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1 INTRODUCTION

ABSTRACT

The modelling of elastic waves in fractured media with an explicit finite-difference
scheme causes instability problems on a staggered grid when the medium possesses
high-contrast discontinuities (strong heterogeneities). For the present study we apply
the rotated staggered grid. Using this modified grid it is possible to simulate the
propagation of elastic waves in a 2D or 3D medium containing cracks, pores or free
surfaces without hard-coded boundary conditions. Therefore it allows an efficient
and precise numerical study of effective velocities in fractured structures. We model
the propagation of plane waves through a set of different, randomly cracked media.
In these numerical experiments we vary the wavelength of the plane waves, the crack
porosity and the crack density. The synthetic results are compared with several static
theories that predict the effective P- and S-wave velocities in fractured materials in
the long wavelength limit. For randomly distributed and randomly orientated,
rectilinear, non-intersecting, thin, dry cracks, the numerical simulations of velocities
of P-, SV- and SH-waves are in excellent agreement with the results of the modified
(or differential) self-consistent theory. On the other hand for intersecting cracks, the
critical crack-density (porosity) concept must be taken into account. To describe the
wave velocities in media with intersecting cracks, we propose introducing the critical
crack-density concept into the modified self-consistent theory. Numerical simula-
tions show that this new formulation predicts effective elastic properties accurately
for such a case.

that will help to solve problems with more complicated

geometries.

The prediction of effective elastic properties of fractured
solids is of considerable interest for geophysics, material
science and solid mechanics. In particular, it is important for
constitutive modelling of brittle microcracking materials. For
obvious practical reasons, the problem of a three-dimensional
medium permeated by circular or elliptical planar cracks has
received more attention in the literature. In this paper, we
consider a fractured medium in two dimensions. This may
seem to be a significant oversimplification. However, we

believe that some broad generalizations can be elucidated

*E-mail: saenger@geophysik.fu-berlin.de

© 2002 European Association of Geoscientists & Engineers

Strong scattering caused by many dry or fluid-filled cracks
can be treated only by numerical techniques because analyt-
ical solutions of the wave equation are not available. Bound-
ary integral methods are well suited to handle such discrete
scatterers in a homogeneous embedding. They allow the
study of SH-waves (Davis and Knopoff 1995; Murai, Kawa-
hara and Yamashita 1995), SV-waves (Dahm and Becker
1998) and P-waves (Kelner, Bouchon and Coutant 1999) in
multiply fractured media, but they are currently restricted to
non-intersecting cracks.

Finite-difference (FD) methods discretize the wave equa-

tion on a grid. They replace spatial derivatives with FD
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operators using neighbouring points. The wavefield is also
discretized in time; the wavefield for the next time-step is
generally calculated using a Taylor expansion. Since the FD
approach is based on the wave equation without physical
approximations, the method accounts not only for direct
waves, primary reflected waves and multiply reflected
waves, but also for surface waves, head waves, converted
reflected waves and waves observed in ray-theoretical
shadow zones (Kelly et al. 1976). Additionally, it automatic-
ally accounts for the proper relative amplitudes. The paper of
Andrews and Ben-Zion (1997) shows that, with respect to
the accuracy, FD methods are at least as good as the bound-
ary integral methods. Consequently, FD solutions of the wave
equation are widely used to study scattering of waves by
heterogeneities (e.g. Frankel and Clayton 1986; Kneib and
Kerner 1993; Kusnandi et al. 2000).

The main idea behind using a staggered FD grid (Virieux
1986) is to calculate spatial derivatives half-way between
two gridpoints to improve numerical accuracy. Hence, some
modelling parameters are defined on inter-grid locations, in
such a way that either they have to be averaged or the grid
values half-way between two gridpoints have to be used. This
can yield inaccurate results or instability problems when the
propagation of waves in media with strong fluctuations of
the elastic parameters (e.g. empty cracks) is simulated, even
though the von Neumann stability criterion (see e.g. Crase
1990) is fulfilled. In the present numerical study, however, we
apply the rotated staggered grid (Saenger, Gold and Shapiro
2000) for the modelling of elastic wave propagation in arbi-
trary heterogeneous media. The rotated staggered grid is
briefly discussed in Section 3.1.

We present a numerical study of effective velocities of two
types of fractured 2D medium. We model the propagation of
a plane wave through a well-defined fractured region. The
numerical set-up is described in Section 3.2. We use ran-
domly distributed and randomly orientated, rectilinear, dry,
thin cracks in both media. For the first type of medium, we
examine only non-intersecting cracks. The numerical results
for P-, SV- and SH-waves (see Section 3.3) are compared
comprehensively with several theories (see Section 2.2) that
predict the effective velocities for such a case. Additionally,
we compare our results with the numerical results of Davis
and Knopoff (1995), Murai et al. (1995) and Dahm and
Becker (1998). The second type of fractured medium con-
tains intersecting cracks. For this case the theories for non-
intersecting cracks and boundary integral methods are
beyond their range of validity. However, we have found
that the theory of Mukerji et al. (1995), including a so-called

critical-porosity concept, can be applied to take into account
intersecting cracks. By combining the concept of critical
porosity (i.e. critical crack density) with the so-called modi-
fied self-consistent theory, we propose in Section 2.3 a new
analytical formulation that is able to handle the case of
intersecting cracks. The predictions of this new heuristic
formalism are in excellent agreement with our numerical

results shown in Section 3.4.

2 THEORY

2.1 Formulae for transversely isotropic media

All our 2D fractured media models are filled at random with
randomly orientated, rectilinear, dry, thin cracks (i.e. crack
locations as well as crack orientations are random). There-
fore, we consider 2D statistically isotropic media. In 3D
space our models are homogeneous along the spatial direc-
tion that is perpendicular to the plane of our 2D models.
Therefore, from a theoretical point of view, our fractured 2D
models also represent a 3D, transversely isotropic, fractured
situation with symmetry axis perpendicular to the 2D plane.
To describe the wave propagation in anisotropic media we
use the same notation as Thomsen (1986). The elastic moduli
and the velocities are related by the well-known formulae:

PgU3y(90°) = cas, (1)
P31 (90°) = css, @)
paU3(90°) = cin, (3)

where c11, c44 and cgg are elements of the stiffness tensor, Pq
is the gravitational density, and vsy(90°), vsu(90°) and
vp(90°) are the phase velocities of SV-, SH- and P-waves
propagating perpendicular to the symmetry axis of the trans-

versely isotropic medium.

2.2 Non-intersecting cracks

In this section we consider randomly distributed and ran-
domly orientated, rectilinear, non-intersecting, thin, dry
cracks in 2D media (Fig. 1). Papers by Kachanov (1992)
and Davis and Knopoff (1995) provide sound descriptions
of theoretical approaches in this case. Both papers discuss
three different theories for 2D media that predict an effective
velocity for fractured models, namely, the ‘theory for non-
interacting cracks” (NIC), the ‘self-consistent theory’ (SC)
and the ‘modified (or differential) self-consistent theory’
(MSC). They can be used to predict effective wave velocities
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Figure 1 Randomly distributed and randomly orientated, rectilinear,
non-intersecting, thin, dry cracks in homogeneous 2D media. A part
of model No. 7.1 is shown (see Table 1).

in the long wavelength limit. In order to compare later our
numerical results with different theoretical predictions, we
summarize here the ideas and results for these theories. For
the definition of the crack-density parameter p (Kachanov
1992), we use

_1 - 2
p—Z;l, (4)

where 2/, is the length of rectilinear cracks, # is the number
of cracks and A is the representative area.

First, we concentrate on one type of shear wave: SH(90°)-
waves. The theory for non-interacting cracks (NIC) is derived
for the case of a dilute crack density. It assumes that the
energy per unit crack length needed for inserting a single
anti-plane crack is simply added # times to the energy of
the unfractured medium. With this assumption, the effective
shear modulus < pyic > (£ < cg6 >) (Davis and Knopoff
1995) can be calculated:

1
< Hnic > = ﬂom» (5)

where pi, is the shear modulus of the unfractured isotropic
medium and p is the crack density.

In the simplest form of self-consistent (SC) calculations, to
determine the properties at higher orders, it is argued that an
individual crack is introduced into an already cracked
medium and hence should be subjected to the stress field in
the flawed system (i.e. in the effective medium) and not to
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that in the unflawed system (O’Connell and Budiansky 1974,
1976; Budiansky and O’Connell 1976). This yields the
following prediction for the effective shear modulus < g >:

< fisc >= o[l —7m(p/2)]. (6)

However, Chatterjee, Mal and Knopoff (1978), Hudson
(1980) and Hudson and Knopoff (1989) showed that al-
though the interaction between cracks is considered in the
self-consistent model, the dipole-dipole interactions are neg-
lected and may have a practical importance at high crack
densities.

Two other studies (Bruner 1976; Henyey and Pomphrey
1982) argue that the change in energy should be calculated
sequentially by introducing new cracks in sequentially alter-
nated effective media. This argument leads to the shear
modulus as the solution to a simple differential equation.
The result of such a consideration, called the modified (or
differential) self-consistent (MSC) theory, is the following

exponential formula for the effective shear modulus

< Hmsc >+
< Umsc > = Moe_n(p/2)~ (7)

To complete our overview we state the formulae for effective
moduli (plane strain case) from the three theories for P(90°)-
and SV(90°)-waves (Kachanov 1992; Yuan 1998):

<ci1> <cpp> O 1-vg  wg(1+wp) 0
<E> E”z
<cpp> <cen> 0 = ,vo<gvo) 1<;U;> 0 . (8)
0 0 <C44> 0 0 é
e Theory for non-interacting cracks:
<E >=E , 9
NIC 0T - )
1
<Gnec>=Gy——r———. 10
NIC T 21 —volp (10)
e Self-consistent theory:
< Esc > = Eo(1 - np), (11)
< Gsc > = Go(1 —n(1 —vg)p). (12)
e Modified (differential) self-consistent theory:
< Emsc > = Eoe_np, (13)
< Gmsc > = Goein(l - Do)p. (14)

In these equations, Ey denotes Young’s modulus, Gy denotes
shear modulus (controlling propagation of SV-waves in this

symmetry) and vy is Poisson’s ratio of the unfractured
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isotropic medium. Note that to the first order (i.e. including
terms up to O(mnp)), all three theories predict the same effect-
ive moduli. Figure 5 illustrates the theories for non-intersect-
ing cracks (for vo = 0.25).

2.3 Intersecting cracks

Let us now consider randomly distributed and randomly
orientated, rectilinear, intersecting, thin, dry cracks in 2D
media (Fig. 2). The theories described in Section 2.2 are not
applicable in this case, because they are derived specifically
for non-intersecting cracks. For example, for a crack density
of p = 1.43, the effective modulus predicted by the modified
self-consistent theory for SH(90°)-waves (equation (7)) is
< p>=0.10 gy. But at this crack density in the case of
intersecting cracks, a modulus of < u > = 0 can be observed
because there is no path for the wave through the skeleton of
the fractured medium. In the case of intersecting cracks the
medium clearly demonstrates a kind of percolation behav-
iour. It is a monolith for small p. However, it falls apart for
large p. Therefore, to predict the effective velocities it is
necessary to use another approach that takes into account
such critical behaviour.

In the case of porous media, Mukerji et al. (1995) pro-
posed the differential effective medium (DEM) theory
(Norris 1985; Zimmermann 1991) modified by including
the concept of the critical porosity (Nur 1992). Note that in
this formalism the effective velocities are predicted in terms
of porosity ¢ rather than in terms of crack density p.

N
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Figure 2 Randomly distributed and randomly orientated, rectilinear,
intersecting, thin, dry cracks in homogeneous 2D media. A part of
model No. 10x.1 is shown (see Table 1).

The first step in using this modified DEM theory for
fractured media is to determine the critical porosity (or the
critical crack density). At the percolation porosity, the mater-
ial is a loose packing of grains barely touching each other.
This value of the percolation (i.e. critical porosity) can be
derived with the help of percolation theory (see e.g. Sahimi
1995).
models is discussed and calculated by Robinson (1983,

The special case of percolation in fractured 2D

1984). The result corresponding to our models (intersecting,
rectilinear, random, thin cracks of constant length in 2D
media) is a critical crack density of p. = 1.43 (or a critical
porosity of ¢. = 0.13). For p > p_, only finite-size pieces of
the solid exist, and there is no continuum through which an
elastic wave can propagate. This is illustrated in Fig. 1 of
Robinson (1983).

The second step is to calculate the effective elastic param-
eters at the critical porosity. The moduli at the percolation
point are equal to the Reuss (harmonic) average (Mavko,
Mukerji and Dvorkin 1998) of the constituent moduli, be-
cause in the general case of filled pores or cracks the medium
tends to a suspension. In our case of dry cracks we obtain (by
calculating the Reuss average) a value of zero for all elastic
moduli at the critical density. This is a clear consequence of
the absence of the propagation continuum.

The third step is to calculate the effective moduli with
respect to the porosity. For arbitrarily distributed cracks in
3D we have to solve two coupled differential equations (Ber-
ryman 1992) with critical-porosity initial conditions that can
be found in Mukerji ef al. (1995). Using this approach we
observed that the predicted effective velocity for S-waves for
needle-like inclusions (Eshelby 1957; Wu 1966; Berryman
1980) is in good agreement with numerical results for SH
(90°)-waves in 2D media with intersecting cracks (Saenger
and Shapiro 2000).

However, our 2D fractured models with rectilinear cracks
represent 3D transversely isotropic media with symmetry
axis perpendicular to the 2D plane. The modified DEM
theory is (so far) derived only for 3D isotropic fractured
media. 3D transversely isotropic fractured media have been
discussed for dilute crack densities, for example by Nur
(1971). The difficulty of incorporating percolation behaviour
in a DEM theory is the requirement of a solution for high
crack densities. Some general ideas in this direction can be
found in Cheng (1993).

On the other hand, the physical concepts of the DEM
and MSC theories have a lot in common. The most import-
ant here is the principle of sequential introduction of new

cracks leading in simple situations to exponential formulae
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for effective moduli. Taking this into account we suggest a
new heuristic critical crack density (CCD) formulation for
2D (i.e. 3D transversely isotropic) fracturing configurations.
We introduce into the results of the MSC theory (described in
Section 2.2) an additional factor to include the physical
behaviour at the critical crack density. We propose the
following formulae (compare with (7), (13) and (14)):

pe "
(o) (L)
< Hcep > = Ho® Pe =P/,

(15)
)
—7p
< Eccp > = Epe Pe =P/ | (16)
fm1fva( b )
< GCCD > = Goe pe—P 5 (17)

where p. denotes the critical crack density.
This heuristic formalism fulfils the following important
conditions:
e For the critical crack density the elastic moduli are zero.
For example:

llm < Hcep >=0.
P—Pc

(18)

e For an infinite critical crack density the theory gives the
same predictions as the MSC theory. The necessity of this
limit follows from the physically evident fact that an infin-
ite critical crack density for randomly distributed and
orientated, rectilinear, thin cracks implies non-intersecting

cracks. For example:

lim < pcep > =< pysc > - (19)

P00

e For dilute crack densities the CCD formulation gives (to
first order) the same predictions as the MSC theory. For

example:

9 teen > (0) =L < u> (0) (20)
ap Hcep Y H )

<tcep > (0) =< pvsc > (0) =< pp > . (21)

The effective velocities of SH(90°)-, SV(90°)- and P(90°)-
waves predicted by this new CCD formulation are plotted
in Fig. 7 with solid lines (vp = 0.25, p. = 1.43, n = 0.5).

3 NUMERICAL EXPERIMENTS

3.1 Finite-difference modelling of fractured media

The propagation of elastic waves is described by the elasto-

dynamic wave equation (e.g. Aki and Richards 1980),
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Pg(1)déi(r) = (cjri(r)up,(r)) ; + fi(r).

For modelling elastic waves at the position 7 with finite

(22)

differences, it is necessary to discretize the stiffness tensor
Cijul> the gravitational density p,, the displacement wavefield
u; and the body force f; on a grid.

3.1.1 The standard staggered grid

A standard method of discretizing staggered grids (Kneib and
Kerner 1993) is shown in Fig. 3(a). The main reason for
using this method is to improve numerical accuracy with
respect to centred FD grids. There is only one density loca-
tion and one location for the Lamé parameter u in this
elementary cell. Thus the calculation of the stress component
0y, has to be carried out by multiplying the values of strain
and stiffness defined at different positions. This leads to the
necessity of replacing, for example, the density at the left and
the lower side by the density of the centre and replacing the
shear modulus at the lower left corner by the shear modulus
at the centre. The same difficulties arise for the calculation of
the acceleration, since the density must be taken from a
different location. When the wavefield hits inhomogeneities
(e.g. cracks) with high contrasts of elastic parameters or
density, stability problems can occur. Here we obtain an
unstable modelling of a wavefield diffraction on a crack
(Saenger et al. 2000). Note that such stability problems
exist even though the von Neumann stability criterion (e.g.
Crase 1990) is fulfilled.

(a) Uz (b) Uy Uz Uy Uz
(Y Y
X Ux p@}\' H Ux }\; u
‘;' Exx £ 3 Exx Exz €22
Exz Uz p pr
Uy Uz Uy Uy
® gridpoints p:density A, u:Lamé parameters
. staggered gridpoints  ug,u, : displacement €y : strain

Figure 3 Elementary cells showing locations where strains, displace-
ment and elastic parameters are defined. (a) Locations are shown on
a standard staggered grid if no averaging of medium parameters is
performed. (b) Elementary cell of the rotated staggered grid. Spatial
derivatives are performed along the %- and %-axes. The wave equa-
tion and the elements of the stiffness tensor are the same as in (a).
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3.1.2 The rotated staggered grid

All the difficulties described above can be avoided by choos-
ing another configuration of the grid (Saenger ez al. 2000).
By placing all components of the strain tensor at the same
position within the elementary grid cell (e.g. the centre), the
positions of the modelling parameters (i.e. displacements)
and of the medium parameters are found directly as shown
in Fig. 3(b). The directions of spatial derivatives have rotated
from x and z to x and z.

The grid in Fig. 3(b) satisfies all stability and positioning
conditions with respect to the operations that are necessary
to perform a time-step. The parameters that have to be
multiplied are defined at the same location and derivatives
are defined between the locations of parameters that have to
be differentiated. Since the density is not located at the same
position as the stiffness tensor elements, two alternatives are
possible. The density can be given on an additional (stag-
gered) grid. Another, more practical approach suggests a
density averaging using the four surrounding cells. In the
case of homogeneous cells or a linear behaviour of the dens-
ity between the stiffness locations, the density coincides with
the exact density after averaging. The new distribution of
elastic parameters is also advantageous for modelling in gen-
eral anisotropic media, because no interpolation is necessary
to calculate the Hook sum in the modelling algorithm (Igel,
Mora and Riollet 1995).

Note that the FD approach used by Andrews and Ben-Zion
(1997), in contrast to the rotated staggered grid, is based on
a triangular elementary cell. However, the distribution of
modelling parameters in such a grid is, in principle, similar
to those in the rotated staggered grid technique and,
therefore, can also be applied when modelling high-contrast
elastic media.

3.1.3 Stability and dispersion

Frequency-dependent velocity errors, also called numerical
dispersion, cannot be excluded completely but can be esti-
mated and, therefore, reduced to a known and acceptable
degree. The dispersion errors for the rotated staggered grid
are similar to those of the conventional staggered grid (Saen-
ger et al. 2000).

As previously stated, the von Neumann stability criterion
is not used in connection with the stability problems for
high-contrast inclusions. For the rotated grid the von
Neumann stability criteria for the 3D and 2D cases are the

same. We obtain

At z
< 1/(2 |ck>, (23)

where ¢, denotes the difference coefficients (e.g. central
limit coefficients (Karrenbach 1995)), vp the compressional
wave velocity, At the time increment and Ab the grid
spacing. This result yields the von Neumann stability criter-
ion for the rotated staggered grid at all wave numbers in
the case of a homogeneous medium, and a second-order
operator in time.

For a more detailed description of the rotated staggered
grid refer to Saenger et al. (2000).

3.2 Experimental set-up

The rotated staggered FD scheme is a powerful tool for
testing theories about fractured media. The formalisms dis-
cussed in Section 2 predict the effective elastic moduli of
multiply fractured media as a function of crack density p or
porosity ¢. In order to test the formalisms we designed some
numerical elastic models which include a region with a well-
known crack density and porosity.

The cracked region was filled at random with randomly
orientated cracks. For models with non-intersecting cracks
the same procedure as in Davis and Knopoff (1995) and
Dahm and Becker (1998) is used: if two cracks intersected
during random selection, the more recent crack was elimin-
ated and a random choice was made again. Figure 4(a) shows
a typical model with non-intersecting cracks. This model
1000 x 1910 gridpoints with an
0.0001 m. In the homogeneous region we set vp = 5100 m/s,
vs = 2944 m/s and p, = 2700 kg/m?>. Table 1 summarizes the
relevant parameters for all the models we use in our experi-

contains interval of

ments. For the dry cracks we set vp = 0 m/s, vs = 0 m/s and
pg = 0.0001 kg/m3, which approximates a vacuum. Thus
each additional crack increases the porosity.

We perform our modelling experiments with periodic
boundary conditions in the horizontal direction. For this
reason our elastic models are also generated with this period-
icity. Hence, it is possible for a single crack to start at the
right side of the model and to end at its left side.

To obtain effective velocities in different models we apply
a body force line source at the top of the model. The plane
wave generated in this way propagates in a downward direc-
tion through the fractured medium (see Fig. 4).

With two horizontal lines of 1000 receivers at the top
(depth = 0.01 m) and at the bottom (depth = 0.152 m), it

is possible to measure the time-delay of the mean peak
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Figure 4 (a) A typical fractured model (No. 7.1 of Table 1) used for the numerical experiments. We introduce a cracked region into a
homogeneous material. At the top we place a small vacuum strip. This is advantageous for applying a body force line source with the rotated

staggered grid. (b) A snapshot of an SH-plane wave propagating through the cracked region (black indicates high amplitude).

Table 1 Crack models for numerical calculations. The models denoted with an x have intersecting cracks. The width of the cracks is equal to
the grid spacing. NB 0.0001 m is the size of the grid spacing and the size of the crack region is always 1000 x 1000 gridpoints

Length of
Crack cracks [0.0001 m]\ Number Porosity ¢ of Number of
No. density p aspect ratio of cracks of cracks the crack region model realizations
1.1-1.4 0.200 7\0.14 15280 0.1407 4
2.1-2.7 0.200 141\ 0.077 3881 0.0708 7
3 0.200 28\ 0.04 996 0.0358 1
4 0.025 5610.021 31 0.0022 1
S 0.050 56\ 0.021 63 0.0046 1
6.1-6.6 0.100 5610.021 126 0.0091 6
7.1-7.11 0.200 5610.021 252 0.0181 11
8.1-8.7 0.300 56\ 0.021 378 0.0360 7
9x 0.050 5610.021 63 0.0045 1
10x 0.100 5610.021 126 0.0091 1
11x.1-11x.6 0.200 56\ 0.021 252 0.0181 6
12x 0.300 561\0.021 378 0.0270 1
13x.1-13x.6 0.401 5610.021 504 0.0360 6
14x 0.601 56\0.021 756 0.0539 1
15x 0.801 5610.021 1007 0.0720 1
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amplitude of the plane wave caused by the inhomogeneous
region. The effective velocity can be estimated from this time-
delay. Additionally, the attenuation of the plane wave can be
studied. Note that the time-delay and the attenuation do not
depend significantly on the particular realization of our
model for a given fixed crack density. This will be demon-
strated in the following with error bars.

The direction of the body force and the source wavelet (i.e.
source time function) can vary to generate two types of shear
(SH- and SV-) wave and one longitudinal (P-) wave. The
source wavelet in our experiments is always the first deriva-
tive of a Gaussian, with different dominant frequencies, and
with a time increment At = § x 10~ s. Table 2 gives details
of the wavelets.

All computations are performed with second-order spatial
FD operators and with a second-order time update. In order
to reduce the dispersion error we use only 25% of the
allowed maximum time increment (y = 0.257,,..; see Saenger
et al. 2000). The number of gridpoints per dominant wave-
length N; depends on the wavelet used in the modelling, and
is in general larger than 588 (see Table 2). Therefore, with
this configuration our measurements are, for a model with a
crack density of p = 0, velocities of vp = 5101.86 m/s (rela-
tive error: 0.036%) and vs =2943.62m/s (relative error:
0.013%). To obtain such accurate modelling results with up
to 40 000 time-steps we have to use large-scale parallel com-
puters (e.g. Cray T3E). Owing to this computational cost we
have to restrict ourselves to significant cases of model vari-
ations in determining the error bars.

The number of gridpoints per dominant wavelength N; is
also important when modelling small-scale structures. Saen-
ger et al. (2000) show an accurate modelling of a single
arbitrarily shaped crack with N; > 14. It is generally
known that increasing N, improves the numerical accuracy

for arbitrarily steep structures (e.g. Robertsson 1996).

Table 2 Parameters of the different wavelets used in the numerical
study. NB 0.0001 m is the size of the grid spacing

S-wavelength

(dom.) [0.0001 m]

P-wavelength

No. fiom (Hz) (dom.) [0.0001 m]

1 2200000 23 13
2 800000 64 37
3 400000 128 74
4 120000 425 245
N 50000 1020 588
6 22000 2318 1338

3.3 Numerical results for non-intersecting cracks

The numerical results on effective wave velocities for non-
intersecting cracks are depicted by dots in Fig. 5. For com-
parison, the predictions of the three theories described above
are also shown.

We show the normalized effective velocities for three types
of wave. The relative decrease in the effective velocity for a
given crack density is smallest for SH-waves, followed by SV-
waves, and is largest for P-waves. For each wave type, we
perform numerical FD calculations with five different crack
densities. For the case of non-intersecting cracks we use
model Nos 4, 5, 6.1-6.5, 7.1-7.11, 8.1-8.7 (2] = 0.0056m,
Table 1) and the wavelet No. § (Agom(S) =0.0588m,
Zdom(P) = 0.1020 m, Table 2). The ratio of the crack length

to the dominant wavelength is given by the parameter p,

ol
)vdom

p (24)
(rectilinear cracks of length 2/, dominant wavelength Z4op).
Hence these calculations give a value of p =0.095 for
S-waves, and p = 0.055 for P-waves. As Murai et al. (1995)
conclude, this is a very good approximation to reach the long
wavelength limit.

The aspect ratio of the cracks we used in our numerical
experiments should not influence significantly the results of
the three theories for non-intersecting cracks discussed (com-
pare with Douma 1988). It is important to note that, for a
dilute crack density (e.g. p = 0.025), the numerical results
and all three theories match very well. This is an additional
analytical argument for the accuracy of our numerical study.
A final result is that our numerical simulations of P-, SV- and
SH-wave velocities are in excellent agreement with the predic-
tions of the modified (or differential) self-consistent theory.

Next we examine the influence of the ratio of crack length
to the dominant wavelength on our results. The ratio is given
by p (equation (24)). We restrict ourselves to studying only
the influence of this ratio using one single crack density
(p = 0.2) and for SH-waves with vibration direction perpen-
dicular to the 2D model. This enables us to compare our
results with the results of Davis and Knopoff (1995) because
they use the same mode of deformation and randomly dis-
tributed and randomly orientated cracks. In contrast to our
study, Murai et al. (1995) considered a fractured situation
with randomly distributed parallel cracks and a crack density
of p <0.02.

There are two possibilities of varying the parameter p. The
first possibility is to vary Aqom by using all the wavelets in
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Figure 5 Normalized effective velocity versus 1
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crack density. Dots: numerical results of this
study. The error bar denotes the standard
deviation for different model realizations 0.9
(see Table 1). The three dashed lines are pre-

dicted by the theory for non-interacting

cracks, the three dashed—dotted lines by the 0.8
self-consistent theory and the three solid
lines by the modified (or differential) self-
consistent theory. The top curves result from

Veff / V

SH(90°)-waves. The other shear-wave results

top: SH-waves

bottom: P-waves

(SV(90°)-waves) are depicted in the middle. —

The bottom curves result from compressional
P(90°)-waves. Details are given in Sections
2.2 (theory) and 3.3 (numerical results).

non-interacting cracks

BN
mod. (diff) self-cons. « \

self- consistent N
numerical results N

0.15 0.2 0.25 0.3

Crack density p

0.05 0.1

Figure 6 Normalized effective velocity (SH-
waves) versus p = 2//Aqom (normalized fre-

0.88

quency), for crack density p =0.2. Dots:
numerical results of this study. Two horizon-

—  non-interacting cracks

mod. (diff.) self-cons.

tal lines at the top: different theoretical pre-

dictions. The error bar denotes the standard
deviation for different model realizations
(see Table 1). Note that the numerical result
shown at p = 0.095 is also shown in Fig. 5.
Details are given in Section 3.3.

0.8

— e — —e— A(fund) = const.
- - - - - e-2]= const.
° numerical results

0.01

Table 2 and not to change the length of the cracks using
model No. 7 (Table 1). The numerical results are shown in
Fig. 6 (dots joined with dashed line). The three theories for
non-intersecting cracks mentioned above are derived for
wavelengths much larger than the crack length (discussed e.
g. by Peacock and Hudson 1990). Therefore, it is interesting
to observe that over a wide range of p (by varying A4om) there
is no significant change in the effective velocity.

For the second curve in Fig. 6 (dots joined with dashed-
dotted line), we always use wavelet No. 5 and vary the length
of the cracks using model Nos 1.1-1.4, 2.1-2.7, 3, 7.1-7.11
(see Table 2). Note that with decreasing length of cracks the
porosity of the fractured region increases. Hence, the de-

crease in the effective velocity for small values of p on this

0.05 0.1 0.5 1
Parameter p

curve can be explained by the increasing influence of the
porosity of the models used.

An additional result is that our calculated effective veloci-
ties (dots in Fig. 6) always match the prediction by the
modified self-consistent theory (solid horizontal line) better
than the prediction by the theory for non-interacting cracks
(dashed horizontal line) for all values of p. This fact under-
lines the numerically based conclusion that the modified self-
consistent theory always predicts effective velocities most
accurately.

This is in contrast to some conclusions by Davis and
Knopoff (1995). They proposed that the theory for non-
interacting cracks is valid for much higher crack densities
than expected. Dahm and Becker (1998) conducted a similar
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Figure 7 Normalized effective SH-, SV- and

P-wave velocities for intersecting cracks
versus crack density. Dots: numerical results

of this study. Lines: theoretical predictions

of the CCD formulations. The error bar
denotes the standard deviation for different
model realizations (see Table 1). Details are
given in Sections 2.3 (theory) and 3.4 (nu-
merical results).

1
N top: SH-waves
08 | i < bottom: P-waves
S 0.6
k3
> 04
0.2t
CCD formulations
. numerical results
0.2 0.4 0.6 0.8 1 1.2 1.4

Crack density p

boundary integral experiment and an additional finite-
element study, and found that crack—crack interactions
cannot simply be ignored for high crack densities. The find-
ings of these two papers have been further discussed by
Liu, Hudson and Pointer (2000) and Le Ravalec and
Guéguen (1996). The conclusions of Dahm and Becker
(1998) are in agreement with our results. Even the fact
that the numerically calculated effective velocities tend to
be slightly lower than the effective velocities predicted by
the MSC theory is consistent with our numerical simu-
lations. A detailed discussion about why this discrepancy
can arise in different studies can be found in Dahm and
Becker (1998).

3.4 Numerical results for intersecting cracks

Our numerical results for intersecting cracks are shown in
Fig. 7. For the calculations of normalized effective velocities
marked with dots we always use wavelet No. 5 (Table 2) and
model Nos 9x, 10x, 11x.1-11x.6, 12x, 13x.1-13x.6, 14x,
15x (Table 1).

We show the calculations for all three wave types. The
relative decrease of the effective velocity for a given porosity
is smallest for SH-waves followed by SV-waves, and is largest
for P-waves.

Our numerical results and the new CCD formulation,
including a critical crack density, are in excellent agreement.
It is important to note that the value of 7 =0.5, used to
determine the effective velocities predicted by (15)—(17) in
Fig. 7, is fixed empirically (best fit).

4 CONCLUSIONS

We have presented a numerical tool, a rotated staggered FD
grid, to calculate effective velocities in fractured media.
Finite-difference modelling of the elastodynamic wave equa-
tion is very fast and accurate. In contrast to a standard
staggered grid, high-contrast inclusions do not cause instabil-
ity difficulties for our rotated staggered grid. Thus, our nu-
merical modelling of elastic properties of dry-rock skeletons
can be considered as an efficient and well-controlled com-
puter experiment.

We considered 2D isotropic (3D transversely isotropic)
fractured media. We have numerically tested predictions of
three different theoretical approaches: the theory for non-
interacting cracks, the self-consistent theory and the modified
self-consistent theory. For non-intersecting, rectilinear, thin,
dry cracks, the modified (differential) self-consistent (MSC)
theory is most successful in predicting effective velocities for
SV-, SH- and P-waves.

For the case of intersecting fractures it is important to take
percolation behaviour of the medium into account. The con-
cept of the critical crack density may be introduced to ex-
plain the elastic properties of such media. We propose a
heuristic approach termed the critical crack density (CCD)
formulation. This combines the critical crack-density concept
with the modified (differential) self-consistent media theory.
The CCD formulation predicts effective velocities for
SV-, SH- and P-waves in fractured 2D media with intersect-
ing, rectilinear, thin, dry cracks. The numerical results sup-
port predictions of this new empirical formulation.
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