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S U M M A R Y
Recently, there has been an increased interest in applying the discontinuous Galerkin method
(DGM) to wave propagation. In this work, we investigate the applicability of the interior penalty
DGM to elastic wave propagation by analysing it’s grid dispersion properties, with particular
attention to the effect that different basis functions have on the numerical dispersion. We
consider different types of basis functions that naturally yield a diagonal mass matrix. This is
relevant to seismology because a diagonal mass matrix is tantamount to an explicit and efficient
time marching scheme. We find that the Legendre basis functions that are traditionally used
in the DGM introduce numerical dispersion and anisotropy. Furthermore, we find that using
Lagrange basis functions along with the Gauss nodes has attractive advantages for numerical
wave propagation.

Key words: Numerical approximations and analysis; Computational seismology; Wave prop-
agation.

1 I N T RO D U C T I O N

During the last four decades there has been intensive research in
numerical seismology focused on the development of numerical
methods to approximate the propagation of acoustic and elastic
waves in the Earth. This has been motivated by the fact that exact
analytic solutions do not exist for subsurface models of interest in
exploration and global seismology. The advantage of the numeri-
cal methods is that they are based on the acoustic or elastic wave
equations for heterogeneous media, and therefore, they can simu-
late direct waves, primary and multiply reflected and transmitted
waves, surface and head waves, converted waves, diffracted waves
and critically refracted waves, whenever these are present in the
physical model.

In the recent past the finite element method (FEM), and in par-
ticular the discontinuous Galerkin method (DGM, Reed & Hill
1973), has attracted the interest of researchers in the field of nu-
merical wave propagation (e.g. Rivière & Wheeler 2001; Chung &
Engquist 2006; Grote et al. 2006; Käser & Dumbser 2006; Käser
et al. 2007b). Some of the advantages of the FEM are the flexibility
with which it can accommodate surface topography, discontinuities
in the subsurface model and boundary conditions, and the ability

to approximate the wavefield with high-degree polynomials. The
DGM has the further advantages that it can accommodate disconti-
nuities, not only in the media parameters, but also in the wavefield,
it can be energy conservative, and it is suitable for parallel imple-
mentation.

There are many DGM available in the literature that can be
applied for wave propagation. Among the interior penalty DGM
(IP-DGM), the non-symmetric interior penalty Galerkin (NIPG) for
the acoustic and elastic cases was proposed in Rivière & Wheeler
(2001). The symmetric interior penalty Galerkin (SIPG) was used
in Grote et al. (2006) for the acoustic case. (The formulations of
the IP-DGM will be explained in more detail in the next section).
On the other hand, the flux formulation of the DGM and a higher-
order scheme for time stepping are used in the ADER-DG method,
which has been applied to elastic wave propagation (Dumbser &
Munz 2006; Dumbser & Käser 2006; Käser & Dumbser 2006; de la
Puente et al. 2007; Käser et al. 2007a). Finally, a hybrid DGM dis-
cretization of the acoustic wave equation was proposed and analysed
in Chung & Engquist (2006).

The main analysis tools that determine the applicability of a nu-
merical method to the wave propagation problem are the stability
and grid dispersion criteria. In this context, the stability criterion
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determines the largest time step for the time-marching scheme such
that the numerical solution remains bounded. On the other hand,
the grid dispersion criterion determines the largest sampling ra-
tio for the spatial discretization, conveniently denoted as nodes
per wavelength, such that the numerical solution has an acceptable
accuracy.

Although the FEM has been applied to the wave propagation
problem since the late 1960s and early 1970s (Chopra et al. 1969;
Lysmer & Drake 1972), the grid dispersion and stability analysis
was not available until the early 1980s, and only for the first de-
gree FEM schemes (Mullen & Belytschko 1982; Marfurt 1984).
A general framework to analyse higher-degree methods was de-
veloped in Cohen (2002). His approach overcomes the difficul-
ties due to irregular grid spacing. He analysed the spectral ele-
ment method (SEM) for the acoustic case and showed results up
to third degree basis functions. The hp-version of the FEM for
acoustic wave propagation was analysed in Ainsworth (2004a).
In his analysis, he obtained closed form relations for the grid
dispersion using Padé approximants. We have recently extended
the grid dispersion and stability analysis to the high-degree FEM
for the elastic case in De Basabe & Sen (2007), where we con-
sidered the continuous and finite-difference cases for the time
derivative.

The grid dispersion of the DGM for wave propagation has been
analysed in Hu et al. (1999), Stanescu et al. (2000), Ainsworth
(2004b) and Ainsworth et al. (2006). In Hu et al. (1999), the dis-
persion and dissipation errors of the discretization of the scalar
advection equation and the acoustic wave equation in one space di-
mension are considered using the flux formulation DGM, Legendre
basis functions, and triangular and quadrilateral elements. Stanescu
et al. (2000) considered the flux formulation of the DGM applied
to the scalar advection equation and linearized Euler equation in
one spatial dimension. They did not use plane wave analysis and
considered the dispersion due to the boundary conditions. Their
formulation depends on the particular discretization of the domain.
Ainsworth (2004b) studied the linearized advection equation in mul-
tiple space dimensions using a flux formulation of the DGM and
tensor product basis functions. Finally, Ainsworth et al. (2006) con-
sidered the acoustic wave equation and the IP-DGM as well as the
flux formulation. Their grid dispersion results include up to third
degree polynomial basis functions and conjecture on the extension
to higher degree.

It should be noted that, to the best of our knowledge, there
are no available results for the grid dispersion properties of any
of the DGM applied to the elastic wave equation. Furthermore,
it cannot be assumed that the results available for the acous-
tic case can be applied to the elastic case, since that is not the
case in the finite differences method or in the continuous FEM,
except for low-order time-stepping schemes (De Basabe & Sen
2007).

The goal of this paper is to present the grid dispersion analysis
of the IP-DGM as applied to the elastic wave equation in 2-D. For
the analysis, we will consider square elements with tensor-product
basis functions. The approach presented here can be extended to
3-D and to other types of elements, as long as they are periodic.
We will consider three types of basis functions that naturally yield a
diagonal mass matrix and describe the effect that each of them has
on the dispersive properties of the numerical scheme. The paper is
organized as follows. In the next section, we briefly introduce the
IP-DGM. In Section 3, we derive the grid dispersion relations; In
Section 4, we describe the results, and in Section 5 we summarize
the conclusions.

2 T H E I N T E R I O R P E NA LT Y
D I S C O N T I N U O U S G A L E R K I N M E T H O D

2.1 Weak formulations of the elastic wave equation

Here we will introduce the weak (or variational) formulation of the
elastic wave equation used in the IP-DGM. In order to do this, we
first introduce the strong form of the elastic wave equation in an
isotropic, elastic and unbounded domain, which is given by

ρ∂t t u − ∇λ∇ · u − ∇ · μ(∇u + ∇μT) = f in R
2 × (0, T ],

(1)

with u(x, t) → 0 for all t as |x| → ∞ and u(x, 0) = ∂ t u (x, 0)
= 0 for all x; where (0, T] is the time domain, ∇ = (∂/∂x , ∂/∂z)T ,
∂ t t = ∂2/∂t2, u (x, t) is the displacement, f (x, t) is the source, ρ(x)
is the density, and λ(x) and μ(x) are the Lamé parameters.

We have posed eq. (1) in an unbounded domain although clearly
in practice the domain is always bounded. For the analysis in this
paper we use von Newmann’s method (plane wave analysis), and
therefore, need to assume an unbounded domain. This is an ubiq-
uitous assumption in the grid dispersion analyses, see for example,
Alford et al. (1974), Mullen & Belytschko (1982), Marfurt (1984),
Hu et al. (1999), Cohen (2002), Ainsworth (2004a,b), Ainsworth
et al. (2006) and De Basabe & Sen (2007).

Let �h be a finite element partition of the domain, and let �h be
the set of all the faces between the elements in �h . It can be easily
shown (see Appendix A) that eq. (1) is equivalent to the following
interior-penalty weak formulation: Find u ∈ C1(0, T ;V h) such that∑
E∈�h

(ρ∂t t u, v)E +
∑
E∈�h

BE (u, v)

+
∑
γ∈�h

Jγ (u, v; S, R) =
∑
E∈�h

( f , v)E (2)

for all v ∈ V h , where v is a vector test function, Vh = {ϕ :
∫

E (ϕ2 +
|∇ϕ|2) < ∞ ∀ E ∈ �h},

(u, v)E =
∫

E
u · v dx dz, (3)

BE (u, v) =
∫

E

[
λ(∇ · u)(∇ · v) + μ(∇u + ∇uT ) : ∇v

]
dx dz,

(4)

Jγ (u, v; S, R) = −
∫

γ

{τ γ (u)} · [v] dγ + S

∫
γ

{τ γ (v)} · [u] dγ

+ R

∫
γ

{λ + 2μ}[u] · [v] dγ, (5)

τ γ is the traction vector, given in the isotropic case by

τ
γ

i (u) = σi j (u)nγ

j = λuk,knγ

i + μ(ui, j + u j,i )n
γ

j , (6)

and nγ is a unit vector normal to γ . In the above equation we use
Einstein summation convention and the shorthand notation ui, j =
∂ui/∂x j . The double dot product in eq. (4) is given by ∇u : ∇v =
ui, j v i, j . In eq. (5), we are using {·} to denote the average of the
function and [·] to denote the function jump. This is the standard
notation in the DGM literature (Wheeler 1978), and it is defined as
follows. Let γ be the edge between the elements E1 and E2, then
the jump and average of a vector function u on γ are given by

{u} = 1
2 (u|E1 + u|E2 ), and [u] = u|E1 − u|E2 . (7)

The parameter R in eq. (5) is the penalty, and S is a parameter that
takes the values 0, 1 or −1 depending on the particular IP-DGM:
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S = −1 for SIPG (Darlow 1980), S = 1 for NIPG
(Rivière et al. 1999, 2001) and S = 0 for incomplete inte-
rior penalty Galerkin (IIPG, Dawson et al. 2004). For SIPG,
J γ is symmetric with respect to u and v, that is, J γ (u, v;
S, R) = J γ (v, u; S, R), which together with the symmetry of
B E implies that the stiffness matrix is symmetric. This formulation
applied to the acoustic wave equation has been found to be opti-
mally convergent in the energy and L2 norms with respect to the
sampling ratio (Grote et al. 2006). On the other hand, for NIPG, J γ

satisfies the antisymmetric condition J γ (u, v ; S, 0) = −J γ (v, u
; S, 0). This formulation was studied in Rivière & Wheeler (2003)
for acoustic and elastic wave propagation and it was found to be
optimally convergent in the energy norm but suboptimal in the L2

norm. Finally, for IIPG, J γ has a simplified form but does not yield
a symmetric stiffness matrix as in the SIPG formulation. This for-
mulation has not been used for wave propagation to the best of our
knowledge, but has been shown to offer advantages for example in
flow problems (Dawson et al. 2004).

To solve for the displacement in eq. (2), we introduce a subspace
of V h by defining a finite number of basis functions φE

i , i = 1, . . . ,
m in element E for all E ∈ �h . The basis functions φE

i will be
discussed in the next subsection. Upon substituting the test function
and the displacement by linear combinations of the basis functions
we obtain a system of ordinary differential equations that can be
solved for the displacement.

2.2 Basis functions

A general description of the basis functions can be found in classi-
cal finite element literature, for example, Hughes (2000). The nodal
and modal basis functions for higher-degree methods are described
in detail in Karniadakis & Sherwin (2005). The above references
deal with basis functions for the FEM, and therefore, define the
basis functions to be continuous across the entire domain. A de-
scription of the basis functions used in the DGM can be found in
Li (2006). An important difference between FEM and DGM is that
in the DGM the basis functions are not required to be continuous
over the entire domain but only inside the elements. In general, all
the basis functions used in the FEM can be used in the DGM with
simplifications, since in the DGM the basis functions can be defined
locally on each element. This important feature of the DGM im-
plies that the mass matrix is always block-diagonal, which translates
into an efficient time marching algorithm. Furthermore, the basis
functions can be chosen such that the mass matrix is exactly diag-
onal. This is a desirable property because it is necessary to invert
the mass matrix for the time marching algorithm. In the following
we will restrict our attention to tensor product basis functions in
quadrilateral elements that yield a diagonal mass matrix. We will
use κ to denote the polynomial degree of the basis functions in one
side of the element and m = (κ + 1)2 to denote the total number of
basis functions in the elements.

The first approach to obtain a diagonal mass matrix is to use
tensor products of the Legendre polynomials as the basis functions.
The Legendre polynomials up to degree 3 are shown in Fig. 1(a).
These are called modal basis functions (Karniadakis & Sherwin
2005), and it is the traditional approach that has been used in DGM
when a diagonal mass matrix is sought (Cockburn & Shu 1989;
Cockburn et al. 1989; Li 2006). They are orthogonal under the L2

inner product and have simple recursion formulas for the higher
degree polynomials and their derivatives. It should be noted that
this approach yields a diagonal mass matrix only if the media pa-

(a) Legendre basis
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Figure 1. Basis functions in 1-D up to degree 3. (a) Legendre basis. (b)
GLL basis. (c) Gauss basis.

rameters are constant inside each element, and that the condition
number of the mass matrix is greater than 4κ2 in the 2-D case (see
Appendix B).

A second approach is to use nodal basis functions (Karniadakis
& Sherwin 2005), making the nodes inside the element match the
quadrature points. This idea has been exploited in the SEM, where
the Gauss–Lobatto–Legendre (GLL) points and quadrature rules
are used to impose the continuity of the basis functions at the ele-
ment boundaries (Cohen et al. 1994; Komatitsch & Vilotte 1998).
The third degree Lagrange polynomials using the GLL nodes are

C© 2008 The Authors, GJI, 175, 83–93

Journal compilation C© 2008 RAS



86 J. D. De Basabe, M. K. Sen and M. F. Wheeler

shown in Fig. 1(b). This approach leads to a diagonal mass matrix
independently of how the media parameters change inside the ele-
ments, but the mass matrix integrals are not computed exactly even
if the media parameters are piecewise constant.

The third approach that we will consider is closely related to the
second one, but using the Gauss nodes and quadrature rules instead
of the GLL nodes and quadrature rules. The Lagrange polynomi-
als using these nodes are shown in Fig. 1(c). The main difference
between the Gauss and the GLL nodes is that the endpoints of
the interval are always included in the GLL nodes. We can use the
Gauss nodes in DGM to define the basis functions because, unlike
in FEM, the basis functions do not have to be continuous across
the elements. In this approach, as well as in the second one, the
mass matrix is always diagonal but, unlike in the second approach,
the integration will be exact for piecewise constant and piecewise
linearly varying media parameters because we gain 2 degrees of
accuracy.

3 P L A N E WAV E A NA LY S I S

In this section, we apply the plane wave analysis to the IP-DGM
to investigate it’s grid dispersion properties. For the analysis, we
assume that the media is isotropic, unbounded, homogeneous and
source free; as mentioned before, these assumptions are always
made whenever the plane wave analysis is applied, see for example,
Alford et al. (1974), Mullen & Belytschko (1982), Marfurt (1984),
Hu et al. (1999), Cohen (2002), Ainsworth (2004a,b), Ainsworth
et al. (2006) and De Basabe & Sen (2007). We emphasize that it is
not expected that practical applications satisfy these assumptions,
they are for analysis purposes only, to understand the basic accuracy
of the numerical scheme. Nevertheless, the outcome of the analysis
will be useful to set the simulation parameters in realistic applica-
tions. Furthermore, we will assume that the finite element mesh is
periodic, and that the elements are square with sides parallel to the
coordinate axis and with tensor product basis functions; these are
common assumptions when a FEM is analysed, see for example,
Marfurt (1984), Cohen (2002), Ainsworth (2004a,b), Ainsworth
et al. (2006) and De Basabe & Sen (2007).

Introducing the assumptions into the weak formulation of the
elastic wave equation, eq. (2), we obtain∑
E∈�h

(
β−2∂t t u, v

)
E

+
∑
E∈�h

BE (u, v) +
∑
γ∈�h

Jγ (u, v; S, R) = 0,
(8)

where

BE (u, v) =
∫

E

[
(r 2 − 2)ui,iv j, j + (ui, j + u j,i )vi, j

]
dx dz, (9)

Jγ (u, v; S, R) = −
∫

γ

{(r 2 − 2)uk,kni + (ui, j + u j,i )n j }[vi ] dγ

+ S

∫
γ

{(r 2 − 2)vk,kni + (vi, j + v j,i )n j }[ui ] dγ

+ r 2 R

∫
γ

[ui ][vi ] dγ, (10)

α = √
(λ + 2μ)/ρ is the P-wave velocity, β = √

μ/ρ is the S-wave
velocity and r = α/β is the ratio of the P- to S-wave velocity.

In order to discretize eq. (8) using the IP-DGM, we introduce the
following approximation to the displacement vector using the basis
functions:

uh(x, z, t) =
∑
E∈�h

[
φE

i (x, z)ξ E
i (t), φE

i (x, z)ηE
i (t)

]T

, (11)

where ξ E
i and ηE

i are the coefficients of the x and z components of
displacement in element E. We also write the test function using the
basis functions as follows

vh(x, z) =
∑
E∈�h

[
φE

i (x, z)aE
i , φE

i (x, z)bE
i

]T

, (12)

where aE
i and bE

i are arbitrary coefficients. Without loss of generality
we can set aE

i = 1 for E = E 0 and i = j , aE
i = 0 otherwise, where

E0 and j are arbitrary, and bE
i = 0, to obtain(

β−2φ
E0
i ∂t tξ

E0
i , φ

E0
j

)
E0

+ BE0

[
uh, (φE0

j , 0)T
]

+
∑
γ∈�h

Jγ

[
uh, (φE0

j , 0)T ; S, R
]

= 0.

(13)

Setting now aE
i = 0 and bE

i = 1 for E = E 0 and i = j , bE
i = 0

otherwise, and substituting in eq. (8) yields(
β−2φ

E0
i ∂t tη

E0
i , φ

E0
j

)
E0

+ BE0

[
uh, (0, φ

E0
j )T

]
+

∑
γ∈�h

Jγ

[
uh, (0, φ

E0
j )T ; S, R

]
= 0.

(14)

Note in the last term of the left-hand side of eqs (13) and (14) that
there are only four elements of �h for which Jγ is non-zero, we call
these γT , γB , γL and γR (see Fig. 2). Using the linearity of BE and
Jγ with respect to the first argument and computing the integrals
on the master element Ê , we can write eqs (13) and (14) as

h2

β2
Mi j∂t tξ

E0
i + K 1

i jξ
E0
i + K 2

i jη
E0
i

+
∑

f ∈{T,B,L ,R}

(
L1, f

i j ξ
E f
i + L2, f

i j η
E f
i

)
= 0, (15)

and

h2

β2
Mi j∂t tη

E0
i + K 3

i jξ
E0
i + K 4

i jη
E0
i

+
∑

f ∈{T,B,L ,R}

(
L3, f

i j ξ
E f
i + L4, f

i j η
E f
i

)
= 0, (16)

where

Mi j =
(
φ Ê

i , φ Ê
j

)
Ê

, (17)

K 1
i j = BÊ

[(
φ Ê

i , 0
)T

,
(
φ Ê

j , 0
)T

]
+

∑
f ∈{T,B,L ,R}

Jγ̂ f

((
φ Ê

i , 0
)T

,
(
φ Ê

j , 0
)T

)
(18)

E0 EREL

EB

ET

γ
R

γ
L

γ
B

γ
T

Figure 2. The reference element E0 and it’s surrounding elements.
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K 2
i j = BÊ

[(
0, φ Ê

i

)T
,
(
φ Ê

j , 0
)T

]
+

∑
f ∈{T,B,L ,R}

Jγ̂ f

((
0, φ Ê

i

)T
,
(
φ Ê

j , 0
)T

)
,

(19)

K 3
i j = BÊ

[(
φ Ê

i , 0
)T

,
(
0, φ Ê

j

)T
]

+
∑

f ∈{T,B,L ,R}
Jγ̂ f

((
φ Ê

i , 0
)T

,
(
0, φ Ê

j

)T
)
,

(20)

K 4
i j = BÊ

[(
0, φ Ê

i

)T
,
(
0, φ Ê

j

)T
]

+
∑

f ∈{T,B,L ,R}
Jγ̂ f

((
0, φ Ê

i

)T
,
(
0, φ Ê

j

)T
)
,

(21)

L1, f
i j = Jγ̂ f

[
(φ

Ê f
i , 0)T , (φ Ê

j , 0)T ; S, R
]
, (22)

L2, f
i j = Jγ̂ f

[
(0, φ

Ê f
i )T , (φ Ê

j , 0)T ; S, R
]
, (23)

L3, f
i j = Jγ̂ f

[
(φ

Ê f
i , 0)T , (0, φ Ê

j )T ; S, R
]

(24)

and

L4, f
i j = Jγ̂ f

[
(0, φ

Ê f
i )T , (0, φ Ê

j )T ; S, R
]
, (25)

where γ̂ f , f ∈ {T, B, L , R} are the edges of the master element Ê .
If we assume that the displacement is a plane wave, then

ξ E
i = Ai e

i(k · x i −ωt), (26)

and

ηE
i = Bi e

i(k · x i −ωt), (27)

where k is the wavenumber, x i contains the ith node coordinates
and Ai and Bi are arbitrary constants. The plane wave assumption
implies that

ξ
ET
i = e−ikz hξ

E0
i , (28)

ξ
EB
i = eikz hξ

E0
i , (29)

ξ
EL
i = e−ikx hξ

E0
i (30)

and

ξ
ER
i = eikx hξ

E0
i , (31)

and similar expressions for η
E f
i , f ∈ {T, B, L , R}. Substituting

these in eqs (15) and (16) we obtain the following generalized
eigenvalue problem of order 2m:

�Mi jξ
E0
i = K̃ 1

i jξ
E0
i + K̃ 2

i jη
E0
i (32)

�Mi jη
E0
i = K̃ 3

i jξ
E0
i + K̃ 4

i jη
E0
i , (33)

where � = h2ω2
h/β

2, ωh is the angular frequency at which the wave
travels in the grid and K̃ ν

i j , ν = 1, . . . , 4, are the so-called dynamic
stiffness matrices, given by

K̃ ν
i j = K ν

i j + e−ikz h Lν,T
i j + eikz h Lν,B

i j + e−ikx h Lν,L
i j + eikx h Lν,R

i j . (34)

Note that we have not assumed any particular kind of basis func-
tions or grid nodes for the eigenvalue problem in eqs (32) and (33).
The basis functions can be any of the ones described in Section 2 or
other. The number of eigenvalues will usually exceed the number
of physical modes, therefore, we need to identify which eigenvalues
correspond to the P and S waves. We can easily do this by calculat-
ing the velocities corresponding to each eigenvalue and comparing

to the known P- and S-wave velocities (Sármány et al. 2007). Let us
denote as �P and �S the eigenvalues corresponding to the P and S
waves.

The grid dispersion of the P and S waves is given by the ratio
between the velocity at which the wave travels in the grid and the
physical velocity. From the definition of the eigenvalues we have
that the angular frequency of the S wave in the grid is given by
ωh = (β/h)

√
�S , therefore, the velocity at which the S wave travels

in the grid is given by

βh = hωh

2πδ
= β

2πδ

√
�S, (35)

where δ = h/(κL) is the sampling ratio and L is the wavelength. It
is convenient to measure the grid dispersion as the relative error in
the velocity, given by

eS = βh

β
− 1 = 1

2πδ

√
�S − 1, (36)

and similarly for the error in the P-wave velocity

eP = αh

α
− 1 = 1

2πδ r

√
�P − 1. (37)

In the above error expressions, the sign of the error will indicate if
the numerical scheme causes the waves to be delayed or hastened.
The grid-dispersion error will depend on the sampling ratio δ, the
P- to S-wave velocity ratio r, the wavenumber k and the degree of
the basis functions κ , as well as on the IP-DGM parameters S and
R.

4 R E S U LT S

We now proceed to discuss the accuracy of the IP-DGM from three
different perspectives. We will consider (i) the convergence of the
methods with respect to the sampling ratio, (ii) the convergence with
respect to the polynomial degree of the basis functions and (iii) the
anisotropy introduced by the grid dispersion. We finally compare
the methods with the SEM, which is a method that has become very
popular for seismic wave propagation. The grid dispersion of the
SEM will be computed using the approach of De Basabe & Sen
(2007). We will focus on the grid dispersion of the S wave since it
is always larger than the dispersion of the P wave and thus it is of
more concern.

The convergence with respect to the sampling ratio of the IP-
DGM of degrees 1–4 using the GLL basis functions, r = 10
(Poisson’s ratio of 0.495) and an incidence angle of θ = 45◦ is
shown in Fig. 3. This type of analysis is very common in the finite-
element literature. Often a polynomial relation between the absolute
value of the error and the size of the elements is assumed of the
form |eS | = O(hq ), where q is the convergence rate. Clearly the
convergence rate is related to the slope of the convergence curves
displayed in Fig. 3. As a visual aid, line segments are displayed to
indicate the slopes of the convergence curves of different degrees.
It is clear from Fig. 3(a) that q ≈ 2κ for the SIPG method using the
GLL basis functions. The same convergence rates are achieved for
the Gauss basis functions, but that is not the case for the NIPG and
IIPG methods and for the Legendre basis functions, in which cases
slower convergence rates are observed. Note that the convergence
rates for NIPG and IIPG are of order κ + 1 for odd degree and κ

for even degree (Sun & Wheeler 2005). The superconvergence of
the SIPG formulation and the different convergence rates of even
and odd degrees of the IIPG and NIPG formulations are remarkable
results that demand further research.
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Figure 3. Convergence of the IP-DGM with respect to the sampling ratio
using GLL basis functions. Similar convergence rates are achieved with the
Gauss basis functions.

The convergence of the methods with respect to the degree of
the basis functions is shown in Fig. 4. For this figure we have used
the following parameters: δ = 0.1 (10 gridpoints per wavelength),
θ = 45◦, and r = 10. A consistent feature in this figure is that
the convergence rate is slower when the Legendre basis functions
are used. We conjecture that this is because the condition number
of the mass matrix increases rapidly when the degree of the basis
functions is increased. On the other hand, the GLL and Gauss basis

(a) SIPG

1 2 3 4 5 6 7 8 9 10
10

10

10

10
0

Degree κ

G
ri
d
 D

is
p
e
rs

io
n
 e

s

Legendre
GLL
Gauss

(b) NIPG

1 2 3 4 5 6 7 8 9 10
10

10

10

10
0

Degree κ

G
ri
d
 D

is
p
e
rs

io
n
 e

s

Legendre
GLL
Gauss

(c) IIPG

1 2 3 4 5 6 7 8 9 10
10

10

10

10
0

Degree κ

G
ri
d
 D

is
p
e
rs

io
n
 e

s

Legendre
GLL
Gauss

(d) All (Gauss basis)

1 2 3 4 5 6 7 8 9 1010
10

10

10

10
0

Degree κ

G
ri
d
 D

is
p
e
rs

io
n
 e

s

IIPG
SIPG
NIPG

Figure 4. Convergence of the IP-DGM with respect to the degree of the
polynomials using δ = 0.1. The convergence is slower in the three meth-
ods when the Legendre basis functions are used. Using the GLL or Gauss
basis functions the convergence is faster, flatting down after an accuracy of
approximately 10 significant digits is reached.

functions have faster and similar convergence rates. The conver-
gence rates of the three methods using the Gauss basis are com-
pared in Fig. 4(d). For the SIPG method a maximum accuracy of
approximately 10 significant digits is achieved for κ = 4, and after
this point no further improvement is observed. For the NIPG and
IIPG methods the maximum accuracy is achieved at approximately
κ = 5.
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(c) IIPG
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Figure 5. Anisotropy curves of the IP-DGM using the Legendre basis func-
tions and 5 gridpoints per wavelength. For visualization purposes, the grid
dispersion has been magnified to a propagation of 200 wavelengths. A quar-
ter of a circle with radius one is shown with a solid line as a reference.

The anisotropy introduced by the numerical schemes is displayed
in Figs 5 and 6. For visualization purposes we have magnified
the dispersion by using r = 10, the Legendre basis functions and
calculating the dispersion after a propagation of 200 wavelengths.
Furthermore, we have used δ = 0.2 (5 gridpoints per wavelength).
In this figure we consider κ = 2, 3 and 4 only. The grid dispersion
for κ = 1 is much larger, and therefore, this polynomial degree is
unsuitable for practical applications (see Fig. 7). On the contrary, it
is uninteresting to display the grid dispersion for κ > 4 because it is
very small and isotropic for all practical purposes. The dispersion
is quite small and isotropic for κ > 2 for all the methods, as can

(a) GLL basis
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(b) Gauss basis
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Figure 6. Anisotropy curves of the SIPG method using 5 gridpoints per
wavelength and (a) the GLL basis functions, (b) the Gauss basis func-
tions. For visualization purposes, the grid dispersion has been magnified
to a propagation of 200 wavelengths. The grid dispersion for κ = 3, 4 is
indistinguishable from the reference circle of radius one.

be seen in Figs 5(a), (b) and (c). Note that for κ > 2 the waves
are slightly delayed in all the methods and all incidence angles. To
emphasize that using the GLL and Gauss basis functions the method
exhibits less anisotropy, we show in Fig. 6 the anisotropy curves for
the SIPG method using these basis functions. It can be observed
in this figure that the grid dispersion is very small and practically
isotropic for κ > 2. Similar results are observed for NIPG and IIPG
using nodal basis functions of degree greater than 2.

We now proceed to compare the grid dispersion of the IP-DGM
with that of the continuous case. The grid-dispersion curves for the
first degree methods are shown in Figs 7 and 8. The grid dispersion
of the first degree methods is identical for SIPG, NIPG and IIPG,
the only difference is whether the mass matrix is consistent or
lumped. We observe by comparing Figs 7(a) with 8(a) and 7(b)
with 8(b) that the dispersive behaviour of the first degree methods
using the Legendre or Gauss basis is similar to that of the FEM
with consistent mass matrix, and using the GLL basis yields a grid
dispersion similar to that of the SEM. In fact, Figs 8(a) and (b) are
the limiting case of using an infinite penalty in Figs 7(a) and (b). A
consistent feature in these figures is that large and anisotropic errors
are introduced by the grid dispersion in all the first order methods.
Note for example that at δ = 0.1 (10 gridpoints per wavelength) the
error is up to 50 per cent using the Gauss or Legendre basis and up
to 100 per cent using the GLL basis.

We also compare the convergence with respect to the sampling
ratio, the convergence with respect to the polynomial degree of the
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(b) GLL basis
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Figure 7. Grid-dispersion curves for the first degree SIPG, NIPG or IIPG
methods using r = 10 and (a) Gauss or Legendre basis functions and (b)
GLL basis functions.

basis functions and the anisotropy introduced by the grid dispersion
for the SEM in Fig. 9. A comparison of Fig. 9(a) with Fig. 3(a) and
of Fig. 9(b) with Fig. 4(a) reveals that the convergence rates of the
SEM method are similar to that of the SIPG method using the GLL
or Gauss basis functions. Also, comparing Fig. 9(c) with Fig. 6(a)
we observe that the anisotropic distribution of the grid dispersion of
the SEM is very similar to that of the SIPG method with GLL basis
functions but larger than that of using the Gauss basis functions.

For all the above tests we have used a penalty of R = 1000.
Our numerical experiments indicate that the grid dispersion does
not change significantly as a function of the penalty whenever it
is large enough, but numerical anisotropy is introduced in some
combinations of methods and basis functions for R < 1000.

5 C O N C LU S I O N S

We have developed a method to calculate the grid dispersion of the
IP-DGM that is general enough to accommodate nodal or modal
basis functions and non-equispaced nodes. The limitations of this
approach are that it assumes regular quadrilateral elements and it
does not take into account the boundary conditions.

Based on our results we conclude that the SIPG method has
attractive advantages over the other formulations. Namely, it allows
for lower polynomial degree and sampling ratio to be used to get
high accuracy. The results indicate that high accuracy and isotropy
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(b) SEM
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Figure 8. Grid-dispersion curves for the first degree FEM using r = 10
and (a) Equispaced nodes and exact integration and (b) GLL nodes and
quadrature rules.

can be obtained using the SIPG method of degree 4 or greater with
4 gridpoints per wavelength (δ = 0.25).

We have also compared the effect that different basis functions
have on the accuracy of the methods. Based on an accuracy cri-
terion, nodal basis functions using the GLL or Gauss nodes have
attractive advantages over modal basis functions using the Legendre
polynomials. However, we remark that the Legendre basis functions
have the advantage of being hierarchical; this may be an important
characteristic in some applications to achieve a better performance.

In order to put the results in perspective, we have compared the
accuracy of the IP-DGM with that of the SEM. As expected, we have
found that the SIPG method with the GLL basis functions performs
with practically the same accuracy as the SEM. In practical appli-
cations where the media parameters change inside the elements,
higher accuracy than the SEM can be expected if the Gauss basis
functions are used, since in those cases the under integration of the
SEM will deteriorate the accuracy whereas using the Gauss basis
functions and quadrature rules will give better approximations. It
should be noted that the IP-DGM has the further advantage over
the SEM that it can handle non-conforming finite-element meshes
(e.g. Sun & Wheeler 2005; Käser & Dumbser 2006).

We have focused on the interior penalty formulation of the DGM,
therefore the conclusions are not applicable to the flux formulations,
as for example the ADER-DG method (Käser & Dumbser 2006).
However, the basis functions considered here can be used in a flux
formulation, therefore we expect that a grid dispersion study of this
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1 2 3 4 5 6 7 8 9 10
10

10

10

10
0

Degree κ

G
ri
d
 D

is
p
e
rs

io
n
 e

s

(c) Anisotropy

0°

15°

30°

45°

60°

75°
90°

0.25

0.5

0.75

1

1.25

κ=2

κ=3

κ=4

Figure 9. Convergence and anisotropy curves for the SEM.

type of methods and comparing the basis functions considered here
should arrive to the same conclusions. Further research is needed
to ascertain this hypothesis.

We have analysed the grid dispersion in the semi-discrete case
only. The discretization of the time derivative is an important source
of dispersion also, therefore a high-order discretization should be
used to preserve the accuracy of the method (see Mercerat et al.
2006). Other sources of grid dispersion that have not been studied
here include heterogeneities in the media parameters and irregular-
ities in the finite-element mesh (see Cohen 2002).
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condensation de masse pour l’équation des ondes en dimension 1, Rapport
de Recherche 2323, INRIA, Le Chesnay, France.

Darlow, B., 1980. A penalty-Galerkin method for solving the miscible dis-
placement problem, PhD thesis, Rice University, Houston, Texas.

Dawson, C., Sun, S. & Wheeler, M., 2004. Compatible algorithms for cou-
pled flow and transport, Comput. Methods Appl. Mech. Eng., 193(23–26),
2565–2580.

De Basabe, J.D. & Sen, M.K., 2007. Grid dispersion and stability criteria
of some common finite-element methods for acoustic and elastic wave
equations, Geophysics, 72(6), T81–T95.
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Sármány, D., Botchev, M. & van der Vegt, J., 2007. Dispersion and dissipa-
tion error in high-order Runge-Kutta discontinuous Galerkin discretisa-
tions of the Maxwell equations, J. Scient. Comput., 33(1), 47–74.

Stanescu, D., Kopriva, D. & Hussaini, M., 2000. Dispersion analysis for
discontinuous spectral element methods, J. Scient. Comput., 15(2), 149–
171.

Sun, S. & Wheeler, M., 2005. Discontinuous Galerkin methods for coupled
flow and reactive transport problems, Appl. Numer. Math., 52(2-3), 273–
298.

Watkins, D., 2002. Fundamentals of Matrix Computations, 2nd edn, Pure
and Applied Mathematics, John Wiley and Sons.

Wheeler, M., 1978. An elliptic collocation-finite element method with inte-
rior penalties, SIAM J. Numer. Anal., 15(1), 152–161.

A P P E N D I X A : E Q U I VA L E N C E
B E T W E E N T H E I N T E R I O R - P E NA LT Y
W E A K F O R M U L AT I O N A N D T H E
S T RO N G F O R M U L AT I O N O F T H E
E L A S T I C WAV E E Q UAT I O N

The following theorem shows the equivalence between the interior-
penalty weak formulation of the elastic wave equation, eq. (2), and
the strong formulation, eq. (1).
Theorem A.1. (i) If u is a solution to eq. (1), then it is also a
solution to eq. (2); (ii) If u is a solution to eq. (2) and u ∈H2(�),
then it is also a solution to eq. (1).

Proof. (i) Multiplying eq. (1) by a test function, integrating over an
arbitrary element E and using the Gauss divergence theorem yields∫

E
ρ∂t t u · v dx dz +

∫
E

[
λ(∇ · u)(∇ · v) + μ(∇u + ∇uT ) : ∇v

]

× dx dz −
∫

γ

τ γ (u) · v dγ =
∫

E
f · v dx dz.

(A1)

Eq. (2) is obtained upon addition through all the elements and
noting that the second and third terms of J γ vanish whenever u
is continuous. (ii) The opposite equivalence is readily obtained by
reversing the steps of part (i) and recalling that H2(�) is embedded
in C0(�) by the Sobolev embedding theorem.

A P P E N D I X B : C O N D I T I O N N U M B E R
O F T H E M A S S M AT R I X

In this appendix, we will give the condition numbers of the mass
matrix and explain how they are computed. The results using the
three types of basis functions discussed and up to a polynomial de-
gree of 10 assuming a constant density are summarized in Table A1.
Note that the table shows the condition numbers for the mass matrix
in 1-D; the condition numbers in 2-D and 3-D will be the square
and cube respectively for each method and degree.

Recall that the entries of the 1-D mass matrix in element E are
given by

Mi j =
∫

E
φE

i φE
j (B1)

and that the condition number using the 2-norm is given by the
ratio of the largest eigenvalue to the smallest eigenvalue (Watkins
2002), which are trivially computed for a diagonal matrix. Also note
that the condition number is independent of the size of the element,
therefore we can consider an element of unit length for succinctness.

Let us first consider the Legendre basis. The diagonal entries of
the mass matrix in 1-D, assuming that the basis functions have the
usual ordering, are given by

Mii =
∫

E
(φE

i )2 = 2(i − 1) + 1, i = 1, . . . , κ + 1. (B2)

Therefore, the largest eigenvalue is equal to 2κ + 1, the smallest
is equal to 1 and the condition number is given by cond (M ii ) =
2κ + 1.

Considering now the GLL or Gauss basis, the diagonal entries of
the mass matrix are given by

Mii =
n∑

k=1

wk[φE
i (xk)]2 = wi , i = 1, . . . , κ + 1, (B3)

Table A1. Condition number of the mass matrix in 1-D as-
suming a constant density inside the elements.

Degree Legendre GLL Gauss

1 3 1 1
2 5 4 1.6
3 7 5 1.87
4 9 7.11 2.40
5 11 8.32 2.73
6 13 10.24 3.23
7 15 11.55 3.58
8 17 13.37 4.06
9 19 14.74 4.43
10 21 16.51 4.90
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where n is the quadrature order, and x k and wk are the quadrature
nodes and weights. Recall that the basis functions are defined us-
ing the Lagrange polynomials and the quadrature nodes, and that
for the GLL basis the nodes and weights are those of the GLL
quadrature rules, whereas for the Gauss basis those of the Gauss
quadrature rules. The condition number of the mass matrix for

the nodal basis is therefore given by cond (M i i) = maxk(wk)/
mink(wk).

It should be noted that the condition number does not create any
problems in the implementation of these basis functions because
the inversion of a diagonal matrix is a stable procedure. The only
concern is the accuracy.
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