? +O(Ax?), we have

1
n+x

o:U

n+l
;= psRU " + fxit,, 1) + OAP + AP).
Neglecting the truncation error and letting u} = U yields the classical CN
method below:
vt

n+d
St * = psu  + fxit,, ). (4.50)
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e Method II: Letting x = x;,t = tx,k =n,n+ 1 in (4.10) with y = 1 gives
U (X 1) = 03U (xis 1) + f (i 1), 4.51)

O U (xistus1) = 03U (X ts1) + f (i ) (4.52)
Adding the two equations leads to

0U(xi, tn) +0,U (xis tn1) = (03U (i, ty ) + 03U (i 1)) + f (X 1) + f (X 1)

(4.53)
Noting that 9,U(xi,t) + 8;U(xistus1) = 26,U" % + O(Ar%) and 32U (xi,ty) =
26)26U"+% +O(Ax?), one has

1 1 1
S U2 =us2U 7 + 177 + O(AP + AXD).

Dropping the truncation error and letting « = U} yields the following CN
method:

n+l 2 n+l n+t
S, > =pdu; P+ f 7. (4.54)

1

For the classical diffusion equation, the two methods (4.50) and (4.54) are uncon-
ditionally stable and convergent of order 2 for the suitably smooth solutions. For
the fractional subdiffusion equation (4.10), we can use similar techniques to derive
the Crank—Nicolson type methods, which yield different properties of the desired
scheme.

Similar to (4.50), we first let (x, 1) = (x;, tn_%) in (4.10), which gives

0:U(xist, 1) = Ky (D, 93U ) (xist,_1) + f (it 1) (4.55)

Clearly, the first-order time derivative in (4.55) is discretized by the central difference
method, and the space derivative can be discretized by the cental difference scheme
Now we should adopt a technique to discretize the fractional operator RLD 7
=1, 1 such that higher accuracy can be obtained. Fortunately, we indeed have a
method named the modified L1 method (2.70), with (1 + y)th-order accuracy to ap-
proximate RLDo,; atr=t,_ L. Hence, we have

sU; —K s eu” 1, flxat, 1)+(At1+" +AXP), (4.56)

where 6\ is defined by

1

1 >
sy =A boU;~ Z(bn 1~k = bn- k)U _(bn—l_B"—l)Ui2 — AU |,

(4.57)
-1
in which A, = B, — %, b, and B, are defined by
by = [(n+1) =n"], B,= [(n+1/2) —n"]. (4.58)

[(1+7y) [(1+7y)
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Therefore, the first CN type method is given by:

_1 _1
s, 2 = Kol V5! T fit, ). i=120 N=1 n=12nr,

Wl = go(xi), i=0,1,2,---,N,

Mg = Ua(tn), ul]1v = Up(tn),
(4.59)
where 651_7’) is defined by (4.57).
The CN type method (4.59) is reduced to the classical CN method (4.50) if y — 1.
Of course, one can also use

[(RLD(I),_,Y@)ZC U ) (xistn) + (RLD(I),_,Y(?)ZC U ) (i ln—l)]

| =

to replace (RLD(I)_["@,% U ) (xi,t_1)1in (4.55) as in the classical CN method (4.50). Then

n=3
the appropriate discretization for the time fractional derivative operator RLDé_ty at
t=ty,t,-1 is applied. So we can derive the following CN type method

-1 K _ _
(5114;[ 2 _ 77[551 7)5§u?‘1 +5§1 7)5§u?]+f(x,-,tn+%),
i=1,2,"',N—1, n=1,2,~',nr, (460)

9=¢o(x;), i=0,1,2,---,N,
up = Ua(ty), uly = Up(ty),

where 651_7’) is the approximate operator of the time fractional derivative operator
1—
riDy,”.
It is known that 1 [ Dl_yu(t)] + [ Dl_yu(t)] is not a good approxima-
2 \|RL 0, 1=t,_1 RL 0,z 1=ty g pp

tion to [RLD(I)_ZVM(I)][_Z . For example, u(r) = t’,v > 0, so we can derive

n—

=

2

— F(v+ 1) v+y—1
2L(v+y) \ 1

3 (leDi o), | +[eDf;7u0)],, )= [l w0,

S]]

4.61)
w0 2t::71‘1) = O(ARLT ).
2

Clearly, if (v+) is not a positive integer or the noninteger number (v +7) is small,
then the error introduced in (4.61) is of order O(A**~!) for small n. For example, v
is a nonnegative integer and y # 1, which implies that the smooth enough u(#) can not
guarantee second-order approximation. Hence, even if the high-order method is used
to discretize the time fractional operator RLD(I);y,
numerical solutions when #z is small.

Next, we adopt the second technique used in (4.54) to construct the correspond-
ing CN method for (4.10), which can avoid using (4.61) in the construction of the
numerical algorithm.

we can not obtain the satisfactory
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Letting (x,1) = (x;,t,) and (x,7) = (x;,1,—1) in (4.10) leads to

0,U(xistn) = Ky (reDyy, 92U ) (s t) + f (i ), (4.62)

O U(xistn-1) = Ky (RLDy, 20 ) ity 1) + f(Xistar). (4.63)
Adding (4.62) to (4.63), one has

atU(xh tn) + atU(xi’ tn—l)

1

4.64
=Ky[ (rLDy 02U ) (xis 1) + (RLD(l);yai U) (Xt )] + f(Xistn) + f(Xis ta-1).- oy

If the high-order method is used to discretize RLD(I)_ZV(?)%U (x,1) at t = t,, then we
can get more accurate numerical algorithms than the Euler type methods introduced
before. One choice is to use L1 method to discretize RLDé?&%U (x,t)att=1,-1 and
t = t,, which gives

-5 Ky ca-p o L1 s(1=9) 2 7 n—1
oU; ? 27[RL5t Vo U + 166U ]
1 (4.65)
+ 5 + oA + AP, 0>,

where 1L31L(5§1_7) is defined by (4.4). When U(x, ) is smooth in time, f(x;,7y) may be
unbounded. Therefore, for n = 1, one can use the following relation

1
5,U7 = K, &6 V52U + £ + O(At+ AR, (4.66)

Removing the truncation error in (4.65) and (4.66), and replacing U} with !, we can
get the following CN type method

1
Sl = Kyoo V&2ul+ £, i=1,2, N1,
-1 K - 1- _ 1 -
e LR TR RV et
i=12,---,N-1, n=2,3,---,nr,
0 =¢o(x), i=0,1,2,---,N,

Mg = Uq(tn), u;lv = Up(ty),

(4.67)

where ,L;Laﬁl‘” is defined by (4.4).

If y — 1, the CN type method (4.60) is reduced to the classical CN method (4.50).
For the CN type method (4.67), the classical CN method (4.54) can not be recovered
wheny — landn=1.

Next, we consider the stability and convergence of the three CN methods (4.59),
(4.60), and (4.67).

Lemma 4.2.4 ([166]) Let b, B, be defined by (4.58), A, = B, — %, O<y<l.

Then we have
0<b,<b,-1, B,<b,i, n>1;

(4.68)
A,<B,, b, <Bp, n>0,
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and

2 2YA!
Aj<=— . (4.69)
]Z] "TIA-y)

Theorem 25 Letu” = (ug, u’l', RN ”X/)T be the solution to the finite difference scheme

n_ n _ n—1 _ "_%“. _% T
(4.59), ult =u, =0, and £"°2 = (0, f, 2.+, fy_2,0)". Then

n
12 052 02 k+1012
IR <2001+ CL AT WOR  + CoAe > I 2,
J=0

where C1 is a positive constant independent of n,h,t and T, and C, is a positive
constant independent of n,h and .

L 1 1 1 L
Proof. Let 6,u™ 7 = (S 2,60) 2,6y )T and w7 = (ug 2, ,uy 2)T.
Then from (4.59) and Lemma 4.2.2 we have
n—1
n+d p+l n+1 n+1 -1 n+1
(G 2 0 )y = il = bo(E U™, 60 D)y + Y (b= b1 )02, 5,0 )y
j=2
+but =BG, S Dy + An® s Dy |+ (0w Dy,
(4.70)
Using Cauchy—Schwarz inequality and Lemma 4.2.4 brings about

1
(™2 u D)y
U | = | |
1o -1 1o
<A 2B AR Y B =)l 0 )
=2

e 12 2 ) 1 1
+ (bn—l - Bn)(|u2 |1,N + |un+2 |1,N) +An(|uo|1,1\/ + |un 2 |1,N) + (fn+2»un+2)N

n—1
H in i-512
=B ho= But AR+ Y (=i
j=2
1 1 1
#But =B y + AR ]+ 070wty
M 1 = 1 1 1
1o ) 0,2 1 1
< 5[—bo|u"+z|1,N + > =PI+ A0 |+ (2, 0 D)y
j=1

“.71)
Rewriting (4.71) leads to
n+1
R+ e Y b 2R
= (4.72)

n
.1 1 1
<IN+ ALY bl R 4 pAA R + 2AKE" 20 Ty,
j=1
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Denote by

n+l
i—L
EM = R e b ol 2
J=1
Then, one can obtain from (4.72) that
1 1
E™<E" + pAu®[} A, + 200872 0" Ty

<E"' 4 pAuO (A + Apor) + 2Az[(f"+% Ay + (f"—%,u"—%)N]

n n
<E! +pAt|uO|%’NZAn + 2At2(f"+%,uk+%),v

n+1 n+1

E'+uAfud| NZA +e,uAth,,+1 i~ 2|1N+Z b 2|3,

n+1-j

Here we have used the Cauchy—Schwarz inequality and €lu/~2 ||2 < |uJ 2 |% y from

Lemma 4.2.3. € is a suitable positive constant independent of j, 4,7 and u/ »- Therefore,

we have
n+l

313 < E1+uM||u°||ZZA +CAY 721, (4.73)
Jj=1 J=1

where 1/b, <Cyn'"YAt'™Y <C,T'~?, C, only depends on y.
E! can be estimated in the following way. Letting n = 0 in (4.70) and using the
Cauchy—Schwarz inequality gives

12 12
|lu ||N+/JAZ‘B()|112|1’N

1 L1
=[l’l[} + uAtA (S a7, 5, u)y + 2417 uT)y (4.74)
02 ) L op [ )
<|lu®||y + uAtAg | €1 a2 +—1|u + 2At[ —If 2|5, + e2lu2 ,
llu”lly +nAtAg | €rlu2]y y 4ell II,N) (462” Iy +ell IIN)
where €], & > 0 are suitable constants such that
1o 10 1 Lo
apdoluzf} y +2ellu? |} < SuBolu? .
Therefore, we obtain

E" =|lu'|, + uAtBolu? N_2||u1||N+uArBo|u2|

UALA i 4.75)
<2/’ + £ o LR, —||fz 13-
Combining (4.73) and (4.75) yields
n
™ Z <20, +Cr AP Oy + Conr Y I 3R, (4.76)

J=0
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in which Cj is independent of n,h,7 and T, and C; is independent of n,/ and 7. The
proofis completed. O

Theorem 25 states that the CN type method (4.59) is unconditionally stable.
Let ] = U(x;,1,) — u}. Then we can derive the error equation of (4.59) as

_1 _1
sie] 2 =Ky, V6% T +RY, 4.77)

where R? = O(At1+y +Ax2) and eg = e"N =0 and el.o =0,i=0,1,---,N. Denote " =
(eg,e’ll,m ,e’li,)T and R" = (R",R’l',m ,R’I(,)T. Then from (4.77) and Theorem 25, we
can easily obtain

n
lle™* 1% <21le%F, + C1A7 1] + CQAIZ IRF|IZ, < C(AHY + AxP). (4.78)
k=0

In a similar manner, we can show that the CN type method (4.67) is uncondition-
ally stable and convergent of order O(Af™™2~¥/217} L Ax?)_ This result was derived
in [173]. For the CN type method (4.60), one can prove that it is unconditionally sta-
ble if the time fractional operator is discretized by the Griinwald-Letnikov formula
(see (4.3)). But the convergence rate is not very satisfactory for the smooth enough
solutions; see (4.61). We can see that the CN type method (4.59) is more natural than
the other two CN methods (4.60) and (4.67).

The CN type method (4.60) can be seen as a special case of the following
weighted average finite difference method

_1
S * = Ky [(1=0)5 5%} + 06, V50l |+ fxit, 1),

i=12,---,N-1,n=1,2,---,nr (4.79)
O=go(x;), i=0,1,2,-+,N,
uy = Ua(ty), uy = Up(ty),

where 0<6< 1, and the operator (5§1_7) can be defined by any approximation operator
to the time fractional derivative operator RLDé;y.

If 0= %, the method (4.79) is reduced to (4.60). The stability was studied by
using the fractional von Newmann analysis in [160] when 6! = ﬁ&ﬁl_") is defined
by (4.6). The method (4.79) is unconditionally stable for 0<6< %, and stable for

%<0S1 under the condition Kgfzﬂ < 2(20—1)w1(7-1>(—1)’ where w~1(z) is defined by
(4.7).If 6 =0 (or 6 = 1), the explicit (or implicit) Euler type method (4.16) (or (4.30))

is recovered.

4.2.1.4 Integration Methods

Next, we introduce an indirect method (or the integration method) to discretize
the subdiffusion equation (4.10).
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Letting x = x; and integrating both sides of (4.10) on the interval [f,,_1,1,] in time
direction, one can obtain

Uit UG tne) + Ky {[Dgftl‘”aiU(x,», D)., - [Dol RuGn] , J+FL
T (4.80)
where F!' = ft,,t'il f(xi,5)ds.

The fractional integral [D(;,(t1 _7)6,% U(x;, t)]tzt can be discretized by different meth-
ods which lead to different numerical schemes. We can naturally think of using the
left fractional rectangular formula (2.6), the right fractional rectangular formula (2.8),
or the fractional trapezoidal formula (2.12) to approximate the time fractional inte-
gral operator in (4.80).

If the left fractional rectangular formula (2.6) is used to discretize D, (1 7)62 U(x;, 1)
att=t,,t,—1 in (4.80), and the space is discretized by the central dlfference then one
has the following explicit method

n n—1
U= U AP, | B YS! —Zb(l DUkt

2
k19U + F!' + O(At(At+ Ax?)),
k=1

4.81)

where b " = 7= jlk+ 1Y =K1,
Replacmg U} w1th u} and removing the truncation error, one obtains the follow-
ing explicit method

n n—1
W= AR | Y B0 = Y S |+ FL i=1,2, N =1,
k=1 k=1

_¢O(-xl) i:O’l’zv""N7

0
i
uh=Uata), = Up(ta),
(4.82)

where by 7 = S [(k+ 1) =],
Snmlarly, if the right fractional rectangular formula (2.8) is used in (4.80), we
can derive the following implicit method

n n—1
! =u!" + APK, st__kwéiuf—st D FL i=1,2,0 N1,

_¢O(-xl) i:O’lvzv'“7N’

0
i
ug U,(ty), MI;V = Up(ty),
(4.83)

Whereb(1 = F(1+ [+ 1) = k7],

If the fractlonal trapezoidal formula (2.12) is used in (4.80), we can obtain the
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following algorithm
n n=1
W= AK Y a8l = a0l [+ FY i=1,2, N -1,
k=0 k=0
9=go(x), i=0,1,2,---,N.
Mg = Uq(tn), unN = Up(tn),

(4.84)
where a, x is defined by
=)' —(n-1-yn?, k=0,
- - _ y+1 11\l _1\r+l _
Ai,n Ty +2) m=k+1D)"" +(n—-1-k) 2m—-k)"", 1<k<n-1,
1, k=n.

If y — 1, these three methods (4.82), (4.83), and (4.84) are reduced to the for-
ward Euler method, the backward Euler method, and the CN method, respectively. If
U(x,1t) is smooth enough in time, the truncation errors of the three methods (4.82),
(4.83), and (4.84) are O(At+ Ax?), O(At+ Ax?), and O(Ar* + Ax?), respectively, which
can be derived from (2.20).

One can prove by the Fourier method that the explicit method (4.82) is stable
if KyAz < 4, and the implicit method (4.83) is unconditionally stable. One can also
refer to [183], where the unconditional stability and the convergence of the implicit
method (4.83) were proved by the energy method. The convergence of method (4.84)
can be found in [158].

The integration technique can be used to solve other fractional equations, such as
the fractional Fokker—Planck equation [154]

9,U = rDy, (9 (d(x)DU) + f(x.1)),
the fractional cable equation [62, 99]
0,U = reDy " (K102U) = KareDy P U + f(x.), 0< y1.y2 < 1,

and the Stokes’ first problem for a heated generalized second grade fluid with frac-
tional derivative [16]

0,U = reDy, " (Ki62U) + Kage Dy > U + f(x,1), 0 < 71,72 < 1.

4.2.1.5 Numerical Examples

We present numerical examples to illustrate the effectiveness of the numerical
methods in this subsection.

Example 4 Consider the time-fractional subdiffusion equation
= gDy u+ f(x,0),  (x.0) € (0,m)%(0,1],

u(x,00=0, xel0,x], (4.85)
u(0,0=0, wu(r,n)=0, te][0,1],
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where f = (2.5t1'5 + %tz's_“)sin(x). The above equation (4.85) has the analyti-
cal solution u(x,?) = > sin(x).

Next, we check the stability and convergence of the explicit type Euler methods
(4.16) and (4.82), the implicit methods (4.30), (4.59), (4.83), and (4.84). The maxi-
mum L? error is defined as follows

N-1
max |ju-U"||y = max AxZ(U(xj,tn)—u”.)z.
0 0<n<nr =0 J

<n<nr

We first test the stability of the explicit Euler type methods (4.16) and (4.82), the
maximum L? errors are shown in Tables 4.1 and 4.2, respectively. From (4.22), one
finds that the method (4.16) is stable when 2—52 < 2772 for solving (4.85), which is

illustrated in Table 4.1, where “NaN” means that the stability condition 2—)[:2 <272
not satisfied. Table 4.2 shows the similar results as Table 4.1.

Obviously, the explicit methods (4.16) and (4.82) need strict restriction on A—)’:z in
the stability. When the space step size Ax is reduced, the much smaller time step size
At is needed in order to keep the methods (4.16) and (4.82) stable, which requires
large storage in the real computation.

Next, we test the stability and convergence of implicit methods such as (4.30),
(4.59), (4.83), and (4.84), which show better stability than the explicit methods (4.16)
and (4.82). Tables 4.3-4.6 display the maximum L? errors of the implicit methods
(4.30), (4.59), (4.83), and (4.84) for Example 4, which show good performances,
and the observed experimental convergence orders are in line with the theoretical
analysis.

TABLE 4.1:  The maximum L? error of the explicit Euler type method (4.16),

At = 1/40000.
N |[y=02 ﬁ—)f; 221 y=05 2—;’2 22 y=08 | y=095
10 | NaN 1.22 3.7919e-3 | 0.05 2.9621e-3 | 2.5676e-3
20 [ NaN | 4.87 9.8971e—4 | 0.20 7.8085e—4 | 6.8137e—4
30| NaN [ 10.95(0.29 NaN 0.46 | 0.35 | 3.7647e—4 | 3.3157e—4
40 | NaN | 1947 NaN 0.81 2.3491e—-4 | 2.0911e—4
50 [ NaN | 30.42 NaN 1.27 1.6938e—4 | 1.5242e—-4

TABLE 4.2: The maximum L? error of the explicit
Euler type method (4.82), At = 1/40000.

N |y=02] =05 vy=0.8 v =0.95

10 | NaN [ 3.7998e-3 | 2.9649¢-3 | 2.5682e-3
20 | NaN |9.9768e—4 | 7.8359¢e—4 | 6.8199¢—4
30 | NaN NaN 3.7921e-4 | 3.3219¢e—-4
40 | NaN NaN 2.3765e—4 | 2.0973e—4
50 | NaN NaN 1.7212e—4 | 1.5304e—4
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TABLE 4.3:  The maximum L? error of the implicit Euler type method
(4.30), N = 1000.

1/At| y=0.2 order vy=0.5 order vy=0.8 order
8 | 1.8195e-1 1.5777e-1 1.4051e-1
16 | 8.9917e-2 | 1.0169 | 7.8387e—2 | 1.0092 | 7.0388e-2 | 0.9973
32 | 4.4687e-2 | 1.0087 | 3.9064e—-2 | 1.0048 | 3.5224e—-2 | 0.9988
64 | 2.2275e-2 | 1.0045 | 1.9499e-2 | 1.0025 | 1.7619e-2 | 0.9994
128 | 1.1120e-2 | 1.0022 | 9.7410e-3 | 1.0012 | 8.8112e—3 | 0.9997
TABLE 4.4: The maximum L? error of the Crank—Nicolson type
method (4.82), N = 1000.
1/At| y=0.2 order vy=0.5 order vy=0.8 order
8 | 4.2600e-2 9.6759%¢-3 2.6338e-3
16 | 2.0452e—-2 | 1.0586 | 4.4424e—3 | 1.1231 | 4.8959¢—4 | 2.4275
32 9.3682e-3 | 1.1264 | 1.8185e—3 | 1.2886 | 9.4388e—5 | 2.3749
64 | 4.1927e-3 | 1.1599 | 7.0398e—4 | 1.3692 | 1.8835e—5 | 2.3252
128 | 1.8536e-3 | 1.1775 | 2.6416e—4 | 1.4141 | 8.4538e—6 | 1.1558

TABLE 4.5: The maximum L? error of the implicit Euler type method
(4.83), N = 1000.

1/At| y=0.2 order vy=0.5 order vy=0.8 order
8 |2.2569¢e-1 2.4567e—1 2.4628e—1
16 | 1.1822e—1 | 0.9328 | 1.2830e—1 | 0.9372 | 1.2735e—1 | 0.9515
32 | 6.1127e-2 | 0.9516 | 6.5855e—2 | 0.9622 | 6.4805e—2 | 0.9746
64 | 3.1352e-2 | 0.9633 | 3.3465e—-2 | 0.9767 | 3.2703e—-2 | 0.9867
128 | 1.5994e—-2 | 0.9710 | 1.6904e-2 | 0.9852 | 1.6431e—-2 | 0.9930

TABLE 4.6: The maximum L? error of the implicit method (4.84),

N =1000.
1/At| y=0.2 order vy=0.5 order vy=0.8 order
8 |4.0242e-3 3.1760e-3 3.0590e-3
16 | 9.8681e—4 | 2.0279 | 7.8837e—4 | 2.0103 | 7.7210e—4 | 1.9862
32 | 2.4196e—-4 | 2.0280 | 1.9645e—4 | 2.0047 | 1.9479e—4 | 1.9868
64 | 5.9575e-5 | 2.0220 | 4.9238e—-5 | 1.9963 | 4.9222e—5 | 1.9846
128 | 1.4937e—5 | 1.9958 | 1.2563e—5 | 1.9706 | 1.2582e—-5 | 1.9680

4.2.2 Caputo Type Subdiffusion Equations

If U(x, 1) is suitably smooth in time, and one applies the fractional integral
to both sides of (4.10), one can obtain the following Caputo type time-fractional

-(1-y)
DO,z
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diffusion equation [56, 113]

Dby, U = Ky02U +g(x,0), (x,0) € (a,b)x(0,T],
U(x,0) = ¢o(x), x€(a,b), (4.86)
U((l, t) = Utl(t)’ U(b’ t) = Ub(t), te (0, T],

where g(x,1) = Dy ! f(x,1).
Ifo<y<l1 and the solution U(x, t) is suitably smooth in time, then CDZ)’ U=

LDg’ [(U (x,t) — U(x,0)). Hence, a natural way to discretize the Caputo derivative in
(4.86) is to use the Griinwald-Letnikov approximation, or the L1 method, or the
fractional linear multistep method, etc., and the space is discretized by the classical
methods such as the central difference method or the compact difference method
[47, 56, 62, 176].

4.2.2.1 Explicit Euler Type Methods

Here, we only introduce two explicit methods that are reduced to the classical
Euler methods when y — 1.
Let (x,1) = (x;,t,) in (4.86). Then one has

Dy U xisty) = Ky 02U (xi, 1) + 87 = Ky 02U (Xi, ta—1) + g1 + O(AD). (4.87)

The Caputo derivative in (4.87) can be discretized by the known methods, i.e., the
Griinwald-Letnikov formula, the L1 method, or the FLMM, etc.; the space direction
is discretized by the central difference method. One has

SPUN = K, 62U + g+ O(At + AXY), (4.88)

where 6(7) is the approximate operator in time that is to be defined.

Next we provide two ways for the discretization of the Caputo derivative.

The Caputo derivative is discretized by the Griinwald—Letnikov formula and the
space direction is discretized by the central difference method, one can get the finite
difference method for (4.86) as: Find u:' (i=12,---,N-1,n=1,2,--- ,n7), such that

(5?/)(”7 0) K62 n— 1+g::l, i:1,2,...,N_1’
ul = go(x), =0, 1,2,~- N, (4.89)
Mg = Uq(tn), u?\/ = Up(tn),

where 6?’)(%'.' - ul.o) is defined by

5?)(”?_“1‘0)=A1ﬂ2 D i), W = (- l)k()
k=0

The Caputo derivative is discretized by the L1 method with the space direction
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approximated by the central difference scheme; one can derive the method for (4.86)
as: Find ui’l (l - 1’2’... ’N_ l,n = 1,2,... ’nT), such that
57w = Kyou ™ + gl i=1,2,- N-1,
W= go(x), i=0,1,2,--,N, (4.90)
uy = Ua(ty), uy = Up(ty),
) s
where ¢,” is defined by
n—1

n—
()_12() kel gy L Z() %) 0
6[), M:’—A—fy bnyk_l(qu )—A—ty b()lxtlr-l— (bnykl byk)lxt nl/tl- s
k=0 k=0

1

b = ——[tk+ 1) = k'],
=l ]

Now, we discuss the stability of the two methods (4.89) and (4.90).

Theorem 26 Suppose that u? (i=12,---,N-1,n=0,1,2,--- ,n7) is the solution to
(4.89). Let u = KyAty/Ax2. If u<vy/2, then the method (4.89) is stable.

Proof. Suppose that ul” (i=1,2,---,N—1) and glf‘ (i=1,2,---,N—1) have per-
turbations 127 (i=1,2,---,N—1)and g;? (i=1,2,---,N—1), respectively. Denote by
w = @@,y )L g =885 8 )" and

w42 —u 0 0 0
—u (7) +2u —u 0 0
(7)
0 —u +2u 0 0
A= . ) ,
0 0 0 (” +2u —u
(7)
0 0 0 H 20 v ev-1)
1-2u u 0 0 0
u 1-2u u 0 0
0 U 1-2u 0 0
B= . .
0 0 0 e 1-2u u
0 0 U H U=20 oy iyev-ny
Expand the equation (4.89) in the following form
n
waj’k(u — i) = pil N @ 2@ ) + AR (4.91)

Then the matrix representation of the perturbation equation (4.91) can be expressed



Chapter 4 Finite Difference Methods for FPDEs 149

as
i =B’ +APg!, n=1,

—Ai"! Zwm i +Zw W'+ A28, n>1
k=1

(4.92)

Since 2u<y= —w(ly), it is easy to obtain ||A|| < —w(ly) and ||B|| < 1 by the Greschgorin’s

theorem. Here ||A|| denotes the spectral norm (or 2-norm ) of the matrix A, which is
equal to the absolute largest eigenvalue of A when A is symmetric.
For convenience, we also denote it by

b —HZ_’:LJ”— W=y _ 7 | ot
T4 TTa -yl - T -y) '

Then one can easily prove that ArY <Cb,,_1, C is a positive constant only dependent
on y and T'. Next, we prove that

6" <[la°)| + C max ||g"]| = E, (4.93)
1<n<nr

where || -|| is the discrete L? norm for the vector, which is defined by

N-1 1/2
2 T N-1
all = > w?| . w=Guu,uy-)" eRY

i=1

We use the mathematical induction method to prove (4.93). For n = 1, one has
from (4.92)

[ = 1Ba° + A”g! | < IBIIG®| + Chollg' | < 16°] + ClIg" || < E.

Suppose that ||[§"||<E,n=1,2,--- ,m— 1. For n = m, one has from (4.92)

m—2

6" <A - Zw(” ||u"||+Zw<” 18+ A |g"]

<IIANIE - Zw(” E+ by [0+ A7 18"
(4.94)

<-oVE- Z(J” E+b,, E
k=1
m—1

=boE = Y E+by E=E.

Hence, |[”"|| < E. Therefore, (4.93) holds for all n > 0, which ends the proof. O

From Theorem 26, we can obtain that the explicit method (4.89) is convergent
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with order O(At+Ax?) if ZAZ (7) The convergence of the explicit method
(4.89) was also proved by Gorenﬂo and Abdel Rehim [60] in the Fourier—Laplace
domain.

One can similarly prove that the explicit method (4.90) is conditionally stable

) K At b(y)_b(y) e
and convergent with order O(At + Ax”) if 2= < = Ty

Obviously, the two explicit methods (4. 89) and (4.90) are reduced to the explicit
Euler method if y = 1. When v is small, the time step At is sufficiently small in order
to meet the stability condition; this may need more iterations to get the numerical
solutions. Generally speaking, implicit methods have a larger stability region, which
has a weaker restriction on the step size in time; and the implicit methods may have
higher accuracy than the explicit ones.

4.2.2.2 Implicit Euler Type Methods

Next, we introduce the typical implicit methods. Let (x,#) = (x;,,) in (4.86). Then
one has
D} U(xista) = Ky 02U (xi, 1) + g1 (4.95)

The time derivative in (4.95) is discretized by the Griinwald-Letnikov formula,
and the space derivative is discretized by the central difference method. One can
obtain the following finite difference method for (4.86), which is given by: Find
u? (i=12,---,N-1,n=1,2,---,n7), such that

6§Y)(u;7—u?)=Ky5)sz?+g?’ i=12,---,N-1,
) =o(x),  i=0,1,2,-,N, (4.96)
Mg = Uq(tn), ur]i] = Up(tn),

where 557)(141’.’ —u?) is defined by

1
557)(14;7 _ M?) — Aty Z ) (Mn 0)’ (,()52/) - (_l)k(Z)
k=

The L1 method can be used to discretize the Caputo derivative in (4.86) or (4.95),
and the space derivative is discretized by the central difference. The corresponding
method is given by: Find u? (i=12,---,N-1,n=1,2,---,n7), such that

6 = Kbl v gl =12, N-1,
u? = go(x;), i=0,1,2,--,N, (4.97)
”() = Ua(tn), MN = Up(tn),

where 657) is defined by

n—1
657) o= v (y) (uk+1 u{;)’
k=0
b = ——[tk+ 1) =k'].
k r(z—y)[ |
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It is easy to prove that the two difference methods (4.96) and (4.97) are uncondi-
tionally stable using the Fourier method or the energy method, and are convergent of
order O(Ar + Ax?) and O(A™ + Ax?), respectively.

Next, we just give the stability and convergence analysis for (4.97); the stabil-
ity and convergence for (4.96) is very similar. The Fourier method and the energy
method are also illustrated in the proof.

Theorem 27 The finite difference method (4.97) is unconditionally stable.

Proof. We first use the Fourier method. Suppose that g = 0 and u} =
pnel78X (2 = —1). Inserting u? into (4.97) yields

n—1
(b(ow +4u)pn = Z(b:(z—)k—l =5, )0+ b po. (4.98)
k=1

where u* = A’ K sin (”gx) Next, we use the mathematical induction method to

prove that Ipnl <lpol. It is easy to verify that O Sb,(lr)l < b,(("),k =0,1,---

If n=1, one can get
b(?’)

lo1l = ———1pol <lpol.
b(?’) 4’/1

Hence, |p1| <l|pol. Suppose that |ox| <|oo|,n =1,2,---,m— 1. For n = m, one has
)

b
(7) (62] n—1
loml€ ————— ) (b =b, " oxl + ——=——1pol
m b(}’)+4ﬂ SlIl2 O'Ax Z m—k—1 —k (‘)/) 4,1
1 m—1
(62] (62] (62]
< DCHAEY SR B (4.99)

0 k=1

b(?’)
W|PO| ool

Therefore, |0,,| <|ool, so that |o,|<|oo| for all 0<n<ny. O
Next, we use the energy method to prove Theorem 27. We first introduce a
lemma.

Lemma 4.2.5 Leruf = (uo,ul, . ,ulfv) andg (go,gl, ,gﬁ‘v). The series {by} satis-
fies by >0, Zk:l |bi| < bo, by = O(k™), B, = 0(n™7), and At* < Cb,,, C is independent
of nand At. If

n—1

bo(w' ")y < 3 bui(uh uy + By(u’, uy + A7 (g )y, (4.100)
k=1
then n2 02 k2
"I < Gyl +C1 max Iigfl, (4.101)

where Cy is only dependent on 'y and C\ is independent of n, At.
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Proof. Denote by y = A /b’ and ¢t = by/by = O(k™7), s0 co = 1, |eg| < 1 and
Z,‘?’:I |kl < 1. From (4.100) and the Cauchy inequality, one has

—1
1 n
2 k2 2
"5, < 5 > leneliut I + 1)
k=1

(4.102)
lcal, 2 Bi o2 . el o /12 n2
+— "y + u’|ly + — |||y + — )
1 [l”lly bolcil [la™lly 1 [l IcnI”g Iy
One can immediately get from (4.102)
n—1 2 2
2u
< ) len-rl IR + = O + 3= gy
=l olcal el
(4.103)
n—1
< et I3, + leal (Collal1, + Cilig"13,).
k=1
2 2
where we have used % < Gylcy| and 'L:—z <C, here C, is only dependent on , and
0 n n
C| is independent of At and n.
Now, we use the mathematical induction method to prove that
L2 <o IR +C K2 — g
[lu|ly <Gy llally 10rsr]1<aslﬁrllg Iy (4.104)
For n =1, one has from (4.103)
13 < lerl (Col®l} + C1ligll} ) < E. (4.105)

Hence, (4.104) holds for n = 1. Suppose that (4.104) holds forn=1,2,-- ,m—1. For
n = m, one has from (4.103)

n—1 n
13 < > lew sl b1 +1culE < E Y leal < coE = E. (4.106)
k=1 k=1

Therefore, |[u”||? < E holds for all n. The proof is completed. O

Remark 4.2.2 If B, in (4.100) satisfies | Byl < |byl, then C, = 2. If by = b7, _ b,
and B, = b, 0< b <bV k=01, then Cy = 2.

Proof. Here we use the energy method to prove it. Expanding the equation (4.97)
yields

n—1

byl = > B =P ouf = b = Ky AT S+ AP (4.107)
k=1
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Assume that u, = 0. Like Eq. (4.44) in Theorem 23, one can easily get

= u;‘v
bYW u)y <6 (0", u")y + K, AP K, (Su", 0"y

(4.108)

n—1
= >0 =P uny + 5 @ u )y + AT (g 0y,

where u” = (", u",--- ,u")T and g"=(glgl,-- .8t )I'. Applying Lemma 4.2.5 and
0" N 0081 N pplying
Remark 4.2.2 yields
ny2 ) 012 +C k2 .
|l < 2la”|ly Oge;;llg Iy (4.109)

The proof is finished. O

Theorem 28 Let U(x;,t,) and ul” (i=0,1,---,N,n=1,2,--- ,nr) are the solutions
to the equations (4.86) and (4.97), respectively. Denote by e} = U(x;,1,) —u} and
e’ = (eg,e’l’,m ,e;‘v)T. Then there exists a positive constant C independent of n, At

and Ax, such that
lle”lly < C(ALP™Y + Ax?).

Proof. One can get the error equation as follows

n—1
) ) ) ¥ 0 _ 2
by ¢ = Z(bn_k_l - bn_k)e -b,” (&) = KA %! + AP'RY,

where |R?| < C(A™Y + Ax?). By (4.109), one has

lle"|% < C, lle%]3 + C max [[R¥I% <CAP™Y +Ax?).
0<k<nrt

The proof is completed. O

4.2.2.3 FLMM Finite Difference Methods

In this subsection, we introduce the fractional linear multistep methods for the
time discretization of the equation (4.10).
Consider the following fractional ordinary differential equation (FODE)

Dy (0 = (0 +g@), y0)=yo, 0<y<l. (4.110)

From (3.105), (3.108), and (3.109), we have the discretization for (4.110)

1 n n
A DOk =30) = 1) 0y + AB,” o+—an (Gi+Ry.  (4111)
k=0 k=0
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where w, = (~1)(), G, =D} 80| _ . R"= 0™ Ar), and 6", m = 1,2 are defined
by ’

1

6y = —27(—1)"0)", (4.112)
Y Y

95”:1—5, 6(12)25’ 02 =0,n>1, (4.113)

and B™, m = 1,2 is given by

n

1 n

(m) (m) -1

B = > Wik = Y 6" = O(n”). (4.114)
T & i

Letting x = x;,¢ = t,, in (4.86) and using (4.111), we have

1 n
A7 Do UE-U) = /lZ 65U+ ABISUY + an WGE+ R
k=0
(4.115)
where R} = O(n At + AX?).
From (4.115), we can obtain two types of fractional linear multistep finite differ-
ence methods for (4.86) as follows.

e FLMM-FDM I: Find u:' (i=12,---,N-1,n=1,2,---,n7), such that

n B K n B
| D e~ u?)} = 5 2 (Dfandiu ™ + Ky B 6
k=0 k=0

1 n
toy D oGk, (4.116)
k=0

9= po(x;), i=0,1,2,---,N,
Mg Ua(ty), MN = Up(ty),

where wy = (=D(}), G = [DgYg(xi,0)] _, . and B is defined by (4.114) with
m=1.

e FLMM-FDM II: Find ufl (i=12,---,N-1,n=1,2,---,n7), such that

n
—k 0
Z wp(u; ™ —u;)

A
A |

- K, [(1 - %)5@? + %5@?—‘] + Ky B 5%0

1 Y Y ~n-1
+a|0-Dar+3ar|.
9= po(x;), i=0,1,2,---,N,

ug = Uq(ty), uyy = Up(ty),

4.117)
where ay = (—1)(}). G = [Dy 7 g(xi t)]l:[ , and B is defined by (4.114) with
m=2. !
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From (4.115), we know that the truncation errors of the two methods (4.116) and
(4.117) are O(n~'Ar + sz), which show first-order accuracy when 7 is small. In real
computation, the two methods (4.116) and (4.117) show second-order accuracy when
the exact solutions of (4.86) are smooth enough. In the following, we will show that
the two methods are unconditionally stable and convergent of order O(Az + Ax?).

For the classical case of diffusion equation (4.86) with y = 1, there exists the
Crank—Nicolson method for such an equation, which is unconditionally stable and
convergent of order O(Af* + Ax?). Next, we construct the corresponding algorithms
for (4.86) with unconditional stability and convergence of order O(AF + AX?).

We can use the time discretization (3.113) for (4.86), which reads

1 n n ” ”
5 D enk(Uf = UD) =Ky Yy 61 83Uf + Ky B STUY + Ky CS3(U] - U])
k=0 k=0

1 ¢ ,
+ A_ﬁ’ Z U.)n_](Gi-( +Ri7’
k=0
(4.118)
where R/ = O(A + Ax%), wy, and @™ are defined in (4.115), and C™(m = 1,2) is
defined by

2 v N -
cm - N9 e — oY, 4.119
7 T g T ik o e

We can see from (4.115) and (4.118) that the term K, Cy”s%(U} - U?) is added
to the right-hand side of (4.115), which ensures that the method (4.118) has second-
order accuracy for all time level n, which is inline with the classical Crank—Nicolson
method, while in the time discretization (4.115), the method has first-order accuracy
when time level n is small.

From (4.118), we can derive two improved FLMM finite difference methods for
(4.86) as follows.

e Improved FLMM-FDM I: Find 7 (i=1,2,--- ,N-1,n=1,2,--- ,n7), such that

1 n - K n .
Vi Zwk(u;’ k_ u?)] - 2—; Z(_l)kwk(ﬁu; “+K,B2u?
k=0 k=0
1 ¢ _
+E OS] —u)+ 15 > wona Gl (4120)
k=0

0= go(x), i=0,1,2,,N,
ug = Ua(t), MnN = Up(ty),

where wy = (=1)¥(}), G} =D} ,gxi.0)] _, » By is defined by (4.114) with m =
1, and C'" is defined by (4.119) with m = 1.
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e Improved FLMM-FDM II: Find u} (i = 1,2,---,N - 1,n =1,2,--- ,n7), such
that

=K, [(1 - %)5@;? + Z&iu?_l] + K, BP0

1
At 2

n
Do —uf)
k=0

I ]
KO -+ — |- D61+ 26

9= go(x), i=0,1,2,--,N,
g = Ualta). tty = Up(tn),

(4.121)
where wy = (-DX(}), G = D} g(xi.1)] B% is defined by (4.114) with m =

1=t

2, and C is defined by (4.119) with m = 2.

Remark 4.2.3 Ify =1, the four schemes (4.116), (4.117), (4.120), and (4.121) are
reduced to the typical Crank—Nicolson finite difference method for the classical PDE
(4.86) withy = 1.

Next, we will find that the four FLMM FDMs (4.116), (4.117), (4.120), and
(4.121) are all unconditionally stable. The methods (4.116) and (4.117) are conver-
gent of order O(At + Ax?), and the improved methods (4.120) and (4.121) are conver-
gent of order O(AF + Ax?). We list the stability and convergence results below.

Theorem 29 Suppose that u:' i=12,---,N-1,n=1,2,--- ,n7) is the solution of
(4.116), (4.117), (4.120) or (4.121), w" = (ug, uf, - ,u”N)T. Then

"I+ Ky AP (/2001 < Crlu’lly + A7 0%l v) + Co max gy, (4.122)
<K<nr

where Cy is independent of n,At,Ax and T, and C, is independent of n, At, Ax.

Theorem 30 Suppose that u;? i=12,---,N-1,n=1,2,---,n7) is the solution of
(4.116) or (4.117), U(x, 1) is the exact solution of (4.86), UeC*(0,T;H(I)),I = (a,b).
Then there exists a positive constant C independent of n, Ax, and At, such that

" = U"||y <C(Af+ Ax?)

and
n
Ar Y k= UK, < C(A + AxD),
k=0
where u" = (ug,u’f,m ,u;TV)T and U" = (Uy, U7, UX,)T.

Theorem 31 Suppose that u:' i=12,---,N—1,n=1,2,---,n7) is the solution of
(4.120) or (4.121), U(x,1) is the exact solution of (4.86), UeC%(0,T; H(D),I = (a,b).
Then there exists a positive constant C independent of n, Ax, and At, such that

0" = Uy <C(AF* + AxP),

where " = (ug,u’l',--- ,u"N)T and U" = (U",U;’,m ,U;\’,)T.



Chapter 4 Finite Difference Methods for FPDEs 157

TABLE 4.7: The maximum L2 error of the method (4.97), N = 5000.

1/At| y=0.2 order vy=0.5 order vy=0.8 order
16 | 1.0205e—4 8.2444e-4 4.3359e-3
32 | 3.1317e-5 | 1.7043 | 2.9980e—4 | 1.4594 | 1.9158e—-3 | 1.1784
64 | 9.5398e—6 | 1.7149 | 1.0806e—4 | 1.4721 | 8.4078e—4 | 1.1882
128 | 2.9211e-6 | 1.7075 | 3.8756e-5 | 1.4794 | 3.6766e—4 | 1.1934
256 | 9.2947e—-7 | 1.6520 | 1.3880e—5 | 1.4814 | 1.6048e—4 | 1.1960

TABLE 4.8: The maximum L? error of the scheme (4.116), N = 5000.

1/At] v=0.2 order vy=0.5 order vy=0.8 order
16 | 1.2264e-3 1.1742e-3 3.5197e-4
32 | 6.9022e—-4 | 0.8292 | 6.7594e—4 | 0.7967 | 1.4258e—4 | 1.3036
64 | 3.5544e—4 | 0.9575 | 3.1157e-4 | 1.1174 | 6.1553e—5 | 1.2119
128 | 1.7656e—4 | 1.0094 | 1.3176e—4 | 1.2416 | 2.0892e—-5 | 1.5589
256 | 8.6224e-5 | 1.0340 | 5.3113e-5 | 1.3107 | 6.5110e—6 | 1.6820

Theorems 30 and 31 can be directly deduced from Theorem 29. For the de-
tailed proofs, readers can refer to [168, 169]. The FLMM difference methods used in
(4.116)—(4.117) and (4.120)—(4.120) have also been extended to the time-fractional
diffusion wave equation in [163]. The numerical methods based the second-order
fractional backward difference method to solve the time-fractional diffusion and dif-
fusion/wave equations can be found in some literatures, see e.g. [36, 63, 67, 156].

4.2.2.4 Numerical Examples

This subsection provides the numerical examples to verify the finite difference
schemes in Section 4.2.2.

Example 5 Consider the following subdiffusion equation

Dy U=8U+f(x,0, (x0)€0,1)x(0,1], 0<y<l,
U(x,0) = 2sin(rx), x€[0,1], (4.123)
U©O,n=U(,0=0, re[0,1].

Choose the suitable right-hand side function f(x,t) such that the above equation
(4.123) has the exact solution U(x,t) = ((*Y + 1+ 2) sin(mx).

We use the methods (4.97) and (4.116)—(4.121) to solve this problem, the numerical
results are shown in Tables 4.7—4.13. It is shown that about (2 —y)th-order experimen-
tal accuracy is observed in Table 4.7, which is in line with the theoretical analysis.
In Tables 4.8 and 4.9, a little better numerical results than the theoretical analyses
are shown. Tables 4.10 and 4.11 also show a little better numerical results. In Tables
4.12 and 4.13, we present the L2 errors at t = 1, which show second-order accuracy.
It is better than the theoretical result presented in Theorem 30.
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TABLE 4.9: The maximum L2 error of the scheme (4.117), N = 5000.

1/At

vy=02

order

vy=0.5

order

v=0.8

order

16

32
64
128
256

7.9954e-5
7.2395e-5
5.7008e-5
3.2334e-5
1.6649¢e-5

0.1433
0.3447
0.8181
0.9576

5.3590e-4
6.6261e—5
1.1206e-5
5.3558e—6
2.3970e-6

3.0157
2.5639
1.0651
1.1599

7.2152e-4
1.1475e-4
2.1759¢e-5
4.9059%e—-6
1.2455e—-6

2.6525
2.3988
2.1490
1.9778

TABLE 4.10: The maximum L? error of the scheme (4.120), N = 5000.

/At

vy=0.2

order

vy=0.5

order

vy=0.8

order

16
32
64
128
256

3.8041e-4
8.1801e-5
1.7541e-5
3.7303e-6
7.6683e—7

2.2174
2.2214
2.2334
2.2823

6.2221e—4
1.0391e-4
2.2495e-5
5.7013e-6
1.4901e—6

2.5820
2.2077
1.9803
1.9359

6.2077e—4
9.0134e-5
2.2715e-5
5.7557e-6
1.5035e—6

2.7839
1.9884
1.9806
1.9366

TABLE 4.11:

The maximum L2 error of the scheme (4.121), N = 5000.

1/At

vy=02

order

vy=0.5

order

v=0.8

order

16

32

64
128
256

3.8041e-4
8.1801e-5
1.7541e-5
3.7303e-6
7.6682e—7

2.2174
2.2214
2.2334
2.2823

6.2221e—4
1.0391e-4
1.7223e-5
2.8273e—6
4.5046e-7

2.5820
2.5930
2.6068
2.6500

6.2077e—4
7.9829e-5
1.0414e-5
1.8163e—6
5.1733e-7

2.9591
2.9384
2.5194
1.8119

TABLE 4.12: The L2 error at ¢ = 1 for the scheme (4.116), N = 5000.

/At

vy=0.2

order

vy=0.5

order

vy=0.8

order

16

32

64

128
256

1.8973e-5
5.2333e-6
1.7679e—-6
6.7348e—7
2.8699e—7

1.8582
1.5657
1.3923
1.2306

2.6723e-4
7.9187e-5
2.1478e-5
5.6189e-6
1.4885e—6

1.7547
1.8824
1.9345
1.9165

3.5197e-4
9.0025e-5
2.2755e-5
5.7706e—6
1.5076e—6

1.9671
1.9842
1.9794
1.9364

TABLE 4.13: The L2 error at ¢ = 1 for the scheme (4.117), N = 5000.

1/At

vy=02

order

vy=0.5

order

v=0.8

order

16
32
64
128
256

2.9439¢e-5
8.1144e-6
2.1149e—-6
5.8476e-7
2.0685e-7

1.8592
1.9399
1.8547
1.4992

6.3211e-5
1.6493e-5
4.2104e-6
1.1142e-6
3.4069¢e-7

1.9383
1.9698
1.9180
1.7094

1.0855e—4
2.7600e-5
6.9926e—6
1.8138e—-6
5.1661e—7

1.9756
1.9807
1.9468
1.8118
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4.3 One-Dimensional Space-Fractional Differential Equations

In this section, we consider finite difference methods for the one-dimensional
space-fractional partial differential equations. These equations include the space frac-
tional diffusion equation [136, 138, 145, 151], the fractional advection-dispersion
equation [24, 100, 111], fractional advection-diffusion equation [137, 141], the space
fractional Fokker—Planck equation [97], the fractional partial differential equations
with Riesz space fractional derivatives [14, 40, 157], and so on.

4.3.1 One-Sided Space-Fractional Diffusion Equation

We consider the following space-fractional diffusion equation with Dirichlet
boundary conditions [112]

0:U = d(x)rLDy U +g(x,1), (x,1) € (a,b)x(0,T],
U(x,0) = ¢o(x), x¢€(a,b), (4.124)
Ua,t) = U,t), U(b,t) = Up(t), te(0,T],

where 1 < @<2 and d(x) > 0.

Since the time derivative is the classical one, all the classical numerical meth-
ods for time discretization can be used. Therefore, we mainly focus on the space
discretization for (4.124).

Since the Griinwald-Letnikov derivative of a given function is convergent to the
Riemann-Liouville derivative when the function is smooth, a natural way to dis-
cretize the space-fractional Riemann-Liouville derivative is to use the definition of
the Griinwald-Letnikov formula (2.51)

1 i
(reD5 V) (i) = Z;J WUt 2 )) + O(Ax). (4.125)
j=

The first-order time derivative in (4.124) can be discretized by the classical meth-
ods such as the explicit Euler method, the implicit Euler method and the Crank—
Nicolson method, etc. Unfortunately, the explicit Euler method, the implicit Euler
method, and the Crank—Nicolson method based on the standard Griinwald—Letnikov
formula for (4.124) are often unstable [111].

Proposition 4.3.1 ([111]) The explicit Euler method solution to Eq. (4.124), based
on the Griinwald-Letnikov approximation (4.125) to the fractional derivative, is un-
stable.

Proof. Let u! be the approximate solutions to (4.124). Then the explicit Euler
method on the Griinwald-Letnikov approximation (4.125) for (4.124) is given by

ur_l+1 —u

A d i

B E 0 u" +g" i=1,2,---,N—-1 (4.126)
(04 l_j l’ 9 b 9 b .

At Ax = 7
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where w =(-1) ( ) *1in (4.126) can be explicitly expressed as

up = ad Zw@ 1+ ALl (4.127)

Assume that u? is the only term that has an error, so the perturbed value is g? = u? + s?.

This perturbation produces a perturbed value for u} given by u} = u} +&}. So (4.127)
yields

ul = piu? d Zw(a) 0 +Atgl = wig) +ul, (4.128)
where the factor
At
Mi = 1+ A—xadl

Therefore we have sl.l = p,-s?. That is, the error is amplified by the factor u; when the
finite difference equation is advanced by one timestep. After n timesteps, one may
write &} = 8 . We refer to y; as the amplification factor (or magnification factor).
In order for the explicit Euler method to be stable, it is necessary that y; <1 for all Ax
sufficiently small. Obviously, |u;|>1. Hence, although it is true that the errors may not
grow for larger values of Ax, the method is not stable as Ax is refined, and therefore
the numerical solution does not converge to the exact solution of the differential
equation. O

Proposition 4.3.2 ([111]) The implicit Euler method solution to Eq. (4.124), based
on the Griinwald-Letnikov approximation (4.125) to the fractional derivative, is un-
stable.

Proof. Let u be the approximate solutions to (4.124). Then the implicit Euler
method for (4.124) is given by

n+l _ ut

u.
SLE—— (@), n+1 1 .
l At AX® Z“’a"f”j +g ", =12, N-1, (4.129)

where a) =(- 1)1( ) Similar to Proposition 4.3.1, we can get sl'.' = ,u;'s?, where

the amphﬁcatlon factor y; = ﬁ > 1 for all Ax. So the implicit Euler method is
“adi

unstable in this case, and hence its numerical solution does not converge to the exact

solution of the differential equation. O

One can similarly prove that the Crank—Nicolson method solution to Eq. (4.124),
based on the Griinwald-Letnikov approximation (4.125) to the fractional derivative,
is unstable [111]. To remedy this situation, the shifted Griinwald formula (2.52) can
be used to overcome this drawback.
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The shifted Griinwald formula with p shifts is defined as

i+p

1 @
(RLDE L U) (x1,0) = e ; WOU(t,x;-j+ pAx) + O(Ax). (4.130)

In [111], the error bound for the shifted Griinwald formula (4.130) was proved
with the following form
C(p—a/2)Ax+ O(AX?),

where C is independent of Ax. Therefore, the best performance comes from minimiz-
ing |p —a/2|. For 1 < @ <2, the optimal choice is p = 1. If @ = 2, then this coincides
with the centered second difference estimator of the second derivative.

From Eq. (4.8), we know that the right-shifted Griinwald formula with p shifts
for the ath-order left Riemann-Liouville derivative of U(x), x€[a,b] at x = x; can be
expressed by

1 i+p
180U = N ]Z(;w;‘” Uiipjr  Uj=U(x;)).

Next, we introduce the Euler method and the Crank—Nicolson method based on

the shifted Griinwald formula for (4.124).

(1) The explicit Euler method solution to Eq. (4.124), based on the shifted (1
shift) Griinwald-Letnikov approximation (4.130) to the fractional derivative,
is given by: Find uf (i=12,---,N-1,n=0,1,2,--- ,n7 — 1), such that

n+d

o) 2 = dysPul, + gl i=1,2,- ,N-1,
u) = go(xi), i=0,1,2,-,N, (4.131)
Mg = Uq(tn), unN = Up(ty),

where Lég‘a)u?ﬂ = A17 Zl;;}) wi‘a)uz{lﬂ—j’ wé‘l) - (_1)J((jy)

(2) The implicit Euler method solution to Eq. (4.124), based on the shifted (1
shift) Griinwald-Letnikov approximation (4.130) to the fractional derivative,
is given by: Find uf (i=12,---,N-1,n=0,1,2,--- ,n7 — 1), such that

""’2l (@) n+1 n+l .
Ou; > =dioy uiy +g ", =12, ,N-1,

ul = go(x;), i=0,1,2,--,N, (4.132)
Mg = Uq(tn), unN = Up(tn),

where Lég‘a)u?ﬂ = A17 th;}) wi‘a)uz{lﬂ—j’ wé‘l) - (_1)J((jy)

(3) The Crank-Nicolson method solution to Eq. (4.124), based on the shifted (1
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shift) Griinwald—Letnikov approximation (4.130) to the fractional derivative,
is given by: Find uf (i=12,---,N-1,n=0,1,2,--- ,n7 — 1), such that

n+l

1
Su; * = diLéia)ui:? +g(xi,f,,+%), i=1,2,---,N-1,
W = go(xi),  i=0,1,2,- N, (4.133)

MG = Ua(tn), u;lv = Up(t),

(@) — 1 yi+l (@) (@) _ (@
where 6% ul, | = gtz TG 0ul W = (<1I(%).

In order to simply give the matrix representations of (4.131)—(4.133), we intro-
duce some notations. We adopt the symbol *.*’ used in MATLAB to express

(A.*B)j=a;b;j, (4.134)

where (A); ; = a; j and (B); j = b; j are the matrices with the same sizes.
Denote by the matrix S ‘@

N1 @s
wéa) w%a) o - 0
a) a) (@)
w, w, w, 0
s@ o= : : oo (4.135)
(@) (@) (@) (@)
Wy oy Wyigz Wy gy ‘”?
D N N O BN C
N-1 N-2 N-3 1 J(N-Dx@N-1)
Define the two vectors B(La) and Bg') as
(@)
W, 0
wéa) 0
(@) _ . (@) _ .
B’ = : , Bp'= : . (4.136)
(@)
Wy 0
(@) w(d)
ON° Jn—1x1 0 /W-1xI1

Next, we give the matrix representation of the three methods (4.131)-(4.133).
(1) Matrix representation of the explicit Euler method (4.131):
u't = (E+pS)u’" + Arg" + u(Brug + Brdy), (4.137)
At

where = 26, 0" = (uf,--uly_ DT, g = (g} & DT Eis an (N —1)x
(N —1) identity matrix,

S =Dyo1S\,. Dy-1=diag(di.dy, + ,dy-1)

and

By =B.xd, Br=BY.xd, d=(d, - .dy1)". (4.138)
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(2) Matrix representation of the implicit Euler method (4.132):
(E—pSHu™! =u" + Arg"! + pu(Brug™' + Bruy'™h), (4.139)
where u, E, S, By, Bg are defined as in (4.137).
(3) Matrix representation of the Crank—Nicolson method (4.133):

1
n+s

At n+i
(E—'%S)g"”:(E+'§S)g"+7(g"+§"+1)+,u(BLu0+2+BRuN ), (4.140)

where u, E, S, By, Bg are defined as in (4.137).

Next, we investigate the stability of the explicit Euler method (4.131), the implicit
Euler method (4.132), and the Crank—Nicolson method (4.133). From (4.135) and
(4.138), and the Gerschgorin theorem, we can obtain that the eigenvalues A of the
matrix S satisfy

i
=dwV|<dw” +d; Y o' < —di?”,
=2

which implies
~2diax = 2dmaxw” < 2diw\” < 1<0,

where dp.x = max d;.
0<i<N

Therefore, the eigenvalue of the matrix (E +uS') lies in [1 — 2uadmax, 1], and the
eigenvalue of the matrix (E —uS) lies in [1, 1 + 2uadmnax]-
From (4.137), we can obtain that the explicit Euler method (4.131) is stable if

At 1
1-2uadn>-1 =u<
HFCmax = Ax® k= admax
From (4.139), we obtain
't = (E—puS) "+ (E - uS)  (Atg"™! + p(Brultt + Bruly' ). (4.141)

Since the eigenvalues of the matrix (E —uS) are all equal to or greater than 1, the
eigenvalues of (E —uS)~! are not greater than 1. Hence, the implicit Euler method
(4.132) is unconditionally stable.

For the Crank—Nicolson method (4.133), we have from (4.140)

ut! = (E—'%S)_I(E+'%S)g"+h", (4.142)

1 1
where b" = Af(E - £5)7! (%(g" +g") + u(Bruy  + Bruy, )). It is known that if A

is the eigenvalue of S, then %;Zj is the eigenvalue of (E - 55)7'(E +45). Since
[2—pAl

B < 1. Hence the Crank—Nicolson method

A has negative real part, so we have
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(4.133) is unconditionally stable. For more detailed information, one can refer to
[111, 112, 145].

From (4.130), one knows that the truncation errors of the explicit Euler method,
the implicit Euler method, and the Crank—Nicolson method are O(At + Ax), O(Ar+
Ax), and O(At2 + Ax), respectively, the proof of which is almost the same as that of
the classical methods, i.e., « =2 in (4.131)—(4.132).

The explicit Euler method (4.131), the implicit Euler method (4.132) and the
Crank—Nicolson method (4.133) can be seen as the special cases of the following
weighted difference methods [41]:

n+

1
AT =d,~[(1—9)L5§“’u'?+1+9L5<“’ l+1]+(1—0)g;7+1+6g?, i=1,2,---,N-1,

i+1
) =go(x), i=0,1,2,--,N,
Mg = Uq(ty), unN = Up(ty),
(4.143)
where 0<0< 1, and where 16Vu ul | = Axa Z”Ow(a)uﬁrl _j @ — (- 1)1(“)
The weighted difference methods (4. 143) can be derlved in the followmg way.
Letting (x,1) = (x;,2,,, 1 ) in (4.124) yields

iU (it 1) = A RUDG U)oty 1)+ 8061, 1) (4.144)

The right-hand side of (4.144) is evaluated by the weighted average values of U(x,?)
at the time levels n and (n + 1), which leads to

U (it 1) =d0) [(1 = )R D U) (i 1) + 8D, U) (i )|
N (4.145)

1 Ual)
+(1-0)g" +6g] +R, " *

The time derivative is discretized by the central difference, and the space fractional
derivative is discretized by the right-shifted (1 shift) Griinwald-Letnikov approxima-
tion (4.130), so one has

H+ )

s, U7 =4 [(1 0).6U" ! + 6,69 U,”H]

i+1

(4.146)
n+x5 2

+(1-0)g(xis tnr1) + 0g(xi, 1y) + R,

1
Dropping the truncation error R;’+7 and replacing U} by u} in (4.146) yields the
weighted finite difference method (4.143).

Obviously, the weighted finite difference method (4.143) is reduced to the ex-
plicit Euler method (4.131) if 6 = 1, the implicit Euler method (4.132) if 6 = 0, and the
Crank—Nicolson method (4.133) if = 1/2. One can similarly prove that the weighted
finite difference methods (4.143) are unconditionally stable when 0<6<1/2, condi-
tionally stable when 1/2<6<1 and A‘a < W)

In Chapter 2, we introduced the L2 and L2C methods for the discretization of
the ath-order Riemann—Liouville derivative, see (2.73) and (2.78), which can yield
a series of finite difference methods as (4.131)—(4.133) and (4.143). The explicit and
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implicit methods similar to (4.131) and (4.132) based on the L1 and L2C methods for
the space discretization can be found in [105]. Readers can also refer to [136, 157]
for the related information.

It is known that the methods (4.131)—(4.133) and (4.143) have second-order ac-
curacy if @ = 2. Next, we introduce the second-order approximation to the left and
right Riemann-Liouville derivative operators.

Lemma 4.3.1 ([111]) Suppose that f(x)e L1(R), RLD‘Z;ZX f(x) and its Fourier trans-
form belong to L1(R), and let

1 Tk-a)
T(—a)T(k+1)’

L0y f) = azw("’f(x (k=p)Ax), o =

where p is a nonnegative integer. Then

180 f(x) = reD?

Ax,p —00,x

f(x)+C (p - %)Ax +0(AXD), (4.147)

where C is a constant independent of p.

From Lemma 4.3.1, we can get that

d 5(“> ) Fo+(- —)Léfg of () = RID%, L f(X) + O(AP). (4.148)

Hence, 5 Lé(a) o f+(1-3) Lég?,o f(x) has second-order accuracy for approximating
_m,xf(x) see also (2.58) and (2.59).

A more general second-order discretization of the left Riemann—Liouville opera-
tor was developed in [146], which can be given as

=29 @ —@ @ @
2p—q)t Opy pf (O + ey’ Oprgf () = RED oo o f (%) + O(AX®),  (4.149)
where p and ¢q are integers. Eq. (4.149) can be also derived from Lemma 4.3.1 by
eliminating Ax from (4.147) through setting p = p,q. Obviously, Eq. (4.149) is re-
duced to (4.148) when p =1 and g = 0.
Let

5@ L NV @ _ @_ 1 Tk-o
RO/ () = x";wk Jark=pAn. @ = RS TR

Then we can similarly get the following second-order discretization for the right
Riemann-Liouville operator [146]

=29 @ — @
2(p—q) Axpf( x)+ ( q) quf(x) rLDY oof(x)+0(Ax2), (4.150)

where p and ¢ are integers.




166 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

Let f(x) be well defined on the interval [a, b]. If f(a) =0, then the left Riemann—
Liouville operator gL Dg , at x = x; can be discretized by the following formula

a—2 —a
=30~ q — 169 firg +O(AD),  (4.151)
where f; = f(x;) and the operator L(Sff’) is defined by (4.8).

If f(b) =0, then the right Riemann-Liouville operator RLDg p at X = x; can be
similarly discretized as

“”fw

|RLDg . f(x )]

a-2q 5@ —@
= R8PS 0P, (4152
= 2R it sk S+ OB, (4152)
where f; = f(x;) and the operator R(sﬁf” is defined by (4.9).

We are interested in the two cases of (p,q), in which (4.151) and (4.152) are
reduced to the central difference when a = 2.

|rDS, ()]

e Case I: (p,q) = (1,0), the left and right Riemann-Liouville derivatives
rLDY . f(x) and RLDi » f(x) at x = x; can be discretized by the following
weighted shifted Griinwald formulas

i+1

@ 2—a
L6V = ELégca/)ﬁ+l 5 L0 fi = Zg;a,l)fiﬂ—j» (4.153)
and
N—i+1
(a,1) (@) (@) 5 (a,1)
#0D f = S0 fior+ 22 = Zg firejs (4154
respectively, where
@) _ 2 @ @h_@ @ 2°¢ @
go - Ewo 5 k 2 k 2 k 1’ kZl (4155)

e Case II: (p,q) = (1,—1), the left and right Riemann-Liouville derivatives
rLDY . f(x) and RLDi » f(x) at x = x; can be discretized by the following
weighted shifted Griinwald formula

2t 9_ i+1
L6 fi = 4 10D fi+ =269 f = Zg( ? firi-js (4.156)
and
Tta N—i+1
) 2
OS2 fi = —— 4 &0 fi- 1+ R5(a)f+1 Z g(a - s (4157

respectively, where
@) _ 2+ @ @2 2t @ 2 _ 2% @ 27 o
0 - 4 0 ) gl —T(IJ] ) gk - 4 k ka 2 kZl
(4.158)
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Lemma 4.3.2 ([146]) The coefficients defined by (4.155) and (4.158) satisfy the fol-
lowing properties for | <a<2:

(1) Casel: (p,q)=(1,0)

2 2
@) _ @ @) _2-a-a @) @ +a—-4)
80 E 81 = —2 <0, ) = T’
1 8| 8|
1>g(a )>g(a )>g(a )> ... >0, (4.159)

Zgw Zg<wl><o m=2,

(2) Casell: (p,q)=(1,-1)

2
(@2) _ 2+« (@2) _ 20+«
& =g & =<0
g(za,’z) _ B+a?—4a+4 >0, gga,,z) _ a(a— 2)(@2 +a— 8)’
8 6 (4.160)
| >g(a,2) >g(a,2) >g(a,2) >g(50,2) S
Zg(o‘z) Zg(“2)<0 m=1 or m23.

Lemma 4.3.3 ([146]) Let g(a D and g(a 2 be defined by (4.155) and (4.158), respec-
tively, 1 <a<2, and

g(%a ) g(?a ) 0 . 0
g2a/ m) glaf m) ggz m o 0
smo=| : Do : (4.161)
(a n) (a n) (a n) (a,m)
En-2 8y-3 8y-a & 0
(a,m) (@) (@m) ,m)
8nZ1 8wl 8nl3 81 (N-1)x(N-1)

(m a/)

Then the real part of the eigenvalue A of S
Sy (m a) +(Sy (m, a))T are negative.

is negative, and the eigenvalues of

From (4.143), (4.153), and (4.156), we can obtain the following finite difference
methods for (4.124)

n+l

St % = di| (1= 06U + 0,0l |+ (1-0)gr +0g), i=1,2,-+ N-1,
ul = go(x;), i=0,1,2,--,N

MG = Uq(tn), unN = Up(tn),
(4.162)
where 0<0< 1, and 16'*™ is defined by (4.153) for m = 1 or by (4.156) for m = 2.
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If U,(¢) = Up(¥) = 0, then the method (4.162) has second-order accuracy in space,
the matrix representation of which is given by

(E - p(1=0)S ™! = (E +6us ™" + At ((1 - 0)g" +6g"), (4.163)

where u = At/AxY, " = (W}, uy_ )T, g = (g}, g )T, Eisan (N=1)x(N-1)
identity matrix, S is given by

S™ = diag(dy,ds, - »dN—l)SE\r/'licly)'

in which § "7 is defined by (4.161).

From Lemma 4.3.2, one knows that ggl’l) +20, g](ca’l) < —g(la’l) for @Sa <2.
In such a case, the matrix S ") has eigenvalues with negative parts. So we can easily
prove that the method (4.124) with m = 1 is unconditionally stable for 0<6<1/2, and
conditionally stable for 1/2<6<1.

Assume that d; = d is a constant. Using Lemma 4.3.3, we can easily prove that
weighted finite difference method (4.162) is unconditionally stable for 0<6<1/2,
and conditionally stable for 1/2<8< 1 by the energy method. For 8 = 1/2, the method
(4.162) has second order accuracy both in time and space [146].

4.3.2 Two-Sided Space-Fractional Diffusion Equation

In this subsection, we consider the finite difference methods for two-sided space-
fractional partial differential equations. A class of two-sided space-fractional partial
differential equations can be written as

0,:U = c(x,0r1Dq U +d(x,)r. D, U + g(x, 1), (x,1) € (a,b) x (0,T],
U(x,0) = ¢o(x), x€(a,b), (4.164)
U(a,h)y=Ub,1)=0, te€(0,T],

where 1 < a < 2 and c(x,1),d(x,1)>0.

We can similarly construct the explicit Euler method, the implicit Euler method,
the Crank—Nicolson method, and the weighted average method for (4.164) as those
for (4.124), see (4.143) and (4.162).

If the left and right Riemann-Liouville fractional derivative operators are re-
spectively discretized by the right and left shifted formulas with one shift, then the
weighted average method for (4.164) is given by: Find uf (i=12,--,N-1,n=
0,1,2,---,n7 — 1), such that

nid
6,ul.+z = [(1 - G)C?HL&SC“)M?:]] + GC?LéfCa)u?H]
+[(1=)ar go ! + 0 RV ul |
+(1-0gM" +6g", i=1,2,--,N-1,
W) = o(x),  i=0,1,2,--,N,
Mg = Uq(tn), ul;\/ = Up(tn),

(4.165)
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where 16'® and z6'® are defined by (4.8) and (4.9), respectively.
Letu = AA—XZ, My = pcy, and () = ud. Then (4.165) can be written as

n+1 —(1-6) [,Uf:-—lL(S(Q) n+1 +,u;t1 6(a)u(1+1]
=uf + 0| 08U+ 1ty wOE | + A (1= 0)g! +0g7 |, =12, N- 1.
(4.166)
Hence, the matrix representation of (4.166) (or (4.165)) can be given below
[E= (1= 0)us™ ! |u™! =(E + gus"u" + Ar[(1 - O)g"™" +6g"], (4.167)
where E is an (N — 1) X (N — 1) identity matrix and
= diag(c,ch, -,y NS+ diag(dy,db, -+ dy_ (S )T (4.168)

Next, we consider the stability of the weighted finite difference methods (4.165).
For simplicity, we suppose that c(x,t) and d(x,t) are time independent. And we de-
note that by cpax = OmaXN c(x;), dmax = OmaxN d(x;). Therefore, the matrix S” is inde-

<i< <i<

pendent of n, so we denote it by § = S".
According to the Gerschgorin’s theorem, one has

i N—i
/l—w(la)(c,»+d,-)|3c,» DU ed Y 1w,

j=0.j#1 j=0,j#1

Noticing that w ) >0, j#1,and 2 w =0, one has ZN 0,j%1 wi‘l) < - w(a) Hence,
Jj=0

A=\ (ci+dp)| < -\ (e +dy).
The eigenvalues A of the matrix S satisfy
~2/(Cmax + dimax) <20\ (c; + di) < 1<0.
Next, we are in a position to estimate the eigenvalues of the following matrix
[E—pu(1—0)A]" (E +p6S).

Suppose that A is the eigenvalue of the matrix S. Then the eigenvalue of

1
[E-p(1-0)ST ' (E+p6S) is =%
1+uba

If 0<6<1/2, then we always have Imls 1, so the weighted finite dif-
ference method (4.165) is unconditionally stable. If 1/2<6<1, we deduce from
1< 1+uba

A 1 . . .
Tt <1 that u = ! < se—raasT - Hence the Welghted finite differ-

ence method (4.165) is condltlonally stable for 1/2<6<1 and 2 A AL < m
Obviously, the first-order method is used in the space discretization in (4.165).
As in (4.162), we can use the second-order discretization in space.
Replacing the operators ;6" and z6'® in (4.165) by 16*™ and 6™, m = 1,2,
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respectively, we can get the following difference method for (4.124): Find u (i =
1,2,---,N—-1,n=0,1,2,--- ,n7 — 1), such that

5; [(1 G)L"” 5(am) 7:11-}-96‘ 6(‘”") :z+1
+|(1=0)dr g U, + 0] 6wl |
+(1-0)g" ! +6g, i=1.2,--,N-1,

ud = go(x;), i=0,1,2,---,N.

ug = Ua(ty), uy = Up(ty),

(4.169)

where 0<0<1, 16%™ is defined by (4.153) for m = 1 or by (4.156) for m = 2, and
#0\Y™ is defined by (4.154) for m = 1 or by (4.157) for m = 2.

If 6 = 1/2, method (4.169) is reduced to the CN method with second-order accu-
racy both in time and space.

As in method (4.162), we can easily obtain that for ‘/_ M7=l <4 < 2, the method
(4.169) with m = 1 is unconditionally stable for 0<6<1/2, and conditionally stable
for 1/2<6<1.

If0<6<1/2andc(x,t) =d(x,t) = K, K >0, then method (4.169) is uncondition-
ally stable, which can be proved by the energy method. Readers can refer to [146]
for related information.

4.3.3 Riesz Space-Fractional Diffusion Equation

This subsection considers finite difference methods for the fractional differential
equations with Riesz space fractional derivatives. For simplicity, we consider the
following fractional diffusion equation

0,U = gzDSU + g(x,0), (x,1) € (a,b)x(0,T],
U(x,0) = ¢o(x), xE€(a,b), (4.170)
UGa,n=Ub,H)=0, te(0,T],

where 1 < @<2, d(x) > 0, and gzD¢ is the Riesz space fractional derivative defined
by
RzDgU = —CQ(RLDZ’XU +RLDibU), (4171)

in which ¢, = m

Obviously, the Riesz space fractional derivative can be seen as the linear combina-
tion of the left and right Riemann—Liouville derivatives. Therefore, equation (4.170)
can be solved by the difference methods (4.165) or (4.169) by letting ¢} = d}' = c,.
For the Riesz derivative operator, there exists a special discretization method named
the fractional central difference method [14, 37, 38, 39].

The fractional central difference method is defined by

R RS (-DFC(a + 1)
D} f(x)= 2 TGk D@2 7k T) f(x—kAx), a>-1.  (4.172)
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Then

De = —1
DL 3 DT(+1) fa—kAY)  (4.173)

A0 Ax® _Axglok T(@/2—k+ D (a/2+k+1)

=—00

represents the Riesz derivative (4.171) for the case 1 < @ <2 with a = —oco and b = co.
Hence, (4.173) can be used as the discretization of the Riesz derivative.

it S TG e e
g0>0, gr=gr<0, I[k|>0, (4.174)
and .
D ake =[2sin/2), i =-1. (4.175)
k=—oc0

Lemma 4.3.5 ([14]) Let f € C°(R) and all derivatives up to order five belong to
Li(R). Then
DY f(x)
A
where gzDS f(x) = —co(RLDZ oo  f () +RL DS oo (X)) and 1 < a<2.

= rzDYf(x) + O(AX?), (4.176)

Suppose that f(a) = f(b) = 0. Then the Riesz derivative gzD¢ f(x) can be approx-
imated by

Ax
RZDY f(2) = —— D arfx—kAx) + 0(AL). (4.177)

Similar to (4.169), we can give the following finite difference methods for (4.124):
Find ul” (i=12,---,N-1,n=0,1,2,---,ny — 1), such that

1
St T = (1= 0) gz6 ! + 076 ul

+(1-0g" +6g", i=1,2,--,N-1,0<6<1,

(4.178)
0= go(x;), i=0,1,2,--,N,
ug = O’ u;lv = 0,
where
i k
=DT(a+1)
5(0) n—_ n , _ . 4170
RZOyx "U; Ax® k:;mgkul_k 8k T2k @R ks D ( )

For simplicity, we suppose u; = ujy, = 0. In such a case, the matrix representation
of (4.178) is given as:

[E—(1-0)uS Ju"" = (E+u6S " + Ar[(1-0)g™" +6g"], (4.180)
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where u = AA—X’(,, Eis an (N —1)x (N —1) matrix, and § e RW-Dx(N-1) satisfying

80 8-1 82 0 &-N+l
81 80 8&-1 ° &-N+2
S =— : : : : . (4.181)
8N-2 &N-3 EN-4 &1
8N-1 8N-2 8N-3 80

By Gerschgorin’s circle theorem, Eqgs. (4.174) and (4.175), we can get that the
eigenvalue A of S satisfies

i-1
M+gol<u D lad<eo,

k=—N+i,k#0
which yields
—2g0<1<0.

If 0<6<1/2, then one can easily check that the eigenvalues 1—1;;% of the
matrix [E—(1-6)S|"' (E +065) satisfy | ;22| < 1. Hence, method (4.178) is
unconditionally stable for 0<6<1/2. For 1/2<6<1, we can have |1—lut+%)/l' <1lif
u< m. Therefore, method (4.178) is conditionally stable for 1/2<6<1 and

_ A 1
H= 37 S a6 D

4.3.4 Numerical Examples

Example 6 Consider the following space-fractional diffusion equation

a[U = RLDg’xU*—RLDi] U+g(x»t)» (x’ t) € (0’ 1) X(09 1]9
U(x,00=x*(1-0% x€(0,1), (4.182)
Uuo,n=U01,n=0, te(0,1],

where 1 < @ < 2. Choose the suitable g(x,t) such that Eq. (4.182) has the exact solu-
tion U(x,1) = cos()x*(1 — x)*.

Propositions 4.3.1 and 4.3.2 show that the explicit Euler method and implicit
Euler method based on the standard Griinwald-Letnikov formula are unstable. We
test the Crank—Nicolson method (4.178) (6 = 1/2) based on the standard Griinwald—
Letnikov formula to solve the problem (4.182), the results are shown in Table 4.14.
From the computations, one can find that the numerical solutions blow up.

In Tables 4.15-4.18, we use the Crank—Nicolson method (see (4.165) with 6 =
1/2) based on the shifted Griinwald-Letnikov formula, the Crank—Nicolson method
(4.169) (6 = 1/2) based on the weighted shifted Griinwald-Letnikov formulas (see
(4.153), (4.154), (4.156), and (4.157)), and the Crank—Nicolson method (4.178) (6 =
1/2) based on the fractional central difference method to solve (4.182). The numerical
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TABLE 4.14: The L? error at t = 1 for the
Crank—Nicolson method (4.178) (6 = 1/2) based on

results are shown in Tables 4.15—4.18. We can see that the satisfactory numerical
results are obtained, which are in line with the theoretical analysis.
Note that we should rewrite RLD" U+ RLD" U in (4.182) in the form RLD“ U+
RLD U = cqrzD{U, so that method (4 178) can be applied properly.

the standard Griinwald—Letnikov formula, Ar = 1073,
N a=12 a=15 a=1.8
8 17.9306e+017 | 8.8737e+046 | 2.7457e+112
16 | 1.9441e+048 | 4.6781e+149 NaN
32 | 9.7458e+119 NaN NaN
64 NaN NaN NaN
128 NaN NaN NaN
TABLE 4.15: The L2 error at 7 = 1 for the Crank—Nicolson method
(4.165) (9= 1/2), At = 1073.
N a=12 order a=1.5 order a=1.8 order
8 [64217e-4 1.9017e—4 6.5329e-5
16 | 4.0174e—4 | 0.6767 | 1.1500e—4 | 0.7256 | 1.2114e-5 | 2.4311
32 | 2.3453e—4 | 0.7765 | 6.3839e-5 | 0.8491 | 6.2524e—6 | 0.9542
64 | 1.2995e—4 | 0.8519 | 3.3688e—5 | 0.9222 | 3.9517e—6 | 0.6619
128 | 6.9087e-5 | 0.9114 | 1.7311e-5 | 0.9605 | 2.2292e-6 | 0.8259

TABLE 4.16: The L? error at 7 = 1 for the Crank—Nicolson method
(4.169) (8= 1/2) withm =1, At = 1073,

N a=12

order

a=15

order

a=1.8

order

32
64
128

8 | 5.2424e-5
16 | 1.2433e-5
3.0732e-6
7.6635e—7
1.9155e-7

2.0761
2.0163
2.0037
2.0003

7.1713e-5
1.6744e-5
4.1248e—6
1.0278e—6
2.5686e—7

2.0986
2.0213
2.0047
2.0006

8.8409e-5
2.0355e-5
5.0045e-6
1.2464e—6
3.1143e-7

2.1188
2.0240
2.0054
2.0008

TABLE 4.17: The L2 error at 7 = 1 for the Crank—-Nicolson method
4.169) (0=1/2)withm =2, At = 1073,

N a=12

order

a=1.5

order

a=1.8

order

32
64
128

8 | 1.5557e-4
16 | 3.9381e-5
1.0054e-5
2.5530e—-6
6.4422e—-7

1.9820
1.9697
1.9776
1.9866

1.6274e—-4
3.9862e—-5
1.0043e-5
2.5338e—-6
6.3736e—7

2.0295
1.9888
1.9868
1.9911

1.3416e—4
3.1921e-5
7.9320e—6
1.9849¢e—-6
4.9703e-7

2.0714
2.0087
1.9986
1.9977
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TABLE 4.18: The L2 error at ¢ = 1 for the Crank-Nicolson method
(4.178) (9 =1/2), At = 1073.

N a=12 order a=15 order a=1.8 order
8 |8.9228e-5 1.5660e—-4 1.4640e—-4
16 | 3.5343e—5 | 1.3361 | 5.6465¢—5 | 1.4717 | 4.1501e-5 | 1.8186
32 | 1.5504e-5 | 1.1888 | 1.6347e—-5 | 1.7883 | 1.0880e-5 | 1.9315
64 | 4.7751e—6 | 1.6991 | 4.3544e—6 | 1.9085 | 2.7739¢e-6 | 1.9717
128 | 1.3052e-6 | 1.8713 | 1.1218e—6 | 1.9566 | 6.9973e—7 | 1.9870

4.4 One-Dimensional Time-Space Fractional Differential Equa-
tions

In this section, we numerically investigate the time-space fractional differential
equations, where the time derivative and the spatial derivative are both fractional.

4.4.1 Time-Space Fractional Diffusion Equation with Caputo Deriva-
tive in Time
We now consider the following time-space fractional diffusion equation
cD) U= (LDU)(x, 1) +g(x.,1),  (x,0) € (a,b)x(0,T],
U(x,0) = ¢o(x), x€(a,b), (4.183)
U(a,H)=0,Ub,H)=0, te(0,T],
where L = ¢(x, g, DY, +d(x,H)reD?,, 0 < y<1,1 <a <2, and c,d > 0.
Naturally, we can combine the time discretization techniques for the time-
fractional equation (4.86) and the space discretization techniques for the space-
fractional equation (4.164) to solve (4.183).

In order to illustrate the algorithms clearly and simply, we introduce the notation

L(A“);’;) defined by

&1 Ul + R UL g =1,

8 1
| L0 U+ efROVUL g =2,
AT g TP U - s PUT, g =3,

RZ(SEC") Ul-", qg =4,

(4.184)

where 167, g6'?, 6@V, g6 @D, 6P and g6'Y? are defined by (4.8), (4.9),

(4.153), (4.154), (4.156), and (4.157), respectively; and RZ&EC“) is defined by (4.179)
. 1

withc=d = ~ YeostanD) -

It is known from the previous sections that

LU = (LOU) i ty) + O(ALP), (4.185)
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where
L g=1,
p=132, q=23, (4.186)
2, g=4withc(x,t) = d(x,1) = —(2cos(an/2)) "\
e The time fractional derivative is discretized by the Griinwald-Letnikov for-
mula as in (4.96) and the space operator L@ in (4.183) is discretized as in

(4.185); the fully discrete finite difference method for (4.183) is given by: Find
u? (i=12,---,N-1,n=1,2,---,n7), such that

57 —ul) = LIMul + gl i=1,2, N=1,
ul = go(xi), i=0,1,2,---,N, (4.187)

uy =y =0,
where 657) is defined as in (4.96) and L(Aoj;';) is defined by (4.184).

o The time fractional derivative is discretized as in (4.97) and the space operator
L@ in (4.183) is discretized as in (4.185); the fully discrete finite difference
method for (4.183) is given by: Find u;’ (i=12,--,N-1,n=1,2,--- ,n7),

such that ) o
n @,n) n 7 .
Céty l.:LAx’qui+gi’, i=1,2,---,N—1,
0= go(x)), i=0,1,2,---,N, (4.188)
Mg:unNzo’

where él 657) is defined by (4.5) and L(Aa)fq) is defined by (4.184).

If the time direction of (4.183) is discretized by the FLMM as those in the FLMM
finite difference methods (4.116), (4.117), (4.120), or (4.121), and the space opera-
tor L@ is discretized by (4.185), then we can similarly derive the corresponding
FLMM finite difference methods for (4.183). We only need to replace 6)2Cufl in (4.116),

(4.117), (4.120), or (4.121) with L(A“;Z)u;’ defined by (4.184) to derive the correspond-
ing algorithms. We list these methods below:
e Find u;? (i=12,---,N-1,n=1,2,--- ,nr), such that

n

1 %o 1 X Kk ren—k) nk , p);@0) 0
A—ﬂzwk(u;’ —ui)zz—yZ(—l) WL P 4 B
k=0

k=0
1 © -
7 Z wnk G ¥, (4.189)
k=0
0= gox), i=0,1,2,0,N,
Mg = u;’v = 0’

where wi = (-DX(}), G = [D} g(x;,1)] _ , and B is defined by (4.114) with
m=1. !
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e Find u'? (i=12,---,N-1,n=1,2,--- ,nr), such that

~k _ 0 (@n) Y (@n-1), n-1
Mzwk(u" ~ud)=(1- )Lgx'; u+ L

1
() (@,0) W+ Y Y ~n-1
+BILY ) + [(1—§)Gg?+§G;1 :

9= ¢o(x)), i=0,1,2,---,N,
Mg = unN = O’
(4.190)
where wi = (—l)k(Z), G!= [Dg’lg(x,-,t)]l:[n’ and B? is defined by (4.114) with
m=2.

e Find u'? (i=12,---,N-1,n=1,2,--- ,nr), such that

—k k (an k) ko, (1) (00)0
St iy = St B

1 1 0
+c,§>(L(AC;q> ul - fo; ’0)+MZ“’" WGk,

0= go(x;), i=0,1,2,--,N,
Mg:u;lv:()’

(4.191)
where w; = (-D¥(}), G = [D} tg(x,,t)] , B\ is defined by (4.114) with m =

1, and C'" is defined by (4.119) with m = 1
e Find u'? (i=12,---,N-1,n=1,2,--- ,nr), such that

k_ .0 (a,m) Y r(an-1) n-1
Atwak(un —udy=(1- Z)LA“X’;? FLary

2 0 2 1 0
+ B L) + O (L uf = L)
1 y 1 (4.192)
+—|a-Der+ Lo,
M[( 3¢+ 70
[ :¢0(xl)’ i:0»1727”'7N’

0
i

n
0

ug=uy=0,
where w = (=DX(}), G = D} .g(xi0)] _, , B is defined by (4.114) with m =
2, and C? is defined by (4.119) with m = 2.

Next, we present the stability analysis for the methods (4.187)—(4.188). For sim-
plicity, we suppose that c(x,?) = d(x,t) = constant. We first focus on the stability for
(4.188). The matrix representation of (4.188) is given by:

n—1
(b E-ps)u =>4 =P uk + b7 + A g, (4.193)
k=1
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where (= A0 the matrix S is defined as that in (4.167), and E is an (N— 1) X (N—1)

AXT>
identity matrix. In the following, u” and u” means

T T
un:(ug’u?sn"un]\]) ) En:(u}ilsugf'"u;lv_l) s n=0919"'~

g”,g”,e”,g",g and R" with gg = g”N = eg = 67v = Rg = R"N = 0 have the same meaning.

It is known that all the eigenvalues of the matrix S defined in (4.193) (see
also (4.167)) have negative real parts. Therefore, for any vector ue RV=!, we have
(Su,u) =u’ Su<0. Hence, we have from uy = ”(l)v =0 and (4.193) that

b < b |3 + pAx(—Su", u")

nl (4.194)
= D B =BTy + b @ )y + A7 (g uy.
k=1
Applying Lemma 4.2.5 (see Eq. (4.101)) yields
"Iy, <20u°lly +C | max[ig"l. (4.195)

For method (4.187), one can similarly obtain that the numerical solution of
(4.187) satisfies (4.195).

Next, we consider the convergence analysis. Let e = U(x;, ;) —u}. Then one gets
the error equation for (4.188) as

doe = L el + Ry, (4.196)
where R is the truncation error satisfying |R| <C(AP™Y + AxP). From (4.195), we
get
lle"]% <2[1e%l% + C max [[R"|[% <C(APZ™Y +AxP).
1<n<nr

The error bounds for the method (4.187) can be similarly obtained, which is given
by
lle"|3, < C(Ar + AxP).

The stability and convergence analysis of methods (4.189)-(4.192) are a little
different from (4.187) and (4.188). If c(x,t) = d(x,t) = constant, the stability and
convergence analysis of methods (4.189)—(4.192) are similar to those of the schemes
(4.116)—(4.117) and (4.120)—(4.121).

We just analyze the stability and convergence for (4.189), which is the same as
those for (4.190)~(4.192). If ¢(x,1) = d(x,t) = K,, > 0, then the matrix representation
of method (4.189) is given by:

n n n
Z "™ —u) = A Z(—l)kwkSg"‘k +ABPsul + Z wnk G, (4.197)
k=0 k=0 k=0

where u = ﬁx" and S is a negative symmetric matrix. Hence, we can define the
inner product
(u,v)s = —vISu, u,ve RN
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with the norm |[ju||ls = v/(u,u)s. We also have

1

2 2

(u,v)s <|ullslivils < elluallg +—IIvlg, €>0.
4e

Denote by [[lullli = (Il + A glul3, [ull = V(u,w), with

N-1
(u,v) = Z uivi, u,veRM-DxL
i=1

Then we have from (4.197) that

llflf = @",u") + A u(u", u")s

= an wr| ", u") - p AP (- 1 s |
k=1

(4.198)
n
+ by (0, 0") — pA7 BP0, 05 + 3 w0, k(G ).
k=0
Similar to Theorem 29, we can obtain
113 < Cr(ll® 113 + A [’l13) + C2 max lg"|I%, (4.199)
0<k<np —

where C| is independent of n, At,Ax and T, and C, is independent of n, At, Ax.
Using the properties ||u”||12V = Ax||g||2 and ||g”||12V = A)c||g||2 gives

13 < Ci (I} + AP Axllu®lff ) + €, max [ig"]l3. (4.200)
0<k<nr

Next we consider the convergence. Let e! = U(x;,1,) —u, u} be the solution of
(4.189). Then the error equation of (4.189) is given by

y 1
MZwk(e”—e 272( DearLif Ve + 5 RY, (4201

where R! = O(At + AxP).
Hence, we have from (4.200) and (4.201) that

n2 < 0,12 y 012 ny2 _ n2
llel[y <Ci (Ile lly + A" Axlle IIS)+C20£I}€£;>;TIIR iy Czog}(nglR Il (4202)
<C(At+ AxP).

We can similarly derive that the solution u to (4.190), (4.191), or (4.192) satisfies
(4.200), the convergence order of (4.190) is (Ar+ Ax”), and the convergence orders
of (4.191) and (4.192) are (Ar* + AxP).
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4.4.2 Time-Space Fractional Diffusion Equation with Riemann-Liouville
Derivative in Time

Next, we consider the finite difference methods for the following time-space frac-
tional diffusion equation

0,U = riDy,” (LVU) +g(x.0),  (x.1) € (a,b) X (0,T],
U(x,0) =¢o(x), xe(a,b), (4.203)
Ula,)=Ub,n=0, 1€(0,T],

where L@ = c(x,)g D, +d(x, DrLD?,, 0 <y<1,1<a<2,andc,d>0.

One can find that the subdlffusmn equatlon (4.203) is similar to (4.10), except that
the second-order space derivative operator 6,% is replaced by the fractional derivative
operator L@, Hence, the time discretization of (4.10) can be used for (4.203). The
space derivative is discretized as that of (4.183).

Next, we directly list several finite difference methods for (4.203).

e Explicit Euler type methods: The time direction is discretized as that in
(4.16), the space operator L@ at ¢ = 1, is approximated by L(“ '2 which is de-
fined as (4.184), and the fully discrete finite difference method for (4.203) is

glvenby.Fmdul (i=12,---,N-1,n=0,1,2,---,ny — 1), such that
m+3 _ GL(1-y) (7 (@n) .
Sty 2 = Ol (L) + £, i= 1,2, N -1,
W = po(xi), i=0,1,2,---,N, (4.204)

uy=uy =0,

where L5\ is defined by (4.184).
The time fractional derivative in (4.203) can be discretized by the L1 method
or the fractional backward difference formula; we just need to replace GLégl_w
in (4.204) by k16! which is defined by (4.4) or Bs,' ™ defined by (4.6) to
obtain the corresponding algorithms.

o Implicit Euler type methods: The time direction is discretized as in (4.30),
the space is discretized as in (4.204), the fully implicit Euler type method for
(4.203) is given by: Find ufl (i=12,---,N-1,n=1,2,---,n7), such that

1
1 - ‘
sl = L w(L(A?X’;) )AL =120 N1,
W = po(xp), i=0,1,2,---,N, (4.205)

o—uN—O

where 6267 is defined by (4.3) and Lg;';-“ is defined by (4.184). The op-

erator %6{' " in (4.205) can be replaced by 516\ or 55" when the L1
method (see also (4.49)) or the fractional BDF method is used in the discretiza-
tion of the time fractional derivative, which yields various Euler type methods.
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¢ Crank-Nicolson type methods: The time direction is discretized as that in the

(a,n— 2)

CN method (4.59), the space operator L@ at ¢ = t,, is approximated by L,
given in (4.184), the fully discrete Crank—Nicolson type method for (4. 203) is
given by: Find u'.’ (i=12,---,N-1,n=1,2,---,n7), such that

1—— (1-y) (an—l) n—-1 .
s, > =6, (Amzui 2 i=1,2,0 N-1,

u = po(x;), i=0,1,2,---,N, (4.206)
ug = unN = O

(a,n— 2) n— z
Ax,q

-y (plan=p) n=3\__1 [, @n-b) n-} (ah-b) k-
6[ (LAx,q U; _Atl—y boL Ax,q U; Z(b" 1k = bn- k)Lqu U;

where 651_7) (L ) is defined by

@3) 3 @0) 0
_(bn—Bn)Lm P AL l],

in which A, = B, - % By = 20 ((n+1/2) "), by =
1) =], and fo’;) is defined by (4.184).

If the time direction is discretized as that in (4.60) or (4.67), we can obtain
different CN type methods which are not listed here.

1
L4+

Integration methods: The time direction is discretized the same as that in
(4.82), the space operator L@ at t = t,, is approximated by L(‘“Z) which is
defined in (4.184), the expl1c1t method for (4.203) is given by: Find u} (i =
1,2,---,N-1,n=1,2,--- ,n7), such that

5:”, 5(1 7)(L(A“x’;) :’)+fl , i=1,2,---,N—1,
W) = po(x), i=0,1,2,---,N, (4.207)
ug =y =0,

where L'/ q’ is defined by (4.184) and &' is defined by

(1-y) (an) "y = (1 7) (ak 1) k 1 @ 7) (a.k=1) W
o (qul IyZ qu )= Zb Lqu ui )|

B = —— [+ 1) =K"].
( m ke =R
If the time direction is discretized the same as that in (4.83), then we can obtain

the implicit method given by:

5% = 4! LG+ £ =12, N=1,

’4,' =¢o(x;), i=0,1,2,---,N, (4.208)

n __ n __
ug =uy =0,
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where L{"" i defined by (4.184) and 58 is defined by

(1=y) 7 (@.n) u” - 7) ((Yk) uk a }’) (a/k) uk
61 (Lqu 1)_ 1 -y Zb qu l) an k— 1 qu 1)

(I-y) _ Yy _ 1y
bk = —F(1+‘y)[(k+1) k7.

If the time direction is discretized as that in (4.84), we can also derive the
corresponding implicit method, which is not listed here.

If y > 1 and @ — 2, the explicit methods (4.204) and (4.207) are reduced to the
classical forward Euler method, the implicit methods (4.205) and (4.208) are reduced
to the classical backward Euler method, and the Crank—Nicolson type method (4.206)
is reduced to the classical CN method.

The stability and convergence analyses of the methods (4.204)—(4.208) are more
complicated than their counterparts of the classical equations.

If ¢(x,1) = d(x,1) = K, > 0, then the implicit method (4.205), the CN type method
(4.206), and the integration method (4.208) are all unconditionally stable and are
convergent to order (A7 + Ax”), (A"~ + AxP), and (At + AxP), respectively.

4.4.3 Numerical Examples

Example 7 Consider the following time-space fractional diffusion equation
cDy,U = reDy U+ DS U +g(x,0),  (x,1) €(0,1)x(0,1],
U(x,0)=2x*1-x* xe(0,1), (4.209)
Uo,n=U0,1=0, te(0,1],

where 0 <y < 1,1 < @ < 2. Choose the suitable g(x,t) such that Eq. (4.209) has the

exact solution U(x,1) = (Z7 + 1+ 2)x*(1 = )™

We first test method (4.188). The L? error at ¢ = 1 is shown in Table 4.19. We can
see that first-order accuracy for ¢ = 1 in space and second-order accuracy for g =
2,3,4 in space are observed, which are in line with the theoretical analysis. For g =
4 in Table 4.19, RLD”‘ U +RLD”‘ U in (4.209) is written in the form of c,zrzD{U
so that method (4. 188) can be used properly, which is the same as in Tables 4.20-
4.23. Tables 4.20-4.21 give the L? errors at ¢ = 1 of methods (4.191) and (4.192),
respectively. Obviously, we get satisfactory numerical results.

Example 8 Consider the following space-fractional diffusion equation
9,U = rDy,” (rLD§ U+ riDE, U) +g(x.0),  (x,0) € (0,1)x (0,11,
Ux,00=0, xe(0,1), (4.210)
Uo,n=U1,n=0, te(0,1],

where 0 <y < 1,1 < a < 2. Choose the suitable g(x,t) such that Eq. (4.209) has the
exact solution U(x,t) = (%7 + H)x*(1 — x)*.
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TABLE 4.19: The L? error at ¢ = 1 for method (4.188), ¥ = 0.8,Ar = 1073,

q| N a=12 order a=15 order a=1.38 order

8 |2.6218e-3 7.5458e—4 2.6271e—4
16 | 1.6674e—3 | 0.6529 | 4.6301e—4 | 0.7046 | 4.8195e—5 | 2.4465
1] 32 | 9.7591e—-4 | 0.7728 | 2.5856e—4 | 0.8405 | 2.4504e-5 | 0.9759
64 | 5.3754e—4 | 0.8604 | 1.3678e—4 | 0.9186 | 1.5648e-5 | 0.6470
128 | 2.8401e—4 | 0.9204 | 7.0337e—5 | 0.9595 | 8.8464e—6 | 0.8228

8 |2.0521e—-4 2.8394e-4 3.5194e-4
16 | 4.8876e—5 | 2.0699 | 6.6752e—5 | 2.0887 | 8.1674e-5 | 2.1074
2| 32 | 1.2163e-5 | 2.0066 | 1.6502e-5 | 2.0161 | 2.0134e—-5 | 2.0203
64 | 3.1149e—6 | 1.9653 | 4.1429e—6 | 1.9940 | 5.0316e—6 | 2.0005
128 | 8.9300e—7 | 1.8024 | 1.0696e—6 | 1.9535 | 1.2734e—6 | 1.9823

8 | 6.0945¢e—4 6.4575e—4 5.3546e—4
16 | 1.5473e—4 | 1.9777 | 1.5906e—4 | 2.0214 | 1.2818e—4 | 2.0626
31 32 | 3.9597e-5 | 1.9663 | 4.0155e-5 | 1.9859 | 3.1909e-5 | 2.0061
64 | 1.0126e-5 | 1.9672 | 1.0160e—5 | 1.9827 | 8.0018e—6 | 1.9956
128 | 2.6389e—6 | 1.9401 | 2.5858e—6 | 1.9742 | 2.0194e—6 | 1.9864

8 |3.7015e-4 6.3728e—4 5.9009¢e—-4
16 | 1.4568e—4 | 1.3453 | 2.2853e—4 | 1.4795 | 1.6719e—4 | 1.8194
41 32 | 6.1691e-5 | 1.2396 | 6.5678e—5 | 1.7989 | 4.3810e—5 | 1.9322
64 | 1.8924e-5|1.7048 | 1.7470e-5 | 1.9105 | 1.1180e-5 | 1.9704
128 | 5.2385e—6 | 1.8530 | 4.5247e—6 | 1.9490 | 2.8350e—6 | 1.9795

TABLE 4.20: The L? error at t = 1 for method (4.191), y = 0.5,At = 1073,

q| N a=12 order a=15 order a=1.38 order

8 |2.6125e-3 7.525%e—4 2.6266e—4
16 | 1.6639e-3 | 0.6509 | 4.6202e—4 | 0.7039 | 4.8193e-5 | 2.4463
1| 32 |9.7474e—-4 | 0.7714 | 2.5810e—4 | 0.8400 | 2.4530e-5 | 0.9743
64 | 5.3713e—4 | 0.8597 | 1.3659¢—4 | 0.9181 | 1.5686e—5 | 0.6451
128 | 2.8389%e—4 [ 0.9199 | 7.0287e-5 | 0.9585 | 8.8899e—6 | 0.8192

8 |2.0451e-4 2.8378e—4 3.5187e-4
16 | 4.8650e—5 | 2.0717 | 6.6681e—5 | 2.0894 | 8.1640e-5 | 2.1077
2| 32 | 1.2035e-5 | 2.0152 | 1.6456e—-5 | 2.0187 | 2.0110e-5 | 2.0214
64 | 3.0014e—6 | 2.0036 | 4.1015e—6 | 2.0044 | 5.0102e-6 | 2.0049
128 | 7.5000e—7 | 2.0007 | 1.0247e—6 | 2.0009 | 1.2516e—6 | 2.0011

8 |6.0724e—4 6.4530e—4 5.3535e-4
16 | 1.5419e—4 | 1.9776 | 1.5893e—4 | 2.0216 | 1.2813e—-4 | 2.0628
31 32 | 3.9392e-5 | 1.9687 | 4.0093e—-5 | 1.9870 | 3.1882e—-5 | 2.0069
64 | 1.0002e-5 | 1.9776 | 1.0115e-5 | 1.9868 | 7.9797e—6 | 1.9983
128 | 2.5234e—6 | 1.9868 | 2.5438e—6 | 1.9915 | 1.9979e—-6 | 1.9978

8 | 3.6988e—4 6.3601e—4 5.8985e—-4
16 | 1.4535e—4 | 1.3476 | 2.2826e—4 | 1.4784 | 1.6712e—4 | 1.8194
4| 32 | 6.1410e-5 | 1.2430 | 6.5588e—5 | 1.7992 | 4.3778e-5 | 1.9326
64 | 1.8765e—5| 1.7104 | 1.7418e—5 | 1.9128 | 1.1156e-5 | 1.9723
128 | 5.1185e—6 | 1.8743 | 4.4816e—6 | 1.9585 | 2.8133e—6 | 1.9875
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TABLE 4.21: The L? error at ¢ = 1 for method (4.192), y = 0.2,At = 1073,

q| N a=12 order a=15 order a=138 order
8 |2.6122e-3 7.5168e—4 2.6259%—4
16 | 1.6646e—3 | 0.6501 | 4.6155e—4 | 0.7036 | 4.8156e—5 | 2.4470
1] 32 | 9.7537e—4 | 0.7712 | 2.5785e—4 | 0.8399 | 2.4505e—-5 | 0.9746
64 | 5.3746e—4 | 0.8598 | 1.3647e—4 | 0.9180 | 1.5673e-5 | 0.6448
128 | 2.8405e—4 | 0.9200 | 7.0224e—-5 | 0.9585 | 8.8836e—6 | 0.8191
8 | 2.0424e—4 2.8363e—4 3.5180e—4
16 | 4.8590e—-5 | 2.0716 | 6.6645e—5 | 2.0894 | 8.1622e-5 | 2.1077
2 32 | 1.2020e-5 | 2.0151 | 1.6447e-5 | 2.0187 | 2.0105e—-5 | 2.0214
64 | 2.9976e—6 | 2.0036 | 4.0992e—-6 | 2.0044 | 5.0089e—6 | 2.0050
128 | 7.4894e—7 | 2.0009 | 1.0240e—-6 | 2.0011 | 1.2512e—-6 | 2.0012
8 | 6.0646e—4 6.4491e—-4 5.3522e-4
16 | 1.5400e—4 | 1.9775 | 1.5884e—4 | 2.0215 | 1.2810e—4 | 2.0628
3| 32 | 3.9344e-5 | 1.9687 | 4.0071e-5 | 1.9869 | 3.1874e—-5 | 2.0069
64 | 9.9895e—6 | 1.9777 | 1.0110e—-5 | 1.9868 | 7.9776e—6 | 1.9983
128 | 2.5202e—6 | 1.9869 | 2.5423e—6 | 1.9916 | 1.9973e—6 | 1.9979
8 | 3.7056e—4 6.3545¢e—4 5.8965e—4
16 | 1.4551e—4 | 1.3486 | 2.2812e—4 | 1.4780 | 1.6708e—4 | 1.8194
41 32 | 6.1359e—5 | 1.2457 | 6.5551e—-5 | 1.7991 | 4.3766e—-5 | 1.9326
64 | 1.8745e-5| 1.7108 | 1.7409e—5 | 1.9128 | 1.1153e-5 | 1.9723
128 | 5.1123e—6 | 1.8744 | 4.4791e—6 | 1.9585 | 2.8125e—6 | 1.9875

If acting Dg;l on both sides of equation (4.210), then it can be changed into a
time-space fractional equation. In this example, we test methods (4.206) and (4.208);
the L? errors are shown in Tables 4.22 and 4.23. In Table 4.22, the L? errors and the
corresponding convergence orders in space for method (4.206) are displayed. Table
4.23 shows the L? errors and the corresponding convergence rates in time for method
(4.208). We can see that the numerical results fit well with the theoretical analysis.

4.5 Fractional Differential Equations in Two Space Dimensions

In this section, we introduce the finite difference methods for the fractional partial
differential equations in two spatial dimensions.

We focus on the discretization of several two—dimensional models, such as the
two-dimensional time-fractional diffusion equation [4, 5], two-dimensional space-
fractional diffusion equation [8], two-dimensional fractional advection-dispersion
equation [122], and some other models [150, 174].
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(y,@) (v,@) (7,@)
qg| N |=(02,12) | order | =(0.5,1.5) | order | =(0.8,1.8) | order
8 | 1.2716e-3 3.6152¢-4 1.3011e-4
16 | 8.0981e—4 | 0.6510 | 2.2321e—4 | 0.6957 | 2.3371e-5 | 2.4769
1| 32 | 4.7454e—4 | 0.7710 | 1.2499e-4 | 0.8366 | 1.1761e—5 | 0.9908
64 | 2.6145e—4 | 0.8600 | 6.6209¢—-5 | 0.9167 | 7.5874e—6 | 0.6323
128 | 1.3805e—4 | 0.9214 | 3.4072e-5 | 0.9584 | 4.3156e—6 | 0.8140
8 | 1.0064e—4 1.4026e—-4 1.7471e-4
16 | 2.4149e—5 | 2.0592 | 3.2964e-5 | 2.0891 | 4.0502e—-5 | 2.1089
2| 32 | 6.1760e—6 | 1.9672 | 8.1538¢—6 | 2.0154 | 9.9729¢—6 | 2.0219
64 | 1.7577e—6 | 1.8130 | 2.0527e—6 | 1.9899 | 2.4853e—6 | 2.0046
128 | 6.9293e—7 | 1.3429 | 5.3414e-7 | 1.9422 | 6.2181e—-7 | 1.9989
8 |2.976le—4 3.1824e-4 2.6556e—4
16 | 7.5926e—5 | 1.9708 | 7.8473e-5 | 2.0198 | 6.3540e—5 | 2.0633
31 32 | 1.9605e—5 | 1.9534 | 1.9822e-5 | 1.9851 | 1.5808e-5 | 2.0070
64 | 5.1805e—6 | 1.9201 | 5.0220e—6 | 1.9808 | 3.9573e—6 | 1.9980
128 | 1.5276e—6 | 1.7618 | 1.2836e—6 | 1.9680 | 9.9178e-7 | 1.9964
8 | 1.7941e-4 3.0921e-4 2.9140e-4
16 | 7.1000e-5 | 1.3374 | 1.1228e—4 | 1.4615 | 8.2738e—5 | 1.8164
4| 32 | 3.0397e-5 | 1.2239 | 3.2374e-5 | 1.7942 | 2.1694e—-5 | 1.9313
64 | 9.4881e—6 | 1.6798 | 8.6250e—6 | 1.9082 | 5.5311e—6 | 1.9716
128 | 2.7937e—6 | 1.7640 | 2.2403e—6 | 1.9448 | 1.3959¢—6 | 1.9863
TABLE 4.23: The L? error at t = 1 for method (4.208), N = 1000.
(v, @) (v, @) (v, @)
qg|1/At]| =(0.2,1.2) | order | =(0.5,1.5) | order | =(0.8,1.8) | order
8 6.9113e-4 7.8814e—-4 8.3716e—4
16 | 3.6568e—4 | 0.9184 | 4.1360e—4 | 0.9302 | 4.3487e—4 | 0.9449
1| 32 | 1.9555e—4 | 0.9030 | 2.1437e—4 | 0.9481 | 2.2202e—4 | 0.9699
64 | 1.0782e—-4 | 0.8589 | 1.1097e—4 | 0.9499 | 1.1244e—4 | 0.9815
128 | 6.3099e—5 | 0.7730 | 5.8082e-5 | 0.9340 | 5.6807e—5 | 0.9850
8 6.7782e-4 7.8484e-4 8.3669¢e—4
16 | 3.5114e—4 | 0.9489 | 4.0996e—4 | 0.9369 | 4.3435e—4 | 0.9458
2| 32 | 1.8028e—4 | 0.9618 | 2.1054e—4 | 0.9614 | 2.2148¢e—-4 | 0.9717
64 ] 9.2008e-5 | 0.9704 | 1.0704e—4 | 0.9760 | 1.1188e—4 | 0.9852
128 | 4.6767e-5 | 0.9763 | 5.4088e—5 | 0.9848 | 5.6242e—5 | 0.9923
8 6.7781e-4 7.8483e—-4 8.3669¢e—4
16 | 3.5113e—4 | 0.9489 | 4.0995e—4 | 0.9369 | 4.3435e—4 | 0.9458
31 32 | 1.8027e—4 | 0.9619 | 2.1054e—4 | 0.9614 | 2.2147e—4 | 0.9717
64 1 9.1999¢-5 | 0.9704 | 1.0703e—4 | 0.9760 | 1.1188e—4 | 0.9852
128 | 4.6759e—5 | 0.9764 | 5.4081e-5 | 0.9849 | 5.6238e—5 | 0.9923
8 6.7781e—4 7.8482e—-4 8.3669e—4
16 | 3.5112e—4 | 0.9489 | 4.0994e—4 | 0.9369 | 4.3434e—4 | 0.9459
41 32 | 1.8026e—4 | 0.9619 | 2.1053e—4 | 0.9614 | 2.2147e-4 | 0.9717
64 ] 9.1987e-5 | 0.9705 | 1.0702e—4 | 0.9761 | 1.1187e—4 | 0.9852
128 | 4.6746e—5 | 0.9766 | 5.4072e-5 | 0.9850 | 5.6234e—5 | 0.9924
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4.5.1 Time-Fractional Diffusion Equation with Riemann-Liouville
Derivative in Time

First consider the following fime-fractional diffusion equation

0,U =p. Dy, (K1 02U + Kad2U )+ f(x.y.0),  (x.y,0) € (a,b) X (c,d) X (0, T,

U(x,y,0) = ¢o(x,y), (x,y) € (a,b) X (c,d),
Ula,y,t) = Ug(y,10), U(b,y,1) = Up(y,1), (y,1) € (¢,d)x(0,T],
Ux,c,t) = Us(x,1), Ulx,d,t) = Ug(x,1), (x,1) € (a,b)x(0,T],
4.211)
where K1, K, >0and 0 <y < 1.

Before giving the discretization of the subdiffusion equation (4.211), we intro-
duce some notations. Let At = T'/ny, Ax = (b—a)/N, and Ay = (d - c¢)/Ny be the
step sizes in time, x direction, and y direction, respectively, where nr, N, and N, are
positive integers. The grid points #, x; and y; are defined as # = kAt, x; = a+iAx
and y; = ¢ + jAy, respectively with 7, 1= (tx + tx+1)/2. For the function U(x,y, ) de-
fined on the domain Q = (a,b) X (¢,d) X [0,T], denote by U" = U"(-) = U(x,y,1,),
Ul’.fj = U(x;,yj,tn), and

s = Yl sun | = LY 4.212)
Vit ax Wik =7 a0 :
U, -2U" 4 U U —2U" U
s2up, =~ — = Sur = Ay’; L (4.213)

1 Uty 1 Ut Uttt

All the finite difference methods for (4.10) can be directly extended to (4.211),
and the stability and convergence analyses are almost the same. We introduce the first
method for (4.211) that can be seen as an extension of (4.30) to a two-dimensional
problem.

e The Implicit Method
Letting (x,y,1) = (x;,y;,1,) in (4.211) yields

O U(x.yjntn) = |rDy,” (K102U + Kx02U )| +f(iypt). (4215)

(xy.D=(x;.y jstn)

The first-order time derivative, the time-fractional derivatives and the space
derivatives in (4.215) at (x,y,1) = (x;,y},1,) are discretized by the backward Euler
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scheme, the Grunwald scheme, and the central difference methods, respectively, i.e.,
Uxi,yjtn) = U(Xi,y s ta-1)
At
(rLDg, 02U ) (i s tn) = “L6{ TV (@2U" (xiny ) + O(A),
(RLDy, 02U ) (xi.yj.tn) = OL6{ (@20 (1, y ) + O(AD),
U (xi,yjotn) = 63UL + O(AXD),
R U(xinyjota) = 53U+ O(AY),

AU (xi,yjstn) = +O(AD) =6,U. . 2+0(Az)

where GLé(l ™ is defined by (4.3). Inserting the above equations into (4.215), we can
get
1
U2 = Lo (K 82UL + K82 UT) + 1+ O(AL+ Ax* + Ay?). (4.216)

Dropping the truncation error O(Af + AxX? +Ay2) in (4.216) and replacing U;‘j

with u{‘ ., we can obtain the finite difference scheme for (4.211) as: Find “?j (i=
1,2,--- ,Ny-1,j=1,2,--- ,Ny=1,n=1,2,--- ,n7), such that

_1 _
s, 2 = 6L 7’(1<15§u'?.+1<255u7 DL
u2j=¢0(x,»,y,), i=0,1,2,---,Ny, j=0,1,2,
ug’jz Ua(yj,ln), MNX’]‘: Ub(yj’tn)’ ]20’1,2,"'9

uzo = Uc(xi9 tn), MZNV = Ud(xi9tn)9 i= O’ 1,2, e ’N

4.217)

where GLcSﬁl_y)is defined by (4.3).
Next, we present the matrix representation of the method (4.217). Rewrite the
scheme (4.217) as the following form

1-
ul; = +Zw( D2l e )l -2l D]+ AL

(4.218)
where u; = Ki A" /Ax* and py = K> A | Ay?.
Denote by
n n . n n
Ui Ui Uy N2 Uy N1
n n . n n
u U1 o Uy Ny—2 Uy Ny-1
E = . . 9
n n . n n
UNe—11 UN-12 UNe-tNy-2 - N1t Dy -1y
n n
“io Wi Ny
n n n ul ul
n _| Yo1 Yoz Uo,Ny-1 no_ 2.0 2.Ny
Wop = u” u eyt L .
Nl Un2 NeNy=1 Dyeny—1y

n n
10 U1y, v o
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Let Exy € RVV be an identity matrix. The matrices By and S y are defined as

-2 1 0 0 o0
1o TR
0o 1 =2 0 o0
Bya=| @ , Sn= :
g (1) o o o - =21
Nx2 Lo 0 0 - 1 2],
Then, the matrix representation of (4.218) can be rewritten as
u' — (1S y, 10" +ppu"S Y ) = RHS", (4.219)
where
n—1
RHS" =u"" + " w57 (S w10k +pouS | )
k=0 '

n
(1-y) k k pT n
+an—k (:ulBNx—l,Zuab+/12uchNy—1,2)+AtF s

k=0

(Fij=f(xi,yjst),  FTeRMDXN=D)

The matrix equation (4.219) can be solved by the iteration method or by using
the Kronecker product to transform (4.219) into the following equivalent system

Avec(u") = vec(RHS"). (4.220)
Here
A=En 1®En,_1 -0\ " (uEn,-19S SN, 1®F
= EN,-1®LN, -1 — W) H1EN,~1®9 N —1 + 25 N, —1® Nx—l)7
in which the vec operator creates a column vector from a matrix M eR™/ i.e.,
mi
ma
vec(M)=| . |, M=(mimy,- - ,my).
my

Next, we consider the stability and convergence for (4.217). We first introduce
some notations. Denote by N = (N, Ny), and define the discrete inner product (-,)y
and norm || - ||y as

Ne—1Ny—1
W vy=AxAy > > wigvij lully = Vwwy, (4.221)
i=0 j=0

where u,veRWx+DXMN+D) “gatisfying (u); j = u; j and (v);j = vi ).
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For convenience, we introduce also the following notations

Ny—1 Ny_l
(0xu,0,V)n = AxAy Z Z (5xui+%’j5xvi+%’j,
i=0 j—O
Ny—1Ny—

(Oyu,6yV)y = AxAyZ Z‘S”zﬁlé"zﬁ%
i=0 j=0

Ne—1Ny=1
(S3u, vy = AxAy > 3 v o,
i=1 j=0
Ny—1Ny—1
(6§u,V)N = AxAy Z Z V,’Jégui,j,

i=0 j=1

lull v = G5y +(Gyu,5,w)y.

If Ui = UiN, = Uj0 = UjN, = 0 and Vi0 = ViN, =Vj0 = VjN, = 0, then one has

(020, V)y = —(6,0,8,V)y, (4.222)
(62u,V)y = —(6,,6,V)y. (4.223)

Similar to Theorem 23, we can easily get the following theorem.

Theorem 32 Let (u");; = u (z Ny,j=0,1,---,N,) be the solution to
the finite difference scheme (4 217) ”o = uN = ”ZO = uZM =0, ;= fl”j
(i=0,1,--+,Ny,j=0,1,---,Ny). Then there exists a positive constant C independent

of n, At and Ax, such that

n2 0,2 k)2
u <|la +C max ||F*||%.
™Iy < [ha”|ly Oskmll Iy

The proof of Theorem 32 is almost the same as that of Theorem 23 with the help
of (4.222)-(4.223), which is omitted here.

From (4.216), one can easily get that the truncation error of the scheme (4.217)
is(R"); ;= R"J = O(At+Ax? +Ay2) Denote by (e"); ; = e =U(x;,yj,tn) — u .. Then
the error equation of (4.217) is given by

S, = GLsI (K 52"

2 n n
ij + Kyo:e' )+Ri’j.

x€ij Yo
From Theorem 32, we can get
lle”lI% <le%l3 + C jmax. IR¥|I}, < C(AL + Ax? + AyP).
We know that the numerical solution of (4.211) can be obtained by solving the

matrix equation (4.219) whose equivalent linear algebraic system is (4.220) with
large coefficient matrix A of size (Ny — 1)(Ny — 1) X (Ny = 1)(N, —1).
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Next, we mainly focus on the alternating direction implicit (ADI) finite differ-
ence methods for the discretization of (4.211). The ADI technique can transform the
computation of a two-dimensional problem to a series of one dimensional problems
that can be solved in parallel.

e Review of the classical ADI method

We recall the construction of the ADI finite difference methods for the classical equa-
tion in the following form

0U = K103U + K20,U + f(x,3,0),  (x,y.1) € (a,b) X (¢,d) x (0,T1,
U(x,y,0) = do(x,y), (x,y) € (a,b)x(c,d),

Ua,y,t) = Ua(y,0), U(b,y,t) = Up(y,1), (,1) €(c,d)x(0,T],
U(x,c,t) = Uq(x,1), U(x,d,t) = Uy(x,t), (x,0)€(a,b)x(0,T],

(4.224)

where K1, K> > 0.
Denote by L, U = K; [))%U and L,U = KzﬁgU . Then it follows from (4.224) that

0U = (Ly+L)U(x,y,0) + f(x,y,1), (4.225)
Letting ¢ = tn_% in (4.225) yields
G,U(tn_%) = (Ly+L)U(t _%) +f(tn_%). (4.226)

By (1, 1) = 6,U" + O(AR) and U(t,_y) = U™ + O(AF), one has

61Un_2l - (Lx + Ly)un—zl +f(tn—%) + O(Atz) (4227)

1

2
In order to derive the ADI method, we add the perturbation term (%) L.Ly,6,U""2 =
O(AP) to the left-hand side of (4.227), which yields

2
At
S U + (7) LoLy§, U2 = (Ly + L) U2 + flt, D+OMA).  (4.228)
Rewrite (4.228) as the following form

At At n At At el 3
(1- TLX)(l - 7Ly)U =1+ TLX)(l + ELy)U +Atf(tn_%) + O(Ar).
(4.229)
Denote by

LU} = Ki63U7

e LUl = Kasy Uy (4.230)

Then

(LU (x1.5) = LacUl + 0P, (LU (xi.y)) = LayUL + O(A).
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Hence, we can obtain

At At At At _
(1= 2Lrp- LAV)U =(1+ = Lan)(1+ 5 Lay) urs!
2 (4.231)
+ Atf(x,»,y s n_%) + O(AH(AP + Ax?)).

Removing the truncation error O(Af(At + Ax?)) and replacing U l"] with uf’J in (4.231),
we can get the ADI difference method for (4.224) as
At At At At
(1- > —La)(1 - LA})” =(1+ LAx)(l +—= LA))” +Atf(xi,yj,tn_%)-
(4.232)
There are two methods commonly used to solve (4.232), the first one that is called
PR factorization [123] which is given by

At At At

(1= S Loy ;= (L Loy + = fyjot, 1), (4.233)
At A At

(I—TLA},)MZ =(1+ LAx)u i+ f(x,»,yj,tn_%). (4.234)

Eliminating the intermediate term u; i from (4.233) and (4.234) yields (4.232).

From (4.233), we can find that if ] is given, then we can solve the linear system
(4.233) to obtain u* = (u1 ,u2 e ,u )T, where the size of the coefficient matrix
derived from (4.233) is (N -1)x (N {) which is much smaller than that of the
system (4.220) (The size of the coefficient matrix of (4.220) is (Nx — 1)(Ny — 1) X

(Nx — 1D)(Ny —1)). Obviously, u* and uj.z for j; # j» can be computed in parallel. We
can similarly obtain u”Jrl (u?;rl U ?;1 L, U ”+1 _,) from (4.234) for a fixed i.
1) from (4.233) and (4.234), we can get

n-z

Eliminating f(x;,y;,t

1 AP n-t

w=u.’ Loy, ;°, (4.235)

i,j i T4

Hence, the boundary conditions of u;‘] needed in (4.233) can be taken as

L AP -1 1 AP -1
n—z n « _ n—j n
= Yo 7 LAvélu s Uy, = Uy 7 LAycS,uN it

Another factorization, called the D’Yakonov factorization, is given by

At N At At
(1- ELAx)ui,j =(1- LAx)(l + LA})“ + Atf(xz,yj, ),
i=1,2,'~,Nx—1, (4.236)
At
(I_ELAy)qu:qu’ j=12,--- ,Ny-1. (4.237)

The system (4.236)—(4.237) can be similarly solved as (4.233)—(4.234). From (4.237),
we can obtain the boundary conditions for u; ; needed in (4.236) as

At . At
;= (1- —LAy)ug’j, Uy, ;= (1- _LAy)“nNX,j'

o, 2 2
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Generally speaking, the factorization (4.236)—(4.237) can be easily extended to
the three-dimensional or much higher dimensional fractional differential equations.

e The first ADI method for (4.211)

Next, we introduce the first ADI finite difference method for (4.211). From
(4.216), we can get

1

§:UL 2 =6 (K 6YUL + Kady UL ) + f + O(At+ A% + AY?)
n
=A"! Z will__k")(LAx + LAy)Uffj + [+ O(At + AX? + AY?)

1 . (4.238)
=~ () ‘”M)2LAXLM5,UU 24 0(A2)

n
F AT U (Lay+ Lay) UL+ 15+ O(Ar+ A% + Ay?).
k=0

1
In fact, we add a perturbation term —(cu(ol_wAt”)2LMLAy6,UZ;7 = O(AF*) to the
right hand side of (4.216) to obtain (4.238). Dropping the truncation error O(At +
AxX* +Ay*)+ O(A?Y) in the above equation (4.238) and replacing Uy, W1th u , we get
the followmg ADI finite difference method for (4.211) as: Find u (1 =1, 2 Ny —
1,j=12,--- ,Ny,n=1,2,--- ,n7), such that

_1 _1
Sty 2+ Kle(w“‘”M)zdi(sz(s,u’f 7 GL&“‘”(KI(S,%MZ Koo )+ 1,
;= ¢o(xi,y)), i=0,1,2,-,Ny, j=0,1,2,:
u&J = U(l(yj»tn)» uNX,j = Ub(y]’ tl’l)’ ,] = 07 1»2»'” »Ny’
uZO = Uc(xi’tn)» MZN), = Ud(-xi»tn)» i= 0’ 1’2’ e ’Nx’
(4.239)
where GLcSﬁl_y)is defined by (4.3).

Next, we give a brief illustration that (4.239) is the ADI algorithm. Rewrite
(4.239) in the following form

1- 1-
u! ;- w, Y)Aty(K16§u2j+K26§u7J)+K1K2(w( NN

— 1- - 1-
=7+ K1 Ko (wf) VA6l + AP Z WP (K162l + Kool ) + Atf.
(4.240)
Notice that

1- 1—
ul - wy VAN (K 62+ KoStull ) + Ky Ko (o) VA6 ) W)
=(1- Kiw)) VAPS)(1 - Kywl) VAPl .

Hence,

(- K0 VAP )1 - Kawl) VAP = (RHS)! (4.242)

ij°
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where

_ 1—
(RHS)] ;=7 + K1 Kx(wl) " A (8262u )

n—1
+ A7 WDV (K5l + KadTul ) + Atf
k=0
Eq. (4.242) is equivalent to the following form
(1-Kiw) VAPSu; ;= (RHS Y, i=1,2+ N,—1,  (4.243)
(- Kowl) VAP =uf, j=1.2,00 Ny— 1 (4.244)

From (4.244), we can get the boundary conditions for u; ; needed in (4.243),
which are taken as

wly = (1= Koy VAP, ufy = (1= Kowy VAPl (4.245)
Next, we consider the stability and convergence for (4.239).

Lemma 4.5.1 Let (w); j =u;j (i=0,1,---,Ny,j=0,1,---,N,) be the grid functions
with uo,j = un,,j = uio = u;,N, = 0. Then there exists a positive constant C such that

llally <Cllall v

The following lemma illustrates that the ADI scheme (4.239) is unconditionally
stable.

Theorem 33 Let (u);; = u (z 0,1,-+-,Ny,j=0,1,--- ,Ny) be the solutions to the
ADI finite difference scheme (4.239), “0; = uN J ui’o = ”ZN), =0, ()= fl”j (i=
0,1,-+-,Ny,j=0,1,---,Ny). Then there exists a positive constant independent of n,

At and Ax, such that

2 02 0,12 0,12 2 0,12 k2
Iy <15, + A7 (Kllo I + Koloyuli) + A7 110.6,0°1 + € max I,

Proof. From (4.239), one has

Ne—1 Ny—1 Ny—1Ny— 1
n— )
Z Z 6tul] 1 2 +K1K2(w(1 Y)Aly) Z Z u,j(diégét”i’jz)
(4.246)
Ny Ny—1 Na=1Ny=1 NI Ny—1
GLs(1-N| g 2 2
=Cts, Z Z uj oy + Ko Z Z u; Oy |+ Z ZM:'] i
=1 j=1
which implies
W ")y + K Ko () A (82620 ")y
~ . (=9 5 7y2 -1
=" u" )y + KiKa(wy AT (60,0, 8:0,u" )y (4.247)

n—1
+A7 " w57 (Ki @k )y + Ka(uk ,u")y) + Ad(E ul)y.
k=0
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Using (4.222), (4.223), and Cauchy inequality one has
"1+ A wl ™ (Killoxu” |, + Kallu'll}) + K1 Ka(wl) " A6 850”1,
=W 0"y + K Ko(w) VAP (6,5, 5,80y
— AP Z o) (K @k sy + Kx(6,uk, 5,0y ) + Ar(E", u)
k=0

1 _ 1 - _
< Ul + R+ 5 K1 Ka(wg A (0:6,0" 5+ 116:6,0" ' 113)
+5 M Z W0 K6t I + 16.0"117) + Kadllo,ut [, +l1s,u”1 |

+ Ar(ellu” [} + @nf"ulzv).
(4.248)
For simplicity, we denote by

n
E" =" | + K1 Ka(boAP 88,0 3, + A7 Y by (K601, + Kalloyutli ),
k=0

&o1- r 1- 1-
where b, = ;sz ) = % = O((n+1)”"1). Then one has by = ( W =

k=
by-1-b, <0,n>0, and

E" + AP by (K l5.0" [, + Kalloyu"|1}) < E"' + Ar2Caellu’|I} , + enf"nzN),
(4.249)

where we have used Lemma 4.5.1. It easy to check that At<Cb,At” (C; > 0) is

independent of n and At. Hence, we can choose a suitable € = % such that

2eCo A" I}y <A, (Kyll6. 0"}, + Kalloyu”|F).
Therefore,

n
E"<E™'+ CAIEIE, < E° + CAr ) IIFIR,, (4.250)

which yields the desired result. The proof is completed. O

Let (e”)”j =e L =U(xi,yj,ta) = u . Then we can get the error equation of the
ADI difference method (4.239) as

_1 _1
oy 3 + KiKa(wy VA (63670e;7) = Lo T (Kote)  + Kadyel )+ Ry,

where (R"); ; = R ; is the truncation error satisfying |R" 1<C(AT+ AP + AX% + Ay ).
From Theorem 33, we derive

0 02 02 2 02 kyj2
lle” I3, <lle ||N+At7(K1||6xe lly + Kall6ye IIN)+At "lloxoye lly +C max IRV
SKSAT

<C(At+ A% + Ax% + AY?).
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When 0 <y < 1/2, the convergence order of the ADI scheme (4.239) is less than
one. We can use an extrapolation technique to improve the convergence order in time.
Let u'.l’.l be the numerical solution at time level n based on time step Af. We use the

2n,2

time step At/2 to compute the numerical solution u; iy at time level 2n. Then one has

U(xiYjstn) — u;"jl(At) = CA” + O(At + Ax* + AY?), (4.251)
U(xi,yjstn) = u;ff(m) = C(At/2)Y + O(At+ AX* + AY?).  (4.252)

Eliminating Ar?” from the above two equations yields

u?Jz B 2_2yu7}1 2 2
Uxi,yjstn) = ——————— + O(At+ Ax" + Ay”).
1-2-2Y
Hence, we can use
ulr =272y
L —
b 1-27%

as the numerical solution of the ADI scheme (4.239), which has first-order accuracy
in time. 1 ,
Another remedy procedure is to use —(wél_V)At7)2LAxLAy(5,U?;7 - 6,U:.1;7) =

_1
O(A?*1) to replace the perturbation term —(wg1 _V)AIV)ZLAXLAy((SZU?j 2) = O(AY)
_1
in (4.238). Thus the term K Kx(ew( " A?)2(63636:u; ;%) in (4.239) is replaced by

_1 _3
K Ky(wy VA7 262630 > — ;%) to get the improved ADI algorithm with
higher order local accuracy in time.

e More ADI Algorithms

We introduce a technique to derive the ADI methods from the non-ADI methods.
We know that almost all the numerical methods for the one-dimensional problem
(4.10) can be directly extended to a two-dimensional problem (4.211), which has the
following form

_1
Sty ;2 = 6y Lo+ Loy} + Flj = (Lax+ L))oy Vuf + FY, (4.253)
where 651_7’) is defined as the form
n
A= n _ k
507l = e Zak,nui’j. (4.254)
k=0

For example, 6! 7 = A (5(1 7 and F’ 7= f7'; when the L1 method is used to dis-
cretize the time fract10nal derlvatlve in (4.211) (see also (4.49) and (4.4)). If we apply
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the time discretization technique used in (4.59) to the time discretization of (4.211),

we have F}'; = f(xi,y), n_l) and

& ul = b ‘Z(b” I j=bn J)u” —(bn Bn)u — A,

-1
where A, = B, — %, b, and B,, are defined by

AP 2A7 7!
by = +1)"=n"], By=
"= 1) [(n+ 1) =n?] "= )

[(n+1/2)Y—n"]. (4.255)

We can choose other time discretization techniques such as (4.67), (4.79), (4.83),
or (4.84) to derive the corresponding methods, which are not listed here.

Next, we consider how to construct the ADI algorithms from (4.253). From
(4.253) and (4.254), we have

n
ul ;- ul;t = A Zak,n(LAx + Layuf j+AtFY, (4.256)
k=0

Rewrite the above equation as

M,r'ij _ Atyan,n(LAx + LA),)qu + (Atyan,n)ZLAxLAyul'{j
n_l
=7+ (AP ) LaLayi ; + AP Z pn(Lax+ Lo+ AUF} (4257
k=0
+ (Atyan,n)zLAxLAy(“Z i ”ZJ_'I)’

Dropping the last term (At”an,n)zLAxLAy(u;?j - u?;l) in the above equation yields the
desired ADI method
] = AP ap (L + Loy} ;+ (AP @ ) LaLayid

n-1 (4.258)
n—1 y 2 n y § k n )
=u; + (At a,,,,,) LAxLAyu,'J + At ak,n(LAx + LAy)ul-’j + AtFi,j'
k=0

Rewriting the above equation into the following equivalent form

_1 1
(s,uZJ. 24 (Ma,,,,,)zLAxLAy(s,u = (Lax+ Lay)8) uf ;+ FL. (4.259)

One can find the ADI method (4.259) can be derived from the non-ADI method
(4.253) by adding the perturbation term (A" ay, )2 LAXLAV(SZu ij = to the left of (4.253).

Next, we illustrate that the method (4.258) or (4.259) is indeed the ADI method.
We also have the following equivalent form of (4.258) as

(1= AP ay uLa)(1 = AP @y Lyl = (RHS )]

P (4.260)
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where
n—1
-1 2 k
(RHS)! ;= 7" + (A7 @y ) Loy Ly + AP Z pn(Lax+ Loyt ;+AtF .
k=0

The scheme (4.260) can be solved by the following two steps:
Stage 1: For each j, j = 1,2,--- N, — 1, solve

(1= AP ayuLao}; = (RHS)! ., i=12, Ny—1, (4.261)

ij?
to obtain u; iy with “0 =(1-Aa, nLAV)MOJ and uN = =(1-Aa, nLAy)uN g
Stage 2: Foreach i,i =1,2,--- ,N,— 1, solve

(1- At”an,nLAy)uffj = ”T,j’ j=12,---,Ny—1, (4.262)
to obtain uf’J with ”Zo = U¢(x;,t,) and ”ZN}. = Uga(xi, t).

Next, we just list some non-ADI and ADI algorithms for (4.211) as follows:

e Non-ADI method (1): The time is discretized the same as that in (4.49); the
space is discretized by the central difference method in (4.217). So the finite
difference method for (4.211) is given by: Find u?j (i=1,2,---,Ny—1,j=
1,2,--+,Ny,n=1,2,--- ,n7), such that

S, 2 =516, V(K 82l + K25§u7 DL
ui,j:¢0(-xi’yj)9 l—O 1 2 x, .] O 1 2

ugvf = U(l(yj»tn)» uNx,j = Ub()’], tn)’ ,] = O’ 1’2’ e 7Ny’
uzo = Uc(xi9tn)9 MZNV = Ud(xi9tn)9 i= 0’ 1,2, e ’N

(4.263)

where &1 (5(1 “is defined by (4.4).

ADI method (1): From (4.259) and (4.263), we derive the corresponding
ADI method for (4.211) as: Find u:'] (i=12,---,Ny-1,j=1,2,--- ,Ny,n =
1,2,---,n7), such that

1
S 2 + (A a4, K1 K2 6303008, = 16 ”(chszu” + K82 )+ [

Y7 j L,j?
ui’j=¢0(-xi’yj)9 l—O 1 2 )C9.] 0 1 2
Mg’] = U(l(yj»tn)7 MNX’j = Ub(y]’tl’l)’ ]=O’1’2""7Ny’
MZO = UC(-xi9tn)9 MZNV = Ud(xi’tn)9 i= 0’ 1’2’ e ’NX
' (4.264)
— = _ _1
where a,, = b = iy S€e 4.4).

e Non-ADI method (2): The time is discretized the same as that in (4.59), the
space is discretized by the central difference methods as in (4.217). Then the
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finite difference method for (4.211) is given by: Find u?j (i=1,2,--- ,Ny—1,j=
1,2,--+,Ny,n=1,2,--- ,n7), such that

Sty 2 =5 ")(K RN +K25}2 i )+f(xi,)’j»tn_l)7 n=23,,nr
u[,j = ¢0(-xi’yj)9 l— 0 1 2 x, .] O 1 2
M&J = U(l(yj»tn)7 uNx,j = Ub()’], tn)’ ,] = 07 1727'” 7Ny’
uﬁo = Uc(xi’tn)7 MZN), = Ud(-xi»tn)» i= O’ 1’2’ T ’Nx’
(4.265)
where 651_7) is defined by (4.57).
ADI method (2): From (4.265) and (4.259), we derive the corresponding

ADI method for (4.211) as: Find “?j (i=12,---,Ny-1,j=1,2,--- ,Ny,n =
1,2,---,nr), such that

_1
Sty ;> + (AP ) Ky Ka 2030, _5(1 ”) (K 22 + Kaoou )

U ij
+f(x0yjst, 1), n=2,3,00 0y
”?,j=¢0(xi,yj), i=0,1,2,--,Ny, j=0,1,2,-
Mg’jzl]a(yj’tn)’ uNX,jZUb(yj’tn)’ ]:0’1727.,,’1\]}"
uZo = Uc(xi, 1), ”ZN}- =Uqy(xi,tn), 1=0,1,2,--- N,

(4.266)
where a, , = 172—0 = m forn>1landa,, = %Bo 1"(1+y) forn=1, see (4.58).

e Non-ADI method (3): The time is discretized as in (4.83), the space is dis-
cretized by the central difference methods as in (4.217). Hence the finite
difference method for (4.211) is given by: Find uf’J (i=1,2,--- ,Ny—1,j=
1,2,---,Ny,n=1,2,--- ,n7), such that

_ 1-
Wl = M[ Z B 6+ Koot )

n—1

-y 2k 2k

_an_k_l(Klaxu,.ﬁKzay i )|+ A,
k=1

(4.267)
) = go(xiy), i=0,1,2,- Ny, j=0,1,2,-- Ny,

ug,jz Ua(yj,ln), ul]/(/'x’j: Ub(yj’tn), j=0,1,2,"'9N

uZO = Uc(xi’tn)7 MZN), = Ud(-xi»tn)» l = O’ 1’2’ e ’Nx’

where by " = i [k + 1) =],
ADI method (3): From (4.267) and (4.259), we derive the corresponding
ADI method for (4.211) as: Find “?j (i=12,---,Ny-1,j=1,2,--- ,Ny,n =
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1,2,---,nr), such that
n—3 ()
2 22 -7 _ -1 - 2k 2k
W+ (AP ay ) Ky Ka02020,0; % = ul +At7[2bn_k (K182l + Kao2ul )
k=1

n—1

(1-y) 2k 2k
_ Z b, 0\ (K6 ; + Kadjuy j)] +Atfl,
k=1

u2]:¢0(-xl’yj)9 i:091929""NX9 j=0,1,2,"',Ny,
ug’j = U(l(yj»tn)» uan’j = Ub(}’], tn)’ j= O’ 1’2"" ’Ny’
MZO = Uc(xi,tn), M:ZNV = Ud(xi,tn), i= O’ 1’2"" ,Nx,

(4.268)

(I-y) _ 1 _ ,(=»
where b, " = ralk+ 1) —&"] and any = by v

The stability and convergence of the above three non-ADI methods (4.263),
(4.265), and (4.267) are similar to those of their corresponding one-dimensional
problems, see (4.49), (4.59), and (4.83). The convergence orders of methods (4.263),
(4.265), and (4.267) are O(Ar + Ax* + Ay?), O(A'*Y + Ax? + Ay?), and O(Ar + Ax* +
Ay?), respectively.

The above three ADI methods (4.264), (4.266), and (4.268) are also uncondi-
tionally stable, the proofs are similar to those of the first ADI method (4.239), the
convergence of which are O(Af + Ar? + Ax? + Ay?), O(At"™Y + Ar?Y + Ax* + Ay?), and
O(At + At? + Ax* + Ay?), respectively.

4.5.2 Time-Fractional Diffusion Equation with Caputo Derivative in
Time

In this subsection, we consider the ADI finite difference methods for the follow-
ing equation
Dy, U = KioU + KadU +g(x,y,0), (x,3,1) € (a,b) X (¢,d) X (0, T,

U(x,y,0) = ¢o(x,y), (x,y) € (a,b)x(c,d),
Ua,y,t) = Ua(y,0), U(b,y,t) = Up(y,1), (,1) €(c,d)x(0,T],
U(x,c,t) = Uq(x,1), U(x,d,t) = Uy(x,t), (x,1)€(a,b)x(0,T],

(4.269)

where K1,K> >0and 0 <y < 1.
Next, we first consider the time discretization of (4.269). Rewrite (4.269) in the
following form
D), U = (L + LU +g(x,,1), (4.270)

where LU = K103U and L,U = K, 8;U.
If we use the time discretization in (4.96), (4.97), (4.116), (4.117), (4.120), or
(4.121) to discretize (4.270) in time, then at each time level n, the time discretization
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of (4.270) has the following general form
n n
Z aniU* =AY Z Oui(Ly+ L)U* + APG" + APR",
k=0 k=0

where G" is related to go, gl, ---,£", and R" is the truncation error.
Rearranging the above equation gives

O, ALY n-l [ At n-l AP G"
yn _ (Ly+Ly)U" = _Z nk ok Zﬁ’n,k(Lx+Ly)Uk+
nn =0 dnn Xnn 12 A

Adding the perturbation term

(Hn,nAtV
Ap.n

2
) LxLy(Un _ Ul’l—l) - O(At1+2)/)

to the left-hand side of (4.272) leads to
Onn ALY
n,n

Ak A1
S,
An.n

0%
nn

Onn ALY

Ap.n

2
u" (Le+ Ly)U" +( ) LLy(U"-U"

3 APYG" .\ APYR"
Ap.n An.n

-1
On k(L + Ly)U* + +O(AI),
0

The above equation is equivalent to the following form

O A O, A
(1 e Lx)(l - = Ly) u"
Ap.n An.n
Oy n A7\ “la AP S
=( nn ) LLum =S gk Zgn,k(L)H-Ly)Uk
Ap.n =0 Ap.n Ap.n =0
A'G"  AfYR"
+ + +O(A),
An.n Ap.n

The space derivative of (4.274) is discretized by the central difference, i.e.,
(LU")(xi,y)) = Lay U} + O(AX) = K1 63U} + O(AX),
(LyU")(xi,y)) = LayUy s + O(AY?) = K26, U} + O(AX),

+

199

4.271)

AfR"
Ap.n '

(4.272)

(4.273)

(4.274)

we can get
Onn ALY N4
n.n nn
-1 n—1
ennAty)z -1 X Ank ok At X
=\ LacayUs;" = —Uj+ Onk(Lax+Lap)Us; (4275
( @n.n T ;a’n,n B ; " * Y ( )

AtVGl'.'j AﬂRl'.'j
+—2l YL oA (A + A + AY)).
Ap.n Ap.n
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AfYR" .
Removing the truncation error o n”/ + OAY (AP + AR + Ayz)) and replacing

k k . . .
Ui,j by u; ; in the above equation gives

G, ALY On.n AT
(I—LLM)(I— ”al LAV) = (RHS)}; (4.276)

Ap.n n.n

where

Hn,nAty 2 —1 Unk
(RHS)}; =( an LaxLayu;; —Z Uij
P n—1 AYG" .

Z Oni(La+ Loyt + b
Ann

ann

Eq. (4.276) has the following factorization

i=1,2,-,Ne—1,  (4.277)

Onn A
(1— LM) = (RHS)] .

Ann

(1 B Onn ALY

Ap.n

LAy)u;fJ.:u;ij, j=1,2,--,N,— 1. (4.278)

From (4.278), we can obtain that the boundary conditions for ujfj are taken as

. Onn ALY . Onn ALY
uoyjz(l——”*" LAy)u&j, uNx’jz(l— il LAy)u;’M. (4.279)

Ap.n n.n

In order to illustrate the relationships between the ADI difference methods
(4.276) for two-dimensional subdiffusion equation (4.269) and the finite difference
methods for the one-dimensional subdiffusion equation (4.86), (4.276) can be rewrit-
ten as below

1 n ' Hz,nAtH—y .
A D nktth+ o LaLaySu; Z Oni(Lax+ Loyt ;+ Gl (4.280)
k=0 n.n
. 62 A"
We find that if we remove
algorithms for (4.269) as follows

LAXLA) 1n (4.280), we can get the non-ADI

Zanku,j - Zgnk(LAx+LA})”,J+Gn (4.281)

N
At =

Next, we list some non-ADI and ADI algorithms. The non-ADI algorithms for
(4.269) can be seen as the direct extensions of the corresponding algorithms for a
one-dimensional problem (4.86) (see (4.96), (4.97), (4.116), (4.117), (4.120), and
(4.121)).
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e Non-ADI method (1): The time is discretized as in (4.96), the non-ADI
method for (4.269) is given by: Find u;’j (i=12,---,Ny,—-1,j=1,2,--- ,Ny,n=
1,2,---,n7), such that

1 n
Vi Dol —ul ) = (K182 + Koo+ gl (4.282)
k=0

where ‘”1(3) = (=D 7)-
ADI method (1): From (4.280) and (4.282), the corresponding ADI method
for (4.269) is given by: Find u;’j (i=12,---,Ny—1,j=12,---,Ny,n =

1,2,---,nr), such that

1 & nd
v Dol -l ) + Kika AT 8620 2 = (K107 + Kadhul+ gl
k=0

(4.283)
In such a case, @, and 6, , in (4.281) are chosen as: @, , = wé” =1,6,,=1.

e Non-ADI method (2): The time is discretized as in (4.97), the non-ADI
method for (4.269) is given by: Find ul'.'j (i=1,2,---,Ny—1,j=12,--- ,Ny,n=
1,2,---,n7), such that

1 n—1

v Z bYWt il ) = (K162 + KabDyu! + gl (4.284)
k=0

where b\ = o [k + D7 -k
ADI method (2): From (4.280) and (4.282), the corresponding ADI method
for (4.269) is given by: Find u;’j (i=12--N—1,j=12,--- ,Ny,n =

1,2,---,n7), such that

LS o) etk KIKoAM™ ot 2 2
AP Db )+ TR * = (KiOy+ Kooy + 87 ).
k=0 0
(4.285)
In such a case, @, , and 8, , in (4.281) are chosen as: @, = béy), Opn =1.

e Non-ADI method (3): The time is discretized as in (4.116), the non-ADI
method for (4.269) is given by: Find ul'.'j (i=12,---,Ny—1,j=12,--- ,Ny,n=
1,2,---,nr), such that

Uy ok o0y L X K O)p 2 2\ nk
A_ﬂkZ_;“’k (l; —ui,j)zz—y;(—l) W) (K162 + Kool
= = ) (4.286)
+ B (K182 + Koo+ > w0V GI,
k=0

where w](cy) = (—1)k(Z), Gﬁj = ﬁ [ngg(xi,yi,t)]tztn, and BE,I) is defined by
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(4.114) withm = 1.

ADI method (3): From (4.280) and (4.286), the corresponding ADI method
for (4.269) is given by: Find u:'] (i=12,--,Ne—1,j=12,--- ,Ny,n =
1,2,---,n7), such that

1 ¢ -1
Y, n—k _ 0 -2y I+y 226 N=3
AT kgo wy, (ul-’j ui’j) +2 VK1 K> At 6x6y6tui’j

1 & B " _
k=0 e
(4.287)

In such a case, @y, and 6, , in (4.281) are chosen as: @, = 1, 0, = 277.

Non-ADI method (4): The time is discretized as in (4.117), the non-ADI
method for (4.269) is given by: Find ul'.'j (i=1,2,---,Ny—1,j=12,--- ,Ny,n=
1,2,---,n7), such that

n

1 _ Y Y _
Vi Zwﬁj’(u;fjk —ul ) =(1- 5)(K15§ + KaoDu}+ E(Kl(si + K0D)ul;!

k=0
+BUSE+ Kool + (1= D)6+ 261,
(4.288)
_ 1 .
where w](cy) = (—1)k(Z), Gﬁj = ﬁ [Dojg(xi,yi,t)]tztn, and BE,) is defined by

(4.114) with m = 2.

ADI method (4): From (4.280) and (4.288), the corresponding ADI method
for (4.269) is given by: Find u:'] (i=12,---,Ny—1,j=12,--- ,Ny,n =
1,2,---,nr), such that

1

n=3

1y -k _ 0 1A% I+y 5252 ¢ 11—
o D W —ul)+ (1 - 5) K KA 83630,
k=0

" . 4.289

=(1- %)(Kl 52+ Kad Dl + %(Kl 2+ Kad2u ! (4.289)
(2) 2 210 Y Y ~n-1
+Bn(Kﬁx+KT%Ww*(1—§Xﬁj+§G@-

py and O, in (4.281) are chosen as: apy = 1,0, =1— %

Non-ADI method (5): The time is discretized as in (4.120), the non-ADI
method for (4.269) is given by: Find ul'.'j (i=12,---,Ny—1,j=12,--- ,Ny,n=
1,2,---,n7), such that
LY )k 0 [N k) <2 20 nk
Vi Dl -ul) = > D =Dr ) (K163 + Kool
k=0 k=0
n

+ B (K162 + Koo+ CV (K1 0%+ Koo D)l ;= ul ) + > Gk,
k=0

(4.290)
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where 0’ = (~)¥(). G7; = 57 [Dg ) gCxioyiu0)],_, . By s defined by (4.114)

with m = 1, and CV is defined by (4.119) with m = 1.

ADI method (5): From (4.280) and (4.290), the corresponding ADI method
for (4.269) is given by: Find u:'] (i=12,---,Ny—1,j=12,--- ,Ny,n =
1,2,---,nr), such that

I © -1
o D Wl = )+ Q7+ 61 CO Y KA s
k=0
1 v _
=55 2D (Kis+ Ko+ B(K1 62+ Kool (4.291)
k=0

n
1 _
+ (K 8%+ Kad) ) —u) )+ Zw,(j)(;;fj",
k=0
where 81, is the Kronecker delta, i.e., 0;, =1ifn=1and 6;,=0if n>1.1In
this case, @y, and 6, , in (4.281) are chosen as: @, =1, 6, =277 forn > 1.
Ifn=1,then 6, =27 +C".

e Non-ADI method (6): The time is discretized as in (4.121), the non-ADI
method for (4.269) is given by: Find ulf‘j (i=12,---,Ny,—-1,j=1,2,--- ,Ny,n=
1,2,---,nr), such that

1 < . Y Y .
v Dol - )= (- KIS+ KadDu + S (K16 + Koo !
k=0

+ B (K162 + Kool + CF (K162 + Koo D)) j— uf )
Y\ n Y ~n-1
+(1= )G+ 3Gl
(4.292)
where w]((” = (—l)k(Z), G}, = ﬁ [DS,?g(xf’yi”)]t:,n’ and B? is defined by
(4.114) with m = 2, C? is defined by (4.119) with m = 2.
ADI method (6): From (4.280) and (4.292), the corresponding ADI method
for (4.269) is given by: Find ul'.'j (i=12,---,Ny—1,j=12,--- ,Ny,n =
1,2,---,n7), such that
RN (¥) , n—k 0 1 Y (1) 2 Al 5252 ”_%
7 Do W =l )+ (1= 461G | KiKabr 8 8T6
k=0
=(1 = D15+ Koo u + 2187 + Koo u ) + B (Ki+ Koo

Y

Y
+ (K162 + KasT)(u) j—ul )+ (1= 3)Gii+ 5

-1
G;fj .
(4.293)
In such a case, @,,, and 6, in (4.281) are chosen as: ap, =1, 60, = 1 — % If
n=1,then6,,=1-%+Cc®.
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The initial and boundary conditions for the ADI finite difference methods (4.282)-
(4.293) are taken as

u2j=¢0(x,»,y,), i=0,1,2,---,Ny, j=0,1,2,

Mg’] = U(l(yj» tn)» u;’v‘r’j = Ub()’], tn)’ .] = O’ 1’2’ e »Ny’ (4294)
MZO = Uc(xi,tn), M:ZNV = Ud(xi,tn), i= O’ 1’2’ e ,Nx

4.5.3 Space-Fractional Diffusion Equation

Next, we study the ADI finite difference methods for the following space-
fractional differential equation

atU = d+(-x9 Y, t)RLDZ’x U + d— ()C, Vs I)RLD;”[] U
+ C+(-x9y’ t)RLDg,yU + C—(X,y, I)RLD;Z’(]U + g(x’y9 t)9
(x,y,1) € (a,b) X (c,d) x (0,T1],

(4.295)
U(x,,0) = ¢o(x,y), (x,y) € (a,b) X (c,d),
Ula,y,n=U(b,y,n =0, (y,0)€(c,d)x(0,T],
Ulx,e,n)=U(x,d,) =0, (x,0) € (a,b)x(0,T],
where 1 < @ <2 and c4(x,y,1),c-(x,y,1),d+(x,y,1),d_(x,y,1) > 0.
For simplicity, we introduce the notations
LY =d,(x,y.0)r.DY  +d_(x.y,)rLDY,, (4.296)
L") = ¢4 (x,y, DRIDY, + c-(x,y, DRLDY. (4.297)
Then Eq. (4.295) can be written as
8U = (LY + LU +g(x,y,1). (4.298)
For simplicity, we denote by
(k) _ @ @ = — l
Lx - d+(X,)’»tk)RLDa,x+d—(X,y,tk)RLDx’b, k =n,n 25
1
L§va’k) = (%), 1)RLDEy + e (X, y, t)RLDS 4, k=n,n— 7
Letting r=1¢,_ 1 in (4.298) yields
U, y)= A2 L 2))U(t 1D+ 8N, ). (4.299)

Similar to (4.229), we can derive

At
(1= B0y

l (a/n 2))Un—(1+A2 (a,n— 2))(1+A (a,n— 2))Un_1

+ Atg(x,y, tn_%) +O(AP).
(4.300)
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Next, we consider the discretization in space. Similar to (4.184), we can also
introduce the following operators

d+(xz',y]‘,tk)L5§ca)U?+1,j+d—(xz',yj‘,tk)Réia)U?_l,j, q=1,
1 1
- dy(x1, ;10105 VUL +d_(xi.y R0 VUL g =2,
LUt = 2 2 4.301
220V = dy Gy 060U + d Gy tRd SO0, q=3, 40D
1
(@) 7
SOUT, g=4,di=d_=c,=c.=-——— =c¢,,
RzOx i 4 " " 2cos(an/2)
where
1 < 1 o
L5§Q)U§fj NG Zwia)Ui—k,j, R0 Uij = NG Z 0O Uikjs @y = (—l)k( k)’
k=0 k=0
a 2—«a
180U = S8+ 80
a 22—«
)0\ = SrOVUL, + SR UL,
2 2+a 2—a
L(Sgca’ )UZJ' = 4 L(Sgca)UinH,j"_ 4 Légca)U?—l,j’
(@2) 2+ ) 2= )
DU = = r UL+ =0 U .

(=D*T(@ + 1)
T(a/2—k+ Dl(@/2+k+1)

1
(@) _ —
rz6,"U} ;= A Z ‘gku;’_k, 8k =
k=—Ny+i
We can similarly define the operator L(“jk),q =1,2,3,4.
. . A)’q
From (4.185), we can similarly have

LEOUL, = (LEP UM iy ) = O, LU = (LU0, y)) = 0(y),

where p is given as in (4.186)

Replacing L, L§,C'), and U" in (4.300) with L
spectively, we have

(=) and L(a’n_%)

n
Axg Ayg and Ui,j’ re-

At (a,n—%) At (a/,n—%) At (a/,n—%) At (a,n—%)

_ -1
(L= Ly (=S LU, = S L 2+ S
1
nl
+Arg(xi,yj, tn_%) + AtRl.’j 2,
(4.302)
1 1
where sz % is the truncation error satisfying IRZJ. 7|<C(A? + Ax + Ay) when g = 1,

_1
and |Rfj 2|<C(AP + Ax* + Ay?*) when g = 2,3,4.
Neglecting the truncation error Rl'.'j in (4.302) and replacing U ;lj with ul'.'j, we
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have

At (a,n—z)
? Ax,q

At (a,n—z)
7 Ax,q

At (a,n— 2)
2 TAyg

At (a,n— 2)
2 Ay.q

(1- (1= Jup ; =(1+ (1 +

+ Atg(x,-,yj,tn_zl ).

)unfl
" (4.303)

Similar to (4.233)-(4.234) and (4.236)-(4.237), we have two ways to solve
(4.303).
PR factorization:

At ) At ( Yo o1 At

(=S =+ 5 A“;’;2>;’j1+7g(xi,yj,rn_%>, (4.304)
At (a,n——) At (an ) At

(1 =5 Lag =1+ = 3 Ly, 2 Ju; ;+ ?g(x,-,yj,tn_%). (4.305)

From (4.304) and (4.305), we can also have

% n—% At (a,n— 2) (a,n— 2) n—

=t = oL L sl 2. (4.306)

So the boundary conditions for (4.304) are given by

n-4 AP AL (@n- Z)L(an)

JT Moy T g Faxg Tavg

-1 Al (an-1) n—1
I L, N 2 (tln) 2
UN,j = UN n Lqu A) q(5 Nej® (4.308)

_1
uj Sty 7 (4.307)

D’ Yakonov factorization:

At _(an-1) At (an Ly At (an-1) 1
(I_E quz) _(1+2 quZ)(l 2 A}qz)Zj
+A1g(xi,yjst, 1) (4.309)
A1 (@n-p) .
(=G Lygy * iy = 1. (4-310)

So the boundary conditions for (4.309) are given by

« At (an-1) % At (an-1)
= (1= S L == SL vy o @310

Next, we consider the stability of (4.303). We first consider the case of ¢ = 1 in
(4.303). For simplicity, we also suppose that d+ =d_=Kj,cy =c_ =K, K; and K,
are positive constants, and ug =0.Letu" be defined as in (4.219)

), i=1,2,,Ne—1, j=

n-3

= ”X/ j lO
and g"" e RNl with (g~ 1), 1Lj-1= g(xny],
1,2,- -1.

Then for q =1,2,3,4, we always have the matrix representation of (4.303) as

(Ene-1+uiSy) W' (Enyor +p2S ) )"
@ ( : _1 (4.312)
=(En,-1 -8y _u” (ENy—l_,UZS )T+ Arg e
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where u; = ﬁ—ﬁﬁ, Mo = fg—ﬁf, Ey is an N X N identity matrix, S 5\‘21 is a symmetric
positive definite matrix. For example, if g =1, then § 5311 =S +ST where S is defined

by

wéa) w(?a) o - 0
@) ) (@)
w, w, w, 0 Y
s=-| o ,wﬁf’)=(—1)"( ) (4.313)
@ @ (@ @ k
Wy, Wy3 Wy g4 “’9
Q9 @ @ @
N-1 N—2 Yn-3 1 Av=Dxmv-1)

Let A = (En,-1 +miSy) )7 (En1 Sy ) and B = (Ex-1 + Sy )7
(Eny-1 — p2§ E\Z?_l). Then A and B are symmetric matrices with spectral radius
p(A%) < 1 and p(B) < 1. We can rewrite (4.312) into

" =AU B+ AtAg" 3 B = A% B + AIA%g" 3 B2 + AtAg" 7 B

n 4314
=A™’ B" +AtzAkgn+%—kBk_ ( )
=1
Asin (4.220), we also have
1 1
vec(u") =(B"®@A")vec(u®) + AtZ(Bk®Ak)vec(§"+Tk). (4.315)
k=1
It immediately follows from (4.315) that
1 1
Ivec@P < lvec@)IP +Ar ) vecg™ 2 ™I, (4.316)

k=1

where (u"); ; = u:'] and (g"_%)i,j = f(x,-,yj,tn_%).
Therefore, the ADI method (4.303) is unconditionally stable.
_1
Let (") = U(xi,yj,tn) = u?j and (Rn_%)i,]‘ = R?j 2= 0(At2 + Ax? + AyP). Then
one has

n
lvec(el? < llvec(e”)? + AIZ [vec(R™ 272 < C(AR + AxP + AYP). (4.317)
k=1
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4.5.4 Time-Space Fractional Diffusion Equation with Caputo Deriva-
tive in Time

This subsection considers the non-ADI and ADI finite difference methods for a
two-dimensional time-space fractional diffusion equation in the following form

cDgJU = d.(x,y,)rLDg U +d_(x,y,)r.DS U
+¢4 (6, ORLDe, U + ¢ (%, y, t)RLD;’,’dU +g(x,y,0),
(x,y,t) € (a,b) X (c,d)x(0,T], (4.318)
U(x,y,0) = go(x,y), (x,y) € (a,b)x(c,d),
Ua,y,t)y=U(b,y,t)=0, 1€ (c,d)x(0,T],
Ulx,c,t)y=U(x,d,t)=0, (x,1)€(a,b)x(0,T],

where 0 < y<1,1 <a <2and ci(x,y,1),c_(x,,0),d+(x,y,1),d_(x,y,1) = 0.
Let L = di(x,y,0ReDg, + d-(x,y,DreDE, and LfY = c(xy,0riDE, +
c-(x,y, t)RLD‘y’ e Then Eq. (4.318) can be written as

Dy, U = (L + LU + g(x,y,1). (4319)

The time in (4.319) is discretized as in Eq. (4.269) (see (4.276) or (4.280)), the
space derivatives are discretized as those in Eq. (4.295) (see the space discretization
L(A“;;) defined by (4.301) and L(A(Zj';))), we can obtain the ADI finite difference schemes

for (4.318) as

0o ) s 1t N @h) @by k . an
A Z“’”‘”l o+ e L LS = ) One L+ L D+ G
? k=0
(4.320)
Eq. (4.320) is equivalent to the following form
911 nAt (a,n) 911 nAt (a,n)
(1 tr — Ly, 1- tr —Ly, i’ (RHS)”, (4.321)
where 1
00k AN (o et K Ok
n o _ 5 a,n a,n) n—1 _ n, k
(RHS )i’j - ( An.n LAx,q LAy’q ui’j kZ::O Ap.n ui'j
n—1 YG"
+ At gn (L((z ) L(af n))u T+ At Gi,j'
a

A A L,
Ap.n =0 4 >4 J

Eq. (4.321) has the following factorization

B, n AT
(1 1 L(‘”'))’ (RHSY'., i=1,2,---,Ny—1, (4.322)

n.n Axq L
ennA (a,n) % .
(1— o Lavg Wi=up, j=12 Ny— 1. (4.323)

Similarly to (4.282)—(4.293), we can also derive the corresponding non-ADI and
ADI algorithms for (4.318) below.
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Non-ADI method (1): The time derivative is discretized as in (4.282), the
non-ADI method for (4.318) is given by: Find u?j i=12,---,Ny—1,j =
1,2,---,Ny,n=1,2,--- ,n7), such that

1 ©

E Y (k 0N _ ¢ylan (a,n)

AP wn—k(ui,j - ui,j) = (LAx,q + LAy,q )MZJ + ng» (4.324)
k=0

where wg) = (—l)k(Z).
ADI method (1): From (4.320) and (4.324), the corresponding ADI method
for (4.318) is given by: Find u:'] (i=12,---,Ny—1,j=12,--- ,Ny,n =
1,2,---,n7), such that

Ut ok 0 A am em e b @ @ o
7 2w+ Lo LacalinggOutti;™ = Lagg + Lny 03+ 81

k=0 0
(4.325)

In such a case, @, and 6, , in (4.320) are chosen as: @, , = w(()” =1,6,,=1.

Non-ADI method (2): The time derivative is discretized as same as that in
(4.284), the non-ADI method for (4.318) is given by: Find “?j (i=1,2,--- ,Ny—
1,j=12,---,Ny,n=1,2,--- ,n7), such that

1 n—1 (
Y) (o, k+1 kN _ cylan) (@n)\, n n
A7 % bY@ =k ) = (L + LEl + gl (4.326)

where b\ = o [k + D7 - k).
ADI method (2): From (4.320) and (4.326), the corresponding ADI method
for (4.318) is given by: Find “?j (i=12--N—1,j=12,--- ,Ny,n =

1,2,---,nr), such that

-1 1+
IS Aty -1
Y) ¢, k+1 k (@n) p(an) ¢ N=7 _ y(ak) (k) n n
F Z bn—k(ui»j - ui,j) + b(y) LAx,q LAy,q 6tui,j - (LAx,q + LAy,q )ui,j + gi,]'
k=0 0

(4.327)
In such a case, @, , and 8, , in (4.320) are chosen as: @, = b(oy), Opn =1.

Non-ADI method (3): The time is discretized as in (4.286), the non-ADI
method for (4.318) is given by: Find ulf‘j (i=12,---,Ny,—-1,j=1,2,--- ,Ny,n=
1,2,---,nr), such that

1 © 1 ¢
- Pen—k_ 0y _ 2 _ 17k, ) 7 (@n—k) (@.n—k)\ n—k
INZ kZ;“’k (" —uj ;) = X3 ;( Dol Ly~ +Lagg g

(4.328)

(’)/)G{l—k

n
+BPASD + L0+ Y w6,
k=0

Ax,q Ay,q

where w](cy) = (—1)"({), Gﬁj = ﬁ [ngg(xi,yi,t)]tztn, and BE,I) is defined by
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(4.114) withm = 1.

ADI method (3): From (4.320) and (4.328), the corresponding ADI method
for (4.318) is given by: Find u:'] (i=12,--,Ne—1,j=12,--- ,Ny,n =
1,2,---,n7), such that

1 ¢ _1

Y, n—k_ 0 =2y A d+yglan) p(@n) ¢ N=3
AP E wy (ui’j ui’j)+2 At LAx,qLAy,qétui,j
k=0

LSOk 0 g @), @nby nk, ph @0 @0y 0 . N, )k
=§Z(—1) WP LG+ LEm O 4 BOWSD + Lo+ ) o) G,

k=0 k=0
(4.329)

an, and B, , in (4.320) are chosen as: @, = 1, 6,, =277.

Non-ADI method (4): The time derivative is discretized as in (4.288), the
non-ADI method for (4.318) is given by: Find u?j i=12,---,Ny—1,j=
1,2,---,Ny,n=1,2,--- ,n7), such that

1

n
v Z W)W —ul )= (1- % YL + Ll + %(L(“’"_l) + L Dyt

Ax,q Ay,q Ax,q Ay.q
k=0

+ B+ L+ (1= 2060+ 5675
(4.330)
where w?') = (—l)k(Z), G} = ﬁ [ngg(xi,yi,t)]tztn, and B\" is defined by
(4.114) with m = 2.
ADI method (4): From (4.320) and (4.330), the corresponding ADI method
for (4.318) is given by: Find u:‘j (i=12,--,Ne—1,j=12,---,Ny,n =
1,2,---,nr), such that

1 & ( 2 _1
V¢, n—k_ 0 Y Lty 7 (@n) p(an)y e N=2

A7 E W (g ui,j)+(1 2) At (LAMLAM )51”1',]'

k=0

_ Y, r@n | y(an) Y r@n-1) | p(@n-1)\ n—1 (4.331)
=1~ E)(LAx,q + LAy,q )MZJ + 5 (LAx,q + LAy,q )ulrij
Y

2

In this case, @y, and 6, , in (4.320) are chosen as: @pp =1, Opp =1 — %

n—1
G

(2) 7 (@.n) y(a@n)y 0 Y\, n
+ B, (LAMLAM )ui,j +(1- E)Gi’j +

Non-ADI method (5): The time derivative is discretized as in (4.290), the
non-ADI method for (4.318) is given by: Find u?j i=12,---,Ny—1,j =
1,2,--+,Ny,n=1,2,--- ,n7), such that

n

1 Pk _ 0 1 < k0 p(@n—k) | lan—iy nk
F%wk ) _ui’j)zz_ykzé(_l) WP (L0 L8O

(D@0 ;@O0 0 L~ (p@D @, | _ @0 @00
+ B Ly L+ G (L L Dt = LS L)) (4.332)

n
) ~n—k
+Z“’k Gij

k=0
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where 0’ = (~)¥(). G7; = 57 [Dg ) gCxioyiu0)],_, . By s defined by (4.114)
with m = 1, and CV is defined by (4.119) with m = 1.

ADI method (5): From (4.320) and (4.332), the corresponding ADI method
for (4.318) is given by: Find u:'] (i=12,---,Ny—1,j=12,--- ,Ny,n =
1,2,---,nr), such that

1 ¢ -1

Y, n—k _ 0 =2y A d+y 7 (@n) y(a.n) n-3
A E w (g ui’j)+2 At (LAx,qLAy,q)élui,j
k=0

AN —k —k)y, n— 1 0 0
=55 2D W Ly O+ BRI L) (4333)
k=0

n

M (y@Dyl) 1 _ 7(@0)r(@0) 0 (¥) ~n—k

H O (L Lyl = Ly L ) + ) o Gt
k=0

In this situation, @, , and 6, , in (4.320) are chosen as: @, , = 1, 6,,, =277 for

n>1.1fn=1,then 6,, =27 +C".

e Non-ADI method (6): The time derivative is discretized as in (4.292), the
non-ADI method for (4.318) is given by: Find u?j i=12,---,Ny—1,j=
1,2,---,Ny,n=1,2,--- ,n7), such that

n

1 @ k0 Y pan | plamn n Y r@n-1) | y@n-1)y n-1
F Zwk (ui,j - ui,j) =(1- E)(LAx,q + LAy,q )ui,j + E(LAx,q + LAy,q )ui,j
k=0

@7 @0) | @O0 0 , ~@ (7@ @) 1 _ @0);@0) 0
+ BYLY) + Lyl + € (LAMLAM ul— Lo L ui’j)

Y Y An-1
+(1—§)Gﬁj+ zGﬁj ,
(4.334)

where w?') = (—l)k(Z), sz = ALﬂ [Da”l'g(x,-,y,-,t)] , and Bf) is defined by

t=t,
(4.114) with m = 2, C? is defined by (4.119) with m = 2.

ADI method (6): From (4.320) and (4.334), the corresponding ADI method
for (4.318) is given by: Find u:‘j (i=12,--,Ne—1,j=12,---,Ny,n =
1,2,---,nr), such that

1 u ( 2 _1

Ve, n—k _ 0 Y l+y (@) p(@n) ¢ "3
AP E wy o (u ui,j)+(1 2) At LAx,qLAy,qélui,j
k=0

_ Yip@n | pamy n Y plan-1) | p@n-Dy n-1, p@ 7 @0) | y@0) 0
_(1—5)(LAW +LAM )ui,j+ E(LAXJI +LAM )ui’j + B, (LAM +LA),’q)ui’j
Y

@ (r@hp@h 1 _ @0 @) 0 Y
+ OO (LD L Ul - L L )+(1—§)G;{j+2

Gn—l
Ax,q “Ay.q L] TAx.g TAy.g L ij -

(4.335)
In such a case, @, and 6, in (4.320) are chosen as: @y, =1, 6,, =1 — % If
n=1,then6,,=1-%+Cc?.

Ifdy(x,y,1) =d_(x,y,t) = K| and c4(x,y,1) = c_(x,y,t) = K2, K; and K, are posi-
tive constants, then the non-ADI methods (4.324), (4.326), (4.328), (4.330), (4.332),
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and (4.334) are unconditionally stable, which are the same for the corresponding
ADI methods (4.325), (4.327), (4.329), (4.331), (4.333), and (4.335).

The convergence of the above methods (4.324)-(4.335) in space are of order
O(Ax? + AyP). The convergence for the non-ADI methods (4.324), (4.326), (4.328),
(4.330), (4.332), and (4.334) are of order O(Af), O(A*™), O(Ar), O(AD), O(AF),
and O(Atz), respectively. For the ADI methods (4.325), (4.327), (4.329), (4.331),
(4.333), and (4.335), the convergence orders in time are O(Ar), O(A?™ + Ar'*?),
O(Ar), O(Ar), O(At'™7), and O(Ar'*7), respectively.

4.5.5 Time-Space Fractional Diffusion Equation with Riemann-Liouville
Derivative in Time

In this subsection, we study the following two-dimensional diffusion equation
U = Dy (L + L7 )U + g, 3,0), - (x,,1) € (a,5) X (c,d) X (0, T,

U(x’y’ 0) = ¢O(X,y), (x’y) € ((l, b) X (C’ d)’ (4336)
U(a,y)=U(b,y)=0, 0€(c,d)x(0,T],
Ux,c)=U(x,d)=0, (x,0)€(a,b)x(0,T],

where L = d.(x,y)p.Dg +d_(x, YRLDY . LY = cy(x, YIRLDE ), + ¢~ (%, y)rLD 5
O<y<l,and 1 <a <2,

We can apply the time discretization techniques for (4.224) to the time discretiza-
tion of (4.336), while the space derivatives can be approximated as those in (4.318).

Next, we introduce the Crank—Nicolson type method used in (4.265) to the time
discretization of (4.336) with the space discretized as in (4.318), which yields the
Crank—Nicolson type non-ADI method for (4.336) as: Find uf’J (i=12,---,Ny—
1,j=12,--- ,Ny,n=1,2,--- ,n7), such that

n—1 (1- n-1
7 _ Y) 1 (@,0) (@,0) 2 v =
Outt; ;= =0 TLygg Ly )ty +f(x”yf’t"—%)’ n=2.3,uny

up; = po(xiy)  i=0,1,2,+ Ny, j=0,1,2,+, Ny, (4.337)
u8j=u;{,j=0, Jj=0,1,2,---.N

H — n 5 —
Ui = Uiy, =0, i=0,1,2,---,Ny,

where L(a 0) and L(a)(;) are defined as in (4.303) with d.i(x,y,f) = d+(x,y) and
ca(x,y,0) = c+(x y), and 67 is defined by

_1 1 -1 1
1—y) 7 1
6 iyt =5 | Z(bn = bt = (b = By = Api .

-1
in which A, = B, — %, b, and B, are defined by

[(m+1)Y=n"], B,= [(n+1/2)Y =n7].

b= Fivy) ri+y)
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From (4.259), (4.266) and (4.337), we can obtain the corresponding ADI method
for (4.336) as: Find “?j (i=12,---,Ny-1,j=1,2,--- ,Ny,n=1,2,--- ,nr), such that

I 1
i 0 0 1= ,0 0 -1
6lqu T+ (@nal) LXIW)L(AO; q)(S i 2 = 5( Y)(L(Aaxq) + L(AO; q))qu S+ f(xy), tn—%),
u?,j=¢0(xn)’j), i=0,1,2,---, x,Jz(),]’z’...’Ny’
ug,jzux,x’j:o, j=0,1,2,---,N,
i =uz1\(“ =0, i=0,1,2,---,Ny, .
where a,,, = 1;2_0 21"(1+)/) forn>1anda,, = Bo £ forn =1, see also (4.266).

We give the matrix representation of the ADI method (4.338) in the case of
d+(x,y,t) = K1 and c+(x,y,t) = K» and g = 1 as follows

u-u eSS

_1 _1
—bo(m S w2 +pou” 2553),)_1)

n-1
_1 _1
+Z(b”‘1‘k_b”‘k)(ﬂlsg\c;x)_12k 2 +ﬂ2gk 2S§\(/l:))_1)

k=1
1 1
+ (by—1 —Bn-1) (,u]SE\(Z)_lEZ + uou? SE\(II‘«)—I) +An-1 (/1155\(/?_120 +/12uoS§\‘/1) s
(4.339)
where S( ? is defined as in (4.312), Ey is an identity matrix, yu; = K A ,and p =
KyAPY
NG
The above equation is equivalent to the following form
1bo 1bo
e e )
(4.340)

b b
=(ENX_1 ’“205(“) ) "= 1(EN),_1 ’“205(“> )+RHS", n>1,

n-1
_1 _1
RHS" :Z(bn_l_k—bn_k)(ﬂlss\z)_lgk 2 +luzgk 2S;\(/1;)_1)
k=1 ’

1 1
+(bp-1 — Bn_1)(/1155\(7x)_192 +/1292S§3’V)_1)+An_1 (/115532_190 +ﬂZEOS§\7V)_1 )

For n =1, one has from (4.339) with a, , = Bo

1Bo 1Bo
(ENX—1+ﬂTS§3x)_1) (ENy— + 20 @ )

2 TNl
1By H1Bo
:(ENx—l - TSE\(/?—l)EO (ENA‘—l - Tsﬁ?—1)+A° (“155\(/?—190 +”29055\7\«)—1

(4.341)
Clearly, the linear system (4.340) can be solved by the following two steps:
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e Solve (ENX—I + HIT%SE\Z)—J“* = (EN

H b . — H b a
=1 _IZOSEVX) l)lln 1(E‘[\]‘_l |2 O'S( 1)+

Ny—

e Solve (ENy_l + ”‘T&’SE\?_I)(E")T = (u*)7 to obtain u”".

It is easy to prove that the non-ADI method (4.337) and ADI method (4.338) are
unconditionally stable when d.(x,y) = K; and c.(x,y) = K>. From (4.301) and (4.56)
we can derive that the truncation errors of the two methods (4.337) and (4.338) are
OA™ + AxP + AyP) and O(AI"™Y + Ar?Y + AxP + AyP), respectively.

If the time derivative is discretized as that of (4.30), (4.49), (4.67), or (4.83), we
can also get the corresponding non-ADI and ADI methods, which are unconditionally
stable too.

4.5.6 Numerical Examples

Example 9 Consider the following two-dimensional time-fractional equation

cDg,[UzAU+g(x,y,t), (x,y,0) € (0,1)x(0,1)x(0,1], O<y<l,

U(x,y,0) =sin(x+y), (x,y)€[0,1]1x[0,1],

U(O,y,t)z(t2+t+1)sin(y), U(l,y,t):(t2+t+1)sin(1+y), (v, €(0,1)x(0,1],

U(x,0,6) = (2 +t+ Dsin(x), U(x,1,0) = (% + 1+ Dsin(1 +x), (x,0) € (0,1)x(0,1].
(4.342)

Choose the suitable right-hand side function g(x,y,t) such that Eq. (4.342) has the
analytical solution U(x,y,t) = Z+1t+ Dsin(x + y).

Here, we just test the Non-ADI methods (4.290) and (4.292), and ADI methods
(4.291) and (4.293) for solving (4.342); the L2 errors at £ = 1 are shown in Table 4.24.
It is found that the numerical results are in line with the theoretical analysis.

Example 10 Consider the following two-dimensional time-space fractional subdif-
fusion equation

cDy, U = (DG + reDS DU + (ReDG , + RLDS DU +g(x,3,0,  0<y <1,
(x,y,0) €(0,1)x(0,1)x(0,1],

U(x,y,0)=x*(1-0"*(1-»*  (xy) €[0,1]1x[0,1],

U@,y,)=U(Ly,n=0, (30 €(0,1)x(0,1],

Ux,0,0)=U(x,1,0)=0, (x,1)€(0,1)x(0,1].
(4.343)
Choose the suitable right-hand side function g(x,y,t) such that Eq. (4.343) has the
analytical solution U(x,y,t) = 3 +1+ DHx*( - x)4y4(1 —y)4.

In this example, we simply use the ADI methods (4.333) and (4.335) to solve
(4.343), the L?* errors are shown in Tables 4.25 and 4.26, where the convergence
rates in space are also displayed, which is in line with the theoretical analysis.
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TABLE 4.24:  The L? error at ¢ = 1 for Example 9, N, = N, = 400.
Method | 1/At| y=0.2 order vy=0.5 order vy=0.8 order
8 |6.7379¢-5 1.0877e-4 6.2100e—-5
Non-ADI | 16 | 1.7622e—5 | 1.934 [ 2.6686e—5 | 2.027 | 1.5295e-5 | 2.021
(4.290) 32 | 4.5357e—6 | 1.958 | 6.6719¢—6 | 1.999 | 3.9165¢e—6 | 1.965
64 | 1.2120e—6 | 1.904 | 1.7409e—6 | 1.938 | 1.0570e—6 | 1.889
8 [4.3721e-3 1.7653e-3 6.4651e—4
ADI 16 | 2.2882e—3 [ 0.934 | 6.8562e—4 | 1.364 | 1.9513e—4 | 1.728
(4.291) 32 | 1.0662e—3 [ 1.101 | 2.5169e—4 | 1.445 | 5.7258e-5 | 1.768
64 |4.7767e—4 | 1.158 | 9.0521e-5 | 1.475 | 1.6593e-5 | 1.786
8 [2.0417e-5 3.2626e-5 1.7588e—5
Non-ADI | 16 | 6.6979¢—6 | 1.608 | 9.6653e—6 | 1.755 | 4.9231e—6 | 1.836
(4.292) 32 [ 1.9191e-6 | 1.803 | 2.6386e—6 | 1.873 | 1.3474e—6 | 1.869
64 | 5.7330e—7 | 1.743 | 7.4970e—7 | 1.815 | 4.1547e-7 | 1.697
8 | 4.6235¢e-3 2.0422e-3 7.5212e-4
ADI 16 | 2.4396e-3 | 0.922 | 7.8811e—4 | 1.373 | 2.2467e—4 | 1.743
(4.293) 32 [ 1.1392e-3 | 1.098 | 2.8766e—4 | 1.454 | 6.5421e-5 | 1.780
64 |5.1063e—4 | 1.157 | 1.0301e—4 | 1.481 | 1.8848e—5 | 1.795
TABLE 4.25: The L? error at t = 1 for method (4.333), ¥ = 0.8,
N=N,=N,, At=107.
qg| N a=12 order a=1.5 order a=1.8 order
8 | 4.7596e—-6 1.2860e—6 4.9546e—7
16 | 3.1131e—6 | 0.6125 | 8.2419e-7 | 0.6419 | 7.9589¢e—8 | 2.6381
1|32 1.8470e—6 | 0.7532 | 4.6789¢—7 | 0.8168 | 3.9719e—-8 | 1.0027
64 | 1.0222e—6 | 0.8536 | 2.4942¢—7 | 0.9076 | 2.7368e—8 | 0.5373
8 | 3.7728e-7 5.3728e-7 6.8465e—7
16 | 9.0740e—8 | 2.0558 | 1.2739e—7 | 2.0765 | 1.5982e—7 | 2.0989
2 | 32| 2.2493e—8 | 2.0123 | 3.1436e-8 | 2.0187 | 3.9251e—-8 | 2.0256
64 | 5.5972e-9 | 2.0067 | 7.7777e-9 | 2.0150 | 9.6470e-9 | 2.0246
8 | 1.1109¢-6 1.2108e-6 1.0371e-6
16 | 2.8707e—7 | 1.9523 | 3.0289e—7 | 1.9991 | 2.5046e—7 | 2.0499
3132 |7.3656e—8 | 1.9625 | 7.6649¢e—8 | 1.9825 | 6.2291e-8 | 2.0075
64 | 1.8704e—-8 | 1.9775 | 1.9296e-8 | 1.9899 | 1.5465¢-8 | 2.0100
8 | 6.4331e-7 1.1712e-6 1.1338e-6
16 | 2.7603e-7 | 1.2207 | 4.3286e-7 | 1.4360 | 3.2506e—7 | 1.8024
4132 | 1.1582e-7 | 1.2530 | 1.2524e—7 | 1.7892 | 8.5447¢-8 | 1.9276
64 | 3.5216e—8 | 1.7175 | 3.3269e—8 | 1.9124 | 2.1678e—8 | 1.9788




216 NUMERICAL METHODS FOR FRACTIONAL CALCULUS

TABLE 4.26: The L? error at ¢ = 1 for method (4.335), y = 0.8,
N=N,=N,, At=107.

q| N a=12 order a=1.5 order a=1.8 order
8 | 4.7596e—-6 1.2860e—6 4.9544e-7
16 | 3.1131e—-6 | 0.6125 | 8.2420e—-7 | 0.6418 | 7.9587e—8 | 2.6381
1|32 1.8470e—6 | 0.7532 | 4.6790e—7 | 0.8168 | 3.9735e—-8 | 1.0021
64 | 1.0222e—6 | 0.8536 | 2.4943e—7 | 0.9076 | 2.7386e—8 | 0.5370
8 | 3.7728e-7 5.3727e-7 6.8463e—7
16 | 9.0738e—8 | 2.0558 | 1.2738e—7 | 2.0765 | 1.5980e—-7 | 2.0991
2|32 2.2491e-8 | 2.0124 | 3.1429e-8 | 2.0190 | 3.9235e-8 | 2.0261
64 | 5.5951e-9 | 2.0071 | 7.7700e-9 | 2.0161 | 9.6307e-9 | 2.0264
8 | 1.1109e—-6 1.2108e—-6 1.0371e-6
16 | 2.8707e—7 | 1.9523 | 3.0289e-7 | 1.9992 | 2.5044e—-7 | 2.0500
3132 |7.3654e—-8 | 1.9626 | 7.6641e—8 | 1.9826 | 6.2275e—8 | 2.0077
64 | 1.8702e—-8 | 1.9776 | 1.9289e—-8 | 1.9904 | 1.5449e-8 | 2.0112
8 | 6.4331e-7 1.1712e-6 1.1338e-6
16 | 2.7603e—7 | 1.2207 | 4.3285e—7 | 1.4360 | 3.2504e—7 | 1.8025
4|32 | 1.1582e—-7 | 1.2530 | 1.2523e—7 | 1.7893 | 8.5430e—8 | 1.9278
64 | 3.5214e—-8 | 1.7176 | 3.3261e—-8 | 1.9127 | 2.1661e—-8 | 1.9796

Example 11 Consider the following two-dimensional time-space fractional subdif-
fusion equation

0,U = LDy , + LDy DU + (eDg  + rLDS DU +8(x, 3,0, 0<y <1,
(x,y,0) €(0,1)x(0,1)x(0,1],
U(x,y,0) = X*(1-0)%*(1-y)?%  (x.y) €[0,11x[0, 1], (4.344)
U@©,y,)=U(1,y,n=0, (»0e(0,1)x(0,1],
Ux,0,0)=U(x,1,0)=0, (x,0)€(0,1)x(0,1].

Choose the suitable right-hand side function g(x,y,t) such that Eq. (4.344) has the
analytical solution U(x,y,t) = cos()x>(1 — x)>y*(1 —y)2.

In this example, we apply the Crank—Nicolson ADI method (4.303) for solving
(4.344); the L? errors at ¢ = 1 are shown in Table 4.27. We find that the numerical
results fit well with the theoretical analysis.
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TABLE 4.27: The L? error at ¢t = 1 for the CN ADI method (4.303),

N =N, =Ny,At = 1073
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q

N

a=1.2

order

a=1.5

order

a=1.8

order

8
16
32
64

3.7686e—-4
2.4793e-4
1.4452e-4
7.8217e-5

0.6041
0.7787
0.8857

7.8117e-5
5.2218e-5
2.9435e-5
1.5516e-5

0.5811
0.8270
0.9238

3.3292e-5
4.1518e—6
1.7310e—6
1.5218e—-6

3.0033
1.2621
0.1859

8
16
32
64

2.4268e—5
5.3571e—6
1.2359e-6
2.9686e—7

2.1795
2.1159
2.0577

3.3437e-5
7.5303e—6
1.7218e-6
4.0167e-7

2.1507
2.1288
2.0999

4.8765e—5
1.1589%¢e-5
2.7583e-6
6.5887e—7

2.0731
2.0709
2.0657

8
16
32
64

6.3347e-5
1.5670e-5
3.9095e-6
9.8287e—-7

2.0153
2.0029
1.9919

6.3789%e—5
1.5406e-5
3.7367e-6
9.1273e-7

2.0498
2.0436
2.0335

6.5025e-5
1.5767e-5
3.8143e-6
9.2291e-7

2.0441
2.0474
2.0471

8
16
32
64

2.9385e-5
2.0318e-5
6.7945e—6
1.9107e-6

0.5323
1.5803
1.8303

7.6134e-5
2.2857e-5
6.1342e—6
1.5728e—-6

1.7359
1.8976
1.9635

7.4103e-5
1.9482e-5
4.9245e—6
1.2212e—-6

1.9274
1.9841
2.0116




Chapter 5

Galerkin Finite Element Methods for
Fractional Partial Differential
Equations

Generally speaking, the finite difference methods for FDEs may have less accuracy.
Even if the higher order difference schemes can be constructed, the strong smooth
conditions must be assumed. In order to weaken the smooth conditions, the Galerkin
finite element methods are established for fractional partial differential equations.

5.1 Mathematical Preliminaries

We first introduce some notations. Let (-,-) 120) be the inner product defined on
the domain O, i.e.,

(u,v)Lz(O)zj(;ude, Vu,vELZ(O),

where O may stand for the finite domain Q or infinite domain RY dis a positive
integer. The L? norm || - || 12(0) 18 defined as

The Sobolev space H'(0),r>0 is defined as a vector space of functions u € L*(O)
such that all the distributional derivatives of u of order up to r belong to L*(0). In
short,

H"(0) = {ueL*(0) : D*ueL*(0), |a|<k, k=0,1,---,r},
where O is a subset of R?, D® = 87932 0%, @ = (a1,a2,-+ ,aq) is a multi-index,
and a; is a non-negative integer with || = a1 + a2 +--- + ay.

The semi-norm and norm associated with the Sobolev space H'(O) are

1/2 k
> ||D”MI|L2<0>J o Ml = [Z 0
Jj=0

lal=k

12

ko) =

Next, we introduce several other spaces.

219
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Definition 14 ([131]) Let u > 0 and Q = (a,b). Define the semi-norm
|u|]Z(Q) = ”RLDZ,)CM(X)“LZ(Q)

and the norm

1/2
||u||jZ(Q) = (HMHLZ(Q) + |u|JZ(Q)) ’

and denote Ji(Q) (or JﬁO(Q)) as the closure of C*(Q) (or C;’(€2)) with respect to
[I-1 F@y where C(Q) is the space of smooth functions with compact support in Q.

Definition 15 ([49]) Let u > 0. Define the semi-norm
|u|];(Q) = ||RLDibu(x»Y)”L2(Q)
and the norm

1/2
_ 2 2
gy = (Il + 1)

and denote Jg(Q) (or JgO(Q)) as the closure of C*(Q) (or C;(£2)) with respect to
1 1l - ’
R

Definition 16 ([49]) Let u > 0,u#n—1/2,neN. Define the semi-norm

1
lal 1y = 1(RLDlg 30(x), RLD U ()2

and the norm

1/2
lall sy = (“u”LZ(Q) + |“|Jg‘<9>) ’

and let Jg’ Q) (or J’S‘ 0(&2)) denote the closure of C*(Q) (or C(Q)) with respect to
(R ’
N

The fractional Sobolev space H*(Q) can be defined via the Fourier transform
approach [88, 116].

Definition 17 The Fourier transform of ue L*(R) is defined as
i(w) = F (u(x)) = f e % yu(x)dx.
R
Definition 18 ([116, 131]) Let i > 0. Define the semi-norm

|u|HH(R) = |(U|'uﬁ||L2(R)

and the norm i
2 2
iy = (Il +liey)

where i(R) is the Fourier transform of function u. And let H*(R) (or HS(R)) be the
closure of C*(R) (or C°(R)) with respect to || - || gu(w)-
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The following lemma presents the properties of the Fourier transform that will be
used later on.

Lemma 5.1.1 ([49, 50]) Let u >0, ueL?(R), p>1. The Fourier transform of the left
and right Riemann—Liouville fractional integral and derivatives satisfy:

F(RLD_, cu(x)) = (iw) ™, F(RLD oo t(x)) = (=iw) 0, (5.1
and
F(RLD. o cu(x)) = (iw)'it, F(RLDx o t(X)) = (=i}, (5.2)
where
i(w) = F (u(x)) = f e~ “%yu(x)dx.
R
Lemma 5.1.2 ([49]) Let u > 0 be given. Then for a real valued function u(x)

(Du, D" 1) 2y = cos(um)| DA ull 7, (5.3)

in which DHu := RLD'L_’DO,xu(x), and D**y := RLDﬁ’mu(x).

Proof. The following Fourier transform property (the overbar denotes complex
conjugate) is helpful in establishing this result:

fuf/dxszﬁzdw. 5.4
R R

{ exp(—im)(iw)H, w0,

exp(in)(iw)H, w <0.

One can observe that

(lwH = (5.5)

Thus,

(D”u,D“*u)Lz(R) =fm(iw)“ﬁ(w) (lw)i(w)dw

0 00
= f (I i(w) (—iwHi(w)dw + f (I i(w) (iwHi(w)dw.
—o0 0

(5.6)
Using (5.5) yields
(D”u,])”*u)Lz(R)
0
=f (iw) i(w) exp(—irw) (iw)Hiw) dw
. LA . Td
+f0 (iw)' i(w) exp(inu)(iw)Hi(w) dw 5.7)

=cos(ur) foo (i t(w)(iwHiw) dw

+i sin(/m)( f oo(iw)'”it(cu)(icu)l‘ﬁ(a)) dw - (I i(w)(iwHi(w)dw).
0

—00
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For real u(x) we have ii(—w) = it(w). Hence

0o 0
f (iw)*i(w)((iwHi(w)dw = f (iw)*i(w)((wHi(w)dw. (5.8)
0 —0
Combining (5.7) and (5.8) we obtain
(D#u, D**1) 2y = cos(um)(Du, D) gy = cos(umliD ull . (5.9)

Thus the proof is completed. O
Lemma 5.1.3 ([49]) Ler u > 0 be given. The spaces Jﬁ(R), Jg(R), and H*(R) are
equal with equivalent semi-norms and norms.
Proof. We first prove that a function u € L>(R) belongs to JZ(]R) if and only if
lwie L*(R). (5.10)
Let ue L>(R) be given. Then D*u € L*(R), and from (5.2)
F @D u) = F(rLD" o u(x)) = (iw)*a.

Using Plancherel’s theorem, we have

f w8 dw = f D u)? dx. (5.11)
R R

lul gy = Mol B2y = Il - (5.12)

Hence,

Therefore, the spaces Jﬁ(R), and H*(R) are equal, with equivalent semi-norms and
norms. We similarly have that the spaces JZ(R), and H#(R) are equal with equivalent
semi-norms and norms. The proof is completed. O

By almost the same reasoning, one has the following results.

Lemma 5.1.4 For u > 0,u#n—1/2,neN, the spaces Jﬁ(R) and Jg’ (R) are equal,
with equivalent semi-norms and norms.

Lemma 5.1.5 Let u >0, u#n—1/2,neN. Then the spaces Jg‘ 0(Q) and Hg(Q) are
equal, with equivalent semi-norms and norms.

Lemma 5.1.6 Let u > 0. Then the spaces JZ o), JZ 0(Q), and Hg (Q) are equal.
Also, ifu#n—1/2,neN, the spaces JZ o), Jg 02, J’S‘ 0(&), and Hg (Q) have equiv-
alent semi-norms and norms.

Lemma 5.1.7 (Fractional Poincaré-Friedrichs [49]) For ue JZ 0(Q), 0<s<u, one
has ’

”u”Ji(Q) SC'“'JZL(Q)’ (5.13)
and for uleeO(Q),,u > 0, we have

||”||J}§(Q) SC'”']ZL(Q)- (5.14)



Chapter 5 Galerkin Finite Element Methods for FPDEs 223

Lemma 5.1.8 The left and right Riemann—Liouville fractional integral operators are
adjoints w.r.t. the inner product in [2(Q),Q=(a,b), ie.,

(D;ﬁu,v)Lz(Q) = (u,D;gv)Lz(Q), u,vELz(Q), u>0.

Proof. Interchanging the order of integration yields

N 1 b rx
(Dot V)20 “Tw f f (x =& u@v(x) dédx

1 fb b » (5.15)
=—— | u(® f (x =& v(x)dxd¢
') Ja ¢
:(u, D;:L[:V)Lz(ﬂ)'
The proof is completed. O
Lemma 5.1.9 ([64]) For 0<pB,y <1, ifu(x) € H'(Q),Q = (a,b), then
LD RUDY c1t(x) = gD (). (5.16)

Proof. By the definition of the Riemann—Liouville derivative,

RLD  RLDY u(x) =

1 d S
il —P - -
I'(1-pB) dx L (=) I'l-vy)ds L (s=7)Tu(r)drds.

(5.17)
Interchanging the order of integration yields
RL a,xRLDZ,xu(x)
! I d f x(x s)—ﬁ[(s a) u(a) + f S(s )7 ’(T)dr] ds
= — - - u - u
ra-pra-y dx a
_ x—-D P u@)dr, 0<B+y<l, 5.18
mﬁy)df(> ) By (5.18)

1
I*(2 B—7) d2

RLD Y u(x),

f(x BV u(r)dr, 1<B+y<?2

which completes the proof. O

Lemma 5.1.10 ([94, 171, 175]) Let 0 < B8 < 2, Q = (a,b). Then for any uEHg(Q),
veHg/z(Q), we have

2 2
(RLDf c1t,v) 2Q) = (RLD'g,/x U, RL X{b V2@

2 2
(RLDB bu V)LZ(Q) (RLDi,/b U,RL a,/x V)LZ(Q)'
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Lemma 5.1.11 ([94,175]) Let 0 < B8 < 1, Q = (a,b). Then for any ueHA(Q),
ve HPI2(Q), u(a) = u(b) = 0, we have

2 2
(RLI)Q,xu» V)LZ(Q) = (RLI)f,/)C u» RL X,/b V)LZ(Q)-

Lemma 5.1.12 (Gronwall’s inequality ) Let a(t),q(t) € L[ty,t1], u(t),b(t), t € [to,11]
be real valued continuous functions; b(t) and q(t) are nonnegative functions satisfy-
ing
f
u(t)<a(t)+q(t) f b(s)u(s)ds, Vtetg,t1].
fo

Then we have

t

[
u(t)<a(r) +q(t)f a(s)b(s) exp(f q(r)b(r) dr) ds, Vtelt,t].
0 N

Lemma 5.1.13 (Discrete Gronwall’s inequality ) Let x, be real positive numbers,
H,C,At >0, xo<H. x, satisfies

n—1
Xp SCAthk +H.
k=0

Then we have
xp, < Hexp(CnAt).

In the following sections, we introduce the Galerkin FEM for the fractional
differential equations. We mainly focus on stationary fractional advection disper-
sion equations [49, 152], space-fractional diffusion equations [178, 181, 182], time-
fractional differential equations [52, 167, 168], time-space fractional differential
equations [92, 179]. Other numerical methods such as Discontinuous Galerkin meth-
ods [23, 109, 180, 181] are not going to be presented in this book.

5.2 Galerkin FEM for Stationary Fractional Advection Disper-
sion Equation

This section deals with the following steady state fractional advection dispersion
equation [49]

Lu=-Da(pDy" +qD 5)Du+b(x)Du+c(xu=f, xeQ=(xz.xx)=(0,1), (5.19)

with the boundary conditions
u=0, xe€dQ, (5.20)

where D_ represents a single spatial derivative, 0<8 < 1, a > 0, b(x)eCH(Q),
c(x)eC(Q) with ¢ —Db/2>0, and p+q =1, 0<p,q<1. The main results in this
section come from [49].
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5.2.1 Notations and Polynomial Approximation

In this subsection, we introduce some notations and lemmas that are needed in
the following sections.

Let Q = (xz,xg) be a general finite domain, and denote by (-,-) the inner product
on the space L*(Q) with the L? norm ||-|| and the maximum norm || ||e.. Denote H”(Q)
and H((€2) as the commonly used Sobolev spaces with the norm ||-||, and semi-norm
|- |, respectively. Define P.(QQ) as the space of polynomials defined on Q with the
degree no greater than r, re Z*. Let S, be a uniform partition of Q, which is given by

XL=X0<X| < <XN_1<XN=2Xp, NeZ'.

Denote by h = (xg —x1)/N = x; — xj—1 and Q; = [xj_1,x;] fori=1,2,--- ,N. We define
the finite element space X; as the set of piecewise polynomials with degree at most
r (r=1) on the mesh S, which can be expressed by

X; = {v: vlg, €P(Q:),veC(Q)).

Introduce the piecewise interpolation operator I, : C(Q) — X, as

r

L, = ) uGF(x),  ueC(@),
k=0

where F ,i(x) are Lagrangian basis functions defined by

r

. x—xf )
Fio=[] =% i=12.N,
¥ —
=012k *k — M

and {x{,k=0,1,---,r} are the interpolation nodes on the interval Q; with xf) = Xi_1
and x% = x;. _ .
Define ¢'(i=0,1,---,N) andgo}((kz 1,2,---,r—1;i=1,2,---,N) as

i |Fi®.  xelxnx], k=12--r-li=1,- N,
@p(x) =

0, others,
Ff’(x)’ .XE[Xi_l,.xl'], i= 1,"'9N_1,
=3 Fifl(),  xelxxiil, i=1-,N-1,
0, others,
Fy(x),  xelxp.xl,
Py=1"°
0, others,

FN(x),  xelxy-1,xy]
N r ) ) )
X) =
¢ {O, others.

Let X;, = X, mH(l)(Q). Then the spaces X and X can be expressed as
Xy =span{gl. k=12, ,r=1Li=1.2, Njulgi=1.2,- .N-1},
X; =span{g}.k=1,2,.r=1i=12- Njulgi=0,1,--- .N}.
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Denote by
o (x), j=(-Dr+kk=1,2,---,r=1,i=1,2,---,N,
gi=1"" o (5.21)
¢'(x), j=ir,i=0,1,---,N.
Then
Xy = Span{qﬁj,j =1,2,--- ,Nr— 1},
X, = Span{qﬁj,j =0,1,2,--- ,Nr}.
The orthogonal projection operator H}]l’0 : Hé (Q) — X is defined as
@O =11, 00 =0, ueHY(Q),YveXy,. (5.22)

Next, we introduce the properties of the projector H}I’O and interpolation operator
I, that will be used later on.

Lemma 5.2.1 ([9]) Letm,reZ*, r>1, and u € H™(Q) ﬂHé(Q). If1<m<r+1, then
there exists a positive constant C independent of h, such that

10 _
lle = I0, " ull 1 o) < CH™ Nullgmy, 0<I<1.

Lemma 5.2.2 ([3]) Let m,l be nonnegative numbers, re Z*,r>1, and u € H"(Q). If
0<I<m<r+1, then there exists a positive constant C independent of h, such that

Nl = Intdl g1y < CR™Nlutllmey, - O<I< 1.

5.2.2 Variational Formulation

In order to derive a variational form of the problem (5.19)-(5.20), we assume
that u is a sufficiently smooth solution of (5.19)-(5.20). We multiply by an arbitrary
veCP(Q) to obtain

f (—D(apDai + an;’Bl )Du + b(x)Du + c(x)u)vdx = f fvdx.
Q ’ ’ Q
Integrating by parts and noting that v = 0 on 9Q gives

f [a(pD(;i + qD;’B1 )YDuDv + b(x)Duv + c(x)uv] dx = f fvdx.
Q ’ ’ Q

For convenience, when we are working on a fixed domain €, we often omit the
set in the notations and write simply (-,-) = (-,") ;2 |-l = I l2)s | | = |- |7 (@)
and [ |l = Il lzr()-

For 0<B < 1 and u = 0 on 0Q, we have

— 1— - 2—
Dof; Du = RLDO’xﬁu, DDOfC Du = RLDO,X%,
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D/iDu= gD\ Pu, DD/Du= gD’ fu.
Leta =1-p/2.Then 1/2 << 1. Define the bilinear form A : Hj(Q)xH{(Q) —

R as
A(u,v) = ap(Dy"u, Dv) + ag(D Du, Dv) + (bDu, v) + (cu, v). (5.23)

For a given function feH™*(Q), we define the associated linear functional F :
H{(Q) —» Ras
F@) =(f,v). (5.24)

Obviously, the duality pairing in (5.24) is well defined for u,ve Hj(€2). Therefore,
we have
A(u,v)=F(v), veH{(Q). (5.25)

Next, we prove that the variational form (5.25) has a unique solution in H{j(€2).
We need to introduce some concepts and conclusions.

Definition 19 ([3]) A linear space V together with an inner product (-,-) is called an
inner-product space and is denoted by (V,(-,-)).

Definition 20 ([3]) Let (V,(:,-)) be an inner-product space. If the associated normed
linear space (V, ||-|lv) is complete, then (V, (-,-)) is called a Hilbert space.

Definition 21 ([3]) A bilinear form A(-,-) on a normed linear space H is said to be
bounded (or continuous) if there exists a positive constant C such that

A, w) <CIVIElwllH, v,weH,
and coercive on V C H if there exists a positive constant cy such that
Awv)zcolMl, — veV.

Theorem 34 (Lax-Milgram Theorem [3]) Given a Hilbert space (V, (-,-)), a contin-
uous, coercive bilinear form A(-,-) and a continuous linear functional FeV’, V' is
the dual space of V, there exists a unique u€V such that

A(u,v) = F(v), vev. (5.26)
From Theorem 34, we can obtain that there exists a unique solution to (5.25).

Theorem 35 There exists a unique solution u€ Hg(Q) to (5.25) satisfying

llull () < Cll fll e (- (5.27)

Proof. In order to prove the uniqueness of the solution u to (5.25), we need to
prove that the bilinear form A(u,v) is continuous and coercive. We first prove the
coercivity. It is easy to obtain

A(u,u) =ap(Dy’Du, Du) + ag(D ;Du, Du) + (bDu,u) + (cu,u)
=ap(D,”Du,Du) + ag(D ;Du, Du) + ((c - Db/2)u, u)
> ap(D(;fcu, Du) + aq(D;ﬁDu, Du),
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where we have used (c —Db/2)>0.
Noting that u = 0 on 9Q, and using Lemmas 5.1.8, 5.1.9, and 5.1.10, we have

X,

- —B/2
(DyDu, Du) = (D2*Df 1, Du) = (DG ,u, DY u),
(D\Du,Du) = —(DY ,u, DY u).
Therefore, 5
A(u,u)> — a(Dg’xu,Dilu) = a|uljg(g).

The semi-norm equivalence of J‘S’ O(Q) and Hg(Q) (see Lemma 5.1.5) implies that
A(u,u) 2”'“'3‘5’(9) > C|u|%{n(g)~

Since u = 0 on 9Q, from fractional Poincaré-Friedrichs inequality (see Lemma 5.1.7)
and Lemma 5.1.6, we have

2 2
”u”Ha(Q) < C|”|H(1/(Q)~

Therefore,
A, 1) 2 CollullFya - (5.28)

Next, we prove the continuity of A(u,v). From the definition of A(u,v) (see Egs.
(5.24)) and (5.2.2) we have

|A(u,v)| <apl(Dg~Du, Dv)| + agl(D ;Du, Dv)) +|(bDu, v)| + l(cuu,v)
:ap|(Dgyxu,DZ1v)| + aq|(DZ1u, D&,‘V)| +|(bDu, v)| + |(cu, v)|
<apllullyo@)lVllse @) +aqliull 2@Vl @) (5.29)
+ Cllull oVl e @) + llellzeo@llll 2y IVl 2 ()
< Cllullge@)l VIl He @),

where we have used [|bul|geq) < Cllullgeq) for beCH()) (see Lemma 3.2 in [49]).
For the linear functional F'(v), we have

[EWI = (Il @)lVIiEe @)

Therefore,
Cllilo 0y <A, I <Cll oy Ml o,
which yields (5.27).
From Theorem 34, we know that there exists a unique solution u€ H{(Q) of
(5.25) satisfying (5.27). All this completes the proof. O
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5.2.3 Finite Element Solution and Error Estimates

From (5.25), we have the finite element solution to (5.19)-(5.20) as: Find u, € X ,’10,
such that
A(up,v) = F(v), veX,. (5.30)

Theorem 36 (Cea’s lemma) Let u be the solution to (5.25). Then the finite element
solution uy, to (5.30) satisfies

llee — upll e () S Cllu = Vllga@),  YvEX),. (5.3
Proof. From (5.25) and (5.30), we have
A(u—up,v)=0, VVEXZO.
From (5.28) and (5.29) we have for up, v, €X;,

1 1
2 -~ A(y— _ _
||u—uh||H(,(Q)S COA(u—uh,u—uh) = COA(u Up, U—Vp+Vy—Up)

1 C
=—Au — up,u—vp) < — |lu— upllgo@)llu — villge ),
Co Co

which yields (5.26). The proof is completed. O

Next, we discuss the error estimate.

Theorem 37 Let ue Hy(Q)NH"(Q),a <r and uj, be the solution to (5.25) and (5.30),
respectively. Then there exists a positive constant C independent of h such that

llu = wnllzze @) < CR™||ul| 1 ©2)- (5.32)
Proof. From Theorem 36 we have
llu — upl| e ) < Cllu = Tpul| o) < Ch™*|ull ), (5.33)
where we have used Lemma 5.1.12. All this ends the proof. O

Next, we apply the Aubin—Nitsche trick to obtain the error estimate in L? norm.
Consider the following problem

~Da(pD,” +gD " )Dw+b(x)Dw+c(x)w=g, xeQ, 53

w=0, x€dQ. )

Suppose that w is the solution to (5.34) with g = e = u —uy;,. Then w satisfies the
following variational form

A(w,v) = (e,v), veHy(Q). (5.35)

According to [131], the solution w to (5.35) satisfies the following regularity
3
||W||H2IY(Q) < C”e”LZ(Q), for # Z (536)

Now, we give the following convergence estimate in the L> norm.
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Theorem 38 Letue Hg(Q)ﬂH’(Q), 3/4 < a<rand uy be the solutions to (5.25) and
(5.30), respectively. Then there exists a positive constant C independent of h such
that

llu = unll 2 () < CH Ul @) (5.37)
Proof. Substituting v = e = u —uy, in (5.35), and applying Galerkin orthogonality
Ale,v)=0,Yv EXZO’ we have
Ilelliz(g) =A(e,w) = Ale,w—Iw+ Ihw)

=A(e,w — Iyw) < Cllel|gaq)llw — Inwl| g ()
< Cha||e||H"(Q)||W||H2(I(Q)
<Chllellmallell 2(q)-

It follows that

llue = unll 12y < Chllu — upll () < CH'llul| @)

where we have used (5.32), which completes the proof. O

5.3 Galerkin FEM for Space-Fractional Diffusion Equation

In this section, we introduce the Galerkin FEM for the space-fractional partial
differential equations in one space dimension. For the case of two space dimensions,
see [6, 7, 8, 170].

Consider the following model of the space-fractional diffusion equation

O = gzD2u+ f(x,0), (x,1) € Qx(0,T],
u(x,0) = go(x), xeQ, (5.38)
u=0, (x1edQx(0,T],

where 1/2 <a<1,Q=(a,b), and RZD)ZC" is the Riesz space fractional derivative oper-
ator of order 2« defined as

1

2a 2a 2a
rzD u = —c2o(RLD, , + RID U Clg= .
* “ ax X7 “ " 2cos(an)

5.3.1 Semi-Discrete Approximation

We first write the variational formulation for (5.38). Multiplying ve H{(€2) on
both sides of (5.38) and integrating in space yield

(u1t,v) =(rzD3"u,v) + (f,)
= — c20(RLDG 1, RLDS V) + (RLDS yu, RLDG V) + (f, ),
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where Lemma 5.1.10 is used. Let
A(u,v) = c2a [(RLDZ,XM,RLDibV) + (RLDibu,RLDZ,xV)] . (5.39)

Then we have
O, v) +A(u,v) = (f,v), VveHy(Q). (5.40)

Therefore, the weak formulation of (5.38) reads as: Find U(r) = U(',t)eHg(Q),
U(0) = u(0) such that

O UV +AWUV) = (f,v), VveH{(Q). (5.41)
Now we give the following theorem.

Theorem 39 Let 1/2 <a <1 and 1€(0,T]. Suppose that u(t) € Hj () is a solution
to (5.41). Then u is the unique solution to (5.41) satisfying

! 1 t
IlU@I?+C fo U)oy ds <O + = fo IF (I ds,

where C is a positive constant.

Proof. We show that A(u,v) defined by (5.39) is continuous and coercive. It is
easy to verify that

A, )| < = 20 (IGrLDEctt, RLDE V] + |(RLDS 1, LD 1))
< —C2n (|M|J(LY(Q)|V|J;;(Q) + |M|J;(Q)|V|J<LI(Q)) (5.42)
< Cllull ge@)lVIlHe @),

where Lemma 5.1.6 is used when u,v€ H{(Q). Inequality (5.42) means that A(u,v) is
continuous. For coercivity, we have

A(u, u)=2c20(RLDG c1t, RLDS , 4)=2C20 cOS(@m)|IRLDg il |iz ®
~12 2
=lIRLDG 1l ) = Ul e (5.43)
> Cllull7e gy

where ii is the zero extension of u outside Q.
Letting v = U in (5.41) yields

| &

O U, U)+AUU) = NUOIP +AWU,U) = (f,U). (5.44)

N =
o,

1
From (5.43) and (5.44), we have

S— ) S
5 VO™ + CollUDlpga ) < - IF DI + lUDI 5.45)

< l||f(r>||2 +elU®I%.
~4e B @y
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where € is a suitable positive constant. Choosing € = % and integrating over (0,7),
we have

! 1 !
IU@IP +Co fo ||U(s>||%,c,(g)dss||u(o>||2+C—0 fo £ (I ds. (5.46)

Next, we prove the uniqueness. Suppose that u,w are two solutions to (5.41). Let
e = u—w with e(0) = 0. Then we have

(0re,v)+A(e,v)=0. (5.47)
From (5.46), we have

!
e +Co [ ety 50,
which yields e(r) = 0, i.e., u = w. The proof is completed. O

Next, we give the semi-discrete approximation for (5.38), which reads as: Find
up = up(-,1) € X such that

@rttn.v) + Alupv) = (I f.v), YveXsy (5.48)

with initial condition uy(0) = I,u(0).
Now, we give the matrix representation of (5.48). Suppose that u;,(7) € X}, has the
following representation

N—1

w(t) = un(x,0) = )" cj(0(0), (5.49)

j=1
where ¢; is defined by (5.21). Inserting u;(¢) into (5.48) and letting v = ¢, j =
1,2,---,Nr—1, we can obtain
de(z
M% +Se() = F(1), (5.50)

in which e(r) = (c1(1),c2(0), - ,enr1 (), (F(1)); = U f (1), ), and
M)ij = (@), (S)ij=Adi.d)). (5.51)

Eq. (5.50) is a linear ordinary differential equation, which can be solved by using the
Euler method, the trapezoidal rule, or high order methods. The initial value ¢(0) can
be obtained from the initial condition ¢¢(x) in (5.38).

Similar to Theorem 39, we can prove that the semi-discrete approximation (5.48)
has a unique solution, which has the similar bound as that of (5.46).

Theorem 40 Let 1/2 <a < 1 and te(0,T]. Suppose that uh(t)EXZO is a solution to
(5.48). Then uy, is the unique solution to (5.48) satisfying

! 1 !
lur(olP +C fo (5 ey s < Nap(OIP + = fo 1 fCs)IP ds,

where C is a positive constant.
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Next, we discuss the error estimate for the semi-discrete scheme (5.48). We first
introduce a projector HZ’O: Hi(Q)—X], as

AMu-uy)=0,  ueHI(Q), YveXj, (5.52)
in which A(u,v) is defined by (5.39).

Lemma 5.3.1 Let uEH’”(Q)ﬂHg(Q),aSer+ 1,1/2 < @ < 1. Then there exists a
positive constant C independent of h such that

T — ull oy < CH™ull - (5.53)
Proof. We first prove (5.53). From (5.52), we have
,0 a,0 _ ,0 a,0
A(Hh u-—u, Hh Uu—u) —A(Hh u-—u, Hh u—ITyu+ Ihu—u)
=A(HZ’0u —u,Ipu—u)
< OIS u — ull o Mt = ull oy
From the coercivity of A(u,v), we have
T = iy ) < CoAT e — 1, 10 = 1)
< O u = ull ooy Mt — ull o) -
Canceling the factor ||HZ’Ou — ul|ge(q) in the above equation and using Lemma 5.1.12

yields
T — ey < e — ull gy < CH™ lutll ). (5.54)

Hence, inequality (5.53) holds. O

Let u.(r) = HZ’Ou(t), n(t) = u(t) —u.(t) and e(?) = u.(t) — up(¢). Then we can obtain
the error equation of the semi-discrete approximation (5.48) as

(Ore,v) + A(e,v) = =(0m,v) + (f = Inf,v), YveXy,. (5.55)
Now we can get the following result.

Theorem 41 Let 1/2 <a <1 and t€(0,T). Suppose that u(t)eHg(Q)ﬂH’”(Q) isa
solution to (5.41), uy(t) is the solution to (5.48), and f(t) e H*Y(Q). Then

12

!
2 1-
(fo llu(s) = un($)lzjaiqyds|  <CR™77,

where C is a positive constant.
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Proof. From (5.55) and Theorem 39, we have
2 ! 2
e +C [ ey ds

1 !
<lle)I + = f (l0sn(IP + 1£(5) = Inf(s)II7) ds
0

!
, o 5.56
<CH 2 u(O)ly11,g + CH 272 fo 1050(3)[7r41 ) A5 (30
!
2r+2 2
+ fo A1 gy A
<Ch2r+2—2a'
Hence,
! 2 ! 2 ' 2
15) =5y 5= [ ey a5+ [ 1My
j; ATHY D 0 H©) 0 HA@) (5.57)

< Ch2r+2—2(1.

The proof is completed. O

5.3.2 Fully Discrete Approximation

In the previous subsection, we investigate the semi-discrete approximation for
(5.41), where the space is approximated by the finite element method. In application,
the semi-discrete scheme is not suitable for real computations. In this subsection, we
discuss the fully discrete approximation for (5.41). The time discretization can be
accomplished in several possible ways, such as the Euler method, the trapezoidal
method, etc.

Next, we present the first fully discrete algorithm. The time direction is dis-
cretized by the backward Euler method, the space is discretized by the finite element
method, the fully discretized approximation for (5.41) reads as: Find uZEXZO,n =
1,2,---,nr, such that

nel
Oty 2 ) +AGa) = Unf", ), YveXsy, 5.58)
u2 = In¢o,
where |
nolo Wy —up
Sty = = (5.59)

If the time direction is discretized by the Crank—Nicolson method, we can obtain

the fully discrete approximation for (5.41) as: Find ”Z eX [IO, n=1,2,---,nr, such that

n—1 n-1
{(6f”h P +A, *Lv) = Unf(t,_1).v), Yve X, (5.60)

0
uy, = Ipdo,
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where
_1ouf
u, * = % (5.61)
We investigate the stability and convergence for (5.58).

Theorem 42 Let 1/2 < a < 1. Suppose that u;‘l,k =1,2,---,n7 is a solution to (5.58)
and feC([0,T],L*(Q)). Then

k
2 2 2
e§1 20 2y < Cll ey + CAL Y NI,

n=1

where C is a positive constant independent of n and h.

_1
Proof. Letting v = 5,uZ % in (5.58) yields

n-1 n-1 n n-1 " n—3%
(6ruy, 2, 6wy *) +Aluy, Sy *) = UInf", Sy %). (5.62)
Using the Cauchy—Schwarz inequality and the coercivity of A(u,v) yields
n on n-1 _n-1 At 72
Auy, uy) — Ay, uj, )Szulhf II°. (5.63)
Hence

n
Alup, ) SAGuf,uf) + CA Y I fAIP.
k=1

Summing n from 1 to k and using ||, f"|| < C||f"|| lead to

n
AGut uh) <A, 1) + CAL Y (1 f1P
k=1

Applying (5.42) and (5.43) gives the desired result.
The proof is thus completed. O

Letu? = HZ’OM", n' =u"—u} and €" = u — uj. From (5.40) we have
(Ouu(tn), v) + Au(ty),v) = (f",v), VveH{(Q). (5.64)
Replacing uj, in (5.60) with u, leads to
_1
Gz 2 v)+AWLY) = (I f (1)) + R, (5.65)
Eliminating R from (5.60), (5.64) and (5.65) yields

(5,e"—% V) A V) = (Sl — Ouultn), V) + (f' = Inf",v), YveXy,. (5.66)

Next we can obtain the following convergence result.
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Theorem 43 Let1/2<a <1, m>r+1. Suppose thatu];l, k=1,2,---,nr is a solution
10 (5.58), u is the solution to (5.38). Ifue H*([0, T],Hm(Q)mH(l) (Q)), do€ H™(Q), and
fe€C([0,T],H™(Q)), then

le(t) = wyllze () < C(AL+ R,
where C is a positive constant independent of k, At and h.

Proof. From Theorem 42, we have

k 1
1K1y < e ey + CAL D (6118, 2 = Buaa(t)IP + 11f" = Inf"IP).

n=1
Noting that
0 _
€%l = [1Zndho — o + do — T, ol < CH™ '~ lioll o1 )
1" = Inf 1< CH™ N f g -
and

_1 _1 _1
6.ty 2 =t = 11— 61" "2 +6u™™2 — dyu(ty)|I*

In n
sc(h2f+2m-1 f [ A f ||a%u||dr),
h—1 In—1

we have ||e¥||geq) <Ch™ '™, Using |lu(tx) — uf ||z < 7"l He@) + lleMllge @) yields
the desired result. The proof is completed. O

Next, we analyze the method (5.60).

Theorem 44 Let 1/2 < a < 1. Suppose that u];l,k =1,2,---,n7 is a solution to (5.60)
and f€C([0,T],L*(Q)). Then one has

k
k2 < 012 2
otk o 2y < Clltgl oy + CAL D UG, DI, (5.67)

n=1

where C is a positive constant independent of n, At and h.
_1
Proof. Letting v = 6tuz 2 in (5.60) yields

_1 _1 _1 _1 _1
Guty 2.0ty 1)+ Ay 260ty 2) = (I f" 2.5 ). (5.68)

Using the Cauchy—Schwarz inequality yields

_1 _1 _1 _1
6.2, 2IF + A, 2,6, >)<l6a, 2IF+CllLf, Ol (5.69)

n=3

Rearranging the above inequality and using the property A(u,v) = A(v,u) gives

n—=

At ) <A™ ™) + CAIL (1, IP. (5.70)
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Summing » from 1 to k and using ||I;, f"||< C||f"|| lead to
k
AGuth, uf) <A, ul) + CAL Y [1£G IR, (5.71)
n=1

Using the coercivity and continuity of A(u,v) yields (5.67).
The proof is completed. O

Next, we show the convergence of (5.60).

Theorem 45 Let 1/2 <o <1,m>r+1. Suppose that uk,k =1,2,--- ,nz is solution of
(5.60), u is the solution to (5.38). Ifu€H3([0, T],Hm(Q)mH(l)(Q))’ do€ H™(Q), and
SEeC(0,T], H™(L)), then

lee(ti) = yllizoy < C(AP + W17, (5.72)
where C is a positive constant independent of k, At and h.

Proof. The error equation of (5.66) can be written as

G v+ A" v) = (6 E - Buult, )+ ([, )= Infh, p)v). (573)

From Theorem 44, we have

k 1
e 13y < e Nz + CAL Y 1512 > = Buuct,_DIP + 117, 1) = TS 1, DIP).

n=1

(5.74)
For 0, we have
eIl =Inpo — T Ul o)
<[lIxd0 = pollze) + g0 = Tt e )
<CH™ ol g1 -

_1
For [|6u, 2 = Ou(t,_plland |If (@, 1) = 1nf(z, 1l we have

2

_1 _1 1 1
160 = BuaaCt,_ I < 6uael? = 6" 31 + 116" = Byuat,_ I
In n
<CAr'p>r+? f 10:u(t)l| g1 At + CAP f 102 u()]| dt,
ty In—1

B (5.75)
and
1/ (t,_y) = Inf @, IS CH Ol . (5.76)

Hence,
lle* Iy < CAP + B,
. 0 0
Using [lu(1) — uf | oo < llui) =TI u(@l e + I Vu(t) = uf | @) = e llme@) +
||HZ’0u(tk) - uﬁHHa(g) and Lemma 5.3.1 give the desired result. The proof is thus
finished. O
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5.4 Galerkin FEM for Time-Fractional Differential Equations

In this section, we introduce the finite element method for the time-fractional
differential equations. These equations include time-fractional diffusion equations,
the time fractional cable equation, and the time fractional Fokker—Planck equation,
etc. In order to illustrate how to use the Galerkin finite element method to solve
time-fractional equations, we mainly investigate two kinds of model problems.

The Riemann—Liouville type time-fractional diffusion equation is given below:

=Dy, (Kyd%u)+ f(x.0),  (x.1) € QX (0.T],
u(x,0) =¢o(x), xe€Q, (5.77)
u(x,0)=0, (x,1)edQx(0,T],

where Q = (a,b), K, >0and 0 <y < 1.
The Caputo type time-fractional diffusion equation reads as:

CDg,z” = Kya;zc” +g(x,1), (x,H)eQx(0,T],
u(x,0) = ¢go(x), xeqQ, (5.78)
u(x,t)=0, (x,ne 0Qx(0,T],

where Q = (a,b), K, >0and 0 <y < 1.

5.4.1 Semi-Discrete Schemes
We first consider the semi-discrete approximations for (5.77) and (5.78). Multi-
plyingby ve Hé (€2) on both sides of (5.77) and integrating by parts, we obtain
(9r14,) + Ky (rLDy ) D0, 0.0) = (f.v). (5.79)

From the above equation, we can derive the semi-discrete scheme for (5.77) as: Find

up(1) € X}, such that

{(atuh,w + Ky gDy Dt Ov) = (nfov),  veXjy, 550
un(0) = 1, po(x).

We can similarly give the semi-discrete scheme for (5.78) as: Find un(r) € X},
such that

y —
{(CD()JMII’V) +Ky(6xuh, 6)cV) = (Ihg’ V), VEX;;O’ (581)

un(0) = I, "o ().

Next, we present the matrix representations for (5.80) and (5.81). Suppose that

the solution to (5.80) or (5.81) has the expression as in (5.49). Denote by ¢(¢) =
(c1(D, 20, ,enr—1 )T, (F(@0)j = (f(1),0)), (G(1); = (g(1),¢,), and

(M); j = (¢, 8)), (8)i,j = (0x0i, 0x0)). (5.82)
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Then the matrix representation of (5.80) or (5.81) can be expressed as

Mdz(;) K,SreDy, e(t) = F (0, (5.83)

or
McD} e(t) + KyS (1) = G(1). (5.84)

Eqgs. (5.83) and (5.84) are fractional ordinary differential equations, so they can
be solved by the methods developed in the previous chapters. For example, Eq. (5.83)
can be solved by time discretization techniques as presented in Subsection 4.2.1 for
(4.10), and Eq. (5.84) can be solved by time discretization as derived in Subsection
4.2.2 for (4.86), or see the numerical methods used for FODE (3.1).

Next, we present the error estimate for (5.80) and (5.81). Let u.(¢) = H}I’Ou(t),
n(t) = u(f) — u.(¢) and e(r) = u..(f) —uy(¢). We can obtain the error equation for (5.80)
as

{(616, )+ Ky(RLDé;yaxe,axV) ==@mV)+(f=Inf,v),  veEX), (5.85)

e(0) =

Theorem 46 Let 0 <y < 1 and t€(0,T]. Suppose that ue C'(0,T; H™'(Q) N H ()
is a solution to (5.77), and uy(t) is the solution to (5.80), f€L*(0,T;H"*(Q)). Then

Nl (1) = u @I < CH (Dl g + CH f (||a u(s>||H,+1(Q)+||f(s>||§,,+1(g))ds,

where C is a positive constant.

Proof. Letting v = ¢ in (5.85) and using the Cauchy—Schwarz inequality yield
1d _
Ed—llell + Ky(RLDé’tyaxe dre) =(0re,e) + Ky(RLD 7dre,0xe)
=(=0m+f—1Inf.e) (5.860)
1
<5 (Iel® +1I=dm+ f =1 f1P).

Integrating on the interval (0,¢] gives

!
le@)I” <lle@I* +2K, f (rLDy dxe(s), dre(s))ds
0 (5.87)

! !
< fo le(s)Pds + fo 1= 8m(s) + £() — Inf (I ds,

where fot(RLD(l)_lyﬁxe(s), 0xe(s))ds>0 because of Lemmas 5.1.2 and 5.1.11. Applying
Gronwall’s inequality (see Lemma 5.1.12) yields

t
le()I* <C fo = sm(s) + £(s) = Inf()I* ds
! !
<c fo 1sn(IRds+C fo F(s) = Tuf(s)IPds (5.88)

<cir f (19551 + Iy ) .
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Hence,

llu(®) = un(ON <1u(t) = Ol + [0 (2) = un (O = [l + lIn(O)|

+1 +1 12 (589
<CH @)l + CH [ f (104 gy + IOy ) I

The proof is completed. O

We can similarly write the error equation for (5.81) as

{(cDg,,e(t),V) + Ky(9xe,dxv) = =(cDy n(1),v) + (g = Ing,v),  veXj, (5.90)

e(0) =

Theorem 47 Let 0 <y < 1 and t€(0,T]. Suppose that u(t) eCl O, T;H*'(Q)n
HO1 (Q)) is a solution to (5.78), and uy(t) is the solution to (5.81), g(t) € L2(0,T; H™ 1 (Q)).
Then

f IeD3 wns) — us)IPds < CH2,
where C is a positive constant independent of h.
Proof. Letting v = e(?) in (5.90) yields

(D} e(t),e(t)) + Ky (Bxe,xe) = (cD} n(1).€) + (g ~ I1g.¢)

(5.91)
<elle@)|* + C(llcDy n)I* +ig = Ingll*),

where € is a suitable constant such that €|le(?)||> < Kyllﬁxellz. So

(cDy (), e(t) <CllcDy n)IF +lg = Ingll). (5.92)
Integrating on [0, 7] yields
! !
[ D} etnesnas<c [ Geny meiP +lets) - tig s

0 0 (5.93)

t
<CR*) fo (leDg (S)Il31 ) + I8y, -

Since ¢(0) = 0, CDZ)’ () = RLDZ)’ .e(n). Using Lemmas 5.1.11, 5.1.2, and 5.1.6 yields
!
f lcD} 2e(s)? ds < CR"*D. (5.94)
0 ,

Applying lleD}/>(uin(s) = u()IP <llcDY Fe(s)I +1lcDy n(s)I> gives the desired re-
sult. The proof is finished. O
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5.4.2 Fully Discrete Schemes

In the present subsection, we present the fully discrete algorithms for the time-
fractional differential equations in forms of (5.77) and (5.78). As is known, we in-
troduce several finite difference schemes for Eqs. (5.77) and (5.78) in Chapter 4,
which can be directly extended to solve Eqs. (5.77) and (5.78), except that the space
is approximated by the finite element in this chapter. Here, we just present several
schemes to illustrate how to construct the fully discrete finite element schemes for
equations in forms of (5.77) and (5.78), and how to analyze the stability and conver-
gence.

e The fully discrete finite element methods for (5.77)

We first consider the fully discrete schemes for (5.77). For the first fully discrete
scheme, the integer time derivative and the Riemann-Liouville derivative are dis-
cretized by the backward Euler formula and the Griinwald—Letnikov formula (see
the time discretization for (4.30)), respectively. Therefore, the fully discrete finite
element method for (5.77) is given by: Find ”Z eX[lO forn=0,1,---,n7 —1, such that

-1 - n ¥ r
{(étuz KO 00w = S ). Ve oo

0 _ 11,0
u, = Hh $o,

where 46,0 < y < 1 is defined by

n

GLy) n_ L @ K 3 _ k(Y
7= Yol ol = 0K(7).
k=0

We can also construct the Crank—Nicolson finite element method for (5.77), in
which the time discretization of (5.77) is approximated as that of Eq. (4.10), see the
Crank—Nicolson finite difference method (4.59). The fully discrete Crank—Nicolson
finite element method for (5.77) is given by: Find uZeX}ZO forn=0,1,---,n7 -1,
such that

1
}’l+7

1 1 [t
(Gualy"*v) = 5| =BGty 0,9) + Y (but = bt ) Dst, )
k=1

1
+(bn— Bn)(axui ,0xv) + An(axug, axv)] + (Ihf(tn+% )> V), VVEX;I(),

0 _ 71,0
up = Hh o,

(5.96)
-1
where A, = B, — %, b, and B,, are defined by
bo= [+ 17 -w], By= ——[m+1/27 -]
I'(l+y) ’ I'(l+y)

In the following we analyze the stability and convergence for (5.95). We first give
the following theorem.
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Theorem 48 Let “Z be the solution to (5.95), and fEC(O,T;LZ(Q)). Then there ex-
ists a positive constant C independent of n, At and h, such that

2 0,12 012 k(12
[l 1= <1l I + ALY K l|024 +Comax (VA8
<k<nr

Proof. The proof is similar to that of Theorem 23. Letting v = uj; yields

n
W )=y~ 1) = AP K, Y 7 (Ot 0ady) + AT f" ). (5.97)
k=0
Denote by
n -1
_ I'(n+ +1)”
bu=» o) "= ry) @DV s 12,

P CTre+1) Ty

Then one has b, —b,_| = wﬁll_” and b, satisfies Cob,At” <At<C1b,At", Cy,Cy are
positive constants independent of n.
Using the Cauchy—Schwarz inequality, one obtains

2 2
lluyll” + AL Ky 110t |

AYK,

)
I >

1 n—1
< 3l I + 1) + D a1 = bGP +10041P)  (5.98)
k=0

1
+ At(elluf||* + @nlhf"u%,

where € is a suitable positive constant. Denote by

n

2 k2

E" = g + APKy, > by gl
k=0

Then one has

1
E"+ A Kyball0xufl <E™' + At(z—elllhf"ll2 + 26|IuZ|I2)

1 (5.99)
<E"! +Ar(2—||1hf"||2 +2cze||uz||2),

€

where |[|uy || < C||0.uj || has been used. Choose suitable € = % satisfying
2C2eAt<2C2eC1 b At <Ky b, AL
Therefore, one obtains
n
E"<E"'+ Al f"IP < EO+ CAr Y IIFIP
= (5.100)

n
= I + A7 K 0. + CAL >[I,
k=1
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By the definition of E”, one has

2 012 012 k)12
luyll” < E™ <l |l + At Ky 10| +C max [If7".
SKSnr

The proof is completed. O

The error estimate for the scheme (5.95) is given in the following theorem.

Theorem 49 Let 0 <y < 1 and t€(0,T). Suppose that u(r)e C3(0,T;H*'(Q)n
HY(Q) is a solution to (5.78), and u}} is the solution to (5.95), f€C(0,T; H™(Q)).
Then there exists a positive constant C such that

lluf} — u(ty)I| < C(At+ R ).

Proof. We first write the error equation. Let u, = H}ll’ou, 7' =u"—-u? and " =
ull — “Z From (4.26), (4.27) and (4.29), we have

(5lu"_% _ KyGLégl_Y)ﬁiu”+f"+0(Af)- (5.101)

Replacing ) in (5.95) with !, we have

_1
Gty 2 v)+ Ky (CL6" 0, 0.0) = (I f"v) + 1" (5.102)
Removing 7 from (5.95), (5.101) and (5.102) yields
(61" 2,v) + Ky (CL61 7 a,e",0.v) = (R, v), (5.103)

where (0,(u" — H}ll’ou),axv) =0forve X,

and R" = R + R + R} satisfies
RI=0(An, Ry=f"-IL ", Ri=-60"""2 (5.104)
From (5.103) and Theorem 48, we only need to estimate

012 02 k2
lle”|I” + AP K, ||0xe”||” + C max [|R|]
0<k<nrt

to derive the error bound. Obviously, e =0 and
||Rk|| < ||R111|| + IIRSII + IIR’§I| <C(At+ n! ||f||c(0,T;Hr+l(Q)) +h ||u||cl(o,T;Hr+1(Q)))~
Hence, ||¢"||<C(At+h'*1). Using lleey; — u(z)l| <lle"[| + |I7"|| ends the proof. O

For the Crank—Nicolson finite element method (5.96), we have the similar result
as that of Theorem 48, and the convergence rate of (5.96) is O(A"™Y + b1y,

Of course, all the finite difference methods (see for example, (4.49), (4.67), (4.79),
(4.83), and (4.84)) developed in Subsection 4.2.1 for (4.10) can be directly extended
to (5.77), except that the finite difference discretization in space is replaced by the
finite element discretization, and the stability and convergence are almost similar, so
we do not list all these methods here.
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e The fully discrete finite element methods for (5.78)

Next, we consider fully discrete approximations for (5.78). As is known in Sub-
section 4.2.2, the Caputo derivative in (5.78) (see also (4.86)) can be directly dis-
cretized by the Griinwald—Letnikov (see (4.96)) formula or the L1 method (see
(4.97)). The fractional linear multi-step methods can be used to discretize the time
direction of (5.78) (see (4.116) and (4.117)).

The first fully discrete finite element method for (5.78) with the time direction ap-
proximated by the L1 method (see also (4.97)) is given by: Find “Z (n=1,2,---,n7),
such that

) n n n
0, ul,v)+ K, (0,u]},0,v) = ([,8",v),
{( . Up,V) y(0x 1 Ox )= (pg",v) (5.105)

uy = 11,0,
where 657) is defined by

n—1

Noa_ 1 O) (1 » _
o Z_A—ty§b D@ —uf), b

The following theorem indicates that the scheme (5.105) is unconditionally sta-
ble.

Theorem 50 Let u" be the solution to (5.105), and feC(0,T; :L2(Q)). Then there
exists a positive consmnt C independent of n, At and h, such that

ny2 0112 k(12
w|” <2||u;||- +2C max .
[l |17 < 2o, OSkSnT“f I

Proof. Denote by i = A" /b and ¢! = b /b = (k+1)! 7 = k', s0 ¢ = 1.
Letting v = uy in (5.105) yields

(ut, ) + Ky (Oxcttly, O xit)

n—1
(5.106)
= >0, =Dk )+ 1) + pCIag” ).
Using the Cauchy inequality, one has
1 n—1
1P+ Kypl@siP < 5 > ey = e ) I + i)
k=1
(y) (y) 5 (5.107)
2, W 2, Cn-l 2, M 2
+ L )P+ )7, ) + WG + <G ag "

n—1
One immediately gets from (5.107) that

n—1
||uh||2<Z(cfZ>k1 Nk + 2 ) + m B
Cn-t (5.108)

sZ(cfZ_’k L= DO + ¢, (21l +2CNg" ).
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where the positive constant C is independent of n, At and Ax, but satisfies & ( ) = <C.
Next, we prove that

WP <211l0))7 +2C max ||g4|? = E.

P < 205)F +2C max Jigh| (5.109)

We use the mathematical induction method in the proof of (5.109). For n = 1, one
has from (5.108) that

1
gy + Kypldet | = (a3 + 1CTng 1) < Sl | + Wl + 221 pg ', (5-110)
which leads to
llup 1P <200l + 242 Mg I* < 20lul* + 2C g I < E.

Hence, (5.109) holds for n = 1. Suppose that (5.109) holds forn =1,2,--- ,m—1. For
n = m, one has from (5.108)

m—1
||uz1||st<cf§3kl e llugll> + ¢ E

I (5.111)

<~ DE+Y E=E.
1

E

>~
I

Therefore, fluj|I* <2[luj|* +2C max [lg"]* holds for all n. The proof is thus com-
<k<nr

pleted. O
Next, we discuss the convergence for (5.105).

Theorem 51 Let 0 <y < 1 and t€(0,T]. Suppose that u()eC30,T; H* Q) n
Hé(Q)) is a solution to (5.78), and “Z is the solution to (5.105), fe€ C(0,T; H+'(Q)).
Then there exists a positive constant C such that

[} = u(tn)l| < C(AP™Y + BT,

Proof. We first write the error equation. Let u, = H}l’ou, 7' =u"—-u? and " =
ull - “Z From (4.97), we have

ST = K,u" + " + O(APY). (5.112)
Replacing ), in (5.95) with u}, we have
(5?)”:5, V) + Ky(@xudll, Oxv) = (Ing", v) +1". (5.113)
Removing 7 from (5.105), one has

6Pe" V) + K, (0,€",0,v) = (R",v), (5.114)
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where (0,(u" — H}ll’ou),(?xv) 0forveXj,,

and R" = R} + R} + R satisfies
Ri=0AF™), Ri=g"-1 ", Ri=-6"n" (5.115)
From (5.114) and Theorem 51, we need only to estimate

lle°|? +C max [IR¥|[?
0<k<nr

to derive the error bound. Obviously, ¢’ = 0 and

IR <RSI+ 1RGN + 1RSI < CAL™ + B fll o aprst y + ' Mtllen o, p0r1 2y

where [[R3]| = (165" l| < llc DY (D=4, | + OALT).
Hence, ||| < C(A*™Y + 1), Using lle, — uCt)l <lle" || + |In"|| yields the desired
result. The proof is completed. O

If the time derivative is approximated by the Griinwald formula as that of method
(4.96), we can derive the following finite element scheme:

" 0
{(5] () —u),v) = Ky (0}, 0.v) + (Ing",v), veXj,, 5.116)

0 _ 11,0
U, = Hh ®o,

where 6?’)(% - ug) is defined by

‘5?)(”;, ”h) T AY Z‘“m (u _”h) “’5«7) = (_1)k(Z)'

The stability of (5.116) can be proved as that of method (5.78). The convergence in
the sense of L2 norm is O(At + h'1).

If the time direction is discretized by the FLMMs as those in (4.116), (4.117),
(4.120), or (4.121), then we can obtain the corresponding finite element methods
with much better convergence rates in time.

o FLMM-FEM-I: Find ! € X/ (n= 1,2, ,n7), such that

1 n ~ K n
— Y Wiy = -2 (—1)"w(”(axuh *,8.v) - K, B (0.4, 0,v)
thy k zﬁ k

k=0

ZE:LOOO ((;n k ‘)EJ(ZO’

1,0
uh H %o,

(5.117)
where "’ = (-DX(}). G" = [nglhg(t)]t:tn, and B" is defined by (4.114) with

m=1.
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o FLMM-FEM-IL: Find ! €X7) (n = 1,2,---,n7), such that
1 < y y
v Z oW —ul,v) = —K, (1 - 3@, 0.9) + E(axug—l,axv)
k=0

n
5 1 -
- Kny, )(ﬁxug,ﬁxv) + A7 Z wily_)k(G” kv, veX;,,
k=0

Mg = 1‘[}1’%0,
(5.118)
where o’ = (-DX(}). G" = [Dg’;[hg(t)]t:t ,and B is defined by (4.114) with

m=2.

o FLMM-FEM-III: Find ”Z EXZO (n=1,2,---,n7), such that

1 n B K, & B
A7 Z wg)(uz k_ ug,v) = —73/ Z(—l)szy)(ﬁxuz k dw)— KyBg)(ﬁxug,@xv)
k=0 k=0

1 n

1 _

- Kycfl )((9x(u}, - ug),ﬁxv) + A7 Z wl(f_)k(G" kv, veX),
k=0

= (5.119)
where ) = (~DX(}). G" = [Dy7Ihg(0)] _, . B, is defined by (4.114) with

m =1, and C" is defined by (4.119) with m = 1.
e FLMM-FEM-IV: Find ”Z GXZO (n=1,2,---,n7), such that
1 < _ _
A7 ng)(uz k_ ug,v) =-K,(1- %)(ﬁxuz,ﬁxv) + %(ﬁxuz L o)
k=0
~ Ky B (@, 0.v) — Ky C (0 — u2),0,v)

1 &
Y) —k

+At7 E w,” (G v), veXy,
k=0

ug = H}ll’o(ﬁo,

(5.120)
where o’ = (-1)X(}). G" = [D(;{Ihg(z)]tzt , B? is defined by (4.114) with
m =2, and C\" is defined by (4.119) with m = 1.

The four methods (5.117), (5.118), (5.119), and (5.120) are all unconditionally
stable [168, 169], which are reduced to the Crank—Nicolson finite element methods
with second-order accuracy in time when y = 1.

Theorem 52 Let “Z be the solution to (5.117), (5.118), (5.119), or (5.120),
gEC(O,T;Lz(Q)). Then there exists a positive constant Cy independent of n, At, h
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and T, and a positive constant C independent of n, At and h, such that
1
e * + = AP0 < Co (Iluf)i” + A 0,af)*) + €1 max |81 (5.121)
2 O<k<nr

The error bounds for (5.117) and (5.118) are the same, which are given as

n
llu} = ut)l < C(AL+ 1), JA:Z ik = UtpIP <A + 1),
k=0

The error estimates for (5.119) and (5.120) are the same, which are given as
lluf — ut)| < CAP + R,

Readers can refer to [168, 169] for more detailed information.

5.4.3 Numerical Examples

In this subsection, we present numerical examples to verify the theoretical results.
For convenience, we use interpolation operator I, to replace the projector I1 }11’0 in
schemes (5.96) and (5.117)—(5.120) in the following numerical experiments. We first
numerically verify the error estimate and the corresponding convergence order of the
method CNFEM (5.96).

Example 12 Consider the following subdiffusion equation [173]

O = gDy L O2u+ f(x,0),  (x,0€(0,DX(0,1],
wO,)=F2+t+1, u(l,n)=exp()(PZ+t+1), 1€(0,1], (5.122)
u(x,0) =exp(x), x€[0,1],

where

212 1B P

Jou) = TG-p TQ-p TA-p

2t+1—<

)] exp(x).
The exact solution of (5.122) is
u=exp(x)(”*+t+1).

Denote by &" = u(x,1,) — uj. Then the L*-error and L2-error at f,, are defined as

N-1 12
lle"loo = max lu(xistn) —up(xp)l,  le"|l = {h Z(u(xi, th) = ”Z(xi))zJ .
si= i=0

We first verify the convergence orders in time and space for CNFEM (5.96) . The
linear element is used in this example. Tables 5.1 and 5.2 display the maximum L*-
error max ||&"]le and the maximum L’-error max ||€”|| with the parameter values

0<n<nr 0<n<nr
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B=0.25,0.5,0.75. From Tables 5.1 and 5.2, we can find that the numerical solutions
fit well with the analytical solutions, and the convergence orders in time and space
also fit well with the theoretical analysis.

Next, we compare CNFEM (5.96) with the Crank—Nicolson type finite difference
method (CNFDM) developed in [173], in which the space is discretized by the cen-
tral difference method, and the convergence order in time is min{1 + 3,2 — 3/2}. So
we use the linear element in the computation; the maximum L*-error is shown in
Table 5.3. We find that when 8 is small, the two methods CNFEM and CNFDM
have almost the same numerical results. When g increases, the method CNFEM
achieves better numerical results in this example. Theoretically, one can find that
if 0 < $<2/3, then CNFEM and CNFDM have the same convergence orders in time,
otherwise (2/3 <8< 1), CNFEM displays better convergence orders than CNFDM in
time, which is also illustrated in the numerical experiments; see the numerical results
shown in Table 5.3.

TABLE 5.1: The maximum L errors for Example 12 with N = 1/h = 1000.

B | 1/Atr| L*-error | order L?-error order
16 | 4.1782e-3 3.0566e-3
32 | 1.8315e-3 | 1.1898 | 1.3386e—-3 | 1.1912
0.25| 64 | 7.8822e—4 | 1.2164 | 5.7592e—4 | 1.2168
128 | 3.3579e—-4 | 1.2310 | 2.4535e—-4 | 1.2311
256 | 1.4227e—-4 | 1.2389 | 1.0395e—4 | 1.2389
16 | 1.2444e-3 9.1043e—-4
32 | 4.7937e-4 | 1.3762 | 3.5020e—4 | 1.3784
0.5 | 64 | 1.7888e—4 | 1.4222 | 1.3067e—4 | 1.4222
128 | 6.5551e—5 | 1.4483 | 4.7884e—5 | 1.4483
256 | 2.3765e-5 | 1.4638 | 1.7359¢e-5 | 1.4638
16 | 1.6258e—4 1.1881e—4
32 | 6.4940e—5 | 1.3239 | 4.7437e-5 | 1.3246
0.75 | 64 |2.3415e-5| 1.4717 | 1.7099¢e-5 | 1.4721
128 | 8.0019e—6 | 1.5490 | 5.8424e—6 | 1.5493
256 | 2.6623e—6 | 1.5877 | 1.9436e—6 | 1.5878

Next, we numerically verify the error estimates and the convergence orders of the
FEMs (5.117)—(5.120).

Example 13 Consider the following subdiffusion equation [65, 96]

Dy, = B+ f(x,0,  (x0€0,1)x(0,1],
u(x,0) = 2sin(2nx), x€[0,1], (5.123)
u(0,0)=u(l,1)=0, re(0,1].

Choose a suitable right-hand side function f such that the exact solution to (5.123)

IA)
u= (P +1+2)sin2nx).
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TABLE 5.2: The maximum L™ errors for Example 12 with At = le —4.

B | N=1/h| L®-error | order | L’-error | order
4 2.9246e-3 2.1485e-3
8 7.2782e—-4 | 2.0066 | 5.3600e—4 | 2.0031
0.25 16 1.8404e—4 | 1.9835 | 1.3462e—4 | 1.9933
32 4.7114e-5 | 1.9658 | 3.4450e-5 | 1.9664
64 1.2889¢-5 | 1.8700 | 9.4175e-6 | 1.8711
4 2.9765e-3 2.1870e-3
8 7.3959e—-4 | 2.0088 | 5.4475e—4 | 2.0053
0.5 16 1.8598e—4 | 1.9915 | 1.3605e—-4 | 2.0014
32 4.6570e-5 | 1.9977 | 3.4057e-5 | 1.9982
64 1.1727e-5 | 1.9896 | 8.5690e—6 | 1.9907
4 2.9801e-3 2.1897e-3
8 7.4041e—-4 | 2.0090 | 5.4536e—4 | 2.0055
0.75 16 1.8612e—4 | 1.9921 | 1.3615e—4 | 2.0020
32 4.6532e—-5 ] 1.9999 | 3.4028e-5 | 2.0004
64 1.1645e-5 | 1.9985 | 8.5093e—6 | 1.9996

TABLE 5.3: The maximum L* errors for Example 12 with 4 = 1/1000.

method | 1/At| B=04 | B=05 | B=08 | B=00 B=1

16 | 1.9912¢—3 | 1.9437c—3 | 3.6981e—3 | 4.3373¢—3 | 4.9609¢—3
32 | 8.1666e—4 | 6.3689e—4 | 1.1981e-3 | 1.3732e-3 | 1.5280e-3
4.67) | 64 |3.2417e-4 | 2.0120e—4 | 3.6055¢—4 | 4.0218e—4 | 4.3742e—4
128 | 1.2651e—4 | 6.3193e—5 | 1.0259e—4 | 1.1219e—4 | 1.2048e—4
256 | 4.8861e—5 | 2.3015e-5 | 2.8182e—5 | 3.0469%¢—5 | 3.2450e—5
16 | 2.0946e—3 | 1.2444e—3 | 1.4399¢—4 | 1.3778¢—4 | 2.0685¢—4
32 | 8.4560e—4 | 4.7937e—4 | 2.8191e-5 | 3.0204e—5 | 5.1681e-5
(5.96) | 64 |3.3272e-4 | 1.7888e—4 | 1.1328¢-5 | 6.6085¢—6 | 1.2893¢-5
128 | 1.2907e—4 | 6.5551e—5 | 4.0791e—6 | 1.4141e—6 | 3.1999e—6
256 | 4.9656e—5 | 2.3765¢-5 | 1.4023e—6 | 2.8688¢~7 | 7.8039e—7

The cubic element (r = 3) is used in this example, the space and time step sizes
are chosen as 7 = 1/1000 and Ar =1/32,1/64,1/128,1/256,1/512.

We first check the global maximum L2 error maxo<p<ng IIuZ —u"||, the average [?
error (AIZZZO Ilee, — u"||$)1/2, and the L? error |leej; — u"|| at n = nr, which are shown
in Tables 5.4-5.6. From Table 5.4, we find that Schemes I and II show the first-order
accuracy in time for 8 = 0.1,0.5. When g8 = 0.9, (5.117) and (5.118) show much
better results than the theoretical analysis. Obviously, (5.119) and (5.120) show the
convergence rates, even better than expected. Table 5.5 gives the average L errors,
which shows that the four algorithms yield the desired convergence rates even better
than anticipated. Table 5.6 displays the L? error at t = 1. Obviously, (5.117) and
(5.118) show second-order accuracy in time, and (5.119) and (5.120) really show
second-order accuracy as expected. Briefly speaking, (5.117) and (5.118) show better
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numerical results than the theoretical analysis, and (5.119) and (5.120) show the
second-order accuracy as expected.

Next, we

compare the present FEMs (5.117)—(5.120) with the FEM in [65]. See

also (5.105); where the time derivative was discretized by the L1 method, we denote
it by LIFEM. The L1FEM has convergence order of O(>7 + I+1). We choose the
same parameters in the computations; the results are shown in Table 5.7. Obviously,
the present methods show better performances than the L1FEM, especially when
[ increases. It is easy to verify that the present four algorithms show second-order
experimental accuracy and the L1FEM shows (2 —B)th-order experimental accuracy,
which is in line with the theoretical analysis.

TABLE 5.4:
1000, r = 3.

The global maximum L? errors Omax |leej; — u"|| for Example 13, N =
<ns<nt

Method

1/At| B=0.1 order | B=0.5 order | B=0.9 order

(5.117)

32 | 4.7141e-4 1.0490e-3 1.3175e-4
64 | 2.4645e—4 | 0.935 | 5.2706e—4 | 0.993 | 6.7038e—-5 | 0.974
128 | 1.2553e—-4 | 0.973 | 2.4738e—4 | 1.091 | 2.3457e-5 | 1.515
256 | 6.3191e-5 | 0.990 | 1.1150e—4 | 1.149 | 7.2003e—6 | 1.703
512 | 3.1637e—-5 | 0.998 | 4.8600e—5 | 1.198 | 2.0743e—6 | 1.795

(5.118)

32 | 7.4577e-5 6.8243e-5 1.4795e-4
64 | 5.0606e—5 | 0.559 | 1.5696e-5 | 2.120 | 2.9862e-5 | 2.308
128 | 2.8356e—5 | 0.835 | 8.3982e—6 | 0.902 | 7.3010e—-6 | 2.032
256 | 1.4864e-5 | 0.931 | 4.7785e—6 | 0.813 | 1.9438e—6 | 1.909
512 | 7.5776e—6 | 0.972 | 2.2498e—6 | 1.086 | 5.2847e-7 | 1.879

(5.119)

32 | 5.2941e-5 1.2396e—-4 9.3790e-5
64 | 1.2332e—5 | 2.102 | 2.1236e—-5 | 2.545 | 1.2378e-5 | 2.921
128 | 2.8724e—-6 | 2.102 | 5.1989e—6 | 2.030 | 3.1014e—6 | 1.996
256 | 6.6894e—7 | 2.102 | 1.3003e—6 | 1.999 | 7.7612e—7 | 1.998
512 | 1.5581e—-7 | 2.102 | 3.2515e—-7 | 1.999 | 1.9403e-7 | 2.000

(5.120)

32 | 5.2941e-5 1.2396e—-4 9.3790e-5
64 | 1.2332e-5|2.102 | 2.1236e—-5 | 2.545 | 1.1039e-5 | 3.086
128 | 2.8726e—6 | 2.102 | 3.6080e—6 | 2.557 | 1.3108e—6 | 3.074
256 | 6.6894e-7 | 2.102 | 6.0779e-7 | 2.569 | 1.5970e-7 | 3.037
512 | 1.5571e-7 | 2.103 | 1.0149e—7 | 2.582 | 3.1009e-8 | 2.364

5.5 Galerkin FEM for Time-Space Fractional Differential Equa-

tions

In this subsection, we introduce the finite element methods for the time-space
fractional differential equations. We first consider the following fractional diffusion
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TABLE 5.5: The average L? errors (Atzgolluz —u"|»)'/? for Example 13, N =
1000, r = 3.

Methods | 1/At | B=0.1 order | B=0.5 order | B=09 order
32 | 1.1498e—4 3.3381e—4 4.2705e-5
64 | 4.1847e—5 | 1.458 | 1.0495e—4 | 1.669 | 1.1796e-5 | 1.856
(5.117) | 128 | 1.4962e—-5 | 1.483 | 3.1468e—-5 | 1.737 | 2.9836e—-6 | 1.983
256 | 5.3064e—6 | 1.495 | 9.2010e—6 | 1.774 | 7.3814e—-7 | 2.015
512 | 1.8747e—6 | 1.501 | 2.6420e—6 | 1.800 | 1.8227e-7 | 2.017
32 | 1.8257e-5 1.5479e-5 2.7191e-5
64 | 8.0767e—6 | 1.176 | 3.0432e—6 | 2.346 | 4.3535e—6 | 2.642
(5.118) | 128 | 3.1225¢—6 | 1.371 | 1.2367e—6 | 1.299 | 9.0489¢—-7 | 2.266
256 | 1.1462e—6 | 1.445 | 4.5034e—7 | 1.457 | 2.1165e-7 | 2.096
512 | 4.1152e-7 | 1.477 | 1.5235e-7 | 1.563 | 5.1627e-8 | 2.035
32 | 1.7649¢-5 6.3719e-5 3.5855e-5
64 |4.2297e-6 | 2.061 | 1.5076e-5 | 2.079 | 8.0732e—6 | 2.150
(5.119) | 128 | 1.0439e—-6 | 2.018 | 3.7252e—6 | 2.016 | 1.9916e—-6 | 2.019
256 | 2.6030e—7 | 2.003 | 9.2916e—7 | 2.003 | 4.9700e—-7 | 2.002
512 | 6.5029e-8 | 2.001 | 2.3217e-7 | 2.000 | 1.2415e-7 | 2.001
32 | 9.8452e-6 2.2325e-5 1.8170e-5
64 | 1.6221e—6 | 2.601 | 2.8235e—6 | 2.983 | 2.3677e—6 | 2.940
(5.120) | 128 | 2.6828e—7 | 2.596 | 4.0332e—-7 | 2.807 | 4.9677e—7 | 2.252
256 | 4.4794e—-8 | 2.582 | 7.3597e—-8 | 2.454 | 1.2155e-7 | 2.031
512 | 7.6500e—-9 | 2.549 | 1.6522e—-8 | 2.155 | 3.0315e—-8 | 2.003

equation
D} u=gzD¥u+g(x.1), (x,1) € Qx(0,T],

u(x,0) =¢o(x), xe€Q, (5.124)
u=0, (x1)e€dQx(0,T],
where Q = (a,b),0<y<1,1/2<a< 1.
Then we introduce the corresponding schemes for another type of time-space
fractional diffusion equation in the following form
O = riDy, (kzDX W)+ f(x,0),  (x,1) € QX (0,T],
u(x,0) = ¢o(x), xe, (5.125)
u=0, (x,H)edQx(0,T],

where Q = (a,b),0<y<1,1/2<a< 1.
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TABLE 5.6:

253

The L2 errors lluj, —u"|| at n = ny(t = 1) for Example 13, N = 1000, r = 3.

Method

1/At

B=0.1

order

5=05

order

5=09

order

(5.117)

32
64
128
256
512

2.3997e—6
9.3699¢e-7
3.2532e-7
1.0460e—7
3.2047e—-8

1.356
1.526
1.637
1.706

1.5308e-5
1.1924e-5
4.2184e—6
1.1979e-6
3.1472e-7

0.360
1.499
1.816
1.928

4.8896e—5
1.2355e-5
3.1005e—6
7.7624e-7
1.9409e-7

1.984
1.994
1.997
1.999

(5.118)

32
64
128
256
512

3.1243e—-6
8.1059e-7
1.9968e—-7
4.8185e-8
1.1575e-8

1.946
2.021
2.051
2.057

4.6797e—6
1.1587e—-6
2.8364e-7
6.9455e—-8
1.7069e—8

2.013
2.030
2.029
2.024

7.9556e—6
1.9910e—-6
4.9787e-7
1.2441e-7
3.0986e—8

1.998
1.999
2.000
2.005

(5.119)

32
64
128
256
512

1.8316e-5
4.5797e—6
1.1438e—6
2.8575e-7
7.1316e—8

1.999
2.001
2.001
2.002

8.4548e-5
2.0821e-5
5.1989e—-6
1.3003e—-6
3.2515e-7

2.021
2.001
1.999
1.999

4.9286e-5
1.2378e-5
3.1014e-6
7.7612e-7
1.9403e-7

1.993
1.996
1.998
2.000

(5.120)

32
64
128
256
512

1.3694e—7
1.1867e-7
3.8589¢e-8
1.0583e-8
2.7949e-9

0.206
1.620
1.866
1.920

3.9832e—6
1.0307e-6
2.5996e-7
6.5024e—-8
1.6227e—-8

1.950
1.987
1.999
2.002

7.9564e—6
1.9917e-6
4.9811e-7
1.2448e-7
3.1005e—-8

1.998
1.999
2.000
2.005

TABLE 5.7:

Comparison of the L2 errors lleej; — u"|| at n = ny (¢ = 1) for Example 13,
N =1000,r =3.

B | 1/At

Method
(5.117)

Method
(5.118)

Method
(5.119)

Method
(5.120)

LIFEM
[65]

32
64
128
256
512

0.4

2.6133e-5
1.3567e—6
1.2998e—-6
6.6074e—7
2.1850e-7

4.2566e—6
1.0444e—-6
2.5085e-7
6.0246e—8
1.4488e—-8

7.3488e—-5
1.7955e-5
4.4601e-6
1.1137e-6
2.7828e-7

2.9381e—6
7.8792e-7
2.0074e-7
5.0390e—-8
1.2532e-8

4.0588e—-5
1.3740e-5
4.6194e—6
1.5450e—-6
5.1494e-7

32
64
128
256
512

0.6

5.9934e-5
1.9695e—-5
5.3544e—-6
1.3765e—-6
3.4737e-7

5.3346e—-6
1.3308e—6
3.2966e—7
8.1818e—-8
2.0098e—-8

8.9378e-5
2.2267e-5
5.5749e—-6
1.3950e-6
3.4871e-7

5.0233e-6
1.2773e—6
3.2041e-7
8.0201e-8
1.9809¢—-8

1.5276e—4
5.8654e-5
2.2413e-5
8.5394e-6
3.2467e—6

32
64
128
256
512

0.8

7.2323e-5
1.8542e-5
4.6721e—6
1.1713e-6
2.9302e-7

7.0592e—6
1.7682e—-6
4.4172e-7
1.1048e—-7
2.7603e—8

7.4360e—5
1.8673e-5
4.6794e—6
1.1712e-6
2.9286e—7

7.0381e—6
1.7661e—6
4.4170e-7
1.1054e-7
2.7632e-8

5.1564e—4
2.2617e-4
9.8860e—5
4.3132e-5
1.8799e-5

5.5.1 Semi-Discrete Approximations

Let us multiply by v € H7(€2) on both sides of (5.124), which yields
(cDS,,u(t), V) =(rzD>u(t),v) + (g(t),v)

=—C [(RLDZ,Xu(t),RLDibV) + (RLDibM(f),RLDZ,xV)] +(g(0),v).

(5.126)
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Denote by
Au,v) = c2 | (RLDS 4, REDY,V) + (RLD 11, RLDE ). (5.127)
Then
(cDf u(0),v) = =Au(®), v) + (8(1),v). (5.128)
Therefore, we can obtain the semi-discrete approximation for (5.124) as: Find
up(HeX ZO, such that

(CDgtuh,V)'FA(uh,v) = (Ihg,V), VEX;IO’
’ (5.129)

u(0) = T s,

We can similarly obtain the semi-discrete approximation for (5.125) as: Find

up(HeX ZO, such that

@unv) +ARIDy Tupv) = (nfv),  veXl,,
{ t“h 0,¢ g If h0 (5130)

u(0) = I 5.
Next, we consider the convergence.
Letu*(¢) = HZ’Ou(t), n(t) = u(t) —u*(t) and e(f) = u* () — uy(¢). Then we can obtain
the error equation of the semi-discrete approximation (5.129) as

(cDy e,v) +Ale,v) = —(cDf 1. v) + (g~ Ing,v),  VveEX,. (5.131)

Theorem 53 Let 1/2 < a <1 and t€(0,T]. Suppose that u(f) = u(-,1)€ Hy(Q) N
H™(Q) is a solution to (5.124), and u;,(¢) is the solution to (5.129). Then

! 172 _
( f lleDy/2(us) — un(s)IPds) "~ <ChHe,
0 s
where C is a positive constant.
Proof. Letting v = e(f) in (5.131) yields
(cDy e.e) +Ale,e) =~ (cDy 1,€) + (g~ Ing.e)

1 (5.132)
<ellell* + = (UlcDg 71l + llg = Ingll®),

where € is a suitable positive constant satisfying elle|l> <A(e, e). Hence, we have
(cDy e,e)<C(llcDy > + llg = IngIl). (5.133)

Integrating in time leads to

! !
fo (D, e(5),e()ds <C fo (1D ()P +189) - TigIPyds.  (5.134)
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Since ¢(0) = 0, from Lemmas 5.1.11 and 5.1.2 we have

! ! t
f (cD} je(s), e(s))ds = f (kLD} e(s), e(s))ds = f (r.D}/Ze(s), rLDY} e(s))ds.
0 ’ 0 ’ 0

Using Lemma 5.1.2 yields

f lcDy 2e(s)P ds<C f (lcD (I +lIg(s) = Ing()I*) ds
(5.135)

<CprRe fo (leDg (741 gy +IENFri1 ) .

where we have used (5.53) and Lemma 5.1.7. Applying ||u(?) — un(0)||=|In(2) + e(®)||
finishes the proof. O

For the semi-discrete scheme (5.130), we have the following error estimate.

Theorem 54 Let 1/2 < a <1 and t€(0,T]. Suppose that u(r) = u(-,1)€ Hy(Q) N
H™(Q) is a solution to (5.125), and uy(¢) is the solution to (5.130). Then

llu() — up(@)ll < CR"™'=,
where C is a positive constant.

Proof. Similar to (5.131), one can write the error equation for (5.130) as
(Ore(1),v) +A(RLD Ye(1),v) = —(0m,v) + (f = Inf,v), VveXj,. (5.136)

Letting v = e(#) in the above equation yields

(9re(1), e(n)) +A(RLD(1);ye(t),e(t)) =—(0m,e®) + (f — Inf e()). (5.137)

Integrating on (0, 7] gives
lle@I? = lle(O)* +2 f A(rLDy ) e(s),e(5))ds
=2 fot(ase(s),e(s)) ds+ 2fo’A(RLDé;ye(s),e(s)) ds (5.138)
<2Cy fo e ds+c fo WO + 1)~ I
From Lemmas 5.1.11, 5.1.7, 5.1.6 and ¢(0) = 0, we have
| AGDL e(s), () ds=Co | (s ds,
where C is a positive constant independent of /. Therefore,

!
lle()II* <lle(0)|* +C f WP + 11 (s) = Inf (I ds
(5.139)

<Cprtie f UDsu(NFy1 gy + IS Gy ) D,
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where (5.53) is used. Using |[u(t) — upn(2)||=|n(?) + e(?)|| yields the desired result. The
proof is completed. O

5.5.2 Fully Discrete Schemes

In this subsection, we introduce the fully discrete finite element approximations
for the time-space fractional partial differential equations as (5.124) and (5.125). We
find that the time discretization techniques for (5.78) can be applied to (5.124).

e The fully discrete finite element methods for (5.124)

The time discretization is the same as (5.105); we present the first fully discrete

approximations for (5.124) as: Find u EXZO’” =1,2,---,n7, such that

{(6§V)u;;,v) + AL Y) = (1" V), Yve Xy, 5.140)
uy =117 ¢,
where 6?) and A(u,v) are respectively defined by

n—1

D oa_ 1 D) kK )
6)’ Z_sz‘}/k( + uh)’ b’}/
k=0

AU, v) = €20 | (RLDZ 11, LD, V) + <RLDz,,,u,RLDz,Xv)] : (5.141)

Next, we consider the stability and error estimate for (5.140). We first give the
following theorem.

Theorem S5 Let uy be the solution to (5.140), and g€C(0,T;L*(Q)). Then there
exists a positive constant C independent of n, At and h, such that

ny2 012 k2
IIMhIIHa(Q)S2|IuhI|Ha(Q)+COISI}2<TI|8 -

Proof. The proof is very similar to that of Theorem 50, so we omit the details.
The proof is completed. O

Theorem 56 Let “Z be the solution to (5.140), and g€ C(0, T:L%(Q)). Then
n 2<C 012 +C k2
1P < CrllP +Cz max g1

where the positive constant Cy is independent of n, At,h and T, and C5 is independent
of n, At and h.

Proof. Letting v = 6. u’ in (5.140) yields

O up, 6 ) + Ay, 6 up) = (Ing", 6 ufy) < 6y ufI* + ||1hg"||. (5.142)
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Hence, one has
n
by A < B = BDVAGL U + BT AGGL )+ CAPII". (5.143)
k=1

In fact, A(u,v) defines a kind of inner product. Hence, one can derive from the rela-
tion A(u,v) < €A(u,u) + %A(V, v), € > 0 and (5.143) that

1 n
by Ag) <3 B0 = b AG ) + A )
k=1 (5.144)

1
+ 3D (A5 + A ) + CAT g,
which leads to
n
by Al up) < 3 B =BG ) + BT AG, ) + CA g
k=1
n
< D 0 = BAGE G+ | A, )+ C max J1ghIE|
k=1 -

(5.145)
where Af” < Cybfl” is used. Using the mathematical induction method, one can easily
derive

AWl iy < AWd,ud) +C o[
(2, 1) (”h uh) oging“g |

Note that c||ullgeq) < A(u,u) < ca||lullgeq),c1,c2 > 0. Therefore, the proof is com-
pleted. O

Letu, = HZ’Ou, 7" =u"—u} and €" = u;; —u;. Similarly to (5.114), we can obtain
the error equation for (5.140) as:

©Pe" )+ A" v) = (R",v), (5.146)

where A(",v) =0 forve XZO,

and R" = R’ll + Rg + Rgl satisfies
Ri=0FY), Ri=g"-1;%", Ri=-6"1" (5.147)
Theorem 57 Let 0 <y < 1,1/2 < & < 1. Suppose that u(t)eC3(0,T;H™'(Q)n

HY(Q) is a solution to (5.124), and u}} is the solution to (5.140), g€ C(0,T; H™!(Q)).
Then there exists a positive constant C independent of n, At and h such that

lluy — ut)l| () < CAP™Y + 17,

Proof. From Theorem 56, Lemmas 5.1.12 and 5.3.1 we have

1/2
lle" 1o < (C 11130 + C2 max ||R’<||2) <CAR™ + 1710,
0<k<nr
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Using ||uZ — u(tllae@) <€ lae@) + 17" ||ge ) and Lemma 5.3.1 yield the desired
result. The proof is completed. O

Similar

to (5.117)-(5.120), we can also construct the corresponding FLMM fi-

nite element methods for (5.124), which have the similar forms as those of (5.117)—

(5.120). We
correspondi

just need to replace (9,u,0,v) in (5.117)—(5.120) by A(u,v) to obtain the
ng algorithms, which are listed below.

o FLMM-FEM-I: Find u} eX’O(n =1,2,---,n7), such that

LSO )k 0 LSO, ) gk M 0
A_ﬁ’;wk () _”h’v)z_ﬁ;(_l) W Ay, v) = By, Ay, v)

1 < -
+F2w;"_)k(G” ), vexr,
k=0

G (5.148)

where o’ = (-DX(}). G" = [nglhg(t)]t:tn, and B is defined by (4.114) with
m=1.

e FLMM-FEM-II: Find ! € X} (n= 1,2, ,nr), such that

L0 o) nk 0 Yoirn oo Y onel
Aty;wk (”h _uh’v):_(l_E)A(uh’v)_EA(uh ,v)
5.149
B<2)A(uh,v)+ g w(y) G k), vexy, ( )

0 1,0
up = Hh %o,

where o’ = (-DX(}). G" = [nglhg(t)]t:tn, and B is defined by (4.114) with
m=2.

o FLMM-FEM-III: Find ”Z EXZO(n =1,2,---,n7), such that

1 < -

o D ) = - Z( Dfw? A, v) - BPAWY,v)
k=0
G AW~ )+ s Zw(” Gk v), vexp,

uy =11, o,

(5.150)

where ) = (=DX(}). G" = [Dy7Ihg(9)] _, . B, is defined by (4.114) with
m =1, and C" is defined by (4.119) with m = 1.
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o FLMM-FEM-IV: Find u! € X/ (n = 1,2,--- ,nr), such that
1 n B y y _
v Zw,ﬁ”(u; Ko vy = —(1 - DAY ~Z A, ' v) = BPAW,v)
k=0

n
Va0 1 @) ok
—Cf, )A(uh—uh,v)+m E wny_k(G” V), vEX),
k=0

MIO = H1’0¢0
= 1110,
' (5.151)
where w’ = (-1)(}). G" = [nglhg(z)]tzt , B? is defined by (4.114) with

m =2, and C? is defined by (4.119) with m = 2.

Next, we give the following theorem.

Theorem S8 Let uj be the solution to (5.148), (5.149), (5.150), or (5.151),

geC(O,T;LZ(Q)). Then there exist a positive constant Cy independent of n, At, h
and T, and a positive constant C independent of n, At and h, such that

1
2 0112 0 0 k2
el +§At7A(uZ,uZ)SCo(I|uh|I +AﬂA(uh,uh))+clog}(izug 12 (5.152)

Theorem 59 Suppose that ”Z (n = 1,2,---,n7) are the solutions of (5.148),

(5.149), (5.150), or (5.151), u is the solution of (5.124), ueC*0,T;: H*1(Q),
g€C(0,T; H*(Q)), poc H ™' (Q). Then there exists a positive constant C indepen-
dent of n, h, and At, such that

lluff = ut) S CAL+ R,

where q = 1 if u}; is the solution to method (5.148) or (5.149), g =2 if u), is the solution
to method (5.150) or (5.151).

Proof. We only consider method (5.148). The other three methods (5.149),
(5.150), and (5.151) can be similarly considered. We first write the error equation
for (5.148) as

LSO o)k 0 1< k) pgn—k
oy 2l @ = E == Y D AT R, (5.153)
k=0 k=0
where e = HZ’OM —upm=u-— HZ’Ou, R" = R} + R} + R} satisfies

1 © _
Ry =000, Ry =25 > (~Dfw)(g" = ng"™).
o k=0 (5.154)
Rgx Z w(ky)(r]n—k _ 770)~

N
At P
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From Theorem 58 and (5.153), we obtain

lle"I” < Colle’II? + CoAr A€, %) + C; max [|R¥|1%.
0<k<nrt

Note that ¢ = 0 and R” satisfies (5.154), so we have
lle"I? <C(At+h"™1),
where (5.53) and the following bounds are utilized
IRII<CAL, |IRSI<CR™, IRYI<C(At+h™179),
Using (5.53) once more yields
Ny = uCeII <l | +1n"I| < C(AL+ R

The proof is thus completed. O

e The fully discrete finite element methods for (5.125)

Next, we introduce the fully discrete approximations for (5.125). Obviously, the
time derivative in (5.124) can be discretized the same as that of (5.77) or see the time
discretization for (4.10). In the following, we present several fully discrete approxi-
mations for (5.125),

(1) The fully discrete implicit Euler type finite element method based on the
Griinwald formula of the discretization of the time fractional derivative (see the
time discretization method in the finite difference method (4.30)) for (5.125)

F

is given by: Find ulz EXZO (n=1,2,---,nr), such that

n—1 (1-y) 7 n r
{(&uh Py ==0, VA +Uf" ), veXG, (5.155)

0 ,0
u, = Hh $o,

where A(u,v) is defined by (5.141), and
1 © Y
657)A(u2,v) =37 Zwiy_)kA(u];l,v), wg') = (—l)k(k).
k=0

(2) The fully discrete implicit Euler type finite element method based on the L1
method for the discretization of the time fractional derivative (see the time dis-
cretization method in the finite difference method (4.49)) for (5.125) is given
by: Find uz eXZO (n=1,2,---,nr), such that

n—1 (1-y) 7 n r
{(&uh Py ==0, VA +Uf" ), veXG, (5.156)

0 _ a0
u, = Hh $o,
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where A(u,v) is defined by (5.141), and
nr- 1

T(1+7)

(5(7)A(uh,v) M[bef ky)l A(uk+1 V) — A(uh,v)] A(uh, wl.

(1=y) _ 1 Y_ Y
bk = 1"—(1+y)[(k+1) k’].

(3) The fully discrete implicit Crank—Nicolson type finite element method (see the
time discretization method in the finite difference method (4.59)) for (5.125)
is given by: Find u, EXr (n=1,2,---,nr), such that

{((‘)}u V) = =80 VAW + I f"v),  veXD, 5.157)
uy = 11300,
where A(u,v) is defined by (5.141), and

( = -1

VAW, v) = A—ﬂ[;bf]’k A vy - A+ i )A(uh,v)

-y _ 1 y_ 1y
b _r(1+y)[(k+1) K.

(4) The time direction is discretized the same way as that in (4.81); then we have
the fully discrete approximation for (5.125) as: Find “Z EXZO (n=1,2,---,n7),
such that

n-} (1-y)
{(étuh 2 ) =6 VALY + V), veXD, 5159

uy = 1700,
where A(u,v) is defined by (5.141), and

1
8 = ) [Z H7 - bejgiA(uz,v),
-

-y _ 1 y
b! _F—(1+y)[(l+1) .

Next, we consider the stability and convergence for (5.155)-(5.158), the proof
of which is similar to that of Theorems 58 and 59. Next, we analyze the algorithm
(5.155).

We now give the following result.

Theorem 60 Let “Z be the solution to (5.155), fEC(O,T;LZ(Q)). Then there exists
a positive constant C independent of n, At and h, such that

eI < e ||2+MA<uh,uh)+CArZ||fk||2 (5.159)
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Proof. From (5.155), we have

n
(1) + boAP A )=~ )+ A Y (bt = A, v) + At "),
k=1
(5.160)

where b, = ¥, wzl_y). Letting v = u) in the above equality, and applying the
Cauchy—Schwarz inequality yields

1 -
I + A A, 1) < 5 el + ™ %) + Al f" )

| (5.161)
+ A Y (bt = b) (Al ) + Al ™).
k=1
Rearranging the above inequality yields
n
WP+ ALY brAW ™ 7 < |ju +AL Y b AWK 1k
A ;ok(h <P ZM 5 e
— by AP AL Ul + 20T f7 ul).
Denote by
n
E" = [l + A7 > beAG ™ ).
k=0
Then we have
n
E"<E"' 4 2011 " ul) < E° +2AtZAt(Ih Frub). (5.163)
Hence,
||uh||2+Aﬂan VAW, i) < E° +2AIZ I f* b
k=0 k=l (5.164)

AP
0 2 i k2
<E" + §= (—ebn_kAﬂ”Ihf I* + €bp—r At ||u |l )

where € is a suitable positive constant such that elluhll2 < IIuﬁ I Ho@) S CA(u’;l,u’;l) .
Hence

||u"||2<E°+Z |1 f"ll2<E°+CAtZIIf"II2 (5.165)
where we have used Ar'™Y < Cybx and [If*|| < Cllf*||. Using E° = [lu?]® +
AtyA(ug,ug) yields the desired result. The proof is completed. O

For the methods (5.156)—(5.158), the similar results as (5.159) can be obtained.
Next, we consider the convergence for (5.155).
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Theorem 61 Suppose that “Z (n=1,2,---,n7) is the solution of (5.155), and that U
is the solution of (5.125), UeC?*(0,T;H™*(Q)), f€C(0,T;H"*(Q)), poc H*1(Q).
Then there exists a positive constant C independent of n, h, and At, such that

lluf} = u(ty)l| < C(AL+ B,
Proof. We write the error equation for (5.155) as
6" 2 v) = =6 VA" V) + R Y),  veX), (5.166)
where R" = R + R} + Rgl satisfies
RI=0(A), Ri=f"—ILf". Rl=o6n""1. (5.167)
From Theorem 60 we obtain
n
"2 <€l + AT A(e”, %) + CAr ) IR
= (5.168)
<C(At+h™"179),

Using [|u, — u(tu)l| <1l |l + lle"|| yields the desired result. The proof is ended. O

The convergence rates for methods (5.156), (5.157), and(5.158) can be similarly
derived, which are of orders O(Az + K+1=), O(A'™ + K+1-®) and O(Ar + h'*17®),
respectively in the L? sense.
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