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AN ELLIPTIC COLLOCATION-FINITE ELEMENT
METHOD WITH INTERIOR PENALTIES*

MARY FANETT WHEELERT

Abstract. A discontinuous collocation-finite element method with interior penalties is proposed and
analyzed for elliptic equations. The integral orthogonalities are motivated by the interior penalty L>-
Galerkin procedure of Douglas and Dupont.

1. Introduction. Continuous L’ and discontinuous H ' finite element-collocation
schemes have been defined and analyzed for the two-point boundary value problem [5],
[8], and [11]. In this paper we generalize the one dimensional L? scheme to two
dimensions, although the arguments presented here can be extended to R". We shall
use discontinuous polynomial spaces.

Our primary interest here is in showing that one can define a collocation-finite
element method on triangles and quadrilaterals that yields optimal L> estimates.
Implementation of this scheme will be treated in a later paper.

Consider the boundary value problem

Lu=f(x), x e},

(1.1)
ux)=gx), xeoQ,
where
(1.2) Lu=-V-ax)Vu+b(x) Vu+cx)u,

b = (b1, b»), and Q is a bounded domain in R 2 with piecewise smooth boundary 3(). Let
a(x), b;(x) and c(x) e C*(()) and let a, and a, be two positive constants such that

a=a(x)=a;, xel,
(1.3) lc(x)|=ai, xeQ,
|b:(x)| = ay, i=1,2, xeQ.

We further assume that given f € L*(Q) and g € H>'*(3Q2) there exists a unique solution
u € H*(Q) to (1.1); moreover, we shall assume that the problem

L*w=gq, x€q,

w =0, x €0Q),
has O-regularity; i.e.,

W ller20r = Cllglle20-

Let &, ={E1, E,, " - -, En,} be a subdivision of , where E; is a quadrilateral or
triangle. The boundary polygons can be curvilinear. If h; = diam (E;), we assume there
exists a p >0 such that each E; contains a ball of radius ph; in its interior. We denote the

edges of the polygons by {e1, €2, * * -, €p,, €p,+1, * * * , €m,} Where ex =< Q, 1 =k =Py, and
e cdQ, P,+1=k=M, For k=0, let H(&,)={velL*Q): vlg eH"(E,),
j=1,2,-++, N,}. The finite element subspace is taken to be

Ny,
Mr= N P, (E)),
j=1
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where P, (E;) denotes the set of polynomials of degree less than r + 1 on E;. The subspace
M, satisfies the following approximation property [4], [9], [10]: given w € Wi(E)),
0=s=r+1,1=1=00,there exists aconstant C >0, independent of w and 4; such that

(1.4) inf [w—xllwte)=Clwlwseh; ™, 0=k =s.
XEMn
Here
P
D|lwk s = .
e =

In the L *-finite element-collocation procedure we define U, € .4}, by collocating at
K,=3r(r—1) distinct points in each E; and satisfying (2r+1)N, integral
orthogonalities. These orthogonalities are taken with respect to the harmonic subset of
M}. The definition of the integral equations was motivated by the interior penalty
L*-Galerkin procedure of Douglas and Dupont [6], [7], and G. Baker [3].

A somewhat similar procedure called the weak element method has been formu-
lated by Babuska for Laplace’s equation [2]. His procedure involves approximating the
solution with harmonic polynomials that satisfy a jump condition.

2. Notation and definition of method. We shall adopt the following notation. Let
1=k =P, and e, =E;, N E,,. For e H'**(%,,), £ >0, and % € ¢, set

{d)}(f)=%{ lim ®(x)+ lim @(x)}.

x->x x->x
x€Ej, x€Ej,
On each ¢, we select a normal direction n = n,. A tangential direction 7 is taken so that
(n, 7) is a positively oriented basis at each point of ¢,. We denote by Ex (EL) the polygon
whose inward (outward) normal is n. For ®e€ H'*¢, ¢ >0, and % € e, set

[@](X) = lim ®(x)— lim P(x).

x—>x x->X
x€EL x€ERrR

One can easily verify that
Jur J’ ur J’ { u } ,
- a—uvrds—| a—uvpds=—\| a{—l[v]ds, veMy,
Lk on Tl T L, “lon 1) ’

where vg = v|gx and v = 0|g,.

For P, +1=k =M, and x € ¢, let

- . ) .. oD .
[@15)=0() and {T2@)=22(),
Ni ank

where ny is the outer normal with respect to ().

For ®, Ve H(%,), we set (D, ¥)=[q ®(x)¥(x)dx, (®, V)= [,q D(s)¥(s) ds,
(aV®, VQ); = [5,aVd - V¥ dx, (D, ‘I’)£ = (o5, D(s)¥(s) ds, and (D, V) =
Je, @ (s)W(s) ds. We also let |®]; = (@, DY;">, | D5, = (P, ®)}/*, and

1 o 2 1/2
fohe=( % D)

where a = (a1, a3), @; =0, E is an open set in {2, and ®de H'(E).
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We observe that since the solution u to (1.1) satisfies u € H*(Q) and [ou/on]=0
on e,

2.1) %1 (@, Vo), + bV o)+ e, 0)) = 3 ({2 1) =10,

7= =

veM.

Since [u]= 0 on any interior edge, we note that
M, ov Py dv r
@2 -3 (el {5 - ¥ (@rblul o= ~(g.ar),  vedi
k=1 o)/ k k=1 on
For ®, ¥ € H*(%,,), define

A@, W)= 5 (@Vd, VE), +(b-Vd, V), +(cD, ¥),)
i=1

29 -2, (efSh ), (e {51

- é‘l {(b1+b2)[®], { ¥,

M 1

2.4) B@,W)= ¥ o (DL [¥D
k=1 lex)

and

(2.5) By (P, ¥)=A (D, V) +J5(D, V),

where [(ex) is the length of e, and oy is a nonnegative constant.
From (2.1)—(2.5) we note that

B, (u,v)=(f, v)—-<g,a§70>, ves.

Seth = max;s;=n, M. Inthe case b =0and oy (1/1(ex)) = oh ', Douglas and Dupont
have defined the following interior penalty L*-Galerkin method [7]. Let W, € #(},
satisfy

(2.6) B, (W, 0)=(, v)-—<g, ags> veM,

Assuming &, is quasi-uniform, they have shown that B, is positive definite on (}, if
o Z 0o, where g is some appropriate positive constant. Moreover, they have proven
that

Boo( = Wi, u = Wi) 2= Coolluliah’™, 2=I=r+1,
and
llt = Willo.0 = CooBoo(tt — Wi, u — Wi)'?h,

where C,, is a positive constant independent of  and h. Thus W, is an optimal L?
approximation of u. We shall later modify their analysis and extend it to include the
general form (2.5) and equation (1.1).
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We now observe that
M=% © i,
where
¥5={veMi|Av=00n E;, 1=j=N,}
and
={w eMi|(w,v);=0,ve ¥}, 1=j=N,}.

Since A is clearly an isomorphism from 9" to .#(}, > and the

local dimension M}, =3(r+1)(r +2) =K, .»,
it follows that the

localdimension #,=K,.,—K,=2r+1.

Let {a; ,,}fi'l be a set of distinct points in the interior of E; chosen so that if a
polynomial of degree r — 2 vanishes at all of them it vanishes identically.

We are now in position to define an interior penalty collocation-finite element
procedure. We assume f € C(E;), 1 =j =N,.

Let Uy, € M}, satisfy

(207) (LUh)(at,]) =f(al,[)’ i= 1, 2’ T, Kr, j= 1’ 27 T th
and

av ,
2.8) B, (Us, v)=(/, ﬂ)—<g, a5;>, ve ;.

3. Global estimates. Because &, is nondegenerate, the local inverse property
holds.
Local inverse property. For ® € M}, there exist constants Co > 0 and Co > 0 such that

(3.1) [®ll.e, = Coh; | ®lli-1,5,

(] 2 - -1 2 o~ 2
(32) l(ek) 5“"‘ . = Col(ek )h, "V(D"O,E, = C()"V(D"o,gl,
and
(33) 1(ex)|®lk = I(ex) Colh; @lf3.5,+ hilIVOI3.£)

= éo("‘D”(z),E, +1(ex )hj”Vq)"(Z),E,),

where ¢ is an edge of E;.
For convenience we define the following norms on H 2(&):

6.4 ol = 3 ol + 75, @

and

‘ M, 2
6.9 ot =0+ 3 opredy 3 |{I2)] T,

Using norm definitions, the local inverse property and the Cauchy-Schwarz
inequality, we immediately have the following three lemmas.
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LEMMA 1. For ®, ¥ e H*(&,), there exists a positive constant C such that
|Bo (@, ¥)| = Cl|®ll1.o ¥l
LEMMA 2. For ¢ € M}, there exists a positive constant C(o) such that

l1@ll:.c = C@)l@l-

We next establish a Garding’s inequality for B,,.
LEMMA 3. For ® € M}, there exist positive constants &, 6 and 8 (¢) such thatif o = 6

B, (®, @) = §||10|2 - all®l o
Proof. From (1.3) and (2.3) we see that

A@,9)= Z (@0 VOIl5 £~ a1IVPllo £, | Pllo.5, — a:1l|Pllo.£,)

j=1

(3.6) .
—_k§=:h1 20 H%} ‘kl[cp]lk —k§1 201 {PH [P

Using the local inverse property and (2.4), we obtain

2a,( ¥ {22} e+ 3 pothliel)

k=1

C(( k(_l I(ex )I[q):”k) ((:é"l "Vq)"g,E,)l/z

(3.7) * (,E, (0 £+ b eIVl ) )

1 1/2 Nn 2 \2
=CUN®, 9" ¥ Iolf5)

Z "‘DHI Ej+6-J(1)(¢7 q))9

where & = (a0, a1, Co, Co). Thus by (3.6), (3.7) and (2.5)

5@, 2% ¥ [velf- (o + 20+ jop o+ ¥ 2= Do

Letting 6 =26 and

we obtain
B, (®, ®) =5||®|* - a|P50, 0w =6

In our analysis we make use of the following trace theorem. A proof may be found
in [1] for flat edges ex. If e is a curvilinear edge, then a local flattening argument is used
first.

LEmMMmA 4. IfweH %(&y), then there exists a constant C >0 such that

wle=ChIVwllo.+h; wllh.e)
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and
ow|? -
2] =l Bs+ b IOw),
n |k

where k is such that e is an edge belonging to E;.

An immediate consequence of the trace theorem and (1.4) is the following
approximation result.

Approximation property. If w e H'(%,), 2=<1 =7+ 1, then there exists a y € .#}, such
that

N, no\ /2
(3.8) Iw=xloa=C( X (wlheh)?)
and

Nn 1-1,2\ /2
(3.9) I =l =C( 3 st ™)

where C = C(0) is a constant independent of w and h;. Inequalities (3.8) and (3.9) also
hold if .}, is replaced by .} N C°(Q) [10].
LEMMA 5. Let Ve H*(%,) and assume that

B,(¥,v)=0, ve,.
Then there exists a positive constant C such that
(3.10) 1¥[lo.0 = CllINlll1 ok,

where h = maxi=j=n; h;.
Proof. Consider the auxiliary problem

L*T =", x e,
r=0, x €9Q).
Since I'e H*()), we have
0= (¥, L*T)=B,(¥,1)=B,(¥,T~-T*), TI*e,

Using (3.9) with /=2 and w =T we let [*=.
By Lemma 1 and the O-regularity of L* we have

16,0 = Cll¥l o IT —xllh.o = ClI¥llICl20h < Cl¥ll0[¥lo.0h.

We now derive an optimal L> estimate for the interior penalty L’-Galerkin
procedure.
THEOREM 1. Let W, € M}, satisfy

(3.11) B,(Wi,0)=(f,0)~(g as0),  ved,

where o, =&. There exists a constant C >0 such that if h is sufficiently small
(3.12) IWh —ullio= C(;g (I[ullt,s,-h}_l)2> 1/2, 2=l=r+1,

and

(3.13) "Wh - u"o,g = CI”W}, —Uu "Il,crh
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Proof. It follows from Lemmas 3 and 5 that W, is uniquely determined by (3.11).
Let x e}, satisfy (3.8) and (3.9) with w=u. We set E=u—-W,, {=u—x and
n =x — W;. By Lemmas 2 and 5

(3.14) l€llo.o = Clliélh ok = CE e +lmlle)h.
Thus
(3.15) [nllo.c =lllo.0 +iZllo.c = CIElls.0 +limlllo)h + 11 llo.0.

Hence by Lemmas 1 and 3, (3.14) and (3.15)

8lmlle =B, (n, n) +dllll.a =B, (=, n)+dlnli.a

)

(3.16) A
= Colliclholbnll, +nlBo) = CollIR.+ (2+ C*2) I,

or for h sufficiently small,

(3.17) lnllle = Collgl.o-

Using (3.15), (3.17), (3.8) and (3.9) we have (3.12) and (3.13).
For the remainder of this paper we assume u € H'*'(&,), 7 >2.
We now define a local projection Z;, = P,,(u) of u onto .}, by

(3'18) (AZh)(ai,j) = (Au)(ai,j), l= 1’ 2’ ctty, Kr’ ]= 1, 2, e ’Nha

and
(3.19) I (Zp-u)dx=0, ved¥, j=1,2,--,N
Ej

We have the following error estimate for Z, —u.
LEMMA 6. Let Z, be defined by (3.18) and (3.19). There exists a constant C>0
such that

(3.20a) lu=Zilkg, =Clullgh;™  3<i=r+1, 0sks=l,
(3.20b)  |lu—Zulks, = Cllullweayh; ™',  1=2,3, r=2, 0sks=|,

Ny, 20 1/2
C( ¥ lulie 1(‘1)) ) 3<i=r+1,
j=1
(3.21) i = Zulli.o = ;
C.Z!,; Nl llwceh s 1=2,3, r=2.
/=

Proof. Since existence and uniqueness of Z, are equivalent we deduce from (3.18)
and (3.19) that if u=0 then Z,=0. Z,=P,u is a local projection and Pyx =y,
x € N} P,(E;). Inequalities (3.20a) and (3.20b) follow directly from the approxima-
tion property (1.4) ([4] and [9]). Inequality (3.21) follows from Lemma 4 and (3.20a)
and (3.20b). .

We next define U, € M}, by

(3~22) A(jh(ai.i) = (Au)(ai,}')’ i= 1’ 2a Y K,, j= 1’ 2’ Y Nh,

and

(3.23) B (U, v)=(f, v)—<g, aai::-> ve ¥,
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where oy = 6. For h sufficiently small U, exists and is unique. This is easily seen by
setting the data (Au)(«;), f and g equal to zero in (3.22) and (3.23) and using Lemmas 3
and 5.

Let v = W, — U, where W, is defined by (3.11). We note that

B,(v,v)=B,(v,v—v), ve¥h.
Since Z, — Uy, € %}, we have by Lemmas 1 and 2 that
B, (v,v) =B, (v, Wa — Zy) = Cllpllo || W — Zall-
By Lemma 3
Bllwllz—alvl.o = Clivllo I Wi = Zall,

and since ;< 9}, by Lemma 5,

(3.24) I llo.a = Clliwlll-h.
Thus for A sufficiently small
(3.25) lIvlle = C(@)|Wa — Zalll»-

Using (3.24), (3.25),~Lemma 6 and Theorem 1, we note the following result.
LEMMA 7. Let Uy, € M}, satisfy (3.22) and (3.23) with o =&. There exist constants
Ci(o)>0 and C,>0 such that for h sufficiently small,

(3.26) e = Ol = cl(a)(g”l (uuu,,,,-,h;*‘f)”z, 3<i=r+l,
N,

(3.27) IIIu - U;.Illl,.r =Ci(o) j; "u"Wé,(E/)h;, [=2,3, r=2,

and

(3.28) llt = Tillo.a = Co{llle = Walllso +lllee = Tl 0 1.

It should be noted that Lemma 7 gives an optimal L? rate of convergence for the
L*-finite element-collocation method when L = A. If r =3 the norm on the solution is
also optimal, optimal in the sense that it can not be weakened.

We now consider the general second order differential operator given by (1.2). Let
0, = U, — U,, where U, and U, are defined by (2.7)-(2.8) and (3.22)—(3.23) respec-
tively. Since

(3.29) B,(6n,v)=0, ve#h,
we have
(330) Ba(oh’ oh)=Bo'(0h, 0}, _X), X e%;t'

Let Wi e M}, satisfy Wi e ¥} and

1
(AW;?)(ai,j) =;(Va “Vu—U,)—=b - V(u—U,)—c(u— Uh))(ai.i)a
i=1:2"'.9Kr1 j=1’2"“’Nh'

We deduce that W is uniquely defined since if AW#(a;)=0,i=1,2,--, K, j=
1,2,- -+, N, then Wi e H,N H," ={0}. One can easily verify that

(3.31) A6, =AW},
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From (3.30), (3.31), Lemma 1 and Lemma 2 we see that
(3.32) By (01, ) = C(0)|6n [l Wil

Taking oy =&, we obtain by Lemma 3 and (3.32)
é A
(3.33) Sl6nlls—allulls.0 = C@)IWillz-

Using (3.29) and Lemma 5, we note

(3.34) 64 llo.c = Cll16xllA.
Substituting (3.34) into (3.33) we see that for h sufficiently small,

6l = C@MIWikllo-

To bound || W], it suffices to obtain an estimate of | W;||o.5, and then use the local
inverse property of /(.
For ® € P,(E;) we define the discrete norm

K,
(339) 0= 1oz, + 5 ( % AP

where ® = ®; +®,, ®, € ¥}, and ®, € #},*. One can easily verify that || - || is a norm on
P,(E;). Since all norms are equivalent on a finite dimensional subspace, we have that
there exists a constant C >0 independent of A; such that

Now
1 1
AWH)(as) = [—-;(Va V6, —b - V6, ~ct)+—(Va - VB, ~b - VB, —c;s,,)](a,-,,.),
where B;, = u — U,. We observe that

(3.37) ilgl [AW)(@ij)| = C0nllwac) +IBrllwas,)-

Since 6, € P,(E;) we have by norm equivalence

(3.38) (104 llws ) = Cll6nllr.eh; -

By Sobolev’s inequality [1]

(3.39) IBullwa & = CUIBxlls £k +[1Bullo.grh )
Substituting (3.38), (3.39) into (3.37) we have

(3.40) I3l =7 & [AWEat)|= Cllnlch-+Buls5 +Bulos).

By the local inverse property,
(3.41) IVWikllo.g; = CllWillo.gh; "
and
(3.42) Wikl = CUIWillo.g ki + VWil g1} "),
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where e, is an edge of E;. Since (1/I(ex))h; = C(p), we conclude from (3.40)—(3.42) that

Ny,
Iwile=c P (1641 17 +11Bn B &1 +1Bnll3.2)-

Let u; be an interpolate of u on E; and set ¢, = u; — U.. By (3.1) and (1.4) we have

hilBulls.g, =k} (lu —ulls 5, +alls.5) = Chllu — wlls £, +iZnllo.e;)-
Thus

Ni 1/2 Ny 1/2
343 Wil =C(( £ doulhsh)) "~ +( £ G —urlszhd?) " +lealloa)
j=1 j=1

From (3.33), (3.34) and (3.43), we see that for h sufficiently small,

Ny, 1/2
(3.44) l6ulle =C@)({ X (u—uls5h))?)  +lidulosa)-
j=1

Using inequalities (1.4) and (3.44) and Lemma 7, we note the following result.
THEOREM 2. Let uc H'*'(%,), #>2, and let U, be defined by (2.7)—(2.8) with
o = 3. There exist constants C, >0 and C,>0 such that for h sufficiently small,

N, 1/2
|||Uh—u|||,,§C,( 5 (||u||,,E,h;-1)2) . 3<i=min(+1,r+1),
j=1

Ny
”IUh - u"ll,a = Ctr ‘Zl "u"W.,'o(Ei)h;, I= 2’ 3a r= 2’
j=

and

U = ullo.o=CIU —ull1,oh.
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