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AN ELLIPTIC COLLOCATION-FINITE ELEMENT
METHOD WITH INTERIOR PENALTIES*

MARY FANETI" WHEELER

Abstract. A discontinuous collocation-finite element method with interior penalties is proposed and
analyzed for elliptic equations. The integral orthogonalities are motivated by the interior penalty L2-
Galerkin procedure of Douglas and Dupont.

1. Introfluction. Continuous L 2 and discontinuousH-1 finite element-collocation
schemes have been defined and analyzed for the two-point boundary value problem [5],
[8], and [11]. In this paper we generalize the one dimensional L2 scheme to two
dimensions, although the arguments presented here can be extended to R". We shall
use discontinuous polynomial spaces.

Our primary interest here is in showing that one can define a collocation-finite
element method on triangles and quadrilaterals that yields optimal L 2 estimates.
Implementation of this scheme will be treated in a later paper.

Consider the boundary value problem

Lu f(x), x
(1.1)

u(x) g(x), x

where

(1.2) Lu =-V. a(x)Vu +b(x) Vu +c(x)u,

b (bl, b2), and f is a bounded domain in R 2 with piecewise smooth boundary 0f. Let
a (x), bi(x) and c (x)e C(fi) and let ao and a be two positive constants such that

ao<=a(x)<=al, x

(1.3) Ic(x)l<=al, x,
[bi(x)l<-_al, 1, 2, x.

We further assume that given [ e L2(f) and g e H3/(0) there exists a unique solution
u H2(f) to (1.1); moreover, we shall assume that the problem

L’w =q, x el,

w =0, x

has 0-regularity; i.e.,

Let h {E, E2,""", ENh} be a subdivision of f, where Ei is a quadrilateral or
triangle. The boundary polygons can be curvilinear. If h diam (Ej), we assume there
exists a p > 0 such that each Ej contains a ball of radius ph in its interior. We denote the
edges of the polygons by {e, e2, , ep,,, ee,,/,. , eMh} where ek cf, 1 <=k <----Ph, and
ek c3),, Ph + l <--k Mh. For k >_-0, let Hk(h)={l) L2(): [Ei EHk(Ei),
] 1, 2, , Nh}. The finite element subspace is taken to be
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where Pr(Ej) denotes the set of polynomials of degree less than r + 1 on Ej. The subspace, satisfies the following approximation property [4], [9], [10]: given w W(Ej),
0 =< s -< r + 1, 1 <- <- oo, there exists a constant C > 0, independent of w and hj such that

(1.4) inf IIw-xll,,<Cllwll:,h;-, O<-k <-s.
x,

Here

I I--< Ox L(i)

In the L 2-finite element-collocation procedure we define Uh ’h by collocating at
Kr=1/2r(r-1) distinct points in each E. and satisfying (2r+l)Nh integral
orthogonalities. These orthogonalities are taken with respect to the harmonic subset of,. The definition of the integral equations was motivated by the interior penalty
L 2-Galerkin procedure of Douglas and Dupont [6], [7], and G. Baker [3].

A somewhat similar procedure called the weak element method has been formu-
lated by Babugka for Laplace’s equation [2]. His procedure involves approximating the
solution with harmonic polynomials that satisfy a jump condition.

2. Notation and definition of method. We shall adopt the following notation. Let
l<-k <=Ph and ek =,fqE_. For (I) Hl+e(’h) e >0, and : Cek, set

{}()=1/2{ lim (x)+ lirn (x)}.x- 7
xEh xE

On each ek we select a normal direction n nk. A tangential direction z is taken so that
(n, r) is a positively oriented basis at each point of ek. We denote byER (EL) the polygon
whose inward (outward) normal is n. ForH1/, e >0, and 7 ek, set

One can easily verify that

[]() lim O(x) lim O(x).
x x
xEL XER

a O----VR a--nVt, ds a n Iv] ds,
ek k k

h

where VR VIE, and Vc viE,..
For Ph + 1 <= k <=Mh and : e, let

[](;) O(;) and

where nk is the outer normal with respect to D.
For , XltEH2(Ch) we set (dO, xIt)=ndO(x)W(x)dx, (dO, xIt>=ondO(s)XIt(s)ds,

(aV, V) E aV. VxIt dx, (do, xIt) oE do(s)XP(s) ds, and ((, xIt))j
1/2 1/2e q(s)(s) ds. We also let ]1 ((, >) IldP[Io, (, ) and

) 1/2
2

where a (a 1, 02), Oi 0, E is an open set in D, and H (E).
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We observe that since the solution u to (1.1) satisfies u H2(ID and [Ou/On] 0
on ek,

(2.1) ((aVu, Vv) +(b" Vu, v)i +(cu, v))- a Iv] (f, v)
Onk k

Since [u ] 0 on any interior edge, we note that

(2.2) a[u], k k --k=l (((bl +b2)[u], {o}}} g, ann
For , e H(g’h), define

A(, ) ((aVe, V) +(b.V, )i +(c, ))
1=1

Mh
(2.3) --kl (((a

k=l

v e./I/l

h.

(2.4)

and

(2.5) B,(P, )=A (O, )+J(O, ),

where l(ek) is the length of ek and Crk is a nonnegative constant.
From (2.1)-(2.5) we note that

B,,(u, v) (f, v)- g, a V J

Set h maxl_i<_Nh h. In the case b 0 and crk (1/l(ek)) oh -a, Douglas and Dupont
have defined the following interior penalty L2-Galerkin method [7]. Let Wh
satisfy

( aOV ./Ill"(2.6) Bo.(Wh, v)= (f, v)- g, On/’ v e h.

Assuming ’h is quasi-uniform, they have shown that B, is positive definite on t if
tr ->_ tro, where cro is some appropriate positive constant. Moreover, they have proven
that

and

nvo(U Wh, u Wh)/z -C,ollull,ah ’-, 2</<r+1,=

Ilu- IIo,. <- C o  o(U m, u wh)l/2h,

where Co is a positive constant independent of u and h. Thus Wh is an optimal L2
approximation of u. We shall later modify their analysis and extend it to include the
general form (2.5) and equation (1.1).
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We now observe that

where

and

gf,={v l,lAv =OonE, l <=j <=Na}

ygrh+/- {W S./gh](W, V) O, V Yg’h, 1 <=j <=Nh}.

Since A is clearly an isomorphism from ,+/- to t,- and the

local dimension d//, 1/2(r + 1)(r + 2) Kr+2,

it follows that the

local dimension ’h gr+2-gr 2r + 1.

Let {ai,j}l be a set of distinct points in the interior of Ej chosen so that if a
polynomial of degree r- 2 vanishes at all of them it vanishes identically.

We are now in position to define an interior penalty collocation-finite element
procedure. We assume f C(E), 1 <=j <= Nh.

Let Uh lrh satisfy

(2.7) (LUh)(a,.i) =l,2,...,Kr, 1 =l,2,’’’,Nh,
and

(2.8) B(Uh, v)= (f, )- g, a-n/ v e h.

3. Global estimates. Because 8’h is nondegenerate, the local inverse property
holds.

Local inverse property. For et, there exist constants Co> 0 and to> 0 such that

(3.1)

(3.2) l(ek)

and

2

< Col( )h-lllv,ll2 < CollVc,llgek 0,EI
k

l(ea I1, l(ea )Co(h]-1 2

(3.3)
I111o,,+ hllvllG,)

where e is an edge of E.
For convenience we define the following norms on H($)

(3.4) II1111= IIll,+J(, )
1=1

and

(3.5) IIIIIIL-II1111+ I{}1 l(ek +
k=l O’k k=l

2 l(ek)
kO’k

Using norm definitions, the local inverse property and the Cauchy-Schwarz
inequality, we immediately have the following three lemmas.
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LEMMA 1. For , He(h), there exists a positive constant C such that

LEMMA 2. For p Rh, there exists a positive constant C(tr) such that

II1111, c()llllll.
We next establish a Garding’s inequality for B.
LEMMA 3. For

B(,

Proofi From (1.3) and (2.3) we see that

=1
(3.6)

P

k Ok

Using the local inverse property and (2.4), we obtain

/2

(3.7) +(

where # (ao, a a, Co, o). us by (3.6), (3.7) and (2.5)

n(,) I111,,- aa + ao 41 l(e)
Letting 26 and

we obtain

g=min -- n
O’k

2B,(, ) -> gllllll2-

In our analysis we make use of the following trace theorem. A proof may be found
in [ 1] for flat edges ek. If ek is a curvilinear edge, then a local flattening argument is used
first.

LEMMA 4. If W H2(h), then there exists a constant C > 0 such that

V 2Iwl<f(hll wllo,,+h;llw
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and

Ow
<Chllw IIo,,),

where k is such that ek is an edge belonging to Ei.
An immediate consequence of the trace theorem and (1.4) is the following

approximation result.
Approximation property. If w eH (g’h), 2 --< --<f + 1, then there exists a X eg[, such

that

(3.8)

and

)1/2IIw-xllo,.<-c (llwlll,,h)

(3.9) IIIw-xlll,,= =< C (llwll,,,h-a)2

where C C(r) is a constant independent of w and hi. Inequalities (3.8) and (3.9) also
hold if [, is replaced by [, fl C(O) [10].

LEMMA 5. Let HZ(gh) and assume that

B(I,, v) 0,

Then there exists a positive constant C such that

(3.10) II*ll0,a <-- Cll[’t’ll[1,h,
where h maxl__<i_<rh hi.

Proof. Consider the auxiliary problem

L*F , x

F=0, x

Since F s H2(I-), we have

II,vllg,. (,v, L’r) B(,V, r) n(., r- r*),

Using (3.9) with 2 and w F we let F* X.
By Lemma 1 and the 0-regularity of L* we have

2Iio.o --< clll’lll,,lllr-xIIl,, -<- cIIl’I’lll,,llrll=,.h -<- CIIl*lll,,ll*llo,.h.
We now derive an optimal L z estimate for the interior penalty LZ-Galerkin

procedure.
TI-IEOREM 1. Let Wh e lrh satisI’y

aOV(3.11) B,(Wh, v)= (]’, v)- g, n/’ v elh,

where trk >--& There exists a constant C> 0 such that i[ h is sufficiently small

(3.12) IIIw -u

and

(3.13) [IWh u IIo,, =< ClllWh u II]l,h.
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Proof. It follows from Lemmas 3 and 5 that Wh is uniquely determined by (3.11).
Let X M, satisfy (3.8) and (3.9) with w =u. We set s =u-Wh, =u-x and
rl =X- Wh. By Lemmas 2 and 5

(3.14) I111o,. CIIllll,h < C(llllll, + II1 IIl)h.
Thus

(3.15) I1, IIo,. --< I111o,. / I111o,.- c(llllll, / II1, IIl)h / I111o,..
Hence by Lemmas 1 and 3, (3.14) and (3.15)

(3.16)

or for h sufficiently small,

Using (3.15), (3.17), (3.8) and (3,9) we have (3.12) and (3.13).
For the remainder ot this paper we assume u H’/1(%), > 2.
We now define a local projection Zh Ph (U) Of U onto, by

(3.18) (AZh)(r,.j) (Au)(c,.j), 1, 2,’’ ", K,, ] 1, 2," ", Nh,

and

(3.19) I.j (Zh-u)vdx =0, ve[,, ]= 1,2,... ,Nh.

We have the following error estimate for Zh- U.

LEMMA 6. Let Zh be defined by (3.18) and (3.19). There exists a constant C> 0
such that

(3.20a) Ilu zll,,<fllu II,,,h 3</=<r+l, 0<= k-l,

(3 20b) Ilu-Zll,, <Cllu"wo(Ej),, 2, 3, r 2, 0--< k =< l,

(3.21) Illu-zllll,

1/2
3 < =< r + 1,

C Ilullc,,)h, l= 2, 3, r= 2.
=1

Proof. Since existence and uniqueness of Zh are equivalent we deduce from (3.18)
and (3.19) that if u 0 then Zh =-0. Zh Phu is a local projection and PhX =X,

X f’121P,(E). Inequalities (3.20a) and (3.20b) follow directly from the approxima-
tion property (1.4) ([4] and [9]). Inequality (3.21) follows from Lemma 4 and (3,20a)
and (3.20b).

We next define Uh ullh by

(3.22) AVh(a,,,.)=(Au)(a,,j), i= 1,2,-.. ,K,, ]= 1,2,... ,Nh,

and

(3.23) B(Uh, v) (]’, v)- g, aon/ v h,
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where O"k ----(’. For h sufficiently small Uh exists and is unique. This is easily seen by
setting the data (Au)(tij), f and g equal to zero in (3.22) and (3.23) and using Lemmas 3
and 5.

Let v Wh-h where Wh is defined by (3.11). We note that

B(v, v) B(v, v -v), V ’h.
Since Zh- Uh h we have by Lemmas 1 and 2 that

B,(,, ,)= B,(,, Wh Zh <= CIIl,llllllW Zlll.
By Lemma 3

2a II1111- a I1 I1,,. fill. II1111w zII1,
and since d/t , c ,, by Lemma 5,

(3.24) 1111o,.-<- cllllllh.
Thus for h sufficiently small

(3.25) IIllll --< c(,)lllw zlll.
Using (3.24), (3.25), Lemma 6 and Theorem 1, we note the following result.

LMMh 7. Let Uh ed/l’h satisfy (3.22)and (3.23) with tr >-&. There existconstants
C(tr) > 0 and C> 0 such that for h sufficiently small,

(3.27) Illu r-Trlll, c() E Ilull’(,h, 2, 3, r 2,

and

(3.28)

It should be noted that Lemma 7 gives an optimal L 2 rate of convergence for the
L2-finite element-collocation method when L A. If r _>--3 the norm on the solution is
also optimal, optimal in the sense that it can not be weakened.

We now. consider the general second order differential operator given by (1.2). Let
Oh Uh- Uh where Uh and Uh are defined by (2.7)-(2.8) and (3.22)-(3.23) respec-
tively. Since

(3.29) B(Oh, v) O, v e h,

we have

(3.30) B,(Oh, Oh)= B(Oh, Oh--X),

Let W: d/t, satisfy W: e ,+/- and

(A W’)(a,.)= -1(Va V(u Uh)--b" V(u Uh)--c(u Uh))(a,.),
a

i=l,2,...,K, ]=l, 2,’’’,Nh.

We deduce that W: is uniquely defined since if AWh*(ai)= 0, i= 1, 2,’’ ’, K,, ]
1 2 Nh then WHhfqH"+/-

h {0}. One can easily verify that

(3.31) AOh
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From (3.30), (3.31), Lemma 1 and Lemma 2 we see that

(3.32) Bo.(Oh, o,,)<-_ C(o)lllo,,lll,lllwlll,.

Taking Crk -->C, we obtain by Lemma 3 and (3.32)

(3.33) 1110 II1- II0 IIg.,--< c()lllw, IIIL
Using (3.29) and Lemma 5, we note

(3.34) IlOh Iio.- =< CIII0 IIlh.
Substituting (3.34) into (3.33) we see that for h sufficiently small,

III0 II1 --< c()lll w*lll.
To bound III wlll it suffices to obtain an estimate of w’llo,, and then use the local

inverse property of ,.
For q e P,(Ej) we define the discrete norm

i=1

r_Lwhere q ql + q2, ql e Nh and q)2 e ah One can easily verify that II1" III is a norm on
P(E). Since all norms are equivalent on a finite dimensional subspace, we have that
there exists a constant C> 0 independent of hj such that

(3.36) II,I,IIo., --< cIIIq’lll, P, (E).
Now

(AW)(oti.j) [ --l(va. VOh-b VOh--COb)+ 1- (Va. V[h -b Vh--C[h)](Oli,j),
where h U Uh. We observe that

Kr
(3.37)

i=1

Since Oh P,(E) we have by norm equivalence

(3.38) IlOh llWE,)
By Sobolev’s inequality [1]

(3.39)

Substituting (3.38), (3.39) into (3.37) we have

(3.40) IIIwlll
i=1

By the local inverse property,

(3.41 IIvw Io,
and

(3.42) Iwl C(llWllo,h;’/=+llVW*IIo,,h/=),
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where ek is an edge of Ej. Since (1/l(ek ))hj <- C(p), we conclude from (3.40)-(3.42) that

N,

wlll=< c y. (110 z = ll3,E,h 4-limb zII1,E,h + I[[h 2 6 I[0,E,)"
i=1

Let ui be an interpolate of u on E and set ’h u- Oh. By (3.1) and (1.4) we have

Thus

h (lieh I]l,Ejhj) )1/2 U
32(3.43) IIIw*lll <C((,= j=l

From (3.33), (3.34) and (3.43), we see that for h sufficiently small,

(3.44) II{0.l[l -<- C() (llu u,ll3.,h)= + Ilffllo,.
/=1

Using inequalities (1.4) and (3.44) and Lemma 7, we note the following result.
To 2. Lee u eH+(h), >2, and let Uh be defined by (2.7)-(2.8) ith. ere exist constants C > 0 and C> 0 such thator h suciently small,

IIIg ulll c (llull/.,hI-) 3 < < min ( + 1 r +1),

Nh

and

IIu u Iio.. clllu- u IIl.h.
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