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Fractured media. I

Fractures are common in the earth’s crust due to different
factors, for instance, tectonic stresses and natural or artificial
hydraulic fracturing caused by a pressurized fluid.

Seismic wave propagation through fractures and cracks is an
important subject in exploration and production geophysics,
earthquake seismology and mining.

Fractures constitute the sources of earthquakes, and
hydrocarbon and geothermal reservoirs are mainly
composed of fractured rocks.
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Fractured media. II

Modeling fractures requires a suitable interface model.
Schoenberg (JASA (1980), GP (1983)) proposed the
so-called linear-slip boundary condition model (LSBC), based
on the discontinuity of the displacement across the fractures.
(Schoenberg’s model).

A generalization of the (LSBC) (Carcione, JGR (1996)) states
that across a fracture stress components are proportional to
the displacement and velocity discontinuities through the
specific stiffnesses and viscosities, respectively.
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Fractured media. III

Displacement discontinuities conserve energy, while velocity
discontinuities generate energy loss at the fractures. The
specific viscosity accounts for the presence of a liquid under
saturated conditions, introducing a viscous coupling between
both sides of a fracture.

Schoemberg’s theory predicts that a dense set of parallel
plane fractures behaves as a Transversely Isotropic
Viscoelastic (TIV) medium if the dominant wavelength of the
traveling waves is much larger than the distance between the
fractures.
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Fractured media. IV

Schoenberg’s model has never been simulated with a
numerical method.

In the context of Numerical rock physics we present a novel
numerical solver that can be used in more general situations.

To determine the complex stiffness coefficients of the
equivalent TIV medium, we solve a set of boundary value
problems (BVP’s) for the wave equation of motion in the
frequency-domain using the finite-element method (FEM).

The BVP’s represent harmonic tests at a finite number of
frequencies on a sample having a dense set of fractures,
modeled using the LSBC.
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The equivalent TIV medium. I

Consider a viscoelastic isotropic background medium having a set of

parallel (horizontal) fractures and its description in the space-frequency

domain.

u, e(u), σ(u): frequency domain displacement vector, strain and stress

tensors of the background medium at the mesoscale.

The stress-strain relations and equations of motion :

σjk(u) = λδjk∇ · u+ 2µejk(u)

ρω2u(x, z, ω) +∇ · σ[u(x, z, ω)] = 0

δjk: Kroenecker delta λ, µ: complex Lam é constants ρ: mass density.
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The equivalent TIV medium. II

x1 and x3: horizontal and vertical coordinates, respectively.

When a dense set of parallel fractures is present, the medium behaves as

a TIV medium with x3-axis of symmetry at long wavelengths (macroscale).

τ , ǫ: stress and strain tensors of the equivalent TIV medium at th e

macroscale. Stress-strain relations at the macroscale:

τ11(u) = p11 ǫ11(u) + p12 ǫ22(u) + p13 ǫ33(u),

τ22(u) = p12 ǫ11(u) + p11 ǫ22(u) + p13 ǫ33(u),

τ33(u) = p13 ǫ11(u) + p13 ǫ22(u) + p33 ǫ33(u),

τ23(u) = 2 p55 ǫ23(u),

τ13(u) = 2 p55 ǫ13(u), τ12(u) = 2 p66 ǫ12(u).
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The equivalent TIV medium. III

Schoenberg’s theory predicts that if the background medium is

homogeneous, the stiffnesses pIJ’s are given by

p11 = p22 = E − λ2ZNcN , p12 = λ− λ2ZNcN p13 = λcN ,

p33 = EcN , p55 = µcT , p66 = µ.

where

cN = (1 + EZN )
−1 and cT = (1 + µZT )

−1,

ZN and ZT: normal and tangential complex compliances of the fracture s

E = λ+ 2µ.
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The equivalent TIV medium. IV

The theory assumes that that distance between fractures is much smalle r

than the wavelength of the signal and that the boundary condition is the

same for all the fractures .

Moreover, the theory assumes that the fracture distance is constant .

The numerical solver may consider an inhomogeneous background

medium, unequal fracture distances and dissimilar boundar y conditions

at the fractures surfaces.

The pIJ’s are the complex and frequency-dependent stiffnesses to be

determined numerically with the harmonic experiments.
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Relation withe the Thompsen parameters.

ǫR =
p11,R − p33,R

2 p33,R

γR =
p66,R − p55,R

2 p55,R

δR =
(p13,R + p55,R)

2 − (p33,R − p55,R)
2

2 p33,R(p33,R − p55,R)

ǫI =
Q11 −Q33

2Q33

, γI =
Q66 −Q55

2Q55

The subindices R and I indicate the real and imaginary parts,

respectively.
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Determination of the stiffness components pIJ

Ω = (0, D)2: a square sample of boundary Γ = ΓL ∪ ΓR ∪ ΓB ∪ ΓT ,

where

ΓL = {(x, z) ∈ Γ : x = 0}, ΓR = {(x, z) ∈ Γ : x = D},

ΓB = {(x, z) ∈ Γ : z = 0}, ΓT = {(x, z) ∈ Γ : z = D}.

Γ(f,l), l = 1, · · · , J (f): a set of J (f) horizontal fractures each one of

length D in our domain Ω.

This set of fractures divides Ω in a set of nonoverlapping rectangles

R(l), l = 1, · · · , Jf + 1, so that

Ω = ∪J(f)+1
l=1 R(l).
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Boundary conditions at the fractures. I

Consider a fracture Γ(f,l) and the two rectangles R(l) and R(l+1) having as

a common side Γ(f,l).

ν l,l+1,χl,l+1: the unit outer normal and a unit tangent (oriented

counterclockwise) on Γ(f,l) from R(l) to R(l+1), such that {ν l,l+1,χl,l+1}

is an orthonormal system on Γ(f,l).

Set u(l) = u|R(l) : restriction of u to R(l), and let

[u] =
(

u(l) − u(l+1)
)

|Γ(f,l)

denote the jump of u at Γ(f,l)
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Boundary conditions at the fractures. II

The boundary conditions (B.C.) at the fractures Γ(f,l) are the stress

continuity and the condition that stress components be proportional to

the displacement and velocity discontinuities through specific stiffnesses

and viscosities , respectively. Thus,

σ(u(l))ν l,l+1 = σ(u(l+1))ν l,l+1 Γ(f,l),

σ(u(l))ν l,l+1 · ν l,l+1 = (LZ l
N )

−1[u] · ν l,l+1

σ(u(l))ν l,l+1 · χl,l+1 = (LZ l
T )

−1[u] · χl,l+1 Γ(f,l), l = 1, · · · , J (f).

L: average distance between the fractures
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Boundary conditions at the fractures. III

The compliances Z (ZN or ZT ) are complex and
frequency-dependent and can be expressed as

Z−1 = L(κ+ iωη),

where κ is a specific stiffness and η is a specific viscosity , having
dimensions of stiffness and viscosity per unit length, resp ectively.
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Determination of the stiffness components pIJ. I

For p33 we solve solve the wave equation in Ω using the fracture B. C.’s

with the additional B. C.’s

σ(u)ν · ν = −∆P, ΓT , (1)

σ(u)ν · χ = 0, Γ, (2)

u · ν = 0, ΓL ∪ ΓR ∪ ΓB. (3)

In this experiment ǫ11(u) = ǫ22(u) = 0.
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Determination of the stiffness components pIJ. II

Denoting by V the original volume of the sample, its (complex) oscillator y

volume change, ∆V (ω), we note that in the quasistatic case

∆V (ω)

V
= −

∆P

p33(ω)
,

The computed average vertical displacement us,T
3 (ω) suffered by the

boundary ΓT allows us to use the estimate

∆V (ω) ≈ Dus,T
3 (ω),

from where we can determine p33(ω).
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Determination of the stiffness components pIJ. III

For p11 we solve the wave equation with the fracture B. C.’s and the

additional B. C.’s

σ(u) · ν · ν = −∆P, ΓR,

σ(u) · ν · χ = 0, Γ,

u · ν = 0, ΓL ∪ ΓB ∪ ΓT .

In this experiment, ǫ33 = ǫ22 = 0 and this experiment determines p11

computing the volume change in the same way indicated for p33.
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Determination of the stiffness components pIJ. IV

For p55 we solve the wave equation with the fracture B. C.’s and the

additional B. C.’s

σ · χ = g, ΓT ∪ ΓL ∪ ΓR,

u = 0, ΓB,

where

g =















(0,∆G), ΓL,

(0,−∆G), ΓR,

(∆G, 0), ΓT .
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Determination of the stiffness components pIJ. V

Let θ(ω): angle between the original positions of the lateral bounda ries

and the location after applying the shear stresses.

To estimate θ(ω), we compute the average horizontal displacement uT
1 (ω)

at the boundary ΓT and use that

tan[θ(ω)] ≈ uT
1 (ω)/D.

Thus, the change in shape of the rock sample allow us to determine

p55(ω) from the relation (Kolsky, 1963)

tan[θ(ω)] =
∆G

p55(ω)
.
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Determination of the stiffness components pIJ. VI

For p13 we solve the wave equation with the fracture B. C.’s and the

additional B. C.’s

σ(u) · ν · ν = −∆P, ΓR ∪ ΓT ,

σ(u) · ν · χ = 0, Γ,

u · ν = 0, ΓL ∪ ΓB.

In this experiment ǫ22 = 0, and from the stress-strain relations at the

macroscale we get
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Determination of the stiffness components pIJ. VII

τ11 = p11ǫ11 + p13ǫ33,

τ33 = p13ǫ11 + p33ǫ33,

ǫ11, ǫ33: macroscopic strain components at the right lateral side an d top

side of the sample, respectively.

Then using that τ11 = τ33 = −∆P we obtain

p13(ω) =
p11ǫ11 − p33ǫ33

ǫ11 − ǫ33
.
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Schematic representation of the oscillatory compressibility and shear tests in Ω

a): p33, b): p11, c): p55, d): p13, e) : p66
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A variational formulation

Test space fo p33(ω):

W33(Ω) = {v ∈ [L2(Ω)]2 : v|
R(l) ∈ [H1(R(l))]2, v · ν = 0 on ΓL ∪ ΓR ∪ ΓB},

To determine p33(ω): find u(33) ∈ W33(Ω) such that:

−ω2(u, v) +

J(f)+1
∑

l=1

∑

s,t=1,3

(σst(u), ǫst(v))R(l)

+
J(f)
∑

l=1

[〈

[LZ
(l)
N

]−1[u]3, [v]3
〉

Γ(f,l)
+

〈

[LZ
(l)
T

]−1[u]1, [v]1
〉

Γ(f,l)

]

= −〈∆P, v · ν〉ΓT , ∀v ∈ W33(Ω).

Similar formulations hold for the other pIJ ’s
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Finite element implementation

The FE variational formulation uses bilinear elements to compute

approximate solution of the BVP.

The error is of the order of h in the L2-norm and of the order of h1/2

both in the interior energy norm and in the L2-norm on the set of

fractures, where h is the diameter of the elements.

Fracture induced anisotropy in viscoelastic media – p. 24



Numerical experiments.

We consider the data provided by the laboratory experiments of

Chichinina et al. (TPM, 2009). The background medium is isot ropic with λ

= 10 GPa, µ = 3.9 GPa and ρ = 2300 kg/m 3.

The simulations to determine the pIJ’s have 29 equally spaced fractures,

fracture distance L =1 cm, grid spacing h = 0.5 cm and a frequency f0 =

25 Hz, employing a 60× 60 mesh.

Experimental values of ZN and ZT for wet fractures scaled to seismic

frequencies:

Z−1
N = [ 34 + i(f/f0) 24.7 ] GPa Z−1

T = [ 15.5 + i(f/f0) 11.3 ] GPa

Determination of reliable fracture parameters needs measu rements at the

seismic range (experimental data was obtained at 100 kHz).
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Validation of the FE method. Phase velocities as function of frequency for wet fractures.
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“11” and “33” refer to the qP wave along and perpendicular to t he fracture plane. “55” refers to the qS wave

perperdicular to the fracture plane. A very good fit is observ ed. qP waves along the fracture plane (“11”) travel

faster than qP waves travelling perpendicular to the fractu res (“33”).
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Validation of the FE method. Dissipation factor as function of frequency for wet fractures.
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“11” and “33” refer to the qP wave along and perpendicular to t he fracture plane. “55” and “66” refer to the qS

and SH waves perperdicular and along the fracture plane. The SH wave is lossless. A very good fit is observed.

qP waves along the fracture plane (“11”) suffer lower attenu ation than qP waves travelling perpendicular to the

fractures (“33”).
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Fractures at varying pore fluid pressure .

Daley et a. (GPY, 2006) suggest to take high values of fractur e compliance

at low normal effective stress σ = pc− pp, where pc is the confining

pressure and pp the pore presure.

For a contant pc = 30 MPa, we consider two pore pressures 5 MPa and 25

MPa, normal and overpressure values, respectively. Using t heir model, we

obtain, at 25 Hz,

pp = 5MPa, Z−1
N = (23.1 + 5.9i) GPa, Z−1

T = (75 + 9.4i) GPa,

pp = 28 MPa, Z−1
N = (14.4 + 3.6i) GPa, Z−1

T = (21 + 2.6i) GPa,

We consider a set of equispaced fractures with L = 1 cm and 80 % binary

fractal variations of ZN and ZT around these mean values.
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Real part of fractal Z−1
N at pore pressure 28 MPa.
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Phase velocity for fractal ZN ZT, wet fractures. Confining pr es. 30 MPa. Pore pres.: 5 MPa (normal), 28 MPa (overpressure) .
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σ = pc− pp is the effective normal stress, pc = confining pressure, pp= pore pressure. “11” and

“33” refer to the qP wave along and perpendicular to the fracture plane. Higher pore pressure

(circles) implies lower phase velocity. The “33” qP wave is the one more affected by overpressure.
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Phase velocity for fractal ZN ZT, wet fractures. Confining pr es. 30 MPa. Pore pres.: 5 MPa (normal), 28 MPa (overpressure) .
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σ = pc− pp is the effective normal stress, pc = confining pressure, pp= pore pressure. “11” and

“33” refer to the qP wave along and perpendicular to the fracture plane. Attenuation is stronger in

the overpressured case (circles) for “33” waves.
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Phase velocity, fractal and uniform ZN ZT, wet fractures. Co nfining pres.: 30 MPa. Pore pres. 28 MPa (overpressure).
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“11” and “33” refer to the qP wave along and perpendicular to the fracture plane. Phase velocities

in the fractal case are lower than those obtained with the mean values. The “33” qP wave is the

one more affected by the heterogeneities.
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Dissipation factor, fractal and uniform ZN ZT, wet fracture s. Confining pres.: 30 MPa. Pore pres. 28 MPa (overpressure).
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“11” and “33” refer to the qP wave along and perpendicular to the fracture plane. Dissipation factor

of the “33” qP wave is more affected by the heterogeneities, showing lower values in the fractal

case.
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Fractal λ and µ background.

Next we consider 50 % binary fractal variations of the backgr ound Lam é constants λ and µ with respect to the

mean values 10 GPa and 3.9 GPa, respectively.
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Uniform and fractal brackground, dry fractures: Z−1
N

= 9.6 + i(f/f0) 4.8 GPa, Z−1
T

= 3.1+ i(f/f0) 0.12 GPa
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“11” and “33” refer to the qP wave along and perpendicular to t he fracture plane. Phase velocities are lower for

the fractal case for both “11” and “33” qP waves. Concerning a ttenuation, for qP “33” waves is lower than in

the uniform background case, while attenuation for qP “11” w aves is not affected by the fractal background.
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CONCLUSIONS.

Schoenberg’s theory predicts that an homogeneous background

containing a dense set of horizontal parallel fractures beh aves like a

TIV medium at long wavelengths.

We presented a collection of novel FE harmonic experiments to test

and validate the theory.

The methodology was applied to a case where there is no analyt ical

solution, such as fractal variations of the fracture compli ances at

different pore pressures and fractal Lam é parameters.

In particular, it is shown that attenuation can be an indicator of

overpressure with higher values at high pore pressures.
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