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ROCK FAILURE 

NUMERICAL MODELING OF HYDRAULIC FRACTURE INITIATION AND 
DEVELOPMENT 

V. V. Zubkov, V. F. Koshelev*, and A. M. Lin’kov* UDC 622.83+539.4 

Studying initiation and propagation of hydraulic fractures is carried out based on the hypersingular 
boundary element method.  

Geomechanics, hydraulic fracture, numerical modeling 

INTRODUCTION 

The most effective and widely applied method for enhancing influx of a fluid (oil, gas) into a well 
is the hydraulic fracturing of rocks. The method is also used to alleviate burying conditions for 
unwanted substances (carbon dioxide, contaminants, radionuclides, etc.) and for geothermal energy 
extraction. Starting from a pioneer research by Zheltov and Khristianovich [1], the hydraulic fracturing 
has become a subject of many investigations [2 – 21], with the result presented in monographs [22] 
and reviews [23]. Theory and practice have been generalized in the studies [24] and recommendations 
of the International Society for Rock Geomechanics [25]. 

The subject of the most of theoretical studies is the simplest scheme of a rectilinear or circular crack 
under different interaction conditions of its edges [1, 11, 26 – 31]. As a rule, no consideration is given to 
an unsteady flow from a rock to a crack, that causes change in a stress state and leads to formation or 
closing of the channels. The hydraulic fracturing-induced seismic emission in a rock mass and further 
changes in filtration process were entirely left aside. So, we have a lot of important questions to answer as 
we speak about the hydraulic fracturing.  

Combining the newest calculation methods and experimental and observational data available 
facilitates and hastens the search for the answers. To follow along this path, the authors of the present 
paper engaged a newly developed method of hypersingular integral equations and the respective 
boundary element method (BEM) for adding to the abilities of the hydraulic fracturing numerical 
modeling. Moreover, it becomes possible to reveal the role of scattering and indefiniteness in sizes of 
initial (incipient) cracks and in strength characteristics, to bring in accord different linear scales, which 
may vary from decimeters for a well to tens and even hundreds meters for a formed hydraulic fracture, 
and to ensure stable estimates of a propagating shell-like fracture in a compressive stress field.  
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All these problems were not discussed in the first publications on this topic [32 – 34] that 
mostly illustrated the new capacity developed as a result of the hypersingular BEM. The present 
authors have faced these problems when initiated the “Hydromethan” project*. This paper answers the 
stated questions.  

Below we study a fracture initiation and propagation in a simplified statement up to the classical 
failure mechanics, and fluid motion in a crack and its filtration to a rock is beyond our attention. This 
statement is acceptable for modeling growth onset for a small crack [35] and is, thus, incapable of 
depicting the process in full if the crack length exceeds much a well diameter. Therefore, we withdraw 
from our discussion the questions on time dependence of the growing crack trajectory and which length 
corresponds to the growth stop.  

However, the improved algorithm and obtained results facilitate changing over to the next stage, 
that is taking into account the fluid motion. This passage is easy to do within the framework of the 
scheme from [35], i.e., by adding an equation of flow in an alternating section gap and a Carter type 
law of leakage. This will only change pressure distribution inside the crack at the algorithm stages of 
following by itself the crack growth, the algorithm and the whole program unaltered. In addition, some 
conclusions that were drawn for the simplified scheme, will hold true for the fluid motion. For 
example, the conclusions on crack propagation in the direction of maximum compression, on 
“elliptical” displacement discontinuity distribution for a long crack and on the limiting stress intensity 
factor value having almost no effect on the crack growth.  

The study is carried out for the plane strain conditions. Later, we assume changing over to 3-D 
modeling, integration of modeling unstable filtration in a crack and in rocks and involvement of 
seismic processes into the analysis.  
CALCULATION SCHEME AND THE SOLUTION METHOD 

A standard hydraulic fracturing modeling scheme is a horizontal section of a vertical well with an 
initial crack originating at the well boundary (Fig. 1). 

Let the rock mass be homogenous and isotropic. Original stress state of the rock mass (prior to 
drilling the well) is described by three principal components:** Hγσ −−−−====0

3 , hγHλ σσ −≡−= 1
0
1 , 

HH σγλσ −−−−≡≡≡≡−−−−==== 2
0
2 , where 0

3σ  are the vertical stresses; 0
1σ  and 0

2σ  are the horizontal stresses in the 
direction of 1x  and 2x ; γ  is the average gravity of rocks; Н is the hydraulic fracturing making depth; 

1λ  and 2λ  are the lateral thrust coefficients in the direction of 1x  and 2x , respectively. 
The 3x  axis is vertically upward, the axes 1x  and 2x  are in the horizontal plane and coincide with the 

directions of hσ  and Hσ , respectively; the angle ϕ  determines the initial crack orientation relative to the 
direction of the minimal horizontal stress hσ  (for the definiteness, it is assumed that hH σσ ≥≥≥≥ ). We 
suppose that upon fluid injection, the well contour and the boundaries are applied with a uniform pressure p. 
After reaching a limit bpp ==== , the hydraulic fracturing begins. The hydraulic fracture growth direction 
depends on stresses in the vicinity of the crack tip; the stresses, in their turn, depend on the combination of the 
original fields, fluid pressure and current geometry of the hydraulic fracture. Estimating possible propagation 
of the fracturing and its direction needs solving a boundary-value problem, i.e., finding the mentioned 
stresses for the current geometry of the hydraulic fracturing and under the assigned boundary conditions.  
 

*The project was launched in 2005, with financial support from the State Contract “Creation of the Technologies 
for Extraction and Commercial Application of Methane Reserves in Coal Strata”, No. 02.467.11.5002. Code 
EE.KP.3/002. 

**The compressive stresses are negative.  
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Fig. 1. Calculation scheme for modeling a hydraulic fracturing process: horizontal section of a well and  
an initial crack 

Geometry of the calculation scheme is complex, thus, we need numerical modeling methods for the 
solution. It seems the most natural to use the boundary element method based on the boundary integral 
equations (BIE) of the plane problem of the elasticity theory. The BEM, unlike FEM, for instance, 
assumes digitizing only the considered domain boundary, in our case, this is the well and crack 
section contour. The result is a large saving of computational resources. The used BEM variant is 
based on the complex hypersingular equations whose advantages as compared with the method 
developed in [36] and found a systematic application in problems of geomechanics [26 – 29], are 
described in detail in [37]. Along with the well-known analytical advantages, the equations in question 
allow simple and correct accounting for the crack coming out on the domain contour, branching of 
cracks and complex contact interactions. This fact is important for calculation schemes that include 
geological disturbances near the hydraulic fracturing propagation front and inhomogenous blocks.  

A complex hypersingular equation has the form:  
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In (1) integration is performed by a common boundary S of the domain including a fracture or a 
family of fractures, together with a contour of the well where from the hydraulic fracturing propagates, 
and a system of natural disturbances and boundaries of blocks. Points at S are determined by complex 
variables t (“observation” point) and τ  (integration variable); stroke above a symbol means a complex 

conjunction. The main kernels in (1) are as follows: 
t
ttk

−−−−
−−−−====

τ
ττ ln),(1 , 

t
ttk

−−−−
−−−−====

τ
ττ ),(2 . Real constants 

ja  ( j = 1, 2, 3) depend on Young’s moduli and Poisson’s ratios the blocks have on different sides of S; 
∞S  is a linear function of stresses in an intact rock mass [37].  
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At different sections of the boundary, either the forces )(tσ , or the displacement discontinuities ),(∆ tu  
or the relation to connect these values are assigned. In particular, the assigned forces on the surface of 
the hydraulic fracturing depend on the fluid pressure. In the general problem statement, this pressure is 
unknown beforehand and is found by solving a joint problem on the fluid flow and rock deformation. 
The system of equations should also involve relations for fluid filtration in joints and inside the coal 
seam if the hydraulic fracturing crosses it. The fluid pressure in the simplified problem statement may 
be used as an assigned value, based on data about a breakdown pressure and typical dependences of the 
pressure on the injected liquid volume or injection duration.  

We solve (1) by the complex BEM founded upon a discrete representation of the boundary as a set 
of elements: rectilinear segments and arcs of circles. Unknown functions are approximated inside each 
of the elements by a second-order, power (for rectilinear elements) or trigonometric (for the elements 
along the arcs of circles) polynomial. Special final elements are for tips of cracks. The displacement 
discontinuities are represented on the final elements by the product of a second-order polynomial and a 
square root of a distance to the tip. This kind of approximation of the usual and final elements ensures 
high accuracy and reliability of the results for the stress concentration area near the hydraulic fracture tip.  

While the hydraulic fracturing is propagating, the boundary S conforms to its current geometry. It 
is necessary to know the propagation direction in each step of the process, wherefore a sequence of 
problems is solved for small increments directed at different angles towards a tangent at the final point 
of the current shape. For this purpose, the studies [38, 39] present the specially developed algorithms 
for highly accurate and stable calculation. The algorithms help detecting the fracture trajectory by 
itself. The present authors have modified this procedure for the problem on the hydraulic fracturing 
with allowance for the problem features discussed below.  

To date, by the modeling method, it is possible to determine the onset conditions for a hydraulic 
fracturing and to plot reliably its trajectory.  

BREAKDOWN PRESSURE 

The key parameters for a hydraulic fracturing realization in practice are a breakdown pressure bp  
and a shut-in pressure sp  [25] that correspond to the fracturing growth start and to the large 
propagation of the fracture, respectively.  

From the viewpoint of mechanics, bp  is a pressure needed for initiating development of an initial 
crack. This pressure must be high enough to overcome compressive forces immediately at the well 
contour, where, as is known, there is a high stress concentration as compared with the zone remote 
from the well. The fracture is growing, and the well almost looses its influence when the distance 
between the fracture and the well is more than three – four well diameters, and now it is only necessary 
to overcome stresses of the intact rock mass.  

The procedure described in the previous section allows computing both the breakdown and shut-in 
pressures. We can do this for the prime pattern with involving an isolated well and a single, 
propagating from it fracturing for a more general scheme with any, practically reasonable, set of wells 
and fractures. In the latter case, the breakdown pressure corresponds to the onset of the most 
“dangerous” fracture growth.  

However, the prime pattern is of the most importance for the hydraulic fracturing mechanics, as it 
yields estimates of technological parameters and assists in analyzing parameters and techniques 
essential for numerical modeling. Below we cite some calculation data for the breakdown pressure, 
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obtained with no information about this values available beforehand. The geometry characteristics and 
initial stress state are assigned, and the problem with a gradually rising pressure of liquid is solved by 
BEM. A start pressure is taken as hσ5.0  and it then gradually rises with a small step hσ05.0 ; this step 
governs the actual calculation accuracy for the breakdown pressure that corresponds to the satisfied 
strength condition in the theory of cracks:  

 ICI KK ==== , (2) 
where IK  is a stress intensity factor (SIF) by an opening fracture mode dependent on the assigned 
forces and the problem geometry; ICK  is the SIF limit. Table 1 gives the values of the breakdown 

pressure bp , rated by hσ  and fitting a fixed dimensionless parameter 1.0
2/

========
d

K

h

IC

σ
µ  and an initial 

crack length 0l  to a well diameter d ratio of 0.1. These relations are quite standard for the hydraulic 
fracturing conditions, in particular, 1.0====µ  when 20====hσ  MPa, d = 0.14 m and 53.0====ICK  MPa·m1/2. 

It is obvious in Table 1 that bp  is close to the intact rock mass stress hσ  if the initial fracture 
orientation is at the angle ϕ  more than 45°. The breakdown pressure only exceeds hσ  more than by 
10 % when the initial fracture orientation is unfavorable, at an angle less than 45° toward the minimum 
stress direction. In exceptional cases, when there are no favorably oriented initial fractures near the 
well and the initial stress components ratio reaches 2, the breakdown pressure can be twice as high as 
the stress hσ . 

Proceeding from simple theoretical considerations and condition (2), we estimate bp  in order to 
simplify modeling of an onset stage of the hydraulic fracturing, since a serial search of the growing 
pressure values adds to the computational period. Considerations of the dimensions implies that in the 
problem on a fracture with a length 0l , growing from contour of a hole with a diameter d, when 

1/0 <<<<<<<<dl , SIF can be presented as [40]: 

 )2(0 σπα += plKI , (3) 

where σ  is a nominal (regardless fracture) circumferencial stress at the well contour where the fracture is; 
α  is a factor dependent on dl /0 . In extreme case, when 0/0 →→→→dl , we have 12.1====α , which corresponds 
to a fracture perpendicular to the half-plane boundary [41]. In this case, (3) assumes the form:  

 )2(12.1 0 σπ += plKI . (4) 
For a hydrostatic initial stress field in a rock mass ( qhH ========σσ ), q2−−−−====σ . When hH σσ ≠≠≠≠ , we 

have: 
 ]cos)1(43[ 2 ϕδδσσ −+−−= h , (5) 

where hH σσδ ==== . 

TABLE 1. The Rated Breakdown Pressures hbp σ/  Found by BEM for 1.0====µ  and 1.0/0 ====dl ) 

ϕ, deg 0 30 45 60 90 

0.2/ ====hH σσ  2.35 1.50 1.15 1.05 0.85 

2.1/ ====hH σσ  1.35 1.25 1.15 1.10 1.05 
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TABLE 2. The Rated Breakdown Pressures hbp σ/  for 12.1====α  

ϕ, deg 0 30 45 60 90 
0.2/ ====hH σσ  2.56 2.06 1.56 1.06 0.56 
2.1/ ====hH σσ  1.36 1.26 1.16 1.06 0.96 

 
Using relations (2) and (5), find the breakdown pressure:  

 
h

IC

h

b

l
Kp

σπα
ϕδδ

σ 0

2

2
cos)1(2

2
3 +−+−= . (6) 

Table 2 gives the breakdown pressures calculated from (6) for 12.1====α .  
Comparing Table 1 and Table 2 data shows that when hH σσ /  is close to one, an analytical 

estimate of the breakdown pressure is rather close to the numerical modeling results for any angle of 
the initial fracture. When the stress components differ much ( 0.2/ ====hH σσ ), the analytical estimate 
varies greatly from the numerical value obtained for 1.0/0 ====dl , especially when 45====ϕ ° and 90°. The 
main reason of error of the simplified theoretical estimate is that relation (5) yields the circumferencial 
stresses strictly at the contour, while the fracture tip is markedly apart from it and is in the nominal 
stress field somewhat less than given by (5).  

To make the simplified estimates more accurate, use the known, tabular stress intensity factors for 
the finite length cracks coming from a circular hole contour [41]. These values relate to the cases when 
forces are assigned at infinity and act along a normal to the crack or in parallel to it. The prime 
hydraulic fracturing pattern for a crack going along the action direction of any of the principal stress 

Hσ  or hσ  is reduced to such problem by the field superposition method: assigning of the equivalent 

stresses hp σσ −−−−====∞∞∞∞
1 , Hp σσ −−−−====∞∞∞∞

2  at infinity is only necessary. When the fracture is out of any of 
the said directions, the equivalent field contains non-zero components of shear stresses; for such 
angles there are unfortunately no tabulated SIF in [41]. The comparison data for the thus obtained 
estimates and the BEM calculation results for the cases described in the handbook [41] ( 0=ϕ ° and 
90°) is presented in Table 3.  

The results seem to agree quite satisfactorily. Deviation is somehow due to discreteness of the 
pressure increment steps ( hσ05.0 ) when meeting limiting condition (2). 

The above cited simple estimates are interesting from two points of view. First, they empower 
inverse calculations when the breakdown pressure is established experimentally and the more or less 
precise data is available on enclosing rock properties, original stress state and/or initial fracture 
orientation and size. In this case, we can find missing characteristics, for instance, an intact rock mass 
stress by using the pre-existing fracture method [25]. Second, it is possible to perform an analysis of 
sensitivity to the change in parameters, which are quite uncertain in the hydraulic fracturing problems, 
for example, the angle and initial length of the hydraulic fracture. 

TABLE 3. The Rated Breakdown Pressures hbp σ/  

ϕ, deg 0 90 
BEM 2.35 0.85 

0.2/ ====hH σσ  
Data from [34] 2.48 0.70 
BEM 1.35 1.05 

2.1/ ====hH σσ  
Data from [34] 1.37 1.01 
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Now we illustrate simplification of the solution for the problem on the breakdown pressure for 
conditions of relatively large depths. In the above-discussed calculation example using (6), the last 
number on the right-hand side was negligible as compared with the rest ones. It is important to know 
how wide is the range of such conditions, as these are the cases when we can do without assigning ICK  
and initial length of fracture. Given anomalously high δ  are taken away, to answer the question needs 
the following condition to be met:  

 1
2 0

<<<<<<<<
h

IC

l
K

σπα
. (7) 

In principle, it governs the estimate precision for the breakdown pressure with no data on initial 
length and SIF. We take )15.0( ÷÷÷÷====ICK  MPa·m1/2 for sedimentary rocks [42, 43]. In this case, for 
example, for an initial fracture 1 cm in length, conditions (7) is met when 6.58.22 ÷÷÷÷>>>>>>>>hασ . For 

12.1====α , Hh γσ ==== , 25=γ  kN/m3, we have that )10050( ÷÷÷÷>>>>>>>>H  m. For our example, even for  
H = 500 m, the error of neglecting the SIF-containing member is small. In fact, having taken 

1====ICK  MPa·m1/2, we find from (6) that 70.120.050.1 ====++++====hbp σ  for 2====δ  and °°°°==== 45ϕ . Whence it 
follows that neglecting the last number equaling 0.20 in (6) allows less than 12 % error in the 
breakdown pressure determination.  

As the hydraulic fracture is growing and its tip is moving away from the well, relationships of 
finding the stress intensity factor acquires a more general form as compared to (3):  

 ),( hHI ppflK σσπ −−= , (8) 

where l is the current length of trajectory; f is a function dependent on the hydraulic fracture shape and 
distance from the well and is found numerically when modeling the hydraulic fracturing by BEM. 
When the trajectory has largely developed and its rectilinear section prevails over the initial curvilinear 
part, we can assume 2/)( hpf σ−−−−==== , i.e. )(2/ hI plK σπ −−−−==== , where l is the length of the fracture 
added with the well diameter, as apart from the well its influence is almost equivalent to the influence 
of the respective linear fracture. 

Back on estimating effect of the last number in (6), it is possible to state that its role, at a largely 
grown length, is much less than at the start of the hydraulic fracture propagation. For the ten- and 
hundredfold grown hydraulic fracture, the nominal stresses to be overcome by the fluid pressure are 
governed by the intact rock mass stresses only (subject to the restriction of no effect of the geological 
disturbances). At a distance from the well, the hydraulic fracture orients in perpendicular to the action 
of hσ . And this is hσ  that acts as the nominal stresses and is to be overcome by the working pressure. 
This conclusion is completely supported by the below calculations for the fracture trajectory after 
reaching the breakdown pressure.  

The definition of the breakdown pressure, which we have considered earlier, needs an adjustment for 
the conditions when the intact rock mass stress components differ greatly, that is 2/ >>>>hH σσ . At the 
same time, as follows from (5), the state when hσσ <<<<  is also possible, for example, when °°°°==== 90ϕ . This 
means that when the fracture starts propagating in this direction or close to it, the fracturing front should 
transfer from the zone with a relatively low compression to a stronger compression zone: at a distance 
from the well hσσ ≈≈≈≈ . Therefore the fracture growth initiation pressure may be somewhat lower than the 
pressure to overcome the maximum compression zone, and it is expedient to assume the latter value as 
the breakdown pressure and differentiate it from the hydraulic fracture initiation pressure.  
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One more remark is to be made on possibility of interpreting (2) and (3) from the viewpoint of 
concepts that do not use the fracture mechanics. Let the limiting condition be:  

 
0

2
l

Kp IC

πα
σ =+ . (9) 

The right-hand side of (9) is a limit Т to be reached or overcome to initiate a hydraulic fracture. 
The left-hand side is a total force that positive (tensile) when the pressure is sufficiently high. So far, 
(9) expresses a tensile strength condition if we interpret Т as a relevant limit. Actually this meaning is 
imparted on the limiting condition and breakdown pressure in the known review [23]. Given (5) involves 

°°°°==== 90ϕ , then Hh σσσ ++++−−−−==== 3 . In this case, (9) yields a relationship for determining bp : 
Tp Hhb ====−−−−++++ σσ32  that differs from the breakdown pressure equation from the mentioned review by 

coefficient 2 attached to bp . This coefficient reflects a combined effect of the pressures on the well 
contour and the fracture edges. Useful for estimating the breakdown pressure, this interpretation, 
however, keeps out of determining the fracture trajectory and, thus, the equality of the intact rock mass 
stress minimum and the working pressure ( sh p=σ ) in [23] is postulated a priori and is not calculated 
(as below) as a result of the fracture coming out onto a rectilinear trajectory when ICI KK >> .  

POST-INITIATION FRACTURE GROWTH MODELING 

Upon reaching the breakdown pressure, the fracture propagation direction, as a rule, deviates 
from the initial fracture orientation and tends to the action direction of the highest principal stresses 
in the intact rock mass. An appropriate fluid injection mode sustains the well pressure sufficiently 
high to satisfy fracture growth condition (10) until a gradually rising filtration resistance or deficient 
injection rate leads to a drop of the pressure and break of the fracture development:  

 ICI KK ≥≥≥≥ . (10) 

Usually the fracture has time to grow by several tens and even hundreds meters by this moment. In 
mathematical description, the hydraulic fracture stops growing when condition (10) is violated.  

The Fracture Trajectory Calculation Method. In the general case, a hydraulic fracture is an 
unknown surface in space. In the plane problem, a fracture trajectory, far and by, is a curve in the 
horizontal section of the well. Solving practical tasks, such as rational injection regime specification, 
proppant application and further operation of the well requires numerical modeling of the fracture 
trajectory and condition (10) is not enough for this. A supplementary condition to control the fracture 
growth direction every moment of its propagation is necessary.  

We use a trajectory plotting approach related to the abilities of the above-described numerical 
modeling of stress state in the framework of plane strain. A criterion of determining the fracture 
development direction bases on classical concepts that are valid when an opening fracture mode 
prevails. In this case, as is known, a number of physically feasible criteria become equivalent for 
trajectories with a continuously alternating tangent vector [44]: the maximum SIF IK , maximum 
energy release rate, energy density index time invariance, maximal shear stresses. Any of them is 
expressed mathematically as the equality:  

 0====IIK . (11) 

In [38] a special iteration method is developed for auto-tracing trajectories based on condition (1). 
The method involves final elements along arcs of circles, which allows a smooth conjunction of the 
elements. Figure 2 gives an explanation of the sense of the method.  
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Fig. 2. Calculation scheme for the fracture trajectory 

A complex coordinate 1++++jz  in a new fracture end position 1++++jA , at a step 1++++j  is calculated in 
terms of jz  from the formula:  

 )2/)(exp(∆ 11 ++++++++ ++++++++==== jjjj iszz ββ , (12) 

where jz  and 1++++jz  are the complex coordinates of the points jA  and 1++++jA , respectively; s∆  is a 
length of the jA -to- 1++++jA  chord; jβ  and 1++++jβ  are the angles formed by tangents to the x axis of the 
global coordinate system at these points. The angle 1++++jβ  varies and is selected so that condition (11) is 
satisfied for the fracture tip in the new position.  

Auto-collecting 1+jβ  follows the iteration procedure below:  

 1
1

1
11

m-
j

m
j

m
j θgββ +

−
++ += , (13) 

 })/4(])/(81)sign(1arctg{[2 1121111
1

−−−−−
+ +−= m

I
m
II

m
I

m
II

m
I

m-
j KK/KKKθ , (14) 

where m, j = 1, 2, ... ; 00
1 βββ ++++====++++ jj , jβ  is an angle value obtained in the previous, jth incremental 

step for the fracture; 0β  is the preassigned initial deviation; m is the iteration number; g is a relaxation 
parameter for iteration convergence and its values are selected automatically in a range from 0.5 to 1. 
Iteration stops upon reaching the preset accuracy of 1+jβ  (usually 0.5°). The iteration procedure and its 

parameters selection is described in detail in [38, 45] where also is shown, using some examples, that 
the iteration results are more precise as compared with the earlier applied methods [38].  

It follows from (13), (14) that each step search for the trajectory continuation is limited by a 
regular, single application of formula (14) for a likely angle of the tangent at the fracture tip. This 
search is a consistent enumeration of some increments of the fracture in various directions, with 
gradual reaching the fracture tip position such that condition (11) is met within the preset accuracy. As a 
rule, this process needs 5 iterations. So far, unlike the previous simplest algorithms, each fracture 
incremental step corresponds to a series of solutions of the hypersingular integral equations (m = 1, 2, …) 
for virtual shapes of the fracture.  
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The Trajectory Search Stability Provision. The application of iterations (12) – (14) to the 
problems on the hydraulic fracture propagation has demonstrated that, differently to the problems from 
[38, 39, 45 – 47], this algorithm is, however, unstable sometimes. A comprehensive study revealed that 
the instability arises when the intensity factor IK  passes the zero value, for instance, under start of the 
initial fracture oriented in perpendicular to the maximal compression direction. In this case, when 
negative IK  are modulo small, formula (14) yields an angle that equals °°°°==== 53.70)2/1(arctg2  for 

0<<<<IIK  or – 70.53° for 0>>>>IIK , and further search provides no convergence. The situation worsens if 

IIK  is modulo small as well. Besides, at small IIK  meeting the equality condition in (11), the values of 
1–

1
m
jθ +  begin oscillating sometimes: the values of 1–

1
m
jθ +  on the next 2 iteration become equal but opposite 

in sign, close to zero, but higher than the preset accuracy of meeting (11), which generates the 
algorithm circling. To overcome these difficulties, the authors have modified algorithm (12) – (14) by 
two complements introduced. First, when 0<<<<IK  and 1.0)/( 2 <III KK , the right-hand side of (14) is 

assumed to be zero. Second, a sum of the values of 1–
1

m
j+θ  on next 2 iteration must be checked: if the 

sum is less than 0.01, the angle is put to zero. These complements release the iteration from any random 
walks and oscillations.  

The Boundary Element Mesh Modification. Mostly, in practice, a hydraulic fracturing is a 
means of enhancing oil and gas recovery, and it serves its purpose if propagates for tens or hundreds 
meters. Bearing in mind that a well diameter is 10 – 15 cm and initial defects are of the order of the first 
centimeters in length, we realize an extent of the geometrical scale difference of the hydraulic fracture 
modeling problem.  

A key point of the modeling initial stage of a fracture growth is the contour of the well and initial 
fracture. Provision of admissible calculation accuracy needs paying peculiar attention to digitization of 
the boundary in the zone near the well mouth where the displacement gradients are extremely high. 
While the hydraulic fracture front is moving away from the well, this zone becomes of lesser effect. It 
is possible to replace a detail displacement distribution by average values without loss of accuracy, i.e., 
a set of small boundary elements near the mouth is replaceable with one or two larger elements and the 
well is assumed as an initial part of the fracture. Such an elemental modification for calculating 
extended fractures allows a shorter computational period and saves from the computational instability 
typical for the cases when there are many boundary elements and they have sharply differing sizes. 

The fracture trajectory modeling scheme was added with a block of the boundary element mesh 
modification with the fracture length increased up to a certain preset value. To illustrate the accuracy of 
this technique, consider an example when the fracture length is tenfold as the well diameter (for longer 
fractures, the boundary element mesh modification accuracy is much higher).  

Figure 3 shows a trajectory of the hydraulic fracture propagation at the stresses at infinity as Hσ  
and hσ  ( 2.1/ =hH σσ ) and internal pressure in the well and in the fracture as hp σ35.1= . The trajectory 
contains a rectilinear section, that runs in parallel to the action of hσ  and is a continuation of the initial 
fracture, and an arc of a circle where a smooth pass to a Hσ  action-parallel line takes place. The latter line 
is the third, rectilinear section of the fracture. 
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Fig. 3. Estimate for the role of digitizing the well contour and the “rear” portion of the hydraulic fracture 

Let us compare three variants of the boundary element digitization of a fracture. The first variant: 
the well contour is divided into 24 arc elements (72 points of collocation, 144 real unknowns); first 
rectilinear segment with a length d is represented by 8 elements, the circle arc with a radius 4d and 
opening 4/π  contains 30 elements; and, finally, a rectilinear segment ВС with a length 2d is divided 
into 10 elements with the last one being a special end element. So, the total number of the elements is 72, 
the collocation points are 72·3 = 216, the real unknowns are 216·2 = 432. 

The second variant: the well contour is divided into 4 elements; the rectilinear segment is one element, 
the contour arc is two elements, and the segment ВС keeps division into 10 elements. As a result, only  
7 elements instead of 62 remain for the well and the section АВ. The total number for the second division 
variant elements is 17, the collocation points are 17·3 = 51; the real unknowns are 51·2 = 102, that is the 
unknowns are cut in number more than by a factor of four. The third variant differs from the second 
one by the well contour reduction into a rectilinear segment that, in principle, is a continuation of the 
fracture.  

Eventually, we obtain the values of SIF at the front of the fracture (at the point C) and the fracture 
opening nu∆ . The rated IK  and nu∆  are found from the formulae: 

 
2/

~
d

KK
h

I
I πσ

==== ;    
2/

∆~∆
d

uEu n

h
n σ

==== , 

where E is Young’s modulus of rocks.  
For the three digitization variants above, the values of SIF are, respectively, 0.84, 0.80 and 0.91. 

Table 4 presents values of nu~∆  at some characteristic points determined by the dimensionless 
coordinates dx /1  and dx /2 , where 1x  is counted from the marginal left-hand point of the well contour 
and 2x  is counted from the horizontal axis of symmetry of the well. The lines of Table 4 stand for the 
described variants. 
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TABLE 4. The Rated Displacement Discontinuities nu~∆  at the Points of Trajectory for Three 
Digitization Variants for the Well and Fracture (Fig. 3)  

dx /1  1.50 3.53 5.69 6.00 6.00 6.00 6.00 
Variant 

dx /2  0.00 0.31 2.47 4.25 4.65 5.15 5.65 

1 2.54 4.64 7.66 6.71 6.18 5.15 3.38 
2 2.60 4.45 7.07 6.03 5.72 4.85 3.22 
3 

nu~∆  
2.37 4.64 8.66 7.64 6.95 5.72 3.72 

 
Comparing the results shows that changing a fine element mesh into a coarse one in sections 

remote from the front causes a no more than 10 % difference in the calculated values (Table 4, lines 1 
and 2). A supplementary change of the well contour circle by the rectilinear element with the length d 
(Table 4, line 3) produces much more difference: the deviation maximum is about 15 %.  

We emphasize again that this example conforms to a rather nearby zone of the fracture 
propagation; this zone is of the order of 7 – 8d, i.e., about 1 m. The farther is the fracture front from the 
well contour, the more accurate are the results of the presented above digitization techniques.  

EXAMPLES AND ANALYSIS OF THE HYDRAULIC FRACTURE PROPAGATIONS 

The Effect of the Initial Fracture Direction. Modeling results for two separate hydraulic 
fractures are shown in Fig. 4. The stress state components ratio 0.2/ ====hH σσ . The initial fractures are 
at the angles of 0° and 60°, respectively.  

At the start stage of development (Fig. 4a), the trajectories differ greatly. Further growth almost in 
full aligns the difference (Fig. 4b). On the new scale, the fractures are parallel and are about 1.5d 
(approximately 0.2 m) apart from one the other, which makes them equivalent as far as their actual 
effect is concerned. By no means, in such examples, it is necessary to perform a thorough analysis of 
fractures that begin near the axes of symmetry, as a small difference in the onset conditions can entail 
strictly antipodal trajectories in this case.  

The Developed Hydraulic Fracture SIF. Modeling a hydraulic fracture under a uniform stress 
state when such concentrators as the well or the geological disturbances have no effect, shows the 
following results [38, 39]. Irrespective initial orientation of the fracture relative to the directions of the 
principal stresses in a rock mass, only a short starting section of the trajectory can be curvilinear. After 
it, the fracture propagates towards the highest compressive stresses. This conclusions supports the 
earlier statements, for example, in [35]. 

The same fracturing pattern takes place for an isolated well. At a relatively small distance from the 
well (3 – 5d, Fig. 4a), that depends on the initial fracture orientation, the fracture develops along a 
curvilinear trajectory. Then this trajectory quickly tends to a straight line directed along the maximal 
compressive stresses. From the viewpoint of practice, in case there are no any disturbances or another 
well on the way of the fracture growth, we have that one of the main problems of modeling is solved: 
the fracture growth direction is determined.  

Modeling a developed hydraulic fracture and a well as a straight line segment considerably 
simplifies both the SIF determination problem and the statement/answering of the question on 
estimating the permeability of fractures and the filtration parameters of enclosing rocks. In particular, it 
becomes possible to directly use the results of solving the problem on the rectilinear fracture with 
allowance for the fluid movement in the fracture and fluid filtration into the rock [35].  
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Fig. 4. Two phases of the hydraulic fracture propagation with initial fractures oriented at 0° and 60°:  
a) the trajectory length is more than 3.5d; b) the trajectory length is more than 22.5d 

Refer to the calculation data for IK  for the set of the hydraulic fracture trajectory points (Fig. 4, 
°°°°==== 60ϕ ) as the fracture front moves away from the well. Table 5 presents SIF as a function of the 

coordinate 2x  of the current tip. The first line contains SIF by the BEM modeling, the second line cites 
SIF calculated from the formula:  

 2/)( LpK hI πσ−−−−==== , (15) 

where L is a length of the equivalent rectilinear fracture, 2/2 dxL ++++==== . In the latter case, the fracture tip 
is assumed to be at a sufficiently large distance from the well so that the well effect is absent; that is, 
the equivalent fracture is under the joint action of the internal pressure and the stress hσ  applied at 

infinity. The values of SIF are rated similarly to Table 4, with taking into account that hσσ ====∞∞∞∞
1 .  

The data from Table 5 indicate that when the hydraulic fracture is longer than 5d, the curvilinear 
part in the beginning of the trajectory and well looses its significance. Also, it should be noted that for a 
sufficiently extended hydraulic fracture, the dependence of IK  on the fracture length approaches a 
square root. Apropos fracture propagation condition (2), we see that, for satisfied (15) and large L, it is 
possible to assume that, at a high accuracy, the equality hsp σ====  holds true. 

TABLE 5. Comparison of SIF for the Real and Equivalent Rectilinear Trajectory of a Hydraulic 
Fracture 

dx /2  1.21 2.39 3.58 4.86 6.05 7.75 

IK~  0.153 0.136 0.146 0.178 0.202 0.234 

IK~ eqv. 0.116 0.151 0.179 0.205 0.227 0.254 
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Bifurcation of the Trajectory. Allowing a reliable calculation of the trajectory for the alternating 
SIF IK , the modified algorithm also assists in reproducing bifurcation of the trajectory when minor 
excitations can affect the choice of a fracture propagation path. The situation is such, for example, 
when the initial fracture is perpendicular to the direction of the maximum compression Hσ . In this 
case, in the initial position, we have 0====IIK  and condition (11) is met. The respective solution 
corresponds to the rectilinear propagation of fracture in its plane (in the perpendicular direction to 

Hσ ). Nevertheless, when Hh σσ <<<< , the trajectory is unstable, since the hσ -perpendicular growth is 
more advantageous by ensuring a higher influx of energy. Therefore, a minor excitation of the 
rectilinear trajectory results in a curvilinear trajectory, more useful from the energy point of view. 
Actually, the excitation results from assigning a pre-introduced small start deviation of 0β  in iteration 
formulae (13), (14). As the calculation show, the modeled trajectory, according to physical concepts, 
quickly gets onto the direction that is perpendicular to the least compression hσ . Note that the rectilinear 
trajectory bifurcation was studied earlier in the problems on tension of a plate with a crack [36, 38, 44, 
48, 49], and it appears to be the first time when it is applied to the compression conditions.  

Interference and Growth of Several Initial Fractures. The modeling method presented in the 
Introduction, encloses also the case when several initial fractures are at the well contour. The stress 
intensity factors can be calculated with taking into account the interference of the fractures and the well. 
We take the fracture with the highest SIF and trace its development after reaching the breakdown 
pressure values. The rest fractures, as a rule, will not propagate (we do not consider the case of the 
absolute symmetry when two or more fractures set on simultaneously), since the growth of one of them 
generally causes a decrease in IK  of the rest ones. The cases of the inverse effect are however possible to 
exemplify. One of them is the case when two fractures start from the well contour in almost diametrally 
opposite directions though close enough to the direction of the maximum compression ( hσ ). At that time, 
the fracture with an angle closer to 90° or 270° begins growing. This growth must cause an increase in IK  
for the second fracture, which provides for the limiting condition attainment and subsequent development 
of a new fracture. Analogous situations are probable when there are more initial fractures. 

Another example is three fractures near a well, with angles of 80°, 258° and 284°, respectively. It 
is obvious that two of them are almost dissymmetrical relative to the coordinate origin. For the 
original principal stresses ratio 5.1/ ====hH σσ  and the same length dl 1.00 ====  of the three fractures, the 
calculation shows that the fracture with the angle °°°°==== 80ϕ  starts first. The breakdown pressure is 

hbp σ0.1====  in this case and almost coincides with the breakdown pressure of a single initial fracture 
with °°°°==== 80ϕ , the other conditions the same. An insignificant growth of the other two fractures is noted 
at the same pressure. Then, we need a higher pressure hp σ05.1====  in order that the second fracture 
( °°°°==== 258ϕ ) grows by d. Later, at this pressure sustained, the first fracture will intensively develop, then 
the first and the second fractures will grow, whereas the third fracture ( °= 284ϕ ) will remain fixed. 
The last development phase of the fractures is depicted in Fig. 5.  

CONCLUSION 

The article develops an approach to modeling a hydraulic fracture, based on the application of the 
up-to-date efficient computational technique, the boundary element method. The investigation results 
have been obtained for the initial stage of the hydraulic fracture propagation after reaching the 
breakdown pressure and for the extended fracture with its front tens meters away from the well.  
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Fig. 5. Trajectories for three hydraulic fractures coming out of the same well, at the initial fracture angles 
of 80°, 258° and 284° 

The results yield estimates for the important indices, such as breakdown pressure and fracture 
growth direction. Together with these, the study conditions a possibility for significant simplifications 
to be made in geometry of the scheme: a transfer to an analysis of a rectilinear fracture, which is of 
concern for a procedure of further investigations into the hydraulic fracturing.  

We suppose the next research stage as 3-D modeling of the hydraulic fracture propagation. 
Additional characteristics connected with an instability of the fluid flow, friction effects and change in 
filtration properties of rocks should provide an advance in studying the hydraulic fracture development 
in time and in modeling the related seismic impulses.  

The authors express their gratitude to A. M. Vaisman as a reviewer, for advising to include into the 
consideration the important and interesting works of colleagues, that were left out of eyeshot of the 
authors.  
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