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Abstract

In this paper, we present a non-dissipative spatial high-order discontinuous Galerkin method to solve the Maxwell
equations in the time domain. The non-intuitive choice of the space of approximation and the basis functions induce
an important gain for mass, stiffness and jump matrices in terms of memory. This spatial approximation, combined with
a leapfrog scheme in time, leads also to a fast explicit and accurate method. A study of the dispersive error is carried out
and a stability condition for the proposed scheme is established. Some comparisons with other schemes are presented to
validate the new scheme and to point out its advantages. Finally, in order to improve the efficiency of the method in terms
of CPU time on general unstructured meshes, a strategy of local time-stepping is proposed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The most widely used method for solving Maxwell’s equations in the time domain is the finite difference
time domain method (FDTD) based on the well-known scheme of Yee [1] and Taflove and Hagness [2]. This
method involves an orthogonal Cartesian grid and is based on a second order leapfrog approximation in space
and time. However, the FDTD method suffers a certain number of limitations such as, for example, difficulty
in the treatment of curved objects. In such a case, the staircase approximation can generate spurious diffrac-
tion phenomena, which strongly damage the accuracy of the solution [3].

Numerous researchers and engineers have tried to develop efficient methods, which make it possible to
take into account the complex shape of objects [4–9]. Moreover, the growing need to accurately model the
propagation of electromagnetic waves over a large number of wavelengths (more than 100) has forced
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them to develop high-order or spectral methods [16,10,12]. Their first choice naturally turned towards
finite element methods (FEM), which are a powerful tool for developing new numerical techniques [13].
However, one of the difficulties encountered in using finite element for Maxwell’s equations is that of con-
structing a finite dimensional subspace of the continuous space H(curl,X). This functional space is natural
for the solution of this problem, because the tangential components of a function belonging to H(curl,X)
are continuous across any surface and the normal components of the same function may be discontinuous.
It is well known that the use of classical continuous Langrage finite elements, which provide a suitable
approximation of the space [H1(X)]3, leads to spurious solutions. The appropriate finite element space –
of so called edge element – was introduced by Nédélec in the 1980s [14,15]. Unfortunately, the classical
version of these elements leads to a high computational cost since a matrix inversion is required at each
time-step. This drawback increases with the order of approximation. Mass-lumping techniques seemed to
be the right approach to avoid this inversion. An attractive method based on Nédélec’s second family of
edge elements was introduced by Cohen and Monk [16]. In this method, the use of the Gauss–Lobatto
quadrature formulas yields a block-diagonal mass matrix, which enables us to obtain an explicit scheme
for polynomial approximation at all orders. Unfortunately, this method produces important parasitic
waves for large distortions of the cells. In the same idea, first and second order tetrahedral mass-lumped
edge elements, which have no parasitic wave problems, were constructed in [17]. However, this approach
seems to be efficient only for second-order elements.

The second choice is the use of discontinuous Galerkin methods (DGM). These methods were intro-
duced in the first half of the 1970s by Reed and Hill [18] for the scalar neutron transport equation. Fol-
lowing this first study, many DGM were developed and analyzed by a large number of researchers in
order to solve a large range of problems. One can find in [19] an exhaustive review of these methods from
their beginning. In this survey, one can notice that few papers are devoted to the resolution of Maxwell’s
equations. In fact, the use of this kind of method to solve this problem is relatively recent. For the fre-
quency domain, one can quote [21,20] and, for the time domain, one can quote [22,23,12] among numer-
ous other papers. The main drawback of these methods is the large number of unknowns in each cell for
high-order approximation schemes, which implies that much memory is needed for the local matrices (the
mass matrix for example). Thus, in order to be efficient, the order of approximation in these methods
must be limited. Hesthaven and Warburton [12] recently developed a low-storage, high-order, discontinu-
ous Galerkin method for tetrahedral meshes with a judicious choice of the location of the degrees of free-
dom. However, his approach provides an algorithm that is O(r6) instead of O(r4) for hexahedra, r being
the order of the method. One can notice that, before the use of these high-order methods, finite volume
methods (that can be viewed as low order DGM schemes) were used to solve the Maxwell equations but
these methods suffer from the presence of dissipation [24] or dispersion [26], which makes their use inac-
curate for large-sized problems.

There are two approaches for implementing the discontinuous Galerkin methods: the h-version and the
p-version. The h-version uses mesh refinement to achieve convergence to a fixed order, which keep the poly-

nomial degree of the approximation fixed. The alternative p-version allows the order of polynomials to
increase on a fixed mesh. A hybrid h–p version can also be considered. This paper concerns a method which
takes to the third point of view and which enables us to reduce the storage requirement for local matrices, even
for high-order approximation.

The outline of the paper is as follows. In Section 2, we describe a discontinuous Galerkin formulation for
solving Maxwell’s equations. In Section 3, we present some comparisons with other methods to validate this
method and to show its advantages over other methods. Finally, in Section 4, a local time-stepping technique
is proposed to enhance the performance of the method in terms of computational time.

2. The continuous formulation

2.1. The continuous problem

Let X be a domain on which the electric and magnetic fields (E,H) satisfy:
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e oE
ot þ rE ¼ r�H;

l oH
ot ¼ �r� E;

Eðt ¼ 0Þ ¼ 0; Hðt ¼ 0Þ ¼ 0.

8><>: ð1Þ
On the boundary oX of the domain, we impose n · E = 0 for cavity problems. This condition is also applied
after PML [29] to simulate unbounded domains.

2.2. Definition of the discontinuous Galerkin framework

Let a set Th of hexahedral elements (Ki)i=1,N be a partition of X. In our approach, Maxwell’s equations are
rewritten by adding two terms – which are equal to zero for the continuous problem – to each equation of (1).
These terms define jumps of the electric and magnetic tangential components fields across the hexahedron Ki.

On each K 2Th, we get
e oE
ot þ rE ¼ r�Hþ asH� nt

K
oKdoK þ bsn� ðE� nÞtK

oKdoK ;

l oH
ot ¼ �r� Eþ csE� nt

K
oKdoK þ dsn� ðH� nÞtK

oKdoK ;

(
ð2Þ
where sut
K
oK defines the jump across the boundary oK of the volume K. More precisely, the jump is given by

sut
K
oK ¼ uþK � uK where uK is the boundary value taken inside the volume K and uþK the same boundary value

taken inside the other volume adjacent to oK. When C = oK \ oX 6¼ ;, then ðuþK ÞjC ¼ 0. The term doK is the
Kronecker symbol for oK which is equal to 1 on oK and 0 elsewhere. It denotes the fact that these jump terms
are added exclusively on the boundary of the elements. Now, we have to choose a, b, c and d so that (1) and (2)
are equivalent problems.

Let the energy be defined by
R

X eE � Edxþ
R

X lH �Hdx. For (1), this energy is constant when r = 0. Now,
we would like (2) also to satisfy an energy conservation principle. By using a weak formulation of Eqs. (2)
when r = 0, we can write for each element K 2Th:
R

K l oH
ot �Hdx ¼ �

R
K r� E �Hdxþ c

R
oK sE� nt

K
oK �Hdsþ d

R
oK sn� ðH� nÞtK

oK �Hds;R
K e oE

ot � Edx ¼
R

K r�H � Edxþ a
R

oK sH� nt
K
oK � Edsþ b

R
oK sn� ðE� nÞtK

oK � Eds.

(
ð3Þ
By adding the two equations over all the elements K and by integrating by part, we obtain:
X
K2Th

Z
K

e
oE

ot
� Edxþ

Z
K

l
oH

ot
�Hdx

� �
¼
X

K2Th

Z
oK
ð1þ a� cÞðEK � nÞ �HK ds�

X
oK2Fi

h

Z
oK

dððEK þ EþK Þ � n � ðEK þ EþK Þ � nÞds

þ
X

oK2Fi
h

Z
oK

bððHK þHþK Þ � n � ðHK þHþK Þ � nÞdsþ
X

oK2Fi
h

Z
oK
ðaþ cÞðEþK � n �HK þHþK � n � EKÞds

�
X

oK2Fb
h

Z
oK̂
ðdðEK � n � EK � nÞ þ bðHK � n �HK � nÞÞds; ð4Þ
where Fi
h and Fb

h define, respectively, the faces inside the computational domain X and the faces of the
boundary oX.

To derive
Z
X

e
oE

ot
Edxþ

Z
X

l
oH

ot
Hdx ¼ 0;
from Eq. (4), the values a, b, d and c must be such that b = d = 0, 1 + a � c = 0 and a + c = 0 on faces belong
to Fi

h. On the other faces, energy conservation is ensured only if b = d = 0 and 1 + a � c = 0. Hence, to guar-
antee energy conservation, we obtain �a ¼ c ¼ 1

2
for faces belonging to Fi

h and we have different possibilities
for a and c for faces belonging to Fb

h. For theses faces, our choice is guided by the equivalence between
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problems (1) and (2). In particular, we set these coefficients in problem (2) so that boundary conditions of
problem (1) are correctly taken into account. For example, in the case of a metallic boundary condition
EjoX · n = 0 on a face in (1), we take c = 1 and then a = 0 on this face in (2) to have equivalence between
the two problems.

So, an equivalent conservative formulation of (1) in each volume K 2Th is given by
e oE
ot þ rE ¼ r�Hþ asH� nt

K
oKdoK ;

l oH
ot ¼ �r� Eþ csE� nt

K
oKdoK ;

(
ð5Þ
with the values of a and c as previously defined.

3. Construction of the approximation

3.1. Approximate formulation

For the following of this paper, we assume each cell K in the Th partition to be constituted by a homoge-
neous material, where the electric and magnetic fields are sufficiently regular to be considered in (H1(K))3. In
order to define an approximation (5), we must first introduce the space
H1ðThÞ ¼ v 2 ðL2ðXÞÞ3; 8K 2Th; vjK 2 ðH 1ðKÞÞ3
n o

.

Then, we can define the following variational formulation of (5).
Find ðE; HÞ 2 ðH1ðThÞÞ2 such that
e o
ot

R
X E � udx ¼ �

R
X rE � udxþ

P
K2Th

R
K r�H � udxþ

P
K2Th

a
R

oK sH� nt
K
oK � uds;

l o
ot

R
X H � wdx ¼

P
K2Th

�
R

K r� E � wdxþ c
R

oK sE� nt � wds
� �

;

8><>: ð6Þ
where u 2 H1ðThÞ and w 2 H1ðThÞ.
In a second step, we define the approximation space of H1ðThÞ:
Uh ¼ v 2 ðL2ðXÞÞ3; 8K 2Th;DF �KvjKoFK 2 ½QrðK̂Þ�
3

n o
;

where QrðK̂Þ is the set of polynomials of K̂ ¼ ½0; 1�3 whose order is less or equal to r in each variable. For any
K 2Th, FK is the conform mapping such that FKðK̂Þ ¼ K and DFK the Jacobian matrix of FK. In the follow-
ing, we shall denote JK = det(DFK) the Jacobian of FK. The definition of the approximate space Uh is not clas-
sical for discontinuous Galerkin methods (generally the solution is approximate by a polynom on each cell),
but, as we shall see later, the use of the curl-conforming mapping in our approximation will be important to
imply a low storage for the stiffness and jump matrices and a substantial gain on CPU time.

In this space, the following approximate formulation holds:
Find (Eh,Hh) 2 (Uh)2 such that
e o
ot

R
X Eh � uh dx ¼ �

R
X rEh � uh dxþ

P
K2Th

R
K r�Hh � uh dxþ

P
K2Th

a
R

oK sHh � nt
K
oK � uh ds;

l o
ot

R
X Hh � wh dx ¼

P
K2Th

�
R

K r� Eh � wh dxþ c
R

oK sEh � nt � wh ds
� �

.

8><>: ð7Þ
3.2. Basis functions and degrees of freedom

3.2.1. Basis functions on the unit cube

In order to define the basis functions of Uh, we first define the basis functions on the unit cube K̂ (Fig. 1).

Let
~̂nijk ¼ ðn̂i; n̂j; n̂kÞ, 1 6 i 6 r + 1, 1 6 j 6 r + 1, 1 6 k 6 r + 1, be a set of points of K̂, where n̂‘ represents the

abscissa of a Gauss quadrature point on the interval [0, 1]. On the other hand, we define the set of the (r + 1)3



Fig. 1. Basis functions located on the unit cube for a Q3 approximation.
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Lagrange interpolation polynomials ûijk 2 Qr such that ûijkð~̂n‘;m;nÞ ¼ di‘djmdkn, where dij is the Kronecker sym-
bol. We finally define the following set bB of 3(r + 1)3 vector-valued functions basis functions on K̂:
û
ð1Þ
ijk ¼ ðûijk; 0; 0ÞT, û

ð2Þ
ijk ¼ ð0; ûijk; 0ÞT, û

ð3Þ
ijk ¼ ð0; 0; ûijkÞT.

3.2.2. Basis functions on any hexahedron K

Following the definition of Uh, we can now deduce from bB a basis B of this space. On each element K, we
define a set of 3(r + 1)3 basis functions u

ð‘Þ
ijk;K such that u

ð‘Þ
ijk;K ¼ DF ��1

K û
ð‘Þ
ijk , for all ‘ = 1, . . . , 3. So,
B ¼ u
ð‘Þ
ijk;K ; 8K 2Th; 8ðijkÞ 2 f1; . . . ; r þ 1g3

; 8‘ 2 f1; 2; 3g
n o

.

In their definition, the L2-character of the functions implies that the support of each basis function is reduced
to one element. Thus, it is obvious that dim Uh = 3(r + 1)3Ne for any mesh whose number of elements is Ne.

3.2.3. Mass matrices

In the weak formulation, we need to evaluate for each basis function ul
ijk;KðxÞ the discrete form of the termsR

X Eðt; xÞ � ul
ijk;KðxÞdx,

R
X Hðt; xÞ � ul

ijk;KðxÞdx and
R

X rðxÞEðt; xÞ � ul
ijk;KðxÞdx. These three integrals have a similar

relation between basis functions and we apply the same developments to evaluate them.
So, we only explain how to obtain the discrete form of

R
X Eðt; xÞ � ul

ijk;KðxÞdx.

By using Eðx; tÞoF K ¼
P

K2Th

P3
l¼1

P
i;j;k¼1;rþ1El

ijk;KðtÞðDF �Kðx̂ÞÞ
�1

ûl
ijkðx̂Þ we can write
Z

X
Eðt; xÞ � ul

ijk;KðxÞdx ¼
Z

K
Eðt; xÞ � ul

ijk;KðxÞdx;
since K ¼ Suppðul
ijk;KÞ.

So, we obtain
Z
K

Eðt; xÞ � ul
ijk;K dx ¼

X3

p¼1

X
m;n;q¼1;N

Ep
mnq;KðtÞ

Z
K̂
ðDF �KÞ

�1ðx̂Þûp
mnqðx̂Þ � ðDF �KÞ

�1ðx̂Þûl
ijkðx̂ÞjJ Kðx̂Þjdx̂

¼
X3

p¼1

X
m;n;q¼1;N

Ep
mnq;KðtÞ

Z
K̂

DF �1
K ðx̂ÞðDF �KÞ

�1ðx̂Þûp
mnqðx̂Þ � ûl

ijkðx̂ÞjJ Kðx̂Þjdx̂.
By using the Gauss quadrature rule for the integral and the fact that ûl
ijkðx̂mnqÞ ¼ diðx̂mÞdjðŷnÞdkðẑqÞ, we

finally get
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Z
K

Eðt; xÞ � ul
ijk;Kdx ¼ xijk

X3

p¼1

Ep
ijk;KðDF �1

K ðx̂ijkÞðDF �KÞ
�1ðx̂ijkÞÞpljJ Kðx̂ijkÞj
where xijk is the quadrature weight at the point x̂ijk and (M)pl defines the (p, l) term in the matrix M.
So, in the matrix of the discrete problem for a degree of freedom, we have three non-zero terms for the basis

function which are defined at the same given quadrature point. By choosing a numbering of the unknowns
around the points, we obtain a 3 · 3 block-diagonal mass matrix which can be diagonal for regular elements.

3.2.4. Stiffness matrix

The terms of the weak formulation considered here are
R

Xr� Eðt; xÞ � ul
ijk;KðxÞdx for the electric equation

and
R

Xr� Hðt; xÞ � ul
ijk;KðxÞdx for the magnetic equation. As in the previous section, we explain only the con-

struction of the discrete form of the term related to the electric equation. A similar demonstration holds for the
magnetic equation related terms. As for the evaluation of the mass matrix, we have
Z

X
r� Eðt; xÞ � ul

ijk;KðxÞdx ¼
Z

K
r� Eðt; xÞ � ul

ijk;KðxÞdx;
where K is the unique element on which ul
ijk;KðxÞ is not identically equal to zero.
Z

K
r� Eðt; xÞ � ul

ijk;KðxÞdx ¼
Z

K̂
ððDF �Þ�1ðx̂Þr̂Þ � ððDF �Þ�1ðx̂ÞÊðt; x̂ÞÞ � ðDF �Þ�1ðx̂Þûl

ijkðx̂ÞjJðx̂Þjdx̂

¼
Z

K̂

DF ðx̂Þ
Jðx̂Þ ðr̂ � Êðt; x̂ÞÞ � ðDF �Þ�1ðx̂Þûl

ijkjJðx̂Þjdx̂

¼
Z

K̂
signðJðx̂ÞÞðr̂ � Êðt; x̂ÞÞ � ûl

ijkðx̂Þdx̂

¼
X

m;n;q¼1;N

X3

p¼1

signðJðx̂ÞÞ
Z

K̂
Ep

mnq;KðtÞðr̂ � ûp
mnqðx̂ÞÞ � ûl

ijkðx̂Þdx̂

¼
X

m;n;q¼1;N

X3

p¼1

signðJðx̂mnqÞÞxmnqEl
mnq;KðtÞðr̂ � ûp

mnqÞ
lðx̂ijkÞ;
where ($ · u)l is the l component of $ · u.
We can see on this formula that, for all given elements K, the stiffness matrix is obtained only by the knowl-

edge of the derivative term r̂ � ûl
ijk for all components and points on the reference element and by the sign of

the Jacobian at each point on the element K. Because we assume that the inverse of the Jacobian always exists,
the sign of the Jacobian must be the same on the element. So we only need to know the sign of the Jacobian at
a given point on each element to have it for all points on the element. Then, for the stiffness matrix, we only
need to store the derivative terms on the reference element and a sign for each element K. This implies a very
small storage and a fast process to obtain the full stiffness matrix of the scheme.

3.2.5. Jump matrix

We denote the set of faces of Th by Fh ¼Fi
h [Fb

h, where Fi
h ¼ fC 2Fi

h;C ¼ K 0 \ Kg and Fb
h ¼

fC 2Fb
h;C ¼ K \ oXg are the sets of the interior and boundary faces.

The computation of the jump or flux terms is one of the most expensive parts in the time domain algorithms
using finite volume or discontinuous Galerkin spatial approximation. An inappropriate computational
approach or a bad formulation can dramatically penalize the computational code. We will see that the approx-
imate space as well as the DGM formulation used leads to an efficient computation of the jump terms. Actu-
ally, a detailed computation of these terms will show that they need a negligible storage. Moreover, we will see
that the number of operations to determine these terms is dramatically reduced, thanks to the correspondence
of the basis functions with the selected quadrature points.

Let ul
ijk;K be a basis function defined by ul

ijk;KoF K ¼ DF ��1
K ûl

ijk. The terms considered here areR
oK sH� nt � ul

ijk;K ds and
R

oK sE� nt � ul
ijk;K ds.
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One can decompose the boundary, oK, of K in oK ¼
S6

i¼1Ci, with Ci 2F for which F KjCiðĈiÞ ¼ Ci with
Ĉi � oK̂ for i = 1, . . . , 6.

We can write
Z
oK

sH h � nKt
K
oK � ul

ijk;K dr ¼
X6

i¼1

Z
Ci

sHh � nK
i t

K
Ci
� ul

ijk;K dri; ð8Þ
where dri is the surface element of the face Ci and nK
i the unit outward normal to K associated with Ci.

Let Ci be a face of K so that FKjCiðĈiÞ ¼ Ci, we have dri ¼ jJ KjĈi
jkDF ��1

KjĈi
n̂ikdĝi dv̂i where n̂i is the unit out-

ward normal to K̂ associated with the reference face Ĉi and ĝ, v̂ are the tangential components of this face (i.e.,
x̂, ŷ or ẑ).

The definition of the basis functions also provides the following property (see [11]):
Let uh 2 Uh, we have
ðuhjK � nK
i ÞoF KjĈi

¼ 1

J KjĈi
kDF ��1

KjĈi
n̂ik

DF KjĈi
ðûKjĈi

� n̂iÞ; ð9Þ
where ûK ¼
P3

l¼1

Prþ1
i;j;kul

ijkû
l
ijk and nK

i is the unit outward normal to K associated with the face Ci.
By using these two previous properties, we can prove the following proposition:

Proposition 1. 8Ci 2Fb
h, we have
Z

Ci

sHh � nit
K
Ci
� ul

ijk dri ¼ �signðJ KÞ
Z

Ĉi

ðĤKjĈi
� n̂iÞ � ûl

ijk dĝi dv̂i. ð10Þ
In this proposition, evaluating the term
R

Ĉi
ðĤKjĈi

� n̂iÞ � ûl
ijk dĝi dv̂i needs a very small number of operations.

Take for example a face Ĉi ¼ fẑ ¼ 0g, we obtain by using a Gauss quadrature rule:

� if l = 3, then
R

Ĉi
ðĤKjĈi

� n̂iÞ � ûl
ijk dx̂1 dx̂2 ¼ 0,

� if l = 1, then
R

Ĉi
ðĤKjĈi

� n̂iÞ � ûl
ijk dx̂1dx̂2 ¼ �

Prþ1
l3¼1H 2

ijl3;K
x̂ix̂jûl3

ð0Þûkð0Þ,
� if l = 2, then

R
Ĉi
ðĤKjĈi

� n̂iÞ � ûl
ijk dx̂1 dx̂2 ¼

Prþ1
l3¼1H 1

ijl3;K
x̂ix̂jûl3

ð0Þûkð0Þ,

where fx̂i; x̂jgl;m¼1;...;rþ1 are the quadrature weights.

One has the same type of results for all the other faces of reference. One can see that the computation of the
surface term coming from a boundary face requires little storage. Indeed, only the sign of Jacobian and neg-
ligible basis functions interactions on the reference faces must be known. Finally, the previous expressions
show that the number of interactions between the basis functions is limited (only rk + 1 interactions). This
induces a substantial gain of CPU time for the computation of these quantities.

Now, we are going to see that the same conclusions are reached when computing the jump terms for the
interior faces.

Let Ci 2Fi
h where Ci = K \ K 0, then we have
Z

Ci

sH h � nit
K
Ci
� ul

ijk;K dri ¼
Z

Ĉi

jJ KjĈi
jkDF ��1

KjĈi
n̂ikðHhK 0 � ni �HhK � niÞoF KjĈi

� DF ��1
K ûl

ijk dĝi dv̂i. ð11Þ
In (11), the computation of the part of the integral containing HhK is done in the same way as for a boundary
face. So, the previous proposition can be applied to this case and we obtain the same conclusions. Thus, we are
only interested in the HhK 0 term, i.e.,
I ¼
Z

Ĉi

jJ KjĈi
jkDF ��1

KjĈi
n̂ikðHhK 0 � niÞ � DF ��1

K ûl
ijk dĝi dv̂i. ð12Þ
Let i 0 2 {1, . . . , 6} such that: F K 0 ðĈi0 Þ ¼ F KðĈiÞ ¼ Ci0 ¼ Ci. Let us consider the following change of variables:
GK 0!K ¼ F �1
KjCi

oF K 0 jĈi0
: Ĉi0 ! Ĉi. ð13Þ
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Then 8x̂0 2 Ĉi0 , we have
jJ K 0 jĈi0
jkDF ��1

K 0 jĈi0
n̂i0 k

� �
ðx̂0Þ ¼ jJ KjĈi

jkDF ��1
KjĈi

n̂ik
� �

oGK 0!Kðx̂0Þ. ð14Þ
The change of variables (13) and (9) gives
I ¼ �
Z

Ĉi0

jJ KjĈi
jkDF ��1

KjĈi
n̂ik

� �
oGK 0!K

J K 0 jĈi0
kDF ��1

K 0 jĈi0
n̂i0 k

DF K 0 jĈi0
ðĤK 0 jĈi0

� n̂i0 Þ � ðDF ��1
K ûl

ijkÞoGK 0!K dĝi0 dv̂i0 . ð15Þ
Property (14) leads to the simplification:
I ¼ �signðJ K 0 Þ
Z

Ĉi0

ðDF �1
K oGK 0!KDF K 0 ÞðĤK 0 � n̂i0 Þ � ûl

ijkoGK 0!K dĝi0 dv̂i0 . ð16Þ
Remark 1. ðDF �1
K oGK 0!KDF K 0 Þ and GK 0!K provide the connection with the local numbering of the degrees of

freedom of K and K 0. Both are permutation matrices constant per face.

So, in order to compute (16), it is sufficient to know the matrix DF �1
K oGK 0!KDF K 0 on each internal face of Th.

Its constant character implies that, to evaluate it, we only have to compute it at one point of this face.

3.2.6. Semi-discrete numerical scheme and 3D spatial dispersion analysis

In the previous sections, we described the different integral terms of the weak formulation and we showed
that our choice of approximation spaces and basis functions led to a low storage algorithm, whenever using
high order spatial approximations. In this section, we first give a full matrix representation of the semi-discrete
numerical scheme obtained, then we provide an analysis of the spatial dispersive error of the scheme.

The semi-discrete numerical scheme proposed in this paper can be written as
M e
oE
ot
þMrE ¼ RH þ SEE;

Ml
oH
ot
¼ �RE þ SH H

ð17Þ
where Me, Ml, Mr are 3 · 3 block-diagonal matrices, R is the stiffness matrix and SE, SH are the jump matrices
whose terms are given in the previous sections. In these matrices, only the mass matrices must be stored be-
cause they depend on the element K. For the stiffness and jump matrices, we just have to store the sign of the
Jacobian and a permutation matrix for each element K. Finally, in terms of storage required by the method we
roughly have

� 6 · (r + 1)3 real values per cell for the unknowns,
� 3 · 6 · (r + 1)3 real values per cell for the mass matrices (6 · (r + 1)3 values for an homogeneous non-lossy

experiment),
� 1 value per cell for the sign of the Jacobian,
� 4 · (r + 1)3 values per face for the fluxes.

This implies a total storage between 24 · (r + 1)3 + 1 and 36 · (r + 1)3 + 1 values per cell, where r is the
spatial order of the scheme.

We also choose to consider a spatial conservative numerical scheme in order to avoid errors due to numer-
ical dissipation. To complete the analysis of our spatial scheme, let us now study the spatial dispersive error of
the scheme. We prove that the 3D dispersion is deduced from the 1D one. In particular, this result allows us to
easily determine the rate of convergence in space on Cartesian grid of the GD scheme studied here.

For this purpose, we consider an infinite regular mesh of R3 with a space-step equal to h. For
p ¼ ðp1; p2; p3Þ 2 Z3, we denote the cell [p1h, (p1 + 1)h] · [p2h, (p2 + 1)h] · [p3h, (p3 + 1)h] by Ip. On this mesh,
we assume that the discrete solution can be written in the form of the following numerical plane wave (see
for example [11]):
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El
ijk;p ¼ El

ijkeiðxht�k1hp1�k2hp2�k3hp3Þe�iðx̂ik1hþŷjk2hþẑk k3hÞ;

Hl
ijk;p ¼ H l

ijkeiðxht�k1hp1�k2hp2�k3hp3Þe�iðx̂ik1hþŷjk2hþẑk k3hÞ;
ð18Þ
where x̂i, ŷj and ẑk are Gauss–Lobatto quadrature points and l = 1,2,3 are the three vector components.
Now, by reporting (18) into the discrete system, we get for the first electric component an equation of the

form:
whheE1
ijk ¼

Xrþ1

l3¼1

H 2
i;j;l3

Bh;r½k3�ðk; l3Þ �
Xrþ1

l2¼1

H 3
i;l2;k

Bh;r½k2�ðj; l2Þ; ð19Þ
where Bh,r[k3](k,l3) and Bh,r[k2](j,l2) are geometric terms given by the discrete scheme.
Let A and B be m · n and p · q matrices, respectively. The Kronecker product is the mp · nq matrix

C = A 	 B given by: C(i�1)p+l,(j�1)q+r = Ai,jBl,r By using the Kronecker product, we can still write Eq. (19):
whheE1 ¼ ðI rþ1 	 Irþ1 	 Bh;r½k3�ÞH 2 � ðIrþ1 	 Bh;r½k2� 	 Irþ1ÞH 3; ð20Þ

where El ¼ El

ijk;p and Hl ¼ H l
ijk;p for l = 1,2,3, and i, j,k = 1, . . . , r + 1.

By working in the same way for the other components, one obtains the matrix system:
xhh
eE

lH

� �
¼

0 A

�A 0

� �
E

H

� �
; ð21Þ
with E = (El)l=1,3, H = (Hl)l=1,3 and
A ¼
0 a3 �a2

�a3 0 a1

a2 �a1 0

0B@
1CA.
The terms a1, a2 and a3 are, respectively, given by Bh,r[k1] 	 Ir+1 	 Ir+1, Ir+1 	 Bh,r[k2] 	 Ir+1 and
Ir+1 	 Ir+1 	 Bh,r[k3] Finally, by using (21), we obtain the fundamental relations "l = 1, . . . , 3
elh2x2
hEl ¼ aEl;

elh2x2
hH l ¼ aHl;

ð22Þ
where a = ((Bh,r[k1])2 	 Ir+1 	 Ir+1) + (Ir+1 	 (Bh,r[k2])2 	 Ir+1) + (Ir+1 	 Ir+1 	 (Bh,r[k3])2). Then, we obtain
the following theorem:

Theorem 1. Let xh be an eigenvalue of the spectral problem (22), then we have
x2
h ¼

1

c2h2
ðxh½k1�2 þ xh½k2�2 þ xh½k3�2Þ; ð23Þ
where xh[ki]
2 are not only the eigenvalues of the matrix (Bh,r[ki])2, but also the eigenvalues of the 1D dispersion

problem associated with the wavevectors ki and c ¼ 1ffiffiffi
el
p .

In conclusion, the 3D dispersive properties are similar to those established in 1D. In particular, we obtain the
same orders of approximation. Table 1 lists the rate of convergence ðOðhprÞÞ obtained by using a 1D dispersion
analysis of our DG approximation.

In this table, we can notice that dispersive error of the scheme decreases as the order of the scheme
increases. However, these values seem to indicate that the accuracy of the scheme is the same for orders 2
and 3 and for orders 4 and 5. This is not exactly true. Indeed, we can write the dispersion error as khn where
k, h and n are, respectively, a constant, the spatial step and the order of the scheme. For the different orders
1
rical dispersion orders for different orders of approximation

of approximation r = 1 r = 2 r = 3 r = 4 r = 5
of dispersive error 2 6 6 10 10
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n = 1,2,3,4,5, the evaluated constant k is, respectively, equal to 3.2898, �2670.1817, 312.48, �931215.53 and
47988.2293. Taking into account these constant values, we can see that order 3 (respectively, 5) is better than
order 2 (respectively, 4).

The pattern of the dispersive orders obtained in Table 1, is related to the choice of the centered fluxes. A
study of the dispersive errors was also made by using non-centered fluxes ðb ¼ d ¼ 1

2
Þ with our approximation.

The values obtained are shown in Table 2. These results show that the approach of the non-centered fluxes is
more attractive in terms of dispersive errors, but we also have an important additional cost storage for jump
matrices due to the terms sn · (E · n)b and sn · (H · n)b and the scheme becomes dissipative. In these condi-
tions, the centered fluxes scheme of the stays to be more interesting.

3.2.7. Numerical approximation in time and stability analysis

The most natural way for time discretization would be to use higher-order finite difference schemes. Gen-
erally, such explicit schemes are unstable [27]. In the domain of centered schemes (which are not dissipative
and coherent with our choice), very few alternatives remain. The stable modified equation approach or sym-
metric schemes are complicated and are very difficult to adapt to unbounded domain conditions such as ABC
or PML [11]. For these reasons, we decided to use a simple leapfrog scheme in time. The problem is to know if
this low approximation in time compared to the one in space can introduce errors, which annihilate the advan-
tage to use spatial schemes of order higher than 2. Numerical experiments have shown that it is not the case.
Although of second-order, the time scheme appeared to be accurate for relatively long time-requiring exper-
iments (.50 wavelengths). This is mainly due to the fact that we do not use it with its maximal CFL on non-
regular meshes, in which the size of the elements can vary with a ratio of 10 or even more and the CFL is
adapted to the smallest cell. Of course, for longer experiments, a phase-shift, which increases with time,
can be observed.

To illustrate this purpose, Fig. 2 shows the evolution of the L2 error for different spatial orders. We can see
that increasing the order of the spatial approximation allows us to have a more accurate solution. The L2 error
defines here the L2 norm of the difference between the exact solution and the solution computed for each
degree of freedom in the problem. The configuration and the analytic solution of the example used in this fig-
ure are the same as the example proposed for the evaluation of modes inside cavity in numerical results sec-
tion. Another possibility to quantitatively evaluate the accuracy of our approximation consists in seeing the
ability of the scheme to restitute the free-divergence condition for Maxwell equations ($ Æ E = 0). To consider
this point, we computed, for different meshes of the same example of cavity and different orders of approxi-
mation, an equivalent H�1 norm of the divergence of the electric discrete fields Eh, proposed by Cockburn
et al. [25]:
Table
Numer

Order
Order
Order
kEhk�;h ¼
X
C2F

Z G

C
jsEh � ntj þ

X
C2Th

Z G

K
jr � Ehj.
Figs. 3 and 4 show the results obtained by using different sizes of cells in the mesh and different orders of
approximation, respectively. These results confirm the interest in using high spatial approximation order de-
spite order 2 in time.

In the previous results, the error is principally due to the dispersive phenomena, since it can be easily be
proven that our numerical scheme, with a leap-frog scheme in time, remains conservative. The energetic quan-
tity taken into account for this proof is given by
X

K2Th

Z
K

eEn
K � En

K dK þ
Z

K
l0H

nþ1
2

K �Hn�1
2

K dK;
where ðEn
K ;H

n
KÞ are electric and magnetic fields values taken on K at time tn (see [26]).
2
ical dispersion and dissipation orders by using non-centered fluxes

of approximation r = 1 r = 2 r = 3 r = 4 r = 5
of dispersive error 4 6 8 10 12
of dissipative error 3 5 7 9 11
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Now, we are interested in the stability of the fully discrete scheme. In a first step, we study the stability
by a plane wave technique on a homogeneous infinite grid. This technique provides necessary and sufficient
stability conditions of the scheme on a regular mesh. In a second step, we use an energy technique to prove
the stability on non-structured hexahedral meshes. We get a sufficient stability condition. Moreover, we
show that our scheme conserves a discrete energy. This property confirms the non-dissipative nature of
the scheme.

3.2.7.1. CFL conditions obtained by a plane waves technique. For a Cartesian homogeneous grid, we proceed as
for the spatial dispersion analysis except that we add the time discretization. Then, the numerical plane wave
becomes:
ðEn
i;j;k;pÞ

l ¼ El
ijkeiðxhnDt�k1hp1�k2hp2�k3hp3Þe�iðx̂ik1hþŷjk2hþẑk k3hÞ;

ðHn�1
2

ijk;pÞ
l ¼ H l

ijkeiðxh n�1
2ð ÞDt�k1hp1�k2hp2�k3hp3Þe�iðx̂ik1hþŷjk2hþẑkk3hÞ.

ð24Þ
So, spectral problem (22) is rewritten "l = 1, . . . , 3:
4h2

c2Dt2
sin

xhDt
2

� �
El ¼ aEl;

4h2

c2Dt2
sin

xhDt
2

� �
H l ¼ aHl.

ð25Þ
So, we deduce the space-time dispersion relations:
sin2 xhDt
2

� �
¼ Dt2c2

4h2
xh½k1�2 þ xh½k2�2 þ xh½k3�2
� �

; ð26Þ
where xh[ki]
2 is defined as in Theorem 1.

Finally, the numerical scheme is stable if and only if
Dt
h
6

2

c
1

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh½k1�2 þ xh½k2�2 þ xh½k3�2

q� � ¼ crffiffiffi
3
p ; ð27Þ
where the max is taken on all the eigenvalues of the 1D problem for i = 1,2,3 and cr corresponds to CFL num-
ber for the same 1D scheme using an order r of polynomial approximation.

The values of cr can be numerically determined and for r = 1, 2, 3, 4 and 5 we obtain 0.5, 0.247, 0.15, 0.101
and 0.0732, respectively.

It is thus sufficient to divide by
ffiffiffi
3
p

to obtain 3D CFL conditions.

3.2.7.2. Stability by energy technique. To prove the stability of the DG scheme by an energy technique, we use
the same approach as the one used by Piperno et al. in [26] on a non-dissipative finite volume scheme.

The discrete energy, which naturally appears when one uses a leapfrog scheme for the time domain approx-
imation, is defined by
En
h ¼

X
K2Th

En
K ; ð28Þ
where 8K 2Th,
En
K ¼

Z G

K
eKEn

hK � En
hK dxþ

Z G

K
lKH

nþ1
2

hK �H
n�1

2
hK dx. ð29Þ
We easily show that this energy is conserved during the discrete time, i.e., "n P 0, we have
Enþ1
h � En

h ¼ 0; ð30Þ
and that it can only be expressed as a function of the variables ~En
h and ~H

nþ1
2

h :
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En
h ¼

X
K2Th

Z G

K

~En
hK � ~En

hK dxþ
Z G

K

~H
nþ1

2
hK � ~H

nþ1
2

hK dxþ Dt
2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p

Z G

K
r� ~En

hK � ~H
nþ1

2
hK dx

	

þ Dt
2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p

Z G

K

~En
hK � r � ~H

nþ1
2

hK dx� Dt
2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p

XnbfiK

i¼1

Z G

Cqði;KÞ

ð~En
hV ði;KÞ � nKÞ � ~H

nþ1
2

hK drqði;KÞ

þ Dt
2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p

X6

i¼1

Z G

Cqði;KÞ

ð~En
hK � nKÞ � ~H

nþ1
2

hK drqði;KÞ



; ð31Þ
where ~En
hK ¼ En

hK

ffiffiffiffiffi
eK
p

; ~H
nþ1

2
hK ¼ H

nþ1
2

hK
ffiffiffiffiffiffi
lK
p

, V(i,K) is the neighbor of K containing the face Cq(i,K) and nbfiK is the
number of faces of K belonging to Fi

h.
From now, we can eliminate the exponent in n and the tildes in the notation, since we study the quadratic

form (31) for all the variables Eh, Hh. To prove the L2-stability, it would suffices if we determine a condition
for which this quadratic form is definite positive. In this case, En

h will define a norm.

Proposition 2. We have the estimate
Eh P Êh; ð32Þ

where
Êh ¼
X

K2Th

KK

Z G

K̂
ÊK � ÊK dx̂þKK

Z G

K̂
ĤK � ĤK dx̂þ Dt

2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p signðJ KÞ

Z G

K̂
r̂ � ÊK � ĤK dx̂

	

þ Dt
2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p signðJ KÞ

Z G

K̂
ÊK � r̂ � ĤK dx̂þ

XnbfiK

i¼1

Dt
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV ði;KÞlK
p signðJ V ði;KÞÞ

�
Z G

Ĉi0

ðÊV ði;KÞ � n̂i0 Þ �N �V ði;KÞ!KĤKoGV ði;KÞ!K dr̂i0 þ
Dt

2
ffiffiffiffiffiffiffiffiffiffi
eKlK
p

X6

i¼nbfiKþ1

signðJ KÞ
Z G

Ĉi

ðÊK � n̂iÞ � ĤK dr̂i



ð33Þ
and
KK ¼ min
16i;j;k6rþ1

jJ Kðx̂i; ŷj; ẑkÞj
kmaxððDF �KDF KÞðx̂i; ŷj; ẑkÞÞ

� �
ð34Þ
with kmaxðDF �KDF KÞ the greatest eigenvalue of DF �KDF K .

Proof. To show Kk, it would suffices if we to use the expression of the mass terms and take the minimum of
these terms on the Gauss points. Then, we use the properties of stiffness and jump matrices previously, which
were presented to prove the result. h

Let R̂, D̂ and B̂ be the 3(r + 1)3 · 3(r + 1)3 matrices defined by: "i, i 0 2 {1,2,3} and "l, l 0 2 {1, . . . , r + 1}3
R̂ðði; lÞ; ði0; l0ÞÞ ¼
Z

K̂
r̂ � ûi

l � r̂ � ûi0

l0 dx̂;

D̂ðði; lÞ; ði0; l0ÞÞ ¼ dii0dll0x̂l;

B̂ðði; lÞ; ði0; l0ÞÞ ¼
Z

oK̂
ðûi

l � n̂Þ � ðûi0

l0 � n̂Þdr̂.

ð35Þ
We are now going to estimate the terms of (33) in the function of kÊKk0;K̂ and kĤKk0;K̂ and to prove the L2-
stability:

Theorem 2. The condition given by
Dt
KK

<
2

cK

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax D̂�

1
2R̂D̂�

1
2

� �r
þ 1

2
max

16i6nbfiK

ffiffiffiffiffiffiffiffiffi
lK

lV ði;KÞ

q
;
ffiffiffiffiffiffiffiffiffi

eK
eV ði;KÞ

q� �
kmax D̂�

1
2B̂D̂�

1
2

� � ; ð36Þ
8K 2Th, is sufficient to ensure the stability of the DG scheme, where cK ¼ 1ffiffiffiffiffiffiffi
eK lK
p



G. Cohen et al. / Journal of Computational Physics 217 (2006) 340–363 353
Proof. We have
Z G

K̂
r̂ � ÊK � ĤK dx̂ 6 kr̂ � ÊKk0;K̂kĤKk0;K̂ . ð37Þ
Using the matrices defined in (35), we easily see that:
Z G

K̂
r̂ � ÊK � ĤK dx̂ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax D̂�

1
2R̂D̂�

1
2

� �r
kÊKk0;K̂kĤKk0;K̂ . ð38Þ
Now we estimate the surface terms:
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV ði;KÞlK
p

Z G

Ĉi0

ðÊV ði;KÞ � n̂i0 Þ � N �V ði;KÞ!KĤKoGV ði;KÞ!K dr̂i0

6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eV ði;KÞlK
p kðÊV ði;KÞ � n̂i0 Þk0;Ĉi0

kðn̂i0 � ðN �V ði;KÞ!KĤKoGV ði;KÞ!K � n̂i0 ÞÞk0;Ĉi0

6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eV ði;KÞlK
p kðÊV ði;KÞ � n̂i0 Þk0;Ĉi0

kðĤK � n̂iÞk0;Ĉi

6
1

2
cV ði;KÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
lV ði;KÞ

lK

r
kðÊV ði;KÞ � n̂i0 Þk2

0;Ĉi0
þ cK

ffiffiffiffiffiffiffiffiffiffiffi
eK

eV ði;KÞ

r
kðĤK � n̂iÞk2

0;Ĉi

	 

; ð39Þ
where cK ¼ 1ffiffiffiffiffiffiffi
eK lK
p .

In the same way, we obtain:
Z G

Ĉi

ðÊK � n̂iÞ � ĤK dr̂i 6
1

2
kðÊK � n̂iÞk2

0;Ĉi
þ kðĤK � n̂iÞk2

0;Ĉi

h i
. ð40Þ
Finally, we have
X
K2Th

�
XnbfiK

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV ði;KÞlK
p signðJ V ði;KÞÞ

Z G

Ĉi0

ðÊV ði;KÞ � n̂i0 Þ � N �V ði;KÞ!KĤKoGV ði;KÞ!K dr̂i0

"

þ 1ffiffiffiffiffiffiffiffiffiffi
eKlK
p

X6

i¼nbfiKþ1

signðJ KÞ
Z G

Ĉi

ðÊK � n̂iÞ � ĤK dr̂i

#

6
1

2

X
K2Th

cK max
16i6nbfiK

ffiffiffiffiffiffiffiffiffiffiffiffi
lK

lV ði;KÞ

r
;

ffiffiffiffiffiffiffiffiffiffiffi
eK

eV ði;KÞ

r !
kðÊK � n̂Þk2

0;oK̂

h
þkðĤK � n̂Þk2

0;oK̂

i

6

kmax D̂�
1
2B̂D̂�

1
2

� �
2

X
K2Th

cK max
16i6nbfiK

ffiffiffiffiffiffiffiffiffiffiffiffi
lK

lV ði;KÞ

r
;

ffiffiffiffiffiffiffiffiffiffiffi
eK

eV ði;KÞ

r !
kÊKk2

0;K̂ þ kĤKk2
0;K̂

h i
. ð41Þ
Eqs. (38) and (41) then lead to
Êh P
X

K2Th

KK 1� DtcK

4KK
max

16i6nbfiK

ffiffiffiffiffiffiffiffiffiffiffiffi
lK

lV ði;KÞ
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which ends the proof of the theorem. h
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4. Numerical results

To validate and to illustrate the advantages of this method, several comparisons on simple scattering prob-
lems with different other methods are made. In these comparisons, we are interested in the fields near the struc-
ture (EMC problems) or by far fields (RCS) for scattering objects and by the fields inside cavities. The
methods used to compare the results with our method are finite difference time domain (FDTD) [1], finite vol-
ume time domain (FVTD) [24] and marching on time (MOT) [4] methods.

4.1. Near fields and far fields for curved objects

The first example consists in evaluating the field scattered by a perfectly plate cone, at two test-points A and
B located near the structure. Fig. 5 shows the location of the test-points around the object. The cone is illu-
minated with a plane wave given by f ðtÞ ¼ Eye

�c2
, with c = 3e8t � z + 6. The incidence is along the axis z and

the minimum wavelength is approximately 300 MHz.
Fig. 6 shows a comparison between the solutions obtained with the different methods.
In this comparison, to obtain an accurate result for the FDTD method, it is necessary to use a mesh with a

spatial step size smaller than 0.025m = k/40. The classical k/10 criterion is not sufficient to obtain a correct
solution in this case.

The need to use a very small spatial step size implies a small time step (4.e�11 s) and a more important
number of cells in the computational domain (596,232), which dramatically increases the memory storage
(27 Mo) and the CPU time consumed in the FDTD method (99 min on a Pentium 4 at 3 GHz). In these con-
ditions, the discontinuous Galerkin approach is more interesting (25 min with a Q3-approximation for 15 Mo
of memory storage).

For the FVTD method, the results obtained with a spatial averaged step size equal to k/10 are correct due
to the fact of taking accurately into account the shape of the object with a reasonable number of cells in the
domain (46,292), which implies a low memory storage (6 Mo). But the apparition of little cells in the unstruc-
tured mesh induces a little time step (2.e�7 s) to guarantee the stability and a supplementary cost in the CPU
time for the FVTD solution (35 min). In this condition, the discontinuous Galerkin method again remains
more interesting in terms of CPU time.

The second example consists in evaluating the backscattered far field of a perfectly metallic sphere of radius
1 m. Fig. 7 shows a comparison of the solutions obtained by the discontinuous Galerkin approach, the FDTD
method and a time domain EFIE method (MOT), which is considered to be the reference solution. We can see
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A

Fig. 5. Location of the test-points on the cone.
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the perfect agreement between the DG and MOT solutions and the difficulty to coincide with the FDTD
method. This is probably due to the staircase approach of the semi-disk. Again, in this example, the GDM
allows us to obtain an accurate solution with the same advantage of memory and CPU time as for the previous
example.

In these methods, the far fields are computed by an integral formula using electric and magnetic currents
taken on a fictitious surface which encloses the scattered object [30].

4.2. Cavity problems and behavior of the solution at long time

For cavities or for long time experiments, the dispersion and the dissipation errors of the numerical scheme
play a very important role. In these kinds of problems, the high order character of the method is crucial to
obtain an accurate solution. To illustrate this purpose, we first study the propagation of a mode inside a per-
fectly metallic cubic cavity (E · n = 0 on the wall of the cavity) with an edge of 1m. The propagative mode
studied is a mode (m,n, 0) given by
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Ex ¼ 0; Ey ¼ 0; H z ¼ 0;

Ez ¼ sinðmpxÞ sinðnpyÞ cosðxtÞ;
Hx ¼ 1

xl0
pn sinðmpxÞ cosðnpyÞ sinðxtÞ;

Hy ¼ 1
xl0

pm cosðmpxÞ sinðnpyÞ sinðxtÞ.

8>>>><>>>>: ð43Þ
Fig. 8 shows the comparison between the exact and the computed solutions for a given mode (m = n = 3)
inside the cavity by using different orders of approximation and different mesh sizes. The advantage of using
high order schemes in this kind of problem appears clearly. We also notice the reduction of the number of cells
needed to get an accurate solution when the order increases. This also induces a gain of CPU time. Fig. 9
shows a comparison between computed solutions obtained on different meshes with the FDTD and the dis-
continuous Galerkin (Q5-approximation) methods. We notice on this example the good behavior of the dis-
continuous Galerkin method after 180 wavelengths.

The next example is the evaluation of scattered fields for a long time of observation. Generally, for perfectly
metallic objects with dimension of a few wavelengths (<10), the time of observation of the scattered signals is
short. This is not the case for dielectric objects or for large objects (>100 wavelengths). So it is worth perform-
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Fig. 8. Electric field taken inside a cavity after 180 wavelengths.
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ing this kind of experiment with our method. The configuration proposed is defined by a metallic sphere of
internal radius equal to 50 cm coated with a layer (thickness: 25 cm) of a dielectric material (er = 10). This
object is illuminated by a plane wave defined by (kx = 1, Ey = 377f(t,x), Hz = f(t,x)) with f(t,x) =
exp(�(5e8(t � (x + 20/3e8))2)) and we evaluate the field at a test-point A located at 1 cm of the object (see
Fig. 10).

The presence of the dielectric material makes the solution be unsteady for long observation time. In Fig. 11,
one can see the behavior of the solutions of the problems obtained by FDTD and ours for different sizes of
cells and different orders of approximation.

We can see in these figures the advantage of having a high order method to obtain a solution avoiding dis-
persion error. In the results shown in the previous figures, we use for FDTD (k/20) a mesh of 6,751,269 cells
(309 Mo) compared to 16,984 cells (42 Mo) for a Galerkin discontinuous Q3-approximation (we use the same
number of cells for the Q5-approximation (192 Mo) with a quite similar solution as for Q3-approximation).
The CPU times are similar between FDTD (k/40) and the Q3-approximation, but at long time of observation,
the solutions are very different. To improve the FDTD solution, we need to use a smaller spatial step and in
this case, the values of CPU time and memory storage obtained clearly show the efficiency of our method in
such experiments.
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Fig. 10. Cut of the object at the plane z = 0.
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5. Local time-stepping strategy

All these examples clearly prove the capacity of our method to take into account curved geometries and to
decrease the dispersion error in cavity problems or at long times. Of course, the efficiency of the method lies in
the possibility to get high order spatial approximation with reasonable memory storage and CPU time. How-
ever, the difficulty of this approach consists in obtaining a mesh only based on hexahedral cells. An efficient
method consists in constructing an initial mesh composed of tetrahedral cells and then, in splitting each cell
into four hexahedral cells. The drawback of this method is the very distorted character of the final mesh and
the fact that the size of some cells can be very little (as in tetrahedral meshes). Moreover, we have noticed some
problems of stability at high order in the classical PML [29], on some examples by using very distorted meshes.
To avoid this problem, another approach consists in using, for instance, an absorbing boundary condition
strategy [31]. However, generally, this approach needs to have the boundary of the computational domain
far from the object in order to get reasonable reflections. This condition can increase the computational
domain and the CPU time.

For all these reasons, the use of a local time-stepping strategy seems to be interesting.
The local time-stepping strategy that we propose has been applied to some scattering problems and gives

very good results for our actual experiments where the largest time of observation is on 100 wavelengths.
5.1. Proposed strategy

We can write our discontinuous Galerkin method as
H nþ1
2 � Hn�1

2 ¼ dt f EðEnÞ;
Enþ1 � En ¼ dt f H ðH nþ1

2Þ;

(
ð44Þ
where E, H are the electric and magnetic fields, respectively, and fE, fH are linear functions. dt defines the time
step verifying the stability condition:
dt < cfl
dl
m

ð45Þ
where m is the velocity of light in the medium, dl the size of the cell and cfl a strict positive number.
When the condition (45) is applied to each cell of the mesh, the value of dt varies from cell to cell. To ensure

the stability, the minimum value dtmin = min dt is taken as the time-step of the method. In our strategy, we
propose to define a value dtc = 2(n + 1)dtmin, where n is a given integer and take this value as the time step
of the method. Then, to ensure the stability condition, we obtain two sets of cells where the fields in the first
one labelled 1 are computed by using a time step equal to dtmin (the values of dt of each cell in this set are
smaller than dtc) and a second, labelled 2, where the fields are computed by using a time step equal to dtc.

In the time process, we obtain for one step in the set of cells labelled 2, 2(n + 1) local steps in the set of cells
labelled 1. To compute the fields located in the two sets, we need some values of fields located in the other set.
The difficulty of the local time-stepping process is to have the fields at the appropriate time in each step. This is
generally obtained by doing interpolations, but this is more difficult in the leap-frog scheme presented above.

The strategy proposed to obtained this coincidence of time is the following:

– mark with number 3 the cells labelled 2 which are neighbors of the cells labelled 1;
– mark with number 4 the cells labelled 2 which are neighbors of the cells labelled 3. At this step, we obtain a

configuration of labelled cells as represented in Fig. 12.
– assume we know the magnetic and electric fields in the computational domain, respectively, for the time
ðm� 1

2
Þdtc and tm = mdtc. At each step dtc, we have the following sequence:

– save at the time tm � dtc
2

in Hs the H fields and at the time tm in Es the electric fields for the cells marked 3
and 4;

– compute H for all the cells marked 2,3 and 4 at the time tm þ dtc
2

;
– put t0 = tm;
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Fig. 12. Example of local time step cell marking.
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– for each local step 1 to n
– compute H for all cells marked 1 at the time t0 þ dtmin

2
;

– interpolate H for the cells marked 3 and 4 at the time t0 þ dtmin

2
by using Hs fields and the H fields pre-

viously evaluated at the time tm þ dtc
2

;
– compute E for the cells marked 1 and 3 at the time t0 + dtmin;
– increase t0 = t0 + dtmin;

– evaluate the H fields in cells marked 1 at the time t0 þ dtmin

2
, which is equal to tm þ dtc

2
by the choice made

on dtc;
– restore Es values in E for the cells marked 3 and 4;
– save at the time tm, the electric fields of the cells marked 3 and 4 in Es and the magnetic fields H at the

time of the cells marked 3 and 4 in Hs;
– evaluate the electric fields E for the cells marked 2,3 and 4 at the time tm + dtc;
– put t0 ¼ tm þ dtc

2
;

– for each local step 1 to n

– evaluate the electric fields E for the cells marked 1 at the time t0 þ dtmin

2
;

– interpolate the electric fields E for the cells marked 3 and 4 at the time t0 þ dtmin

2
with the values Es and

E previously computed at the time tm + dtc;
– evaluate the magnetic fields H for the cells marked 1 and 3 at the time t0 + dtmin;
– increase t0 = t0 + dtmin;

– evaluate the electric fields E for the cells marked 1 at the time t0 þ dtmin

2
;

– restore the Hs values in H for the cells marked 3 and 4;
– increase tm = tm + dtc;

The strategy presented here has two different time steps, but it is also possible to have more of them. In this
case, we only need to mark more cells with different numbers. For our applications, we do not use more local
time steps because the most important point is to eliminate the very small cells in order to have a time step for
the process large enough.

5.2. Numerical examples

To show the interest of this strategy, we consider a plane wave illuminating a cone, as previously studied in
the numerical results section. The scattered fields are observed at the test-point A (see Fig. 5).
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To obtain the unstructured mesh of the computational domain, we enclose the cone inside a sphere where
an absorbing condition of order 1 is applied (condition of Silver-Muller). The domain between the cone and
the sphere is given by a set of tetrahedric cells, which are split into four hexaehdric cells. This kind of mesh
implies that the size of a lot of cells cannot be easily controlled. Consequently, the obtained mesh contains cells
with large variation of size. Therefore, it is interesting to apply in this case a local time-stepping strategy in our
method.

Fig. 13 shows a part of the unstructured mesh where we can see the significant difference between the
size of the cells. In particular, in this mesh, the smallest size of the cell is equal to 0.02 m, the largest size
to 0.45 m and the averaged size to 0.2 m . In our Galerkin method, these values imply, for a Q3-approx-
imation, a time step dt equal to 5e�12 s to ensure the stability. If we consider a time step equal to 3 times
this minimal value, the number of cells where the condition of stability is locally verified is equal to 535
compared to 13,160 for all the computational domains. Then, only 4% of the cells in the mesh require the
application of a local time step equal to dt. The others are evaluated by using a time step equal to 3 dt. If
we consider time steps equal to 5 and 7 times dt, the number of cells where dt must be applied increases,
respectively, to 25% and 43%.

With a simulation time equal to 3.5e�7 s, we compare the method by using dt as the time step on the
whole domain and a strategy of local time steps by using time step given by 3, 5 and 7 times the value of
dt. Fig. 13 presents the results obtained in each simulation. We can see the perfect coincidence of the dif-
ferent curves with, for the simulation without local time steps, a CPU time of 337 min 24 s (on a Pentium
4 at 3 GHz) and for the others, a CPU time of 159 min 59 s, 180 min and 194 min 14 s, respectively. In
these results, we notice the important gain due to the use of a strategy of local time-stepping. However,
this gain is limited by the fact that additional interpolations on cells located around the little cells are
introduced in the calculation. This additional cost implies a limit of the time step under which we waste
CPU time because the number of small cells considered becomes too large in the mesh. In this example,
we can see this effect by using a time step larger than 3 · 5e�12 s. Nevertheless, in this example, we notice
that the CPU time is still smaller than the time required when we do not use a strategy of local time-
stepping.

This strategy has also been applied in the case of a larger size example (see Fig. 14) for which a comparison
with the classical FDTD method has been done. In this example, an aircraft is illuminated by a plane wave
given by (kx = 1, Ey = 377 * f(t), Hz = f(t)) with f(t) = 3.e8 * t � x. We evaluate the fields at the test-point
A = (6,0,1.5) located as shown in Fig. 14. To obtain the same solution, we need to have 6,301,008 cells in
the FDTD method and 180,076 in the Galerkin discontinuous method (Q2-approximation). The amount of
memory storage is more interesting in the Galerkin discontinuous method, however, because of the very small
size of several cells in our unstructured mesh, we need a very small time step (2.e�12 s) in the Galerkin dis-
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continuous method compared to 8.e�11 s in the FDTD method. In this case, the FDTD is more attractive
than the Galerkin discontinuous method in terms of CPU time. Nevertheless, by using the previous local
time-stepping strategy, we use only dt = 2.e�12 s on 18,211 cells (10%) of the mesh and a time step equal
to 11dt on all the others. In these conditions, the Galerkin discontinuous method is equivalent in terms of
CPU time to the FDTD method with a smaller memory storage. In this case, globally, the Galerkin discon-
tinuous method becomes once again more interesting than FDTD. Fig. 15 shows the comparison between the
solutions obtained by the two methods.

6. Conclusion

In this paper, we have presented a non-dissipative spatial high order Galerkin discontinuous method to
solve the Maxwell equations in the time domain. This method has the advantage of requiring small memory
storage with a high order spatial scheme. In particular, the use of a centered formulation allows us to obtain
an important gain in storage for jump matrices. A study of the dispersion and the stability of the method has
been done and some numerical results have shown the advantage of this method compared to other classical
methods such as FDTD, for the same level of accuracy of the solutions. In particular, in our experiments we
do not see an error impact due to the spurious modes, on the solution.
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However, for complex geometry problems, the drawback to this method is that it requires the use of a mesh
composed of hexahedric cells. A solution to obtain this kind of mesh from tetrahedric cells can be easily
obtained by splitting each cell into four hexahedric cells. But this implies a significant difference in terms of
the size of the cells and the size of the time step which must be very small. A strategy for local time-stepping
has been proposed in order to reduce considerably the cost related to the little cells in the mesh. Some exam-
ples of scattering for time of observation on at most 100 wavelengths justify the interest of this approach.
However, for this method, conservative energy quantity is not ensured and for long time-period the method
could be unstable. Then, for some specific examples such as cavities, this strategy could not be efficient and will
need to be improved in the future.
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