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Grid dispersion and stability criteria of some common finite-element
methods for acoustic and elastic wave equations

Jonas D. De Basabe' and Mrinal K. Sen?

ABSTRACT

Purely numerical methods based on finite-element approx-
imation of the acoustic or elastic wave equation are becoming
increasingly popular for the generation of synthetic seismo-
grams. We present formulas for the grid dispersion and stabil-
ity criteria for some popular finite-element methods (FEM)
for wave propagation, namely, classical and spectral FEM.
We develop an approach based on a generalized eigenvalue
formulation to analyze the dispersive behavior of these FEMs
for acoustic or elastic wave propagation that overcomes diffi-
culties caused by irregular node spacing within the element
and the use of high-order polynomials, as is the case for spec-
tral FEM. Analysis reveals that for spectral FEM of order four
or greater, dispersion is less than 0.2% at four to five nodes
per wavelength, and dispersion is not angle dependent. New
results can be compared with grid-dispersion results of some
classical finite-difference methods (FDM) used for acoustic
or elastic wave propagation. Analysis reveals that FDM and
classical FEM require a larger sampling ratio than a spectral
FEM to obtain results with the same degree of accuracy. The
staggered-grid FDM is an efficient scheme, but the disper-
sion is angle dependent with larger values along the grid axes.
On the other hand, spectral FEM of order four or greater is
isotropic with small dispersion, making it attractive for simu-
lations with long propagation times.

INTRODUCTION

Two of the most common methods for simulating wave propaga-
tion in the earth are the finite-difference method (FDM) and finite-
element method (FEM). These methods, along with the boundary in-
tegral equations method, can be classified as numerical methods,

distinct from the analytic methods for wave propagation. Various
numerical schemes based on FDM and FEM are reported in the geo-
physical literature. Examples of FDM are the standard-grid acoustic
(Alterman and Karal, 1968; Alford et al., 1974) and elastic formula-
tions (Kelly et al., 1976), and the staggered-grid formulation (Ma-
dariaga, 1976; Virieux, 1984, 1986; Levander, 1988; Graves, 1996;
Minkoff, 2002). Examples of FEM include the finite-volume meth-
od (Dormy and Tarantola, 1995), the mixed FEM (Cohen and Fau-
queux, 2000; Jenkins et al., 2002), the classical FEM (CFEM) (Lys-
mer and Drake, 1972; Mullen and Belytschko, 1982; Marfurt, 1984),
the spectral FEM (SEM) (Seriani and Priolo, 1994; Komatitsch and
Vilotte, 1998; Komatitsch and Tromp, 1999; Komatitsch et al.,
2005; Cohen, 2002), and the ADER discontinuous Galerkin method
(Kaser and Dumbser, 2006; Dumbser and Kaser, 2006; Kaser et al.,
2007).

Some of the most common FDMs and FEMs used in seismic mod-
eling are explicit, and thus conditionally stable.’ Generally in seis-
mology, explicit methods are preferred over implicit ones because
they need less computation at each time step and have the same order
of accuracy. This has been noted for both FDM (Emerman et al.,
1982; Carcione et al., 2002) and FEM (Mulder, 1999; Cohen, 2002).
The size of the time step is bounded by a stability criterion which is
an important factor affecting the accuracy of the results.

A numerical noise related to grid spacing is dispersion, which has
a detrimental effect on accuracy. It occurs because the actual veloci-
ty of high-frequency waves in the grid is different from the true ve-
locity. This is called grid dispersion because it is originated by the
grid and it can occur even when the physical problem is not disper-
sive. The error introduced by grid dispersion is dependent on grid
spacing and the size of the time step.

The purpose of this paper is to analyze the grid-dispersion proper-
ties and establish stability criteria for two of the most common FEMs
for wave propagation: the classical FEM (Lysmer and Drake, 1972;
Mullen and Belytschko, 1982; Marfurt, 1984) and the spectral FEM
Seriani and Priolo, 1994; Komatitsch and Vilotte, 1998; Komatitsch
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and Tromp, 1999; Komatitsch et al., 2005; Cohen, 2002), each ap-
plied to the acoustic and elastic wave equations. Here we will use the
term CFEM to mean FEM using quadrilateral elements with equally
spaced nodes within the element and exact integration, and SEM as
FEM using quadrilateral elements with Gauss-Lobatto nodes and in-
tegration rules. Note that in SEM the nodes are not equispaced inside
the element; they are given by the quadrature points of the Gauss-
Lobatto integration rules. Note also that we will consider the order of
CFEM or SEM to be the order of the polynomial in one of the sides of
the elements.

Itis interesting to note that for some time, the FEM was thought to
be an inadequate tool for seismic modeling because it required more
operations than FDM at each time step without any gain in accuracy
(Marfurt, 1984) and because preliminary analysis showed that it in-
troduced spurious waves (Marfurt, 1990). Regarding this, Cohen
(2002) remarked, “This was true when people did not know how to
mass-lump and when stiffness matrices required a huge storage in fi-
nite-element methods.” We note that mass lumping is a technique
used in FEM to avoid having to invert a matrix at each time step by
diagonalizing it; this is done in SEM without loss of accuracy by us-
ing the Gauss-Lobatto nodes and quadrature rules.

SEM, originally developed for fluid dynamics (Patera, 1984), has
been successfully applied to elastic wave propagation (Komatitsch
and Vilotte, 1998), addressing the efficiency issues and providing
better accuracy than FDM with more geometrical flexibility. In the
recent past SEM has gained tremendous credibility within the seis-
mological community (Komatitsch and Tromp, 1999; Komatitsch et
al., 2005), and it has also been applied to global seismology prob-
lems with spherical earth models (Komatitsch et al., 2002).

The success of SEM in seismic modeling has outpaced the analyt-
ic validation of the method. The accuracy of the Chebyshev-SEM
was investigated empirically by Seriani and Priolo (1994) for the
acoustic scheme using the Chebyshev-Gauss-Lobatto nodes and
quadrature rules, and they concluded that an average of four to five
nodes per wavelength with an eighth-order method eliminates grid
dispersion. Although this showed promising results, the Chebyshev-
SEM does not lead to mass lumping, and it has been pointed out that
it is less accurate than the SEM using Gauss-Lobatto nodes and
quadrature rules (Mulder, 1999).

The accuracy of the 1D acoustic SEM scheme was examined by
Mulder (1999). He concluded that the error introduced by the spuri-
ous, or nonphysical, modes can be neglected and that SEM using
Gauss-Lobatto nodes and quadrature rules was more accurate than
Chebyshev-SEM or classical FEM. He also analyzed the asymptotic
behavior of the grid dispersion. Unfortunately it is not clear how to
extend his results to higher dimensions.

On the other hand, Cohen (2002) analyzed the grid dispersion of
the 1D, 2D, and 3D acoustic SEM schemes analytically using Gauss-
Lobatto nodes and quadrature rules. In his approach, he used an ei-
genvalue formulation and Taylor-series to get the asymptotic behav-
ior of the grid dispersion. In his results, he showed dispersion curves
for the 1D case using second- or third-order methods and various
time-stepping schemes. See also the preliminary results in Cohen et
al. (1994), Tordjman (1995), and Fauqueux (2003).

As for the elastic CFEM or SEM, there seems to be no grid-disper-
sion or stability-analysis results available in the literature. This has
led geophysicists to set the order of the elements and the grid spacing
according to the results available for the acoustic case (Komatitsch
etal., 2005; Chaljub et al., 2006).

Here we extend the approach of Cohen (2002) to analyze the
acoustic CFEM and SEM schemes of any order and develop a simi-
lar approach to analyze the elastic CFEM and SEM schemes of any
order. For the lowest-order elements, we use this approach to devel-
op grid-dispersion formulas in closed form, and for the higher-order
elements we numerically derive the grid-dispersion curves. We also
show the grid-dispersion curves of some classical acoustic and elas-
tic FDM and compare those to the corresponding FEM schemes. Our
approach in the acoustic case includes the results of Mullen and Be-
lytschko (1982) for quadrilateral elements and agrees with the em-
pirical results of Seriani and Priolo (1994). Furthermore, we confirm
the assumptions in Komatitsch et al. (2005) and Chaljub et al. (2006)
on the applicability of grid dispersion and stability criteria of the
acoustic case to the elastic case.

The main contribution of this paper is the grid-dispersion analysis
of the acoustic and elastic SEM of any order. The grid dispersion of
the acoustic SEM has been analyzed before, but only for low-order
elements or in 1D; the results that we present in this paper are for the
2D case and are for any order. Moreover, the grid dispersion of the
elastic SEM has not been analyzed, despite its popularity for seismic
modeling. Nevertheless, we do not provide analytic expressions for
the grid dispersion but only a numerical approach (analytic expres-
sions are provided only for the first-order elements). We consider
only the second-order finite-difference scheme for the discretization
in time, which is the most popular time-stepping scheme in SEM for
wave propagation (Komatitsch and Tromp, 1999; Chaljub et al.,
2006; Cohen, 2002). Other time-stepping schemes have been pro-
posed for seismic modeling; some of them have been analyzed by
Mercerat et al. (2006).

The rest of this paper is organized as follows. In the next section
we give the formulations of the wave equation and introduce the no-
tation that we will use as well as the assumptions that we make for
the analysis. In the “Finite Elements” section, we introduce some ba-
sic finite-element concepts such as the weak formulations of the
acoustic and elastic wave equations, and the basis functions. The
main contribution of this paper is contained in the “Grid Dispersion
and Stability Analysis” section, where we develop the stability and
grid-dispersion analysis of CFEM and SEM in a unified approach. In
the “Results” section we present the results with accompanying fig-
ures. The conclusions are summarized in the “Conclusions” section.

FORMULATIONS OF THE WAVE EQUATION

Various forms of the wave equation are useful in seismic model-
ing. Examples of this are the acoustic and elastic wave equations.
The acoustic wave equation models compressional waves propagat-
ing through the domain; it is also known as the pressure formulation
or as the scalar wave equation because the dependent variable is
pressure, a scalar field. The elastic wave equation models the propa-
gation of compressional and shear waves; it is a more accurate ap-
proximation of the propagation of waves in the earth, but it is typical-
ly more difficult to solve and computationally more expensive be-
cause it needs to be solved for displacement, a vector field. Different
versions of the elastic wave equation exist for isotropic, anisotropic,
homogeneous, or heterogeneous media. Often an elastic wave equa-
tion that incorporates the effects of attenuation is known as a seismic
wave equation.

In this analysis we will focus on the acoustic and elastic wave
equations. Since these formulations do not model physical disper-
sion, any observed dispersion is attributed to the numerical scheme.
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The acoustic wave equation in a heterogeneous medium is given by

V-(le>—l(9,,p=f in Q2 X (0,7], (1)
p A

with some suitable boundary and initial conditions, where V
= (0/9x,0192)", 3, = 9*13%, p:Q2X(0,7]—R is the pressure,
f:02 — R is the source, p:{2 — R is the density, A:{2 — R is the first
Lamé parameter, {2 C R? is the spatial domain, and (0, 7 ] is the time
domain. The elastic wave equation in an isotropic heterogeneous
medium is given by

Vr+ )V -u)+ V- (uVu) — pd,u=f

in 2Xx(0,7], (2

where w:Q X (0,7]—R? is the displacement, f:2—R? is the
source, and u:{2 — R is the second Lamé parameter.

Because the goal of this analysis is to derive the stability condition
and grid-dispersion relations, to have a manageable set of parame-
ters we will make several assumptions about the medium. We will
assume that the medium is isotropic, homogeneous, unbounded, and
source free. For convenience, these will be referred to as the simpli-
fying assumptions. Similar assumptions are always made whenever
aplane-wave analysis is sought; see for example Alford et al. (1974),
Mullen and Belytschko (1982), Marfurt (1984), Moczo et al. (2000a,
b), and Cohen (2002). We emphasize here that in practice these as-
sumptions are not expected to be satisfied, nevertheless the results
from an analysis based on these assumptions can provide valuable
information to determine the discretization parameters for a numeri-
cal experiment.

Under these simplifying assumptions, equation 1 takes the fol-
lowing form

@V -Vp—2a,p=0, (3)

where o = VA/p is the acoustic wave velocity. Similarly for equa-
tion 2 we have

(> = BHV(V-u)+ B2V -Vu—-9,u=0, (4)

where a = (A + 2u)/p is the compressional wave (P-wave) ve-
locity and B = Vu/p is the shear wave (S-wave) velocity.

FINITE ELEMENTS

Acoustic formulation

The first step in a finite-element approximation is to derive the
weak, or variational, formulations of equations 3 and 4. The weak
formulation of the acoustic wave equation is given by multiplying
equation 3 by an arbitrary function v, integrating over the domain
and using the divergence theorem to get

a2J Vp- Vudxdz + c?,,f pudxdz = 0, (5)
Q 0

where v:{2—R is a sufficiently smooth function, called the test
function in the FEM literature. Equation 5 can be written as a system
of ODEs by substituting some basis functions for p and v. Let ¢;, i
= 1,2,...,n, be a set of piecewise polynomial basis functions de-
fined in the domain {2 (the number of basis functions n depends on
the number of nodes; see section below on basis functions). Substi-

tuting in equation 5 for p the linear combination of the basis func-
tions

P(X,Z,t) = E Rj(t)¢_j(x’z)’ (6)

Jj=1

where P; are the coefficients of the FEM approximation of p, and
substituting for v each of the basis functions, we get (using Ein-
stein’s summation convention)

where
— )
Mij = f!l ¢l¢jdxdz and KU = o JQ V ¢i . V ¢jdxdz

(8)

Usually in the FEM literature M represents the mass matrix and K
represents the stiffness matrix. We will use these names because they
are standard in FEM terminology, even though they can be mislead-
ing in the wave propagation context since the matrices are not neces-
sarily related to mass or stiffness. The ODE system 7 is called the
continuous in time or semidiscrete form of equation 3, because it has
been discretized in space through the substitution of the basis func-
tions, but the time derivative remains. To obtain a fully discretized
form we can substitute the second-order finite-difference operator
for the time derivative to obtain

My(Pih = 2P+ P7Y) + APK P =0, (9)

s

where the upper index [ is the time index and At is the size of the time
step.

Elastic formulation

Next we follow the same procedure for the elastic wave equation.
Taking a dot product of equation 4 with a vector test function, inte-
grating over the domain, and using the divergence theorem, we ob-
tain the weak form of the elastic wave equation, given by

(a® — ,32)] (V-u)(V - v)dxdz + Bzf Vu: V vdxdz
a Q

+ a”J u - vdxdz = 0, (10)
0

where v: 2 — R?is a sufficiently smooth test function and the double
dot product is defined as A:B = X7_,27_,(A);(B);; for A,B € R™",
where (A);; and (B);; are the elements of A and B.

We can now use the weak formulation of the elastic wave equation
to obtain a system of ODEs by substituting some basis functions. In
the case of equation 10, the basis functions need to be substituted in
each of the two components of u and v. Substituting for u the ap-
proximation

Gz = (U052, U0 x), (1)

where Uj and U; are the coefficients of the FEM approximations to
the horizontal and vertical displacement respectively, and substitut-
ingv = (¢,;,0)" we obtain the following system of equations

M0, U + K\US + KUG = 0. (12)
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Similarly, if we now substitute v = (0, ¢;,)7, we obtain
M;0,U; + K;US + KSU; = 0, (13)

where the matrices in equations 12 and 13 are given by

r2
Mij = ?j (ﬁi(ﬁjdxdz, (14)
0

K}j = ”zf ¢i,x¢j,dedZ + J ¢i,z¢j,dedZ7 (15)
0 0

2 _
K = (r* — 1)f0 b ; dxdz, (16)
3 _ 2
i = K (17)

and

K?; = J ¢i,x¢j,dedZ + rZJ ¢i,z¢j,zdx‘lz’ (18)
0 0

where r = a/f is the P- to S-wave velocity ratio. In these equations
we use the shorthand notation ¢;, = d¢;/dxand ¢, , = d ¢;/dz. For
finite differences in time, we obtain

o l+1 x,l x,l—1 21 ol 2 rrzl
M(U; 205 + Up) + APK U + KU =0
(19)
and
I+ -l Zl—1 2 x.l 0
M(U; 2+ UF'TY) + APKLUY + KUY = 0,
(20)
where [ is the time index.

Basis functions

Basis functions, also known as shape functions, play an important
role in FEM. A careful selection can lead to an accurate and efficient
numerical scheme. In this section we will describe some important
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Figure 1. An example of a third-order element in a finite-element
mesh using (a) equispaced nodes and (b) the Gauss-Lobatto nodes.
The circles represent the nodes, and filled circles represent the «?
distinct classes of degrees of freedom (see the “Grid Dispersion and
Stability Analysis” section). Note that all the nodes in the mesh can
be obtained by translating the set of distinct classes of degrees of
freedom by an integer times the element’s side (/).

characteristics of the basis functions used in CFEM and SEM in a
simple setting without trying to be exhaustive; the reader is referred
to Hughes (1987) for a more detailed and general presentation.

To define the basis functions, we first need a finite-element mesh,
given by a set of elements and nodes defined in the domain. The ele-
ments are nonoverlapping subdomains that cover the entire domain;
for succinctness let us consider rectangular elements (Figure 1). For
abasis of order k we define a grid in one element by defining x + 1
nodes in each side of the element. Therefore, the grid will have a total
of (k + 1)?nodes. Clearly, if the elements are rectangular the nodes
that are on the sides belong to two elements, and the nodes in the cor-
ners to four. In CFEM the nodes are distributed uniformly on each
side of the elements, as shown in Figure 1a. However, they also can
be distributed nonuniformly. For example, in SEM the nodes are giv-
en by the nodes of the Gauss-Lobatto quadrature rule as shown in
Figure 1b (Cohen, 2002, see chapters 11 and 12 for details). To de-
velop an approach that applies to CFEM and SEM, we will not as-
sume any particular distribution of the nodes inside the elements in
the analysis.

The basis functions in CFEM and in SEM are continuous piece-
wise polynomial functions with local support, defined to be one at
one node and zero on the others. Let us consider an element ¢ with
corners at (0,0), (0,1), (1,0), and (1,1). Let &;,i = 0,1,...,k, be the
nodes on either side of the element (note that ¢, = 0 and &, = 1),
andlet ¢, j = 0,1,...,k, be the Lagrange polynomials of degree «
that interpolate these nodes, satisfying ¢,(£;) = &,;, where &; is
Kroneker’s delta defined to be one fori = j and zero otherwise. Us-
ing these polynomials, the basis functions in element e are given by

¢Z(X7Z) = ¢;(x) (Pj(Z),

where we have numbered the basis functions with ¢ = (« + 1)
+ i instead of the equivalent of using two indices. This notation is
useful to reduce the number of indices, for example, in equations 7,
12, and 13. Note that the range of the indexisg = 0,1,...,(k + 1)?
— 1 and that, by construction, @+ 1)+i(%m2,) = @i(x,)@;(z,)
= 8,,0;,. When the basis functions are constructed this way, they
usually are called tensor product Lagrange basis functions.

Basis functions defined on the entire domain can be constructed
using the basis functions defined on element e in equation 21. First
note that a basis function can be defined on a node of any element by
translating and scaling equation 21. Using these, a global basis func-
tion can be built for each node in the domain by fixing them to be
zero in all the elements except on those that include the node and put-
ting together all the basis functions defined to be one at that node.

ij=0,1,....k, (21)

GRID DISPERSION AND
STABILITY ANALYSIS

Acoustic case

In this section, we derive grid-dispersion relations for the acoustic
CFEM and SEM schemes of any order. The approach is based on a
generalized eigenvalue problem that is generally large but can be re-
duced to order x? by making some assumptions, as we demonstrate
here. Furthermore, we will use a generalization of the eigenvalue de-
composition introduced by Cohen (2002) to write the eigenvalues of
the order 2 problem as combinations of the eigenvalues of two or-
der « problems, making the computation more efficient. Unfortu-
nately we will not be able to write the grid-dispersion relations in
closed form except for low-order elements, and in general the grid
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dispersion for a given wavenumber and sampling ratio needs to be
computed numerically. A method to efficiently compute the grid dis-
persion and explicit grid-dispersion relations for the first-order
CFEM and SEM will be given at the end of this section.

This analysis is based on the von Neumann method (Mitchell and
Griffiths, 1980; Hughes, 1987), which assumes a plane-wave propa-
gating through the finite-element domain. Furthermore, we will as-
sume that all the elements in the domain are square with sides /. Note
that with this assumption x, = h(i + ¢;) and z, = h(i + &) withn
= ki + jand 0 =j < k; thus the nodes are k-periodic in both direc-
tions, X, , = x, + h and z,,, = z, + h. Recall that the §; repre-
sents the node distribution in one side of the element, and that &,
=0and¢, = 1.

If we assume that the solution is a plane wave, then P; has the fol-
lowing form (no summation over j)

Pi(0) = A=, (22)

where k is the wavenumber, x; contains the jth node coordinates, and
A, is an arbitrary constant. Note that equation 22 represents a plane
wave evaluated at the jth node. Substituting equation 22 in equation
7 or 9 we derive the following generalized eigenvalue problem

AMiij = K;;P;, (23)
where M; and K;; are given in equation 8. The matrices M;; and K;;
are well known from the finite-element literature to be symmetric
positive definite (Brenner and Scott, 2002) and thus all the eigenval-
ues are real and positive (Watkins, 2002). The eigenvalues for the se-
midiscrete case, equation 7, have the form A = w7, and for the fi-
nite-difference in time case, equation 9, the eigenvalues have the
form A = & sinzw"TAt, where w,, is the angular frequency at which
the wave travels in the grid. We will use this after solving the eigen-
value problem to derive the grid-dispersion relations. It should be
noted that we use the term grid-dispersion relation to mean an equa-
tion to calculate the velocity with which the wave travels in the grid
normalized with the true velocity (e.g., Alford et al., 1974; Mullen
and Belytschko, 1982; Moczo et al., 2000a).

The size of the eigenvalue problem 23 depends on the total num-
ber of nodes. We will not attempt to solve for the eigenvalues of
equation 23 to get the grid dispersion since that would be an intracta-
ble problem in an unbounded domain. Instead we will use the as-
sumptions previously given to reduce the order of the problem. To
obtain a reduced-order eigenvalue problem we first note thatin areg-
ular grid using tensor product elements with k + 1 nodes per ele-
ment in each direction we will have only 2 classes of degrees of
freedom, as shown in Figure 1 (Marfurt, 1984; Cohen, 2002). Thus,
we only need to get the corresponding «? eigenvalues.

To derive an eigenvalue equation of order 2, let us write M;; and
K;; as fourth-order tensors using the definitions of the mass and stiff-
ness matrices (equation 8) and the definition of the basis functions
(equation 21):

M= | ¢ix.2)¢;(x,2) dxdz
Q

= f @, (X) @11, (2) 0y, (X) @1, (2) dix dz
0

(24)

mlmznlnz’

Kij azfnv(ﬁi'v(bjdxdz

o’ f V (@, ()@, (2) - V (@, (0),,(2)) dx dz
0

= Kmlmznlnz’ (25)

with i = (k + I)my + m; and j = (k + 1)n, + n,;. We can also
write P; as a second-order tensor by changing the index to j = (x
+ 1)n, + n, to get (no summation over n; and n,)

Pj = Pnlnz = An],lzei(kxx”|+k1Z"z_wt). (26)

Furthermore, since the nodes are x-periodic in both directions, we
have that the constants A, ,,are also k-periodic, and thus

Anln2 = A(qu+€l)(l<q2+€2) = A{71€2’ (27)

with n, = kq, + €1, n, = kg, + €5, and 0=¢,{, < k. Substitut-
ing equations 24, 26, and 27 in the left-hand side of equation 23 we
get

A ei(kx"n] + kzzn2 — wt)

P =
mlmznlnz nln2 mlmznlnz nlnz

= Mm]mz(Kq1+€])(Kq2+€2)
i(k.hgy +k.hqgy)
X e X191 L42A€]€2

X ei(kthfl +kzh§€2—wf)

= Mmlmzflé’z(kmkz)g(ﬂz(kx’kz)e_iwt7 (28)

and similarly, substituting equations 25-27 on the right-hand side,
we obtain

Kmlmznlnzpnlnz = Kmlmzflfz(kmkz)Aelfz(kx’kz)e_lwta (29)

where

v _ i(kh k.
Mm1n12€1€2(kx,kz) - Mmlmz(qu+€1)(Kq2+€2)el( et ‘hqz),
(30)

Kmlm2(1€2(kx’kz) = Kmlmz(qu +€1)(Kq2+€2)ei(kxhql +kth2)’
(31)

and
A e (kok) = Ag g @t E0 TG (32)

Note that a summation is implied over ¢, and ¢, (but not on €; and
{€,), and that the summations are always finite, even in an unbounded
domain, because the mass and stiffness matrices are sparse.

Substituting equations 28 and 29 in equation 23 and eliminating
the e~ factor we get the following reduced-order eigenvalue equa-
tion (Appendix A):

AM e 0 A e, = Kyt A e, 0=mpmy < k.

(33)
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The eigenvectors /Llez, as defined in equation 32, are explicitly de-
pendent on the node coordinates, but the eigenvalues depend on the
grid nodes only in the sense that the nodes are used to compute the
mass and stiffness matrices. In practice, this means that to obtain the
grid dispersion, we will use only the node’s coordinates to compute
the integrals in equation 8 (thus avoiding the difficulty caused by ir-
regular node spacing).

The above eigenvalue problem can be reduced to two eigenvalue
problems of order « each by making the following observation. Us-
ing the definition of the mass and stiffness matrices, for tensor-prod-
uct rectangular elements and for a regular mesh we can write (see
Appendix B):

_ 1D 1D
mymynyny M;;zlnle2n2 (34)
and
_ D 1D 1D 1D
mymyn gy By T mayny szn Mm ny’ (35)

where M} and K2 are the mass and stiffness matrices of the 1D
problem given by

X1
M, = J P Pudx (36)
X0
and
X1
K, =a’ f P pndx. (37)
X0

We can use this result to further show that
Mmlmzil l’lz(k)ﬁk ) = Mm n (k )Mmzn (kz) (38)
and

Kmlmzn nz(kx’k) = ID kx)MlD (kz)

m l’ll n12n2

+ K2 (k )Mm1 k),  (39)

m 1‘12 1

where (summation is implied over € on the right-hand side)

MID(k ) _ Ml Gt +m)@ lk,’h{,’ (40)

and

KlD(k ) _ (K€+n 1k77h( (41)

(see Appendix B).

Substituting this decomposition of the mass and stiffness matrices
into the eigenvalue problem we find that the eigenvalues can be ex-
pressed as a combination of the eigenvalues of the 1D problems. Let
A, be an eigenvalue of A, M. (kX)A =K ‘D(kx)g ;»and A, be an eigen-
value of /\2M Dk, )A = K Pk, )A Then the eigenvalues of
AM ,_,,(,(kx,kz)Ak, = ,_,,(,(k_\,,kz)Ak,are givenby A = A; + A, (see Ap-
pendix B).

As the degree of the polynomials gets higher it becomes impracti-
cal to derive an explicit grid-dispersion relation, but we can always
obtain the « eigenvalues numerically in each direction and use them
to compute the grid dispersion. In seismic modeling there is only one
eigenvalue with physical meaning; all the other eigenvalues corre-
spond to nonphysical modes. In the 1D case it has been shown that

the nonphysical modes have a negligible effect on the solution (Mul-
der, 1999; Cohen, 2002). It is reasonable to expect the same behavior
on higher dimensions, but we are not aware of a proof, and it is be-
yond the scope of this paper. We have found through numerical ex-
periments that the eigenvalue that corresponds to the acoustic wave
is the smallest one. Further research is needed to ascertain the validi-
ty of this hypothesis.

To obtain the stability condition, we first consider the eigenvalues
of equation 33 for the case « = 1 and 2 = 1, where «a is the acoustic
wave velocity and /4 is the size of one side of the element. From the
definition of the mass and stiffness matrices (equation 8), we have

2

Mm1m2€l€2 hM and Kmlmzf G — ;Kmlmz(fléz’

(42)

mymy€ €,y

where Mm ity and Km iyt ¢, e computed usmg a=1landh = 1.

Let A’ be an elgenvalue of A M, oy A( 0 Kml,,,Z(IfZAglfz Using
equations 42, we have that A'is related to the eigenvalue A of equa-
tion 33 by A = a?A’/h>. Now, using the deﬁnition of the eigenval-

ues for the finite-difference in time case, A = 35 L sin2 L= > ,ylelds
2
w,At
Lpr = 2= <, (43)
4 2

where ¢ = aAt/h is the stability parameter. Equivalently, the ine-
quality 43 can be written as g =2/ VA", Note that A’ is a function of
the wavenumber through equations 28 and 29, and that the above in-
equality must be satisfied for all the eigenvalues and all the wave-
numbers; thus, we write

g= min_min 2A;()" ', (44)

1<j<K 0=0=2mw

where 6 is the angle of incidence, defined as the angle between the
wavenumber vector and the z-axis.

The grid-dispersion relations are given as follows. Let A be the
smallest eigenvalue of equation 33 using # = 1 and @ = 1. Then
from the definition of the eigenvalues in the semidiscrete case we
have that w, = (a/h)vA. Substituting w, = 27 a,,s/h and multiply-
ing by h/(27as) we get

G 4, (45)

where «, is the velocity at which the wave travels in the grid, s
= h/(kL) is the average sampling ratio in the element, and L is the
wavelength. Similarly, for the finite-difference in time case, we ob-
tain

o 1 —
Sh_ sin_'(z\//l>. (46)
a msq 2
The procedure to derive the grid dispersion for a given order, sam-
pling ratio, and wavenumber is summarized below:

1) Compute the 1D mass and stiffness matrices with equations 36
and 37 uqingh =landa = 1.

2) Compute M2(k), M,,m(k) K!2(k,), and K,n,,(k) using equa-
tions40and 41.

3) Solve the eigenvalue problems A, M D(k, )A = K P(k)A; ;» and
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LM 1Pk, )A = K}jp(kz)g_ j» and save the smallest eigenvalue; re-
call that the eigenvalue of the 2D problemis A = A; + A,.
4)  Calculate the grid dispersion using equation 45 for the semi-
discrete case or equation 46 for the finite-difference in time
case.

Examples

Let us now derive explicitly the grid-dispersion relations for the
lowest-order CFEM and SEM using finite differences in time. For
first-order methods we will have one degree of freedom; thus we can
easily solve for the eigenvalue. For CFEM, doing exact integration
in equation 36 and substituting in equations 40 and 41, we get

~ 2 + k,h
MID(k,]) — ;(;5(7]_) (47)
and
K'P(k,) = 2 — 2 cos(k,h). (48)
Therefore the eigenvalue of the 2D problem (step 3) is given by
_ K'"(k) | K"™(k)
M'"(k)  M'™(k,)
1 — 1 cos(kh) 1 — 1 cos(k.h)
=6 +6 . (49)

2 + cos(k,h) 2 + cos(k.h)

From this we have that the stability condition is given by g =612,
and the grid-dispersion relation is

ay 1 . 71( \/12 — 3 cos(k1) — 3 cos(k,h) — 6cos(kxh)cos(k_,_h)>
Sl N
d 8 + 4 cos(k,h) + 4 cos(k,h) + 2 cos(kh)cos(k.h)

(50)

An equivalent equation for the semidiscrete case was given in
Mullen and Belytschko (1982) using a different approach.

In the SEM case, we use the trapezoidal rule of integration in
equation 36. Substituting the results in equations 40 and 41 and solv-
ing for the eigenvalue, we get

sin
a  msq

2

2
= _h2 (2 — cos(kh) — cos(kzh)). (51)
From this we have that the stability condition for this scheme is ¢
=212 If we substitute this eigenvalue in equation 46, we obtain the
following grid-dispersion relation

ah 1
— = —sin~

(q\e"sinz(ﬂ's cos 0) + sin’(ws sin 6)),
a  Tsq

(52)

which is the same as that for the acoustic FDM (Alford et al., 1974),
as expected, because the first-order acoustic SEM is equivalent to
the acoustic FDM (Cohen, 2002).

Elastic case

In this section we will show how to compute the grid dispersion of
the elastic CFEM and SEM schemes. The approach is similar to the
one used for the acoustic case and is based on a generalized eigenval-

ue problem which can be reduced to order 2«2 by making some as-
sumptions. One difference is that here we will not be able to reduce
the eigenvalue problem to one of getting the eigenvalues of a 1D
problem. Nevertheless, we can compute the 2«2 eigenvalues numer-
ically. A method to compute the grid dispersion and explicit grid-dis-
persion relations for first-order SEM will be given at the end of this
section.

Again we make use of the von Neumann method (Mitchell and
Griffiths, 1980; Hughes, 1987) and assume that all the elements in
the domain are square with sides 4. The nodes are defined the same
way as in the acoustic case, but now we have two degrees of freedom
ateach one.

If we assume that the solution is a plane wave, then U} and Uz have
the form (no summation over ;)

U(t) = A= (53)
and
Ui(r) = Bje'™, (54)
Substituting in equations 12 and 13, or in equations 19 and 20, we get
X 1 2172
AM,JU] K;U; + K;U; (55)
and
_ 3
AM,U; = KUY + KSUS, (56)

where M, K};, K3, K3, and K are glven inequations 14 to 18, and the

elgenvalues are given by A = w} for the semidiscrete case and A
Wt

=3 t2 s1n2— for the finite difference in time case. The above equa-

tions represent a generalized eigenvalue problem; this is clearly seen

if we write
0 M UZ K3 K4 UZ ’

where (M),; = M,;, (K); = K, (U*); = Uy, and (U?); = Us. It can
be shown that the eigenvalues of the above system are real and posi-
tive (see Appendix C).

Proceeding as we did for the acoustic case, we write these matri-
ces as fourth-order tensors and as a combination of the correspond-
ing matrices of the 1D problem

2
r
— _ __aglD 1D
M[j - Mmlmznlnz - aszlnleznz’ (58)
1 _ 1 1D 1D 1D 1D
Kij - Kmlm2n1nz - Kmlnleznz + sznszlnl’ (59)
2 _ g2 _ ID ~1D
Kij - Kmlmzn ny (r2 1)Cm1n anm2
_ 1D ID
( )lenl myny? (60)
3 _ 3 _ 12
Kij - Kmlmznlnz - Kmlmznlnz’ (61)
and
—_ _ 1D 1D 21D 1D
K?j - Kfnlmznlnz Kmln Mm2n2 +r sznszlnl (62)

wherei = (k + )n; + my,j = (k + 1)n, + my, and
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M£=Jﬁ%%w, (63)
X0
X1

Ky = f @), @ndx, (64)
X0

and

X1

C;Dn = J(p,;(pndx. (65)
X0

Writing U¥ and U3 with two indices using j = (k + 1)n, + n; as
well, we get

Ui = U, , = Ay e Heim =0 (66)
and
Ui = Uy ) = By m ™ im =, (67)

Because the nodes are x-periodic in each direction, we have 2«2 de-
grees of freedom and, as in the acoustic case, the constants are also
k-periodic. Thus,

A"l"z = A(K‘]1+€1)(""I2+€2) = Aflfz (68)
and
By, = Bxg, +¢)(xgy+ ;) = By, (69)

forn, = kq, + €1, n, = kqy + €5, and 0=¢,{,< k. Substituting
in equations 55 and 56 and eliminating the e~ factor, we have the
following eigenvalue problem of order 2 x:

- ~ = ~ ~ ~
AM’”lmz”l"zA"lnz - Kml’"z"l”zA”lnz + K’"lmz”lnzB"l”z (70)
and
~ ~ = ~ ~ ~
AMmlmznlnanlnz = Km1m2n1n2An1n2 mlmznlnanlnz (71)
for 0 =<m,,m,,n,,n, < k, where
_ 2
Mmlmznlnz( X2 Z) ml 1( ) n‘lznz( ) (72)
Ki”llmzn l‘lz(kx’k ) zkil’lD (k )Mmznz(kz)
+ Ko ()M, (), (73)
Krznlmzn nz(kx’k ) (1 - r2) CrlnDnl(k )Cllngnz(kz)’

(74)

mlmznlnz( X Z) - m ”l( ) mzn (k)

+ 7K, k)M, (k) (75)

mnz

Avn]n2(kx’kz) = An nzei(kxgnl-*—kzgnz)’ (76)
B (kysks) = B, @ sEn tHn), (77)
rlnz(kn) = m(K€+n)elk7]h€ (78)
rlnz(kn) = K}L?K(-l—n)eik”he’ (79)
and
CID(k ) _ Cl K€+n 1k h€' (80)

In general, for higher-order polynomials we will have more eigen-
values than physical modes. If that is the case, we have found
through numerical experimentation that the smallest eigenvalue cor-
responds to the S-wave dispersion, the next to the P-wave and the
others to the nonphysical modes; further research is needed to prove
this hypothesis. The stability condition is similar to the one for the
acoustic scheme:

g=< min min 2A(6’)_1/2 (81)

1<j<2K20<0<21T

where A;(6) are the eigenvalues of the system 70 and 71 using &
=1, ksh = wscos 0, and k.h = wssin 6 to compute Mml,nng( s
K. ot s IQﬂl”,zf ¢,»and K ot b (see the explanation leading to equa-
tion 44)

The procedure to derive the grid dispersion for a given order, sam-

pling ratio, and wavenumber is described below.

1) Compute the 1D mass and stiffness matrices with equations 63
to65 usingh = 1.

2) Compute M2(k), M2(k), K\2(k), Ki2(k), C2(k,), and
CI2(k.) using equations 78 to 80.

3)  Build the block matrices of the eigenvalue problem using equa-
tions 72to 75 witha = 1.

4)  Solve the eigenvalue problem of equations 70 and 71 and save
the two smallest eigenvalues. Call these A; and A,, respective-
ly.

5) Calculate the grid dispersion using, for the semidiscrete case,

1
=, (82)
a 21s
and
Bo_ 4 (83)
B 21s

and for the finite differences in time case,

1 —
S sin l<g\’A2> (84)
a msq 2
and
Bu_ 1 sin1<ﬂ\//1_1>. (85)
B msq 2
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Example

Let us consider, the first-order SEM. For this case, we have two
degrees of freedom, and we can solve the eigenvalue problem alge-
braically. Calculating the mass and stiffness matrices using the trap-
ezoidal quadrature rule and substituting in equations 72 to 75, we ob-
tain

h2r2

Mk, k,) = — (86)

K'(k.k) = 2r2(1 — cos(k,h)) + 2(1 — cos(k.h)), (87)

K2(k.k,) = (r* — 1)sin(k,2)sin(k,h), (88)

and

K*(ky,k.) = 2(1 — cos(k.h)) + 2r2(1 — cos(k.h)).
(89)

Substituting these in equations 70 and 71, and solving the eigenvalue
problem, we get A, = a*(y — 8)/h* and A, = a?*(y + 8)/H,
where

y = (r* + 1)(2 — cos(k.h) — cos(k,h)) (90)
and
§=0—-1)
X\ (cos(kh) — cos(k,h))? + sin’(kh)sin®(k,h). (91)

Using equations 84 and 85 we obtain the following grid-dispersion
relations:

1 —
- —sinl(c—]\r’y n 5) (92)
o msq 2
and
& - sin'(z\”'y - 5). (93)
B msq 2

The stability condition for this scheme is gV1 + 1/r>=<1. As expect-
ed, the stability condition and grid-dispersion relations are the same
as those for the elastic standard grid FDM because the first-order
elastic SEM is equivalent to the elastic standard grid FDM (Cohen,
2002).

RESULTS

In this section, we will present the grid-dispersion curves for the
acoustic and elastic CFEM and SEM using the method that we pre-
sented in the previous section. We will describe the effect that the
stability parameter (¢, equation 43), the incidence angle (6, equation
44), the sampling ratio (s, equation 45), the order of the elements («,
see the “Basis Functions” subsection), and the P- to S-wave velocity
ratio (r, equation 18, elastic case) have in the grid dispersion.

Acoustic schemes

In Figure 2, we plotted the grid-dispersion curves of the first-order
SEM (equation 52) usingq = 0.1 andq = 0.7. As we have noted be-

fore, this scheme is equivalent to the acoustic FDM, therefore we ar-
rive at the same conclusions as those reported in Alford et al. (1974):

* Thedispersionis greatest in the direction of any of the grid axes.

* The dispersion is smallest if we take a time step close to the sta-
bility condition,

e A minimum of 10 nodes per wave length (s = 0.1) is recom-
mended to achieve accurate results.

It is clearly advantageous to use higher-order SEM, as concluded
in Seriani and Priolo (1994), because not only does the dispersion di-
minish rapidly but also the anisotropy practically disappears in
third- and higher-order SEMs (it is already small in second-order
SEM,; see Figures 3aand b).

Perhaps the most important advantage of using higher-order
SEMS is that we can decrease the sampling ratio to four to five nodes
per wave length (Seriani and Priolo, 1994). Comparing Figures 2b,
3a, and b, we note that in contrast to first-order SEMs, using second-
order and above, we would introduce nonphysical arrivals because
the grid velocity is slightly increased with respect to the physical ve-
locity. Nevertheless, this increase in velocity is less than 1% for a
sampling ratio of four to five nodes per wavelength.

Comparing CFEM, we observe approximately the same level of
dispersion and anisotropy using second-order CFEM (Figure 4b)
and second-order SEM (Figure 3a). Thus there is no loss of accuracy
due to mass lumping. First-order CFEM (Figure 4a) suffers from the
same anisotropy and dispersion as first-order SEM (Figure 2b), with
the difference that the waves are hastened instead of delayed, as not-
ed in Mullen and Belytschko (1982). In both first-order schemes we
would need at least 10 nodes per wavelength to obtain accurate re-
sults.

To show the effect of a smaller time step in the higher-order SEM,
we have plotted in Figure 5 the dispersion curves for 3=« =10 and
for different values of g. We observe that if we take 4.5 nodes per
wavelength, as suggested by Seriani and Priolo (1994), the disper-
sionisless than 1%, evenatg = 1.

To illustrate the dispersive behavior of the acoustic SEM, in Fig-
ure 6, we show snapshots of acoustic wave propagation using ele-
ments of different order but a constant sampling ratio. The physical
model is a homogeneous rectangle of 1 by 1 km with p = 4 kg/cm?
and A = 1.8 X 10'° Pa; the source is located at the center and has a
peak frequency of 30 Hz. All the snapshots are taken at r = 0.2 s,
and the number of nodes is kept constant at 4225. Note that, for a
fixed sampling ratio, increasing the order of the elements reduces the
grid dispersion and produces a less anisotropic result.

a) g=0.1 b) =07
1.0 0=45
0.9
E é 0=0
3 308
0.7
0.6
. 0.5
0 01 02 03 04 05 0 01 02 03 04 05
S S

Figure 2. Grid dispersion of the acoustic FDM and first-order SEM
as a function of the sampling ratio (s), equation 52, with incidence
anglesof # = 0°,15°,30°,and45° and (a) ¢ = 0.1 and (b) ¢ = 0.7.
The dispersion is minimized for an oblique incidence angle and for a
time step close to the stability condition.
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Elastic schemes

In the elastic schemes, the grid dispersion is dominated by the
S-wave dispersion in an unbounded domain, and thus the sampling
ratio is determined by the S-wave velocity. (In practice the domain
usually is bounded, and thus the grid dispersion is dominated by the
surface wave velocity). In Figures 7 through 12, we used the same
sampling ratio for the P- and S-wave and we plotted the results for
differentratios of P- to S-wave velocities.

In Figure 7, we have plotted equations 92 and 93 for different val-
ues of r and incidence angles. This is the grid dispersion of the stan-
dard grid FDM and of the first-order SEM, which are equivalent.

a) Second order b) Order 3to 10
1.025 1.010
1.020 6=45 1.008
§1.015 6=0 §1.006
$1.010 S 1.004
1.005 1.002
1'OOOO 0.1 02 03 04 05 1'0000 0.1 02 03 04 05
s s

Figure 3. Grid dispersion of the SEM acoustic scheme for second-or-
der and above, with 6 = 0°,...,45° and ¢ = 0.5. (a) Second-order
SEM (9-node elements, k = 2). (b) Third- to tenth-order SEM. The
upper curve corresponds to k = 3 and increases until k = 10 for the
lower one. Note the small anisotropy of the second-order scheme.
For third order and above, the dispersion curves for different inci-
dence angles are plotted on top of each other because they have neg-
ligible anisotropy.

a) 15 First order b)1.030 Second order
1.4 1.025
5 13 3 1.020
3 1o 3 1.015
) 1.010
1.1 1.005
1.0 1.000
0 0.1 02 03 04 05 0 0.1 02 03 04 05
s s

Figure 4. Grid dispersion of the CFEM acoustic scheme for 6
=0°,...,45° and ¢ = 0.5. (a) First-order CFEM (four-node ele-
ments, equation 50). (b) Second-order CFEM (9-node elements).
The first-order scheme has large and anisotropic dispersion. The sec-
ond-order CFEM scheme has a dispersion similar to the dispersion
of the second-order SEM (Figure 3a), with the difference that for an
oblique incidence angle, the dispersion is the smallest.

a) b)
1.0004 1.04
1.0003 1.03
RS 3
< 1.0002 $1.02
1.0001 %; 1.01
1.0000 1.00
0 01 02 03 04 05 0 01 02 03 04 05
S S

Figure 5. Grid dispersion as a function of the order of the SEM, with
0 = 0°(a)g = 0.1,and, (b) g = 1. The upper curve corresponds to
k = 3, increasing up to k = 10 for the lower curve. Note that the
dispersion is proportional to the time step and inversely proportional
to the order of the elements.

a)

b)

c)

Figure 6. Snapshots at = 0.2 of acoustic wave propagation using
SEM. The model is a homogeneous rectangle of 1 by 1 km with p
= 4 kg/cm® and A = 1.8 X 10'° Pa; the source is located at the cen-
ter and has a peak frequency of 30 Hz. (a) 4096 elements, k = 1;(b)
1024 elements, k = 2; (c) 256 elements, k = 4. For comparison
purposes, the number of nodes is 4225 in all the snapshots to keep a
constant sampling ratio. Note that for a fixed sampling ratio, using
higher-order polynomials reduces the dispersion.
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From these figures we can see that the grid dispersion of the S-wave
increases for increasing values of r. In particular, we note that for r
= 10 (Poisson’s ratio equal to 0.495) the S-wave travels at nearly
twice the physical velocity using 10 nodes per wavelength. In prac-
tice this means that if we have a physical model with a liquid-solid
interface we need to use a very high sampling ratio to obtain accurate
results.

This disadvantage is overcome by the staggered-grid scheme. The
grid dispersion of this scheme has been plotted in Figure 8 for differ-
ent values of r and incidence angles. Note in these figures that the
S-wave dispersion is nearly insensitive to r, and that the P-wave dis-
persion is negligible for the higher values of r. Therefore this scheme
can be efficiently applied to models with liquid-solid interfaces.

In Figure 9, we have used first-order CFEM and we note that, al-
though there is less dispersion than in the first-order SEM (Figure 7),

a) b)
. 6 6=45
c 5 -
S
o 4 -
[
a3 ,,
T 2 :
. G q}-s S
0.6 0 9=0
0 01 02 03 04 05 0 01 02 03 04 05

S S

Figure 7. Grid dispersion in the elastic standard-grid FDM and first-
order SEM as a function of the sampling ratio (equations 92 and 93)
with @ = 0,...,45°, ¢ = 0.7 and (a) r = 1.5 and (b) r = 10. Solid
lines correspond to the P-wave dispersion and dashed lines to the
S-wave dispersion. The S-wave dispersion increases proportionally
to r, introducing large anisotropic errors.
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Figure 8. Grid dispersion in the staggered-grid FDM scheme using
second-order differential operators with 8 = 0,...,45°, g = 0.7,
and (a) r = 1.5,and (b) r = 10. Solid lines correspond to the P-wave
dispersion and dashed lines to the S-wave dispersion. Note that the
S-wave dispersion is not sensitive to r.
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Figure 9. Grid dispersion for first-order elastic CFEM, with 6
=0,...,45°,¢ = 0.7, and (a) r = 1.5, and (b) r = 10. Solid lines
correspond to the P-wave dispersion and dashed lines to the S-wave
dispersion. Like the first-order SEM (Figure 7), the S-wave disper-
sion increases proportionally to r and is strongly anisotropic.

it is not as accurate as the staggered-grid scheme. Comparing Fig-
ures 9a and b we observe that the grid dispersion and anisotropy in-
crease with increasing values of r.

As noted for the acoustic case, it is also true for the elastic SEM
that itis advantageous to use higher-order methods. In Figure 10, we
can see that if we use a sampling ratio of 10 nodes per wavelength
and second-order SEM, we get negligible dispersion and anisotropy
even for large values of 7. If we use higher-order SEM the dispersion
diminishes very fast and the anisotropy disappears, and thus a lower
sampling ratio is appropriate (see Figure 11). Comparing Figures 3b
and 11b, we conclude that, as intuitively anticipated in Komatitsch et
al. (2005), the dispersion results for the acoustic case indeed hold
equally well for the elastic case because, for an order greater than
three, the dispersion of the elastic scheme is smaller than the disper-
sion of the acoustic scheme.

Grid dispersion

0 0.1 02 03 04 05 ~770 01 02 03 04 05
S S

Figure 10. Grid dispersion for the second-order SEM, with 6
=0,...,45°,qg = 0.7,(a) r = 1.5,and (b) r = 10. Solid lines corre-
spond to the P-wave dispersion and dashed lines to the S-wave dis-
persion. Note that if we use 10 nodes per wavelength (s = 0.1), we
getnegligible dispersion and anisotropy.
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Figure 11. Grid dispersion as a function of the order of the SEM elas-
tic schemes with 6 = 0,...,45°, ¢ = 0.7, and r = 10. (a) Third-or-
der SEM. Solid lines correspond to the P-wave dispersion and
dashed lines to the S-wave. (b) Fourth- to tenth-order SEM. The up-
per curve corresponds to k = 4 andincreases up to k = 10. The dis-
persion curves for different incidence angles are plotted on top of
each other, showing that the dispersion is not angle dependent for
fourth-order elements and above.
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Figure 12. Grid dispersion as a function of the order of the SEM, with
0 =0°¢g=0.7,(a)r = 1.5,and (b) r = 10. The upper curve cor-
responds to k = 3, increasing up to k = 10 for the lower curve. P-
and S-wave dispersion curves overlap in these figures. Note that
isotropy is preserved even for large values of r.
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Figure 13. Snapshots at ¢+ = 0.2 of elastic wave propagation using
SEM. The model is a homogeneous rectangle of 1 by 1 km with p
= 4 kg/em3, A = 1.8 X 10" Pa, and . = 9 X 10° Pa. The source is
located at the center and has a peak frequency of 30 Hz. (a) 4096 ele-
ments, k = 1; (b) 1024 elements, k = 2; (c) 256 elements, k = 4.
For comparison purposes, the number of nodes is fixed at 4225 in all
the snapshots, to keep a constant sampling ratio. Note that for a fixed
sampling ratio, the use of higher-order polynomials reduces the dis-
persion.

To show the effect that the ratio of P- to S-wave velocity has on the
higher-order SEM, we have plotted in Figure 12 the dispersion
curves for 3 = k = 10 and for different values of r (compare to Figure
5, which is the limit for r tending to one). We observe that the isotro-
py is preserved and that the dispersion is less than 0.3% for 4.5 nodes
per wavelength.

To illustrate the dispersive behavior of the elastic SEM, in Figure
13, we show snapshots of elastic wave propagation using elements
of different order but keeping a constant sampling ratio. The physi-
cal model has the same characteristics as those of the acoustic model
but with a shear modulus of . = 9 X 10° Pa. All the snapshots are
taken atr = 0.2 s, and the number of nodes is 4225. Note that, for a
constant sampling ratio, increasing the order of the elements makes
an improvement in the isotropy and reduces the dispersion.

CONCLUSIONS

We have derived stability conditions and analyzed the dispersive
properties of the most common FEM methods. We presented a gen-
eral approach to analyze acoustic and elastic FEM methods that
overcomes the difficulties of analyzing SEM. Our approach includes
previous results of FEM for quadrilateral tensor-product elements
and FDM for the standard grid as special cases. Furthermore, this ap-
proach can be used to analyze the grid dispersion due only to the spa-
tial discretization or the total grid dispersion, including the effects of
the time stepping. We make the following remarks based on our
analysis:

e SEM has approximately the same grid dispersion as CFEM.
Thus, the mass lumping technique used in SEM achieves the goal
of increasing performance while maintaining accuracy.

e Comparing first-order elastic CFEM and SEM we note that they
both introduce anisotropic errors and are very sensitive to Pois-
son’s ratio. CFEM also has the disadvantage of being an implicit
scheme, and therefore it is inefficient for long propagation times.

¢ The SEM method of order four or greater is an accurate and effi-
cient method for propagating acoustic and elastic waves. This
method has the qualities of being isotropic and of introducing lit-
tle dispersion in the results, making it adequate for simulations of
long propagation times. Because of its low dispersion, the sam-
pling ratio can be reduced to 4-5 nodes per wavelength with a
negligible loss of accuracy.

e A comparison of the high-order SEM with the staggered-grid
FDM reveals that they are both explicit and suitable for models
with liquid-solid interfaces. SEM has the advantages of requiring
a lower sampling ratio, having a smaller dispersion, and being
isotropic. Furthermore, SEM has the flexibility to allow us to
choose the order of the elements and adapt the elements to the
medium discontinuities and surface topography.

We have restricted our analysis to the 2D case for tensor-product
rectangular elements. We are currently working on the extension of
this approach to the 3D case for tensor-product cubic elements and
expect to extend the conclusions presented here to the 3D case as
well. Other restrictions of our analysis are that we do not provide an-
alytic solutions for arbitrary-order elements and we have considered
only the second-order finite-difference scheme for time stepping.

Finally, we note that the grid-dispersion results presented here are
the minimum dispersion for each of the methods. In practical appli-
cations more dispersion may arise from boundary conditions, irregu-
lar elements, or heterogeneities in the medium.
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APPENDIX A

THE GRID DISPERSION RELATION AS A
GENERALIZED EIGENVALUE PROBLEM

In this appendix, we explain the relation of equation 33 to a stan-
dard eigenvalue problem. We first note that the second-order tensor
Aflgz can be written as the vector

V), = 1&9]{2 Vi=4tlk+4€,0=¢,0,<k.
(A-1)

Similarly, the fourth-order tensors Mm iyt il and Kmlmzf.f can be writ-
ten as the matrices

(D)]I = Mm1m2€l€ZVi = €2K + €1, ] = MyK + mi,
0=40,4,,m;,m, <k (A-2)
and
(E)ji = Kmlm2€1€2Vi =

0§€1,€2,m1,m2< K. (A'3)

€2K + 61, J = NnpK + my,

This can be written as a generalized eigenvalue problem:
ADV = EV. (A-4)

Note that V has 2 elements and D and E have «? X k2 elements. If
the inverse of D exists, this can be solved as the standard eigenvalue
problem (Watkins, 2002)

AV = (D" 'E)V. (A-5)

For SEM, it can be shown that the mass matrix is diagonal (Ko-
matitsch and Tromp, 1999; Cohen, 2002) therefore D can be trivially
inverted, and the generalized eigenvalue problem can be solved as a
standard eigenvalue problem. This is the approach used in Cohen
(2002).

APPENDIX B
DECOMPOSITION OF THE EIGENVALUES

‘We will show in this appendix that the eigenvalues of equation 33
can be computed by the addition of the eigenvalues of the 1D prob-
lem. This proof is an extension of the proof in Cohen (2002), where a
diagonal mass matrix is assumed. We show here that the results hold
for a general mass matrix.

Let us first show how the 2D mass matrix can be decomposed
into the corresponding 1D matrices (equation 34). Starting from the
definition of the mass matrix, equation 24, we have

Mmlmznlnz = fg (Pml (x) (Plnz(z) (Pl‘l 1 (x) ()Dnz(z) d'x dZ

= f @, (X) @y, (x) dx f @y (2) ¢y, (2) dz
0 0

_ 1D 1D

= Mmlnle2n2. (B-1)
Similarly we can show the decomposition of the stiffness matrix
(equation 35). From the definition of the stiffness matrix, equation
25, we have that

K
mymyn ny

o f V (@, (¥) 0, (2))
0

-V (‘Pnl(x)(lpnz(Z)) dx dz

o f (0, ()@, (X) @1, (2) 0, (2)
0

+ ¢, (D@, (Do, ()¢, (2) dx dz

o f P, (D, (x) dx f Py (2, (2) dz
0 0

+ a,2f QDml()C)(Pn](X) d.Xf ()Dr’nz(z)(Pr’lz(Z) dz
0 0

— KlD MID + KID MlD (B_z)

mlnl mznz mznz mln

From these decompositions of the mass and stiffness matrices, we
will demonstrate equations 38 and 39. Substituting the mass matrix
decomposition in equation 30, we have that

ik hqlM eikthz

Mmlm2€ éz(kx’k) m (Kq1+€ )€ my(kqy+4€)

= M,0, (k)M,], (k). (B-3)

Substituting the stiffness-matrix decomposition in equation 31, we
have that

= 1D
Kmlmzelfz(kx’kz) (Kml(qu+€ )Mmz(‘“lz*'(z)

i(kyhqy +k hqy)
+ K 2(Kq2+€2)Mml(qu+€l )6 '

= kP ik hqy ik hqy
Kml(qu+€ )e * Mmz(Kq2+€2)e

D .
+ sz(qu + €2)elkth2Mm1(Kq] +4, )el]<xh(11

D, (k)T (k)
+ K'%(k WM, (k). (B-4)

Let A, and A{D satisfy

L)AL = KRk )AY, (B-5)

and let A, and A? satisfy
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MMIPR)AP = KiP(k)AP. (B-6)

Substituting the second-order tensor By, = A{VA? and the decom-
position of the stiffness matrix in the right-hand side of equation 33,
we have that

KB = KLUMP (k) + KiPU)M (k)AL AP
= MMP (k)M (k)AL AP
+ LML )M (k)AL AP
= (A + M)MPUR)M P (k)AL AP

= (A + )‘Z)Mijlekl- (B-7)

Therefore, A = A, + A,is aneigenvalue of equation 33, with corre-
sponding eigenvector By,. It can be easily shown by contradiction
that all the eigenvalues of equation 33 can be expressed as a combi-
nation of the eigenvalues of the 1D problems by noting that all the
possible combinations are «2, exactly the number of eigenvalues of
equation 33.

APPENDIX C
ABOUT THE EIGENVALUES OF EQUATION 57

In this appendix, we will show that the eigenvalues of equation
57 are real and positive. It is sufficient to show that the matrices on
the right- and left-hand sides are symmetric positive definite (Wat-
kins, 2002). Let us first consider the matrix on the left-hand side.
Multiplying the matrix by an arbitrary vector from the left and right

yields
M w

M
[v/. w']
0
where we have changed to index notation for convenience in the last
step. In the first term, using the definition of M;; given in equation 14,
we get

vIMv + w'Mw

= MijUin + MijWin,
(C-1)

Mjpp; = jﬂ ippv;dxdz = fﬂ (pw)dxdz=0 (C-2)

and the same for the second term, thus the matrix on the left-hand
side is symmetric positive definite. Let us now consider the matrix
on the right-hand side. Multiplying the matrix by an arbitrary vector
from the left and right yields

1 2
[v7, WT][II; II((“}LVV} = vIK'v + vIK?w + w'K?v
+ wiK*w = Kl-ljv,-vj
+ K,-zjviwj + Kfiwivj
+ K?jwiwj = Kl-ljv,-vj
+ 2Ki2jv,<wj + Ké»wiwj,
(C-3)

where we have used the fact that K7 = K7% (see equation 60). Using
the definitions of these matrices, given in equations 15 and 18, we
get

1 2
KijUin + 2KijUin + K?]WIWJ

= azf (¢i,xvi)2 dx dz
0
+ Bzf (i 00 dx dz
0
+ 2(&2 - Bz)f (ﬁi!xvi(ﬁj!sz dx dZ
0
+ sz (d)j‘xwl»)z dx dZ
0 .
+ CYZJ (¢],ZW])2 dx dZ
0
= azfn (d)i’xvi + (z)j’sz)z dx dz

+ ﬁzf (¢iv; — ¢j,ij)2 dx dz, (C-4)
0

where we have used the fact that

d)i,x(rbj,z dx dZ = ¢i,z¢j,x dx dZ. (C—S)
0 0

Clearly, equation C-4 is greater than or equal to zero for any v and w;
therefore the matrix on the right-hand side is symmetric positive def-
inite. This completes the proof.
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