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Fractured media. I

• Fractures are common in the earth’s crust due to
different factors, for instance, tectonic stresses and
natural or artificial hydraulic fracturing caused by a
pressurized fluid.

• Seismic wave propagation through fractures and cracks
is an important subject in exploration and production
geophysics, earthquake seismology and mining.

• Fractures constitute the sources of earthquakes, and
hydrocarbon and geothermal reservoirs are mainly
composed of fractured rocks.
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Fractured media. II

• Modeling fractures requires a suitable interface model.
Schoenberg (JASA (1980), GP (1983)) proposed the
so-called linear-slip boundary condition model (LSBC),
based on the discontinuity of the displacement across
the fractures. (Schoenberg’s model).

• A generalization of the (LSBC) (Carcione, JGR (1996))
states that across a fracture stress components are
proportional to the displacement and velocity
discontinuities through the specific stiffnesses and
specific ( viscosities, respectively.



Harmonic
experiments to
model fracture

induced
anisotropy

Juan E. Santos,

Fractured media. III

• Displacement discontinuities conserve energy, while
velocity discontinuities generate energy loss at the
fractures. The specific viscosity accounts for the
presence of a liquid under saturated conditions,
introducing a viscous coupling between both sides of a
fracture.

• Schoemberg’s theory predicts that a dense set of
parallel plane fractures behaves as a Transversely
Isotropic Viscoelastic (TIV) medium if the dominant
wavelength of the traveling waves is much larger than
the distance between the fractures.
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Fractured media. IV

• Schoenberg’s model has never been simulated with a
numerical method.

• To test the theory, in the context of Numerical rock
physics we developped a novel numerical solver that can
be used in more general situations.

• Numerical rock physics offer an alternative to laboratory
measurements.

• Numerical experiments are inexpensive, repeatable,
essentially free from experimental errors and can easily
be run using alternative models of the materials being
analized.
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Fractured media. V

• To determine the complex stiffness coefficients of the
equivalent TIV medium, we solve a set of boundary
value problems (BVP’s) for the wave equation of
motion in the frequency-domain using the finite-element
method (FEM).

• The BVP’s represent harmonic tests at a finite number
of frequencies on a sample having a dense set of
fractures, modeled using the LSBC.
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The equivalent TIV medium. I

Consider a viscoelastic isotropic background medium
having a set of parallel (horizontal) fractures and its
description in the space-frequency domain.
u, eij(u), σij(u): frequency domain displacement vector,
strain components and stress components of the
background medium.
The stress-strain relations and equations of motion:

σjk(u) = λδjk∇ · u + 2µejk(u)

ρω2u(x , z , ω) + ∇ · σ[u(x , z , ω)] = 0

δjk : Kroenecker delta λ, µ: complex Lamé constants ρ:
mass density.
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