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Summary 
 
Physical properties of many reservoir rocks can be 
modelled using the concept of poroelasticity. Many 
reservoir rocks, in addition to the network of pores, contain 
larger fractures or cracks. Galvin and Gurevich (2006) 
solved the single scattering problem for a crack in a 
poroelastic medium and then estimated the effective 
properties for a distribution of cracks. However this 
problem requires the solution of a Fredholm integral 
equation of the 2nd kind which in general has no analytical 
solution for intermediate frequencies. We propose a simple  
analytical approximation of this solution using the 
branching function approach. Quantitative comparison 
shows good agreement between the two solutions. Our 
analytical solution exhibits a relaxation peak at a frequency 
where the fluid diffusion length is of the order of the crack 
diameter. The diffusion length is proportional to  
(where 

1/ 2ω−

ω  is frequency) and is usually much smaller than 
the wavelength of the normal compressional or shear wave. 
This shows that the presence of cracks in a fluid-saturated 
porous medium can cause significant attenuation and 
dispersion at very low frequencies, well before the onset of 
elastic (Rayleigh) scattering. 
 
Introduction 
 
Physical properties of many reservoir rocks can be 
modelled using the concept of poroelasticity. A poroelastic 
material consists of an elastic frame permeated by an 
interconnected pore space filled with a Newtonian fluid 
(Biot 1962). Many reservoir rocks, in addition to the 
network of pores, contain larger fractures or cracks. A 
common method of detecting such cracks is based on the 
use of elastic wave scattering. Attenuation and dispersion 
of the passing wave due to a distribution of cracks can be 
estimated using multiple-scattering theory. This approach 
requires an understanding of how an elastic wave interacts 
with a single crack. For fluid-saturated reservoir rocks this 
interaction differs from the corresponding elastic scattering, 
as it involves flow of the pore fluid between the crack and 
the host medium, induced by the passing wave. This effect 
is particularly significant for thin cracks, as their high 
compliance (compared to that of the relatively stiff pores) 
causes the fluid to flow in and out of the crack during 
rarefaction and compression wave cycles. 
 

Galvin and Gurevich (2006) solved the single scattering 
problem for a crack in a poroelastic medium and then 
estimated the effective properties for a distribution of 
cracks. However this problem requires the solution of a 
Fredholm integral equation of the 2nd kind which in general 
has no analytical solution and must be solved numerically 
for every frequency. There are asymptotic analytical 
solutions, however, in the limits of high and low frequency. 
A model involving numerical solution of an integral 
equation is cumbersome for practical purposes and 
especially for any inversion procedure. Therefore some 
analytical approximation of this solution is desirable. 
 
In this paper we derive such an approximate solution using 
a branching function approach. This approach consists in 
connecting low- and high frequency asymptotic solutions 
by a function that ensures that the result is physically 
consistent for all frequencies. The branching function 
approach has been utilized in many different applications. 
Johnson et al (1987) employed this approach to build a 
model for dynamic permeability and tortuosity in fluid 
saturated porous rock subjected to a mechanical wave. 
Models for attenuation and dispersion due to patchy 
saturation (Johnson, 2001) and double porosity and dual 
permeability (Pride and Berryman, 2003,a,b) have also 
utilized a branching function. Pride et al (1987) have 
investigated the effect of replacing different branching 
functions in Johnson et al. (1987) model for dynamic 
permeability, whilst Toms et al (2006) compared Johnson’s 
(2001) branching function model for patchy saturation 
against an exact analytical solution, and showed that the 
approach is reasonably accurate at intermediate 
frequencies. In this paper we apply the branching function 
approach to the low and high frequency asymptotes of 
dispersion and attenuation in porous rocks with aligned 
cracks to get an approximate solution for all intermediate 
frequencies. 
 
Galvin and Gurevich (2006) presented a theoretical study 
of the problem of the interaction of a plane longitudinal 
elastic wave in a poroelastic medium with an open circular 
oblate spheroidal crack of radius and small thickness a
2b a<<  placed perpendicular to the direction of wave 
propagation. They restricted the analysis to so-called 
mesoscopic cracks whose radius is small compared to the 
wavelength 12 / kπ  of the normal compressional wave, but 
large compared to the individual pore size. Crack thickness 

 was assumed smaller than the fluid diffusion length 2b
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(wavelength of Biot’s slow wave). In elastic media (say, in 
a dry porous material) such cracks would have very little 
effect on wave propagation. However in porous media 
there may be a significant effect due to fluid diffusion in 
and out of the crack (as the fluid diffusion length is much 
smaller than the wavelength).  
 
Single Scattering 
 
The poroelastic single scattering problem can be solved in 
the same fashion as the corresponding problem for 
elasticity (Robertson, 1967). Consider an incident plane 
normal (fast) compressional wave propagating in a porous 
medium with porosity φ  along the -axis of the 
cylindrical co-ordinate system with the axial solid 
displacement , where  is the 
wavenumber (time dependency 

z

0 1exp( )in
zu u ik z= 1k

exp( )i tω−  is assumed). We 
obtain the secondary (scattered) field  resulting from 
interaction of the incident wave with the crack occupying 
the circle  in the plane . The total field is 
therefore , where 

( )u r

r a≤ 0z =
( ) ( )T in

z zu= +u r e u r ze  is a unit vector in 
the -direction. We assume that the crack is in hydraulic 
communication with the surrounding pore space. Both the 
scattered and total fields must each satisfy Biot’s (1962) 
equations of poroelasticity in the semi-infinite poroelastic 
medium . The distribution of displacements and 
stresses in the neighborhood of the crack is the same as that 
produced in a semi-infinite porous medium  when its 
free surface  is subject to the following boundary 
conditions: 

z

0z ≥

0z ≥
0z =

0rzσ = ,               (1) 0 r≤ < ∞

0zu = ,                               (2) a r< < ∞

0zw = ,               (3) a r< < ∞

0z zu w+ = ,                                   (4) 0 r a≤ <

( )1 0αzz p ik H M uσ + = − − 0 r a≤ <,                            (5) 

where ijσ  is a component of the total stress tensor,  is 

the fluid pressure,  is the -component of the so-called 
relative fluid displacement, 

p

zw z
M  and  are poroelastic 

material constants related to the bulk moduli of the fluid 
H

fK , solid gK , and dry skeleton  by the Gassmann 

equations  and 

, and 

K
1

( ) / /g fM K Kα φ φ
−

⎡= − +⎣ ⎤⎦
24 / 3H K Mμ α= + + 1 / gK Kα = − . The general 

solution of the equations of motion in cylindrical 
coordinates can be obtained by representing the four axial 

and radial components , , ,  and  of the solid 
and relative fluid displacements in the form of an inverse 
Hankel transform with respect to the radial coordinate . 
Then the boundary conditions yield a pair of dual integral 
equations for the unknown wave amplitudes (in the 
frequency-wavenumber domain). As shown by Noble 
(1963), such integral equations are equivalent to a single 
Fredholm equation of the second kind in the unknown 
amplitude function: 

zu ru zw rw

r

( ) ( ) ( ) 0
0

1 ( , ) ( )B x R x y F y B y dy p S
π

∞

+ ∫ x= − ,            (6) 

where  

sin ( ) sin ( )( , ) a x y a x yR x y
x y x y

− +
= −

− +
,                               (7) 

2
2 sin cos( ) ax ax axS x

xπ
−

= ,                                             (8) 

( )0 1 0p ik H M uα= − (, )4 /3g Kμ μ= + , μ  is the shear 

modulus of the solid skeleton, 2 2
2 2q y k= − 2k,  is the 

wavenumber of Biot’s slow wave and  

( )
( ) ( )

( )

22 2 2 2
2 2 2

2
2 2

2 2 2 2

2 1

gy k yq g k g y g
F y M

Hg g yq k

α α α⎡ ⎤− − − +⎣ ⎦=
−

α
.    (9) 

For frequencies much smaller than Biot’s characteristic 
frequency B fω φη κρ= , Biot’s slow wave has a diffusion-
like character and its wavenumber (inverse of the fluid 
diffusion length) is proportional to the square root of 
frequency.  
 
A Random Distribution of Aligned Cracks 
 
The theory presented above can be used to estimate 
attenuation and dispersion of an elastic wave propagating in 
a medium with a random distribution of aligned cracks. 
This can be done by using a Foldy-type approximation of 
multiple scattering (Waterman and Truell 1961) which 
expresses the effective wavenumber  for the medium 
with cracks in terms of the number of scatterers per unit 
volume  and the far-field forward scattering amplitude 

*k

0n
(0)f  for a single scatterer. For a small concentration of 

aligned cracks the scattering theorem takes the form 

( )0*
1 2

1

2 0
1

n f
k k

k

π⎡ ⎤
≈ +⎢ ⎥

⎢ ⎥⎣ ⎦
.        (10) 
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Using equation (10) one can compute effective wave 
velocity  and attenuation (reciprocal 

quality factor)  as functions of 
frequency due to fluid flow between the cracks and 
surrounding pores. The relationship between 

*( ) / Rec ω ω= k
*k1 *2Re / ImQ k− =

(0)f  and the 
solution ( )B y  of the integral equation (6) is 

( ) ( )1
00

( )0
2 (1 ) y

H Mik B yf
u H g y

α
μ →

−
= −

−
lim .                          (11) 

For low frequencies such that 2 1k a <<  equation (6) can 
be solved analytically by using an asymptotic expression 
for the transfer function ( )T y  in the limit 2k y<<  and 

expanding ( ),R x y  in powers of x . This yields an 
expression for effective velocity in the static limit: 

( )
( )

2

0 1
2

1
3 1

H M
c c

H g
ε α
μ

⎡ ⎤−⎢= −
⎢ −
⎣ ⎦

⎥
⎥

.       (12) 

In equation (12)  is the velocity of 
the fast compressional wave in the porous host (crack-free 
porous medium) and 

( )1/ 2
1 1/ /c k Hω ρ= =

3
0 (3/ 4 )( / ) cn a a bε π= = φ  is the 

crack density parameter (Hudson 1980) where 
 is the additional porosity present due to 

the cracks. For dry open cracks 
( ) 2

04 / 3c a bnφ π=

0fK M= = , 

4 / 3H K μ= +  and equation (12) simplifies to 

( )0 1
21

3 1
c c

g g
ε⎡ ⎤

= −⎢ ⎥
−⎢ ⎥⎣ ⎦

,                           (13) 

which coincides with the well-known expression for the 
velocity of compressional waves propagating perpendicular 
to a system of dry open cracks in an elastic medium in the  
limit of low crack density (Hudson 1980). Furthermore, 
equation (12) coincides with the expression for the 
compressional wave velocity obtained from Gassmann’s 
exact static result for the undrained elastic moduli of an 
anisotropic fluid-saturated porous medium with low crack 
density (Gurevich 2003). This Gassmann consistency is an 
important feature of the model presented here. Low-
frequency attenuation  is given by 1Q−

( ) ( )
( )

22 2 2
21

22

2 2 4 3

15 1
low

M H M g g k a
Q

H g g

α α α

μ
−

− − +
=

−

ε
,           (14) 

and is proportional to 
2

2k a , that is, to the first power of 
frequency.  

In the limit of high frequencies such that crack radius is 
large compared to the fluid diffusion length, but smaller 
than the incident wavelength, 1 1k a k a<< << 2  (while 
crack thickness is still smaller then the diffusion length, 

2 1k b <<  and the frequency is still smaller than Biot’s 

characteristic frequency Bω ), a similar analysis yields  

( ) ( ) ( )2 2
1

2
0

3high
i k a H M g

f
Mk

α
μ

−
= .    (15) 

By substituting this expression into the dispersion equation 
(10) one can see that its relative contribution to the real part 
of the effective wavenumber vanishes in the high frequency 
limit, implying that the velocity in that limit tends to the 
velocity in the porous crack-free medium. This result is 
logical as at sufficiently high frequencies the fluid has no 
time to move between pores and cracks, and therefore the 
cracks behave as if they were isolated (Thomsen 1995). 
Note however that this result is a consequence of assuming 
that there is an incompressible fluid occupying the cracks 
and a small aspect ratio b a ; the more precise validity 
condition is fK b aμ >> . In particular, the dry case is 
excluded, except in the static limit (13). Attenuation at high 
frequencies reads 

( )21

2

2 2
3high

H M g
Q

M k a
πε α
μ

− −
=          (16) 

and thus scales with . 1/ 2ω−

 
Branching Function Approximation 
 
In the previous section we have derived asymptotic 
solutions for attenuation and dispersion in the low- and 
high-frequency limits. For intermediate frequencies an 
analytical solution does not exist and attenuation and 
velocity can only be obtained by solving integral equation 
(6) numerically for every frequency. Figure 1 shows this 
numerical solution (asterisks) and the analytical low and 
high frequency asymptotes.  
 
In order to get a simple analytical approximation of this 
complicated solution, we connect the exact low- and high-
frequency asymptotic solutions using a branching function, 
which ensures causality of the solution. Following Johnson 
(2001) we model the dynamic saturated P wave modulus 
H~ as   
  
 ( ) ( ) ( )0H H H H bω ω= − − ,                                           (17) 
 
where 
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( )
( )

22
2

0 0 1
2

1
3 1

H M
H c H

H g
ε α

ρ
μ

⎡ ⎤−
⎢= = −

−⎢ ⎥⎣ ⎦
⎥            (18) 

and H are the saturated P wave moduli at low and high 
frequency limits, b  is the branching function:  

( ) 21 1 1 ib ωτω ζ ζ
ζ

⎛
⎜= − + −
⎜
⎝ ⎠

⎞
⎟
⎟

.                                         (19)  

In equation (19) ζ  and τ  are the shape and frequency 
scaling parameters, given by   

2
0H H

HG
τ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

,    
( )30

2 2
02

H H

H H TG
ζ

−
= .    (20) 

Our saturated P-wave modulus H~  converges at low 
frequencies as  
  
 ( )0 0 1H H iω Tω→ = −   (21)  
and at high frequencies as  

 ( ) 1 GH H
iω ω
ω→∞

⎛ ⎞
= −⎜ ⎟

−⎝ ⎠
.   (22) 

 
By comparing our exact expressions (18) and (19) with 
(21) and (22) we have  
 
      ( ) ( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−

+−−
=

μκμ

εηααα

3
4115

3422
22

2222

KMggH

HaggMHMT
      (23) 

 
and     

 
( )

HM

KMgMH
G

ημ

μκαπε

3
3
44 2 ⎟

⎠
⎞

⎜
⎝
⎛ +−

=             (24) 

 
Equations (17) – (20), (23) and (24) give our branching 
function solution for attenuation and dispersion at all 
frequencies. Figure 1 shows the comparison of this 
analytical approximation (solid lines) with the original 
results based on numerical solution of the integral equation 
(asterisks). One can see that the branching function gives a 
good approximation of the numerical solution. 
 
Conclusions 
 
We have presented an approximate analytical solution for 
attenuation and dispersion of elastic wave in a porous fluid-
saturated medium with aligned fractures of finite size. This 
solution exhibits a relaxation peak at a frequency 

( ) 2/ 2 2 4 /3 /f M K H aω π κ μ η= + , the frequency 

where the fluid diffusion length 21/ k  is of the order of the 
crack diameter a. Note that the diffusion length is 
proportional to  and is usually much smaller than the 
wavelength of the normal compressional or shear wave. 
This shows that the presence of cracks in a fluid-saturated 
porous medium can cause significant attenuation and 
dispersion at very low frequencies, well before the onset of 
elastic (Rayleigh) scattering. 

1/ 2ω−
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Figure 1: P-wave attenuation (a) and velocity (b) vs 
frequency: asterisks - numerical solution, and red line – 
analytical approximation   
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