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We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism
is an effective continuum model that captures the coupled dynamics of the fluid pressure and the
fractured rock matrix and models both the tensile and shear failure of the rock. As an application
of the formalism, we study the geomechanical stress interaction between two injection points during
hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For
injection points that are separated by less than a critical correlation length, we find that the frac-
turing process around each point is strongly correlated with the position of the neighboring point.
The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is
on the order of 30 − 45 m for rocks with low permeabilities. In the strongly correlated regime, we
predict a novel effective fracture-force that attracts the fractures toward the neighboring injection
point.

I. INTRODUCTION

Hydrofracking is a technology that utilizes highly pres-
surized fluid to create fracture networks in rock layers
with low permeabilities. A fracking fluid is injected into
a cased wellbore, and the parts of the reservoir to be
fractured are accessed by perforating the casing at the
correct locations (Fig. 1b). The injection well can be
vertical or horizontal, and several injection points may
be active during the hydraulic stimulation of the system
(Fig. 1a-b). The highly pressurized fluid that flows into
the reservoir increases the geomechanical stress around
the injection points and causes the rock to fracture. Ide-
ally, the hydrofracking creates long, distributed cracks
that connect a large area of the reservoir to the well. A
comprehensive understanding of this fracturing process
is therefore crucial to optimize the functionality of the
reservoir.

The creation of a fracture changes the geomechanical
strain energy of the system. If the reservoir contains sev-
eral fractures, the modification of the strain energy me-
diates an effective interaction between the cracks. The
interaction of fractures has been studied theoretically in
several works using both direct numerical simulations2,3

and statistical methods13,16. A geomechanical stress in-
teraction also exists between two injection points during
hydrofracking. A thorough investigation of this interac-
tion and its consequences for the fracturing process is
lacking.

The failure of homogeneous materials is well under-
stood. A fracture is created when the strain energy re-
lease rate exceeds a critical value, and it propagates along
the direction that maximizes the energy release10. The
failure of heterogeneous materials, in contrast, depends
on many microscopic mechanisms and is challenging to
model7. To understand the fracturing process of a het-
erogeneous material on the micro-scale, statistical mod-
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FIG. 1: (a) Hydrofracking using two vertical wells. (b) Hy-
drofracking using a perforated horizontal well. (c) A sim-
plified, discretized 2D representation of the reservoirs shown
in (a) and (b). (d) A heterogeneous system is modeled by
distributing the material strengths of the discrete volume el-
ements according to the Weibull distribution. The degree of
disorder is tuned by varying the Weibull modulus, m.

els such as the fuse - and the beam- models have been
particularly useful7,8. In these models, the heterogeneity
of the system is taken into account by defining a local,
position-dependent material strength that is drawn from
a statistical distribution. The fracturing process is there-
fore not entirely controlled by the energy release rate, but
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also depends on the disorder of the system and the dis-
tribution of the local strengths. Depending on the degree
of disorder, the statistical models have shown that het-
erogeneous systems exhibit fracturing regimes that are
distinct from the single-crack development observed in
homogeneous systems7.

Several models for hydrofracking have been devel-
oped1, but a weakness of most of these models is that
they do not account for the heterogeneities of the rock.
However, some research based on extensions of the sta-
tistical beam model has been applied to the study of
hydrofracking of heterogeneous systems6,17–19. Recently,
these studies have been further developed to provide a
better description of the rock matrix. In Wangen 21 and
Wang et al. 20 , the dynamics of the rock matrix are mod-
eled using poroelastic theory, and the heterogeneity is
treated by distributing the local material strength ac-
cording to a probability distribution.

In the present paper, we develop a model of the hy-
drofracking of heterogeneous, poroelastic media. The for-
malism captures the coupled dynamics of the fractured
rock matrix and the fluid pressure. The main parts of the
model, which describes the fracturing event and the ef-
fective coupling between the pressure and the fractures,
are based on a previous study by Wangen 21 . We ex-
tend this work by taking into account the anisotropic
fluid flow and the shear failure of the material. Hetero-
geneities are treated statistically by distributing the local
strength of the material according to the Weibull distri-
bution (Fig. 1d). We apply the formalism to the study of
the mechanical stress interaction between two injection
points during hydrofracking, and investigate the depen-
dency of the interaction on the disorder of the rock. For
two points that are separated by a distance that is smaller
than a critical correlation length, we find that the fractur-
ing process around each injection point is strongly corre-
lated with the position of the neighboring point. The crit-
ical correlation length at which this strongly correlated
regime occurs depends on the degree of heterogeneity,
with correlation lengths of approximately 20 m for highly
disordered systems and 45 m for weakly disordered sys-
tems. In the correlated regime, we predict a novel effec-
tive fracture force that attracts the fracture toward the
neighboring injection point. Our results are important
for optimizing the hydraulic stimulation of reservoirs. For
well perforations that are separated by a distance that is
less than the critical correlation length, the results im-
ply a reduced effect of the stimulation because the frac-
tures are attracted toward neighboring injection points.
Knowing the correlation length of the system is therefore
crucial for creating an effective and long-ranging fracture
network.

This paper is organized in the following manner. In
Sec. II, we present the theory and governing equations
of our hydrofracking model. The section concludes with
a pseudo code of the algorithm. Sec. III describes the
numerical solution strategy. The next two sections ap-
ply the formalism to the study of the interaction of two

injection points during hydrofracking. Sec. IV provides
a description of the model system that we consider, and
Sec. V presents our findings. We conclude and summa-
rize our results in Sec. VI.

II. GOVERNING EQUATIONS

In this section, we consider a poroelastic system and
develop the mathematical description that captures the
coupled dynamics of the fractured rock matrix and the
fluid. At the end of the section, the tensile and shear
failure criteria are defined.

A. Poroelastic Theory

Under the action of applied forces, an elastic medium
exhibits deformations. The deformations can be in the
form of a change in the shape of the object (without a
change in its volume), referred to as a shear deformation,
or a compression or stretching, referred to as a volumet-
ric deformation. Let r denote the position of a material
point in the medium before the deformation, and let r′

denote its value after the deformation. The displace-
ment of the point is then given by the displacement field
u(r) = r′ − r. The displacement field is a function of
the position r, i.e., it describes how each material point
moves under a deformation. For small displacements, the
state of the elastic system is completely described by the
strain tensor11:

εij(r) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1)

The diagonal elements of the strain tensor represent local
volumetric deformations around each point r, while the
off-diagonal terms capture the shear deformations. In
mathematical terms, the displacement field is a vector
field, and the strain tensor is a tensor field over the space
formed by the elastic object.

The dynamics of the elastic medium are described by
the following fundamental law of elasticity theory11:

ρ
∂2ui
∂t2

= Fi +
∂σik
∂xk

. (2)

Here, ρ is the mass density, Fi represents the external
forces, and σij is the stress tensor arising from the in-
ternal stresses. The internal stresses are caused by the
intermolecular forces that occur because of the relative
displacement of the molecules under the deformation. In
Eq. (2) (and in what follows), we apply the Einstein sum-
mation convention and sum over repeated indices. Usu-
ally, the only external force that appears is the gravita-
tional force, F = ρg, where g is the gravitational acceler-
ation. The equilibrium state of the system is determined
by solving the stationary equation, i.e., Eq. (2) with
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∂2ui/∂t
2 = 0. The elastic energy stored in a strained

system is11:

E =

∫
σijεijdr (3)

In this study, we concentrate on a porous, elastic rock
system with water-filled pores. In the linear response
regime for an isotropic, poroelastic system, the stress ten-
sor can be written phenomenologically as5:

σij = σ′ij − bpfδij , (4)

where

σ′ij = λεBδij + 2Gεij . (5)

The tensor σ′ij is the Terzaghi effective stress tensor,
which describes the stresses that act only on the rock ma-
trix, while σij represents the stresses acting on the total
fluid-rock system; εB is the trace of the strain tensor, and
λ > 0 and G > 0 are elasticity coefficients, referred to as
the Lamé and rigidity moduli, respectively. The parame-
ter b ∈ [0, 1] is the effective stress coefficient (also known
as the Biot-Willis parameter), which describes how the
lithostatic pressure changes with the fluid pressure pf .
A pressure pf > 0 corresponds to a fluid pressure that
is larger than the atmospheric pressure. We use the fol-
lowing sign conventions: εB > 0 and σii > 0 in tension
and εB < 0 and σii < 0 in compression. Substituting the
stress tensor in Eq. (4) into Eq. (2) and expressing the
strain tensor in terms of the displacement field produces
the equation of the poroelastic system. In this paper, we
assume that the relaxation time of the elastic system is
small compared with the time scale of the pressure evo-
lution. We can therefore assume that for a given fluid-
pressure profile, the elastic medium is always very close
to the equilibrium state. Thus, in what follows, we will
be concerned only with the stationary version of Eq.(2).

The above formalism models an isotropic system that
does not contain any fractures. In the numerical imple-
mentation of the problem, a simple way to model a frac-
ture is to set the elasticity parameters equal to zero (i.e.,
G = λ = 0) for the discrete volume elements containing
a fracture (Fig. 2). As shown by Wangen 21 , this method
of modeling the fracture correctly produces the form of
the stress field close to the fracture tip. A more correct
description of the stress field close to the fracture tip re-
quires a time-dependent grid with an extra fine mesh size
near the fracture tip. Such a detailed description is be-
yond the scope of the present model, in which the aim
is to provide a qualitative description of the fracturing
process.

B. Pressure Equation

The equation for the fluid-pressure is derived from the
following continuity equation based on fluid-mass conser-
vation5:

∂ζ

∂t
= −∇ · vf +Q(r, t). (6)

Here, ζ(r, t) is the fluid content added to the bulk volume,
and Q(r, t) is a source (sink) term that arises from the
injection (extraction) of the fluid. The quantity vf is the
Darcy velocity, which can be expressed in terms of the
fluid pressure (pf ), the permeability (k), the viscosity
(µf ), and the gravitational force (ρfg, where ρf is the
mass density of the fluid): vf = −(k/µf )(∇pf − ρfg).
In the most general (anisotropic) case, the permeability
k = [kij ] is a tensor. In particular, the permeability is
strongly anisotropic in the parts of the solid that contain
fractures.

Let us first consider a homogeneous poroelastic
medium that does not contain any fracture zones. In
this case, there are two independent mechanisms that
contribute to the fluid content ζ: an increase in the fluid
pressure without an increase in the bulk strain (i.e., the
fluid molecules are more densely packed), and an increase
in the pore volume caused by an increase in the bulk vol-
ume (while pf remains constant). This implies that the
fluid content can be written as5:

ζ = Spf + bεB , (7)

where εB is the volumetric change of the bulk volume.
The parameter S is the constrained specific storage fac-
tor. Thus, the time variation of ζ has two contributions:
one term that is proportional to ∂pf/∂t and a second
term that is proportional to ∂εB/∂t. The characteristic
time scale (tε) of the last term strongly depends on the
rock type, and the time scale of the first term (tp) is pri-
marly governed by the compressibility of the fluid. To
compare these two time scales, let us consider an elastic
medium that is not confined by any external forces so
that it is free to expand/contract in response to a pres-
sure perturbation. The response of the bulk volume is
then given by δεB = H−1δpf , where H−1 is the special
poroelastic expansion coefficient 5. With this expression
for the volumetric response, we obtain the following ratio
between the two time scales:

tε
tp

=
b

SH
. (8)

For hard rocks with a low porosity, i.e., φ < 0.1 and
b < 0.4, this time ratio is small, tε/tp < 0.15. Thus,
for hard-rock systems, the second term in Eq. (7) is neg-
ligible compared with the first term, and we therefore
disregard it in the following equations. This corresponds
to assuming that the porous medium is incompressible.
We also assume that the fluid is slightly compressible.
In this approximation, the constrained storage factor is
S = φβf , where βf = ρ−1

f (∂ρf/∂pf ) is the compress-

ibility factor under isothermal conditions. Eq. (6) then
becomes

φβf
∂pf
∂t

= ∇ · k

µf
(∇pf − ρfg) +Q(r, t). (9)

Next, we treat the equation describing the pressure of
the fracture zones. In zones with fractures, a pressure
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gradient opens the fractures and consequently modifies
the local permeability and porosity. The time variation
of this process is of the same order as the pressure vari-
ation, and is a non-negligible contribution to the pres-
sure evolution. As a consequence, the pressure equa-
tion contains terms that couple the pressure dynamics to
the fracture dynamics. In addition, the permeability be-
comes anisotropic with a much higher permeability along
the fractures than across the fractures. As described by
Wangen 21 , one method to include this coupling in a nu-
merical implementation of the problem is to assign to
each fractured volume element (of the discretized sys-
tem) an effective porosity that depends on the opening
of the fracture (Fig. 2). The effective porosity of the
volume element i is:

φ
(i)
eff (t) = φ+ (1− φ)φ

(i)
frac(t), (10)

where

φ
(i)
frac(t) = V

(i)
frac(t)/V

(i)
0 . (11)

Here, V
(i)
frac(t) is the volume of the fracture inside ele-

ment i, and V
(i)
0 is the volume of element i. The fracture

volume of each element is found by integrating the dis-
placement field over the fracture surface (Fig. 2):

V
(i)
frac(t) =

∫
∂V

(i)
frac

u(t) · dS.

The effective porosity becomes equal to one if the frac-
ture fills the entire volume element, and it reduces to the
porosity of the rock if the fracture is closed or if element
i does not contain a fracture.

Volume Element i u i+1

u i -1
Fracture volume:

x

y

∂ V
( i )
frac

V
( i )
frac =

∂ V
( i )
frac

u · dS ≈ |u i+1 − u i− 1 |a

a

FIG. 2: The figure shows a system containing a fracture (the
blue area). The fracture volume is calculated numerically
from the displacement field in the neighboring volume ele-
ments of the fracture. The displacement field is illustrated
by the red arrows. The elasticity parameters of the elements
containing parts of the fracture are equal to zero. The volume

of each element is V
(i)
0 = a2.

Incorporating the effects of the fractures with an ef-
fective porosity is a suitable approximation as long as
the typical length scale of the pressure variations is large
compared with the opening of the fracture. Let φeff(r, t)

denote the continuum limit of the effective porosity. Be-
cause of the time variation of the effective porosity, the
continuity equation for the fluid mass now becomes:

φeff
1

ρf

∂ρf
∂t

+
∂φeff

∂t
= −∇ · vf +Q, (12)

which yields the following the pressure equation:

φeffβf
∂pf
∂t

+
∂φeff

∂t
= ∇ · k

µf
(∇pf − ρfg) +Q.(13)

The fractures also modify the permeability, which be-
comes an anisotropic second-rank tensor. In our numer-
ical implementation of the problem, we assign to each
volume element a permeability tensor that depends on
the fracture direction and the fracture opening (In the
numerical model, we allow the fracture to propagate only
in the x and the y directions for simplicity). As an illus-
tration, let us consider the situation shown in Fig. 2. This
2D system has an open fracture along the y-axis, and the
permeability is therefore larger along the y-direction than
along the x-axis. We model this effect by introducing the
following tensor:

k(i) =

(
k

(i)
x 0

0 k
(i)
y

)
=

(
k

(i)
⊥ 0

0 k
(i)
||

)
, (14)

where k
(i)
⊥ ≈ krock is the permeability across the frac-

ture, which is equal to the permeability of the rock, and

k
(i)
|| ≈ krock +(kfluid−krock)φ

(i)
frac is the permeability along

the fracture. The quantity kfluid represents the perme-
ability inside the fracture. In the parallel plate model
for a single fracture, the fracture permeability is given
by the cubic law kfluid = w2/12 where w is the fracture
aperture. This yields a very large permeability that may
cause numerical problems. As mentioned by Wangen 21 ,
a practical solution to this problem is to choose a perme-
ability that is large enough to enact a minimal pressure
drop along the fracture, but is small enough to avoid nu-
merical instabilities. Eq. (14) becomes k = krockI (I is
the identity matrix) for elements that are not fractured or
that contain a closed fracture. The permeability tensor,
as defined in Eq. (14), is position-dependent and there-
fore gives rise to terms that are proportional to ∇kij in
Eq. (9).

C. Fracture Criteria

Porous materials fail under the action of a large fluid-
pressure gradient, and the failure can be induced by both
shear and tensile forces. Several phenomenological failure
criteria exist8,9,14. To capture both tensile and shear
failure, we adopt two distinct criteria.

We model the tensile failure by locally defining (i.e., for

each volume element i) a critical tensile stress, σ
(i)
c > 0.

If one of the eigenvalues of the Terzaghi effective stress
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tensor (evaluated at element i) exceeds the critical stress,
the volume element i fails. The compressive strength of
the material can be included in a similar manner. How-
ever, during hydraulic fracturing, the tensile failure is the
dominant fracturing mechanism, and we therefore disre-
gard compressive failure in our numerical simulation.

The shear failure is modeled in 2D by the Mohr-
Coulomb criterion9,14:

|(σ(i)
1 − σ

(i)
2 )/2| ≥ −σ

(i)
1 + σ

(i)
2

2
sin θ + c(i) cos θ.

Here, θ is the internal friction angle, which depends on
the density, surface, and shape of the particles constitut-
ing the solid, and the cohesion, c, describes the minimal
shear force that is required for fracturing when no normal

stresses are present. Furthermore, σ
(i)
α are the eigenval-

ues of the Terzaghi effective stress tensor evaluated for
volume element i. In a 3D system, the Drucker-Prager
criterion is used9:

τ (i) ≥ 2

(1 + α)2

(
−
(
σ

(i)
1 + σ

(i)
2 + σ

(i)
3

)
+ ασ(i)

c

)2

,

where τ (i) is:

τ (i) ≡ (σ
(i)
1 − σ

(i)
2 )2 + (σ

(i)
3 − σ

(i)
2 )2 + (σ

(i)
1 − σ

(i)
3 )2.

The parameter α > 1 is a dimensionless material param-
eter.

As discussed by Wangen 21 , the critical stresses (i.e.,

the parameters σ
(i)
c and c(i) in our model) depend on

the grid size because the stress field is singular at the
fracture tip. Wangen 21 solves this problem by scaling
the critical stress with the square root of the grid size.
An alternative procedure, is to use experimental data

to fit the values for σ
(i)
c and c(i), such that fracturing

occurs for fluid pressures in the experimental range. In
this paper, we apply the latter approach by tuning the

mean values of σ
(i)
c and c(i) so that shear and tensile

failure appear for bore-hole pressures that are typical for
the present problem.

The strength of a material usually follows a distribu-
tion that is well-described by the Weibull distribution
(see Fig.1d)8:

f(σ) =
m

σ0

(
σ − σth
σ0

)m−1

exp

(
−
(
σ − σth
σ0

)m)
.

Here, m is the Weibull modulus, σ0 is the mean value of
the critical stress, and σth is the threshold stress below
which no failure will occur (usually, it is set as σth =
0). We incorporate the heterogeneity of the rock into

our model by distributing the local strengths σ
(i)
c > 0

and c(i) > 0 according to the Weibull distribution. The
Weibull modulus is a measure of the degree of disorder in
the system. A system with a small Weibull modulus has
a higher degree of disorder than a system with a larger
modulus. This method of modeling the heterogeneity
is analogous to what is done in microscopic fracturing
models, such as the fuse - and the beam -models.

III. NUMERICAL SOLUTION APPROACH

The model presented in the previous section is an effec-
tive continuum model of a fractured poroelastic system.
Our primary aim is not to provide a detailed description
of the stress field close the fracture tip or the fluid flow
inside the fractures. Instead, we seek a simplified descrip-
tion of the coupled fluid-rock system that captures the
primary elements of the fracturing process to obtain a
qualitative understanding of hydrofracking, for example,
to sort out the mechanisms that dominate the process or
to map out what types of fracturing regimes are produced
by different material parameters.

To solve the system of equations presented in the previ-
ous section, we apply a sequential solution strategy using
standard numerical discretization methods.

A. Discretization Methods

The pressure equation, Eq. (13), is solved with a finite
difference formulation of the complete pressure equation
that captures the pressure dynamics in the fracture zones
and in the homogeneous regions of the system. To iso-
late the effect of interactions between the two injection
points, we disregard the gravitational force in the Darcy
velocity, and for simplicity, we consider a 2D rectangular
region that is discretized with a lattice constant, a, as
illustrated in Fig. 1c. An explicit scheme is implemented
using a forward Euler discretization in time for the tem-
poral pressure derivative. The time derivative, ∂φeff/∂t,
is calculated from the last two time steps.

The ordinary differential equations arising from the
discretized pressure equation are solved using the Cash-
Karp embedded Runge-Kutta method15, which is an
adaptive algorithm that regulates the time step using an
error estimate.

The boundary condition for the pressure is pf = 0.
The Galerkin method with bilinear trial functions is used
to solve the stationary stress equation, Eq.(2) (see Lang-
tangen 12 for more details). We use traction-free bound-
aries as boundary conditions in the present problem, i.e.,∫
∂Ω
σijnjdS = 0 for all i, where ∂Ω is the boundary of

the system, and n is its surface normal.
Our simplified method of modeling the fractures re-

sults in a grid-dependent fracture aperture and effective
porosity. In practice, we fix the grid size by claiming that
the opening of the fracture is of the order 1 mm when
the pressure inside the fracture is of the order 1 MPa.

B. The Fracture Event

The present model assumes that the reservoir consists
of hard rocks with a low porosity, so that the ratio
in Eq. (8) is small. Physically, this means that the
relaxation time of the rock system is much less than
the time variations of the pressure distribution. We
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can therefore assume that the fracture event happens
instantaneously. This leads to a sudden fluid-pressure
drop inside the fracture, while the pressure outside the
fracture is not affected. The new fluid pressure inside
the fracture is determined using the Newton iteration,
based on the assumption that the mass of fluid inside
the fracture is preserved during the fracture event. The
iterative scheme is:

1. Adjust pf 7→ pnew
f .

2. Solve stationary Eq. (2) with the new pressure pro-
file.

3. Calculate the new fracture volume, V new
frac .

4. If V old
fracρ(pold

f , T ) = V new
frac ρ(pnew

f , T ), stop the
iteration process. If not, return to step 1.

Here, ρ(p, T ) is the equation of state of the fluid, which
expresses the fluid-mass density as a function of the tem-
perature and the pressure.

C. The Algorithm

We end this theory section with a brief pseudo code
of the numerical solution strategy:

1. Solve the pressure equation, Eq. (13), for the cur-
rent time step.

2. Solve the stationary stress equation, Eq. (2), with
the new pressure profile.

3. Check the fracture criteria for each volume element.

4. If no fracturing occurs:

(a) Calculate the new fracture volumes. Update

φ
(i)
eff , ∂φ

(i)
eff/∂t, and k(i).

(b) Calculate a new time step from the error esti-
mate, and return to step 1.

5. If fracturing occurs:

(a) Set G = λ = 0 for the fractured volume ele-
ments.

(b) Find the new fluid pressure and the volume
of each fracture using the iterative scheme in

Sec. III B. Update φ
(i)
eff , ∂φ

(i)
eff/∂t, and k(i).

(c) Calculate a new time step from the error esti-
mate, and return to step 1. Use the updated
pressure profile as the initial pressure for the
next time step.

IV. MODEL SPECIFICATIONS

Next, we apply this fracturing model to the study of
the geomechanical stress interaction between two injec-
tion points during the hydrofracking of a rock system
with low permeability.

The elasticity parameters of the system are G =
13.7 GPa and λ = 21.7 GPa. The mass-density of the
fluid-rock system is ρ = 2620 kg/m3. The effective
stress coefficient is b = 0.38, and the fluid compress-
ibility is βf = 5.9 × 10−10 Pa−1. The viscosity of the
fluid, the porosity and the permeability of the rock are
µf = 200 × 10−6 Pa s, φ = 0.08 and krock = 0.026 mD,
respectively. The viscosity and the compressibility of the
fluid correspond to that of pressurized water (in the liq-
uid phase) at a temperature of approximately 413 K5.
These poroelastic parameters are collected from the tech-
nical data of the Los Humeros geothermal field5. With
these material parameters, the time ratio in Eq. (8) is
tε/tp ≈ 0.1. The permeability, kfluid, inside the fractures
is four orders of magnitude larger than the rock perme-
ability.

We represent the reservoir as a 2D discretized system.
To solve the pressure and stress equations, i.e., Eq. (13)
and Eq. (2), we use a quadratic grid, as illustrated in
Fig. 1c, with a grid size of a = 5 m. The dimensions of
the system range from Lx = Ly = 150−220 m, depending
on the separation of the injection points.

The simulation starts with two injections points sep-
arated by a distance, L. Initially, the system contains
no fractures. The elasticity parameters of the injection
elements are equal to zero. The mean values for the co-
hesion, c, and the critical tensile stress, σc, are 1 MPa,
and the internal friction angle is 40 degrees. These values
result in tensile and shear failure for bore-hole pressures,
typically of the order of 1− 8 MPa. We consider systems
with a Weibull modulus of m ∈ {5, 15, 30} (Fig. 1d). The
injection points are placed along the y-axis, as illustrated
in Fig. 1.

In the present paper, our main aim is to investigate
how the stress interaction between two injection points
in combination with disorder influences the hydrofrack-
ing process. To isolate this effect, we have disregarded
the gravitational force in our numerical implementation.
However, in the next section, we provide a discussion of
the consequences of the gravitational force and its inter-
play with the stress interaction.

V. RESULTS AND DISCUSSION

Eq. (5) shows that geomechanical stresses arise from
spatial variations of the displacement field. Large spatial
variations result in large strain and stress fields. During
hydrofracking, the stress field is largest close to the in-
jection point and relaxes towards zero farther away from
the point (in the absence of gravity). Far from the injec-
tion point, the displacement field is equal to zero. The
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FIG. 3: (a) Elastic energy density of a system containing two
injection points separated by a distance of 15 m. The bore-
hole pressure is 5 MPa, and the injection rate is 10−4 m3/s.
(b) Elastic energy density of a system containing two injection
points separated by a distance of 65 m. The bore-hole pres-
sure is 5 MPa, and the injection rate is 10−4 m3/s. Note that
the rotational symmetry of the system is broken because the
injection element is quadratic, i.e. the rotational symmetry
around the injection point is reduced to quadratic symme-
try. This is why the strain energy in (b) is not isotropically
distributed around each injection point.

length scale over which the displacement field relaxes to-
ward a constant vector field is referred to as the relax-
ation length. If two injection points are separated by a
distance less than twice the relaxation length, the dis-
placement field around each point is influenced by the
presence of the neighboring point. This leads to an effec-
tive stress interaction between the two points.

A consequence of the geomechanical stress interaction
is that the strain energy increases in the area between
the two points. Fig. 3a-b shows the elastic energy den-
sity, σijεij , stored in the elements close to the two in-
jection points when the bore-hole pressure is 5 MPa. In
Fig. 3a, the injection points are separated by 15 m. In
this case, there is a significant stress interaction between

the two points, which causes the elastic energy density
to be largest in the region between the points. The rock
here is under particularly strong tensile stress. In Fig. 3b,
the points are separated by 65 m. For such a large sepa-
ration, the interaction between the points becomes negli-
gible, and the elastic energy density is equally distributed
around each of the two injection points.

In homogeneous materials under tensile stress, a frac-
ture propagates along the direction that causes the
largest strain energy release rate. During hydrofrack-
ing, we therefore expect the stress interaction between
two injection points to mediate an effective force on the
fractures that are created close to one of the points. This
effective fracture force is expected to drive the fractures
toward the neighboring point because this leads to the
highest release rate of elastic energy. In heterogeneous
materials, this effective force is accompanied by disorder
effects. Whether the fracturing process is disorder-driven
or effective force-driven, i.e., as the dominant fracturing
mechanism, depends on the degree of disorder.

Let us, at this point, briefly discuss the effect of the
gravitational force. The gravitational force yields a large
compressive stress of the order −25 MPa per distance of
1000 m beneath the surface, which is approximately one
order of magnitude larger than the tensile stresses pro-
duced by the injection of fluid. The effect of the grav-
itational force is to align the fractures along g. Thus,
there are two distinct forces acting on the fractures: one
caused by the gravitational field that drives the fractures
in the vertical direction, and one arising from the ge-
omechanical stress interaction that drives the fractures
toward neighboring injection points. The effect of the
gravitational field is well-known. In contrast, the effect
of the geomechanical stress interaction is new and is the
focus of the present paper.

To investigate how the stress interaction influences the
fracturing process of heterogeneous systems, we calculate
the ensemble-averaged propagation direction, 〈n〉. The
vector, n = (nx ny), is a unit vector that denotes the
initial propagation direction for a fracture created from
one of the two injection points. By definition, n = (0 1)
points toward the neighboring point. The value of n is a
function of the micro-state of the system. In other words,
its value depends on the distribution of the local mate-
rial strengths and the heterogeneity of the system. To
map the disorder dependency of the fracturing process,
we ensemble-average, n, by averaging over several micro-
states. A non-vanishing 〈n〉 implies that a fracture has
a larger probability of propagating along this direction
than in the other directions. In this case, the fracturing
process is strongly influenced by the stress interaction
and the location of the neighboring injection point. In
contrast, a vanishing 〈n〉 implies an isotropic distribution
of n, and the governing fracturing mechanism is the dis-
order of the system. Fig. 4a shows 〈ny〉 as a function of
the separation length, L, of the two injection points. The
injection points are placed along the y-axis. 〈nx〉 is not
shown because it is equal to zero for the systems we con-
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FIG. 4: (a) The ensemble average, 〈ny〉, as a function
of the separation of two injection points. 〈ny〉 is stud-
ied for different Weibull moduli, m. The injection rate is
2×10−4 m3/s. (b) The ensemble average, 〈ny〉, for the injec-
tion rates

{
2 · 10−5, 2 · 10−4, 2 · 10−3

}
m3/s. The separation

between the two injection points is 15 m, and the Weibull
modulus is 30. In both plots, the lines are guides to the eye,
and the ensemble average is obtained by averaging over 100
statistical realizations of the system.

sider. As expected, 〈ny〉 decreases as the separation be-
comes larger. This is because of a weaker interaction be-
tween the two injection points, which results in a weaker
effective fracture force and a reduced probability for the
fracture to propagate toward the neighboring point. How
quickly 〈ny〉 decays depends primarily on the degree of
disorder. For a Weibull modulus of 30, there exists an
effective attraction toward the neighboring point for a
separation less than 45 m. We refer to this separation
as the critical correlation length. If the Weibull modu-
lus is 5, which corresponds to a highly disordered system,
the critical correlation length decreases to approximately
30 m. For separations less than the critical correlation
length, the fracturing process around each injection point
is strongly correlated with the position of the neighbor-
ing point, and the fracturing process is governed by the
effective fracture force. For separations larger than the

critical correlation length, the disorder effects dominate
the fracturing process.

Fig. 4b shows 〈ny〉 as a function of the injection rate for
a system in which the Weibull modulus is 30, and the two
injection points are separated by 15 m. A decreasing in-
jection rate results in a larger 〈ny〉 value. This is because
of a stronger stress interaction between the two points.
The stronger interaction arises because of a slower pres-
sure build-up at the injection points, which leads to a
longer time interval before the fracturing appears com-
pared with a system with a higher injection rate. The
pressure therefore diffuses a larger distance into the rock
medium before the fracturing appears, which results in
a larger relaxation length of the displacement field. The
larger relaxation length yields a larger stress interaction
between the points.
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FIG. 5: (a) The histogram shows how many times the frac-
turing process creates a connecting fracture between the two
injection elements. For each length, L, and Weibull modulus,
m, 10 fracturing events are simulated. (b) The fluid pressure
along a connecting fracture between two injection points in a
system with a Weibull modulus of 5. (c) The fluid pressure
along a connecting fracture between two injection points in
a system with a Weibull modulus of 30. In (b) and (c), the
injection points are separated by 25 m.

The effective fracture force enhances the chance to cre-
ate a connecting fracture network between two injection
points. Fig. 5a shows how many times a number of frac-
turing processes creates a connecting fracture between
the two injection points as a function of the separation for
systems with different degrees of disorder. Two examples
of a connecting fracture are shown in Fig. 5b and Fig. 5c
for systems with Weibull moduli of 5 and 30, respectively.
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In the typical time evolution of such a fracture, the frac-
ture first connects the two points before a new fracture
arm is created from each point. In addition, for a system
with a high Weibull modulus (Fig. 5c), the fracture is
most likely to show the same character as a fracture in a
homogeneous system, i.e., a straight line fracture, while
the fractures in highly disordered systems (Fig. 5c) prop-
agate more randomly. The ability to create a connecting
fracture network is crucial for creating a geothermal sys-
tem, such as an Enhanced Geothermal System (EGS), as
well as in the exploitation of unconventional hydrocarbon
resources. In the case of hydrofracking, the effect of the
stress interaction is important. During hydrofracking,
the perforation zones ideally are completely uncorrelated
to create long and deep cracks that connect a large area
of the reservoir to the well. If the zones are spaced by a
distance of less than the critical correlation length, the
stress interaction leads to a reduced hydraulic stimula-
tion of the system. We therefore believe that our results
can be used in the optimization of the hydrofracking pro-
cess.

VI. CONCLUSIONS

In this paper, we developed a model of hydrofracking
and applied the formalism to the study of how geome-

chanical stress interactions between two injection points
influence the fracturing process. We found that when
the separations between the two injection points is less
than a critical correlation length, the fracturing process
around each injection point is strongly correlated with
the position of the neighboring point. The magnitude
of the critical correlation length depends on the degree
of heterogeneity of the rock. For weakly disordered sys-
tems, the correlation length can be as large as 45 m, and
for highly disordered rock systems, it reduces to approx-
imately 20 m. In the strongly correlated regime, there
exists an effective fracture force that drives the fractures
toward the neighboring injection point. An important
observation in this work is that the fracture force re-
duces the effectiveness of the hydraulic stimulation if the
injection points are separated by a distance less than the
critical correlation length.
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duction to the Numerical Modeling of Groundwater and
Geothermal systems, Taylor & Francis Group, London.

6 Flekkøy, E., Malthe-Sørenssen, A., and Jamtveit, B.
(2002), Modeling hydrofracture, J. Geophys. Res. 107,
ECV1-1-11.

7 Hansen, A. (2005), Physics and Fracture, Comput. Sci.
Eng. 7 (5), 90-95.

8 Herrmann, H.J., and Roux, S. (1990), Statistical Models
for the Fracture of Disordered Media, North-Holland, Am-
sterdam.

9 Jaeger, J.C., Cook, N.G.W., Zimmerman, R. (2007), Fun-
damentals of Rock Mechanics 4ed., Blackwell Publishing,
Oxford.

10 Knott, J.F. (1973), Fundamentals of Fracture Mechanics,
John Wiley - Halsted Press, New York.

11 Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., and Ko-
sevich, A.M. (1986), Theory of Elasticity 3ed., Elsevier,
Oxford.

12 Langtangen, H.P. (2003), Computational Partial Differen-
tial Equations: Numerical Methods and Diffpack Program-
ming, Springer-Verlag, Heidelberg.

13 Masihi, M., and King, P.R. (2007), A correlated fracture
network: Modeling and percolation properties, Water Re-
sour. Res. 43, W07439.

14 Paterson, M.S., and Wong, T. (2005), Experimental Rock
Deformation - The Brittle Field, Springer-Verlag, Heidel-
berg.

15 Press, W. H., Teukolsky S. A., Vetterling W. T., and Flan-
nery B. P. (1992), Numerical Recipes in C, Cambridge Uni-
versity Press, New York.

16 Shekhar, R., and Gibson, R.L. (2011), Generation of spa-
tially correlated fracture models for seismic simulations,
Geophys. J. Int. 185, 341-351.

17 Tzschichholtz, F., and Herrmann, H. (1995), Simulations
of pressure fluctuations and acoustic emision in hydraulic
fracturing, Phys. Rev. E 51, 1961–1970.

18 Tzschichholtz, F., and Wangen, M. (1998), Modeling of
hydraulic fracturing of porous materials. In: Alibadi, M.
(Ed.), Fracture of Rock, pp. 227-260, chapter 8, WIT
Press, Southampton.

19 Tzschichholtz, F., Herrmann, H., and Roman, H.M.P.
(1994), Beam model for hydraulic fracturing, Phys. Rev.
B 49, 7056–7059.

20 Wang, S., Sun, L., Au, A., Yang, T., and Tang, C. (2009),
2D-numerical analysis of hydraulic fracturing in heteroge-
neous geo-materials, Constr. Build. Mater. 23, 2196–2206.

21 Wangen, M. (2011), Finite element modeling of hydraulic
fracturing on a reservoir scale in 2D, J. Petrol. Sci. Eng.



10

77, 274–285.


	I Introduction
	II Governing Equations
	A Poroelastic Theory
	B Pressure Equation
	C Fracture Criteria

	III Numerical Solution Approach
	A Discretization Methods
	B The Fracture Event
	C The Algorithm

	IV Model Specifications
	V Results and Discussion
	VI Conclusions
	VII Acknowledgments
	 References

