
CWP-534

Effective attenuation anisotropy of layered media

Yaping Zhu, Ilya Tsvankin, and Ivan Vasconcelos
Center for Wave Phenomena, Department of Geophysics,

Colorado School of Mines, Golden, CO 80401-1887

ABSTRACT

One of the main factors responsible for effective anisotropy of seismic attenua-
tion is interbedding of thin attenuative layers with different properties. Here, we
apply Backus averaging to obtain the complex stiffness matrix for an effective
medium formed by an arbitrary number of anisotropic, attenuative constituents.
Unless the intrinsic attenuation is uncommonly strong, the effective velocity
function is controlled by the real-valued stiffnesses (i.e., is independent of at-
tenuation) and can be determined from the known equations for purely elastic
media. Analysis of effective attenuation is more complicated because the atten-
uation parameters are influenced by coupling between the real and imaginary
parts of the stiffness matrix.
The main focus of this work is on effective VTI (transversely isotropic with
a vertical symmetry axis) models that include isotropic and VTI constituents.
Assuming that the stiffness contrasts, as well as the intrinsic velocity and atten-
uation anisotropy, are weak, we develop explicit first-order (linear) and second-
order (quadratic) approximations for the attenuation-anisotropy parameters ε

Q
,

δ
Q
, and γ

Q
. Whereas the first-order approximation for each parameter is given

simply by the volume-weighted average of its interval values, the second-order
terms reflect the coupling between various factors related to both heterogene-
ity and intrinsic anisotropy. Interestingly, the effective attenuation for P- and
SV-waves is anisotropic even for a medium composed of isotropic layers with
no attenuation contrast, provided there is a velocity variation among the con-
stituent layers. Contrasts in the intrinsic attenuation, however, do not create
attenuation anisotropy, unless they are accompanied by velocity contrasts.
Extensive numerical testing shows that the second-order approximation for ε

Q
,

δ
Q
, and γ

Q
is close to the exact solution for most plausible subsurface models.

The accuracy of the first-order approximation depends on the magnitude of
the quadratic terms, which is largely governed by the strength of the velocity
(rather than attenuation) contrasts and velocity anisotropy. The effective at-
tenuation parameters for multiconstituent VTI models generally exhibit more
variation than do the velocity parameters, with almost equal probability of pos-
itive and negative values. If some of the constituents are azimuthally anisotropic
with misaligned vertical symmetry planes, the effective velocity and attenuation
functions may have different symmetries and principal azimuthal directions.

Key words: attenuation, effective attenuation anisotropy, transverse isotropy,
layered media, weak-anisotropy approximation
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1 INTRODUCTION

The directional dependence of attenuation has been ob-
served in laboratory experiments (e.g., Hosten et al.,
1987; Tao and King, 1990; Prasad and Nur, 2003; Zhu
et al., 2006) and several field case studies (e.g., Lynn et
al., 1999; Vasconcelos and Jenner, 2005). While the sub-
stantial magnitude of attenuation anisotropy for many
subsurface formation is unquestionable, the underlying
physical mechanisms are not completely understood.

In their analysis of a shallow multiazimuth reverse
VSP survey, Liu et al. (1993) estimated anisotropy
in both velocity and attenuation, and attributed it
to stress-induced fractures and microcracks. Pointer
et al. (2000) discuss three different mechanisms for
wave-induced fluid flow in cracked porous media that
might result in anisotropic velocities and attenuation
coefficients when the cracks are aligned. A poroelastic
model introduced by Chapman (2003) in his discussion
of frequency-dependent anisotropy can explain strong
anisotropic attenuation in the seismic frequency band.
Using Chapman’s model, Maultzsch et al. (2003) esti-
mated the Q-factor as a function of phase angle for syn-
thetic samples composed of sand-epoxy matrix with em-
bedded thin metal discs. Analysis of seismic body waves
and normal-mode data shows that even the inner core of
the earth possesses attenuation anisotropy likely caused
by columnar crystals elongated in the radial direction
(Souriau and Romanowicz, 1996; Bergman, 1997).

Another possible cause of effective attenuation
anisotropy is interbedding of thin layers with differ-
ent attenuation coefficients. Long-wavelength velocity
anisotropy of layered media is discussed extensively
in the literature (e.g., Backus, 1962; Berryman, 1979;
Schoenberg and Muir, 1989; Shapiro and Hubral, 1996;
Bakulin, 2003; Bakulin and Grechka, 2003). Although
attenuation anisotropy usually accompanies velocity
anisotropy (e.g., Tao and King, 1990; Arts and Ra-
solofosaon, 1992), much less attention has been de-
voted to studies of effective anisotropy of layered at-
tenuative media. Sams (1995) measured effective at-
tenuation coefficients partially resulting from apparent
(layer-induced) attenuation, but his work is restricted
to isotropic models. Molotkov and Bakulin (1998) dis-
cussed a matrix-averaging technique for stratified lossy
porous medium and obtained an effective Biot medium
with anisotropic viscosity and relaxation. By employ-
ing the correspondence principle (Bland, 1960) for thin-
layered viscoelastic media, Carcione (1992) derived the
complex stiffnesses of effective media composed of at-
tenuative, isotropic constituent layers. This effective
stiffness matrix can be used to quantify both velocity
anisotropy and attenuation anisotropy.

Here we analyze the effective properties of a se-
quence of attenuative anisotropic layers. The discus-
sion is focused primarily on transversely isotropic (TI)
constituents with a vertical symmetry axis for both
velocity and attenuation. First, the Backus averaging

technique is used to obtain the exact stiffness matrix
in the low-frequency limit. Then we develop the first-
and second-order approximations for the effective ve-
locity and attenuation anisotropy in terms of the inter-
val anisotropy parameters and stiffness contrasts. The
second-order (quadratic) solution is particularly helpful
in evaluating the contributions of various factors to the
effective attenuation-anisotropy parameters. Numerical
tests demonstrate that the performance of the approxi-
mations is mostly influenced by the velocity field (i.e., by
the real parts of the stiffness coefficients). Simulations
for a representative set of random layered TI models
allow us to estimate the bounds on the effective veloc-
ity and attenuation parameters. Finally, we consider az-
imuthally anisotropic constituent layers and discuss the
possibility of misaligned symmetry directions for the ve-
locity and attenuation functions.

2 EFFECTIVE PARAMETERS OF

LAYERED ANISOTROPIC

ATTENUATIVE MEDIA

The Backus (1962) averaging technique was originally
introduced to compute the effective properties of a stack
of elastic (non-attenuative) isotropic layers in the long-
wavelength limit. Here, we derive the effective stiffness
coefficients for stratified models composed of thin atten-
uative anisotropic layers.

The constitutive relationship for attenuative media
can be expressed in the time domain as

τ = Le , (1)

where τ and e are the real-valued stress and strain ten-
sors, respectively. L is a first-order linear differential
operator that reduces to the real-valued stiffness tensor
for elastic media. For example, consider a 1-D standard
linear solid model (also called the Zener model) used to
characterize dissipative rocks and polymers (e.g., Ferry,
1980; Carcione, 2001). This model includes a spring
combined with a unit consisting of another spring and a
dashpot connected in parallel; its viscoelastic behavior
is described by

τ + ττ∂tτ = MR(ε + τe∂te) , (2)

where ττ and τe are the two relaxation times for the
mechanical system, and MR is the “relaxed” modulus.
For elastic media, the relaxation times vanish, and MR

reduces to a real-valued modulus.
Transforming the constitutive relationship from

equation 1 into the frequency domain yields

τ̃ = C̃ ẽ , (3)

where all quantities become complex-valued (denoted
by˜); C̃ is the complex stiffness tensor.

Suppose a thin-layered model includes N types
of constituents, whose spatial distribution is station-
ary across all the layers. For simplicity, throughout the
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paper the layering plane is assumed to be horizontal.
The medium properties are constant within each layer
but change across layer boundaries (medium interfaces).
Different layers belong to the same constituent if they
have identical medium properties including both veloc-
ity and attenuation. For example, it is possible to form
a model with hundreds of thin layers by using just two
interbedding constituents.

The Backus averaging technique for both elastic
and attenuative media is applied in the long-wavelength
limit, which means that the dominant wavelength is
much larger than the thickness of all layers. Following
Backus (1962) and Schoenberg and Muir (1989), we as-
sume that in the time domain the components of the
traction vector that acts across interfaces are the same
for all layers:

τ
(k)
13 ≡ τ13 , τ

(k)
23 ≡ τ23 , τ

(k)
33 ≡ τ33 , (4)

where the superscript denotes the k-th constituent. The
in-plane strain components are also supposed to be the
same:

e
(k)
11 ≡ e11 , e

(k)
22 ≡ e22 , e

(k)
12 ≡ e12 . (5)

Equations 4 and 5 remain valid for the frequency-
domain counterparts of the stress and strain elements:

τ̃
(k)
13 ≡ τ̃13 , τ̃

(k)
23 ≡ τ̃23 , τ̃

(k)
33 ≡ τ̃33 , (6)

and

ẽ
(k)
11 ≡ ẽ11 , ẽ

(k)
22 ≡ ẽ22 , ẽ

(k)
12 ≡ ẽ12 . (7)

When the frequency goes to zero, the imaginary parts
of the complex stiffness components vanish, and the
medium becomes non-attenuative.

Since all stress and strain components in equa-
tions 6 and 7 are just the complex counterparts of the
corresponding quantities in equations 4 and 5, the effec-
tive stiffnesses for layered attenuative media can be ob-
tained using the results of Schoenberg and Muir (1989)
for purely elastic models:

C̃NN = 〈C̃−1
NN 〉−1 , (8)

C̃TN = 〈C̃TN C̃
−1
NN 〉C̃NN , (9)

C̃TT = 〈C̃TT 〉 − 〈C̃TN C̃
−1
NN C̃NT 〉

+ 〈C̃TN C̃
−1
NN 〉C̃NN 〈C̃−1

NN C̃NT 〉 , (10)

where 〈·〉 denotes the volume-weighted average. The
submatrices for each constituent have the following
form:

C̃
(k)
NN =

2

4

c̃33 c̃34 c̃35

c̃34 c̃44 c̃45

c̃35 c̃45 c̃55

3

5 , (11)

C̃
(k)
TN = C̃

(k)T
NT =

2

4

c̃13 c̃14 c̃15

c̃23 c̃24 c̃25

c̃36 c̃46 c̃56

3

5 , (12)

and

C̃
(k)
TT =

2

4

c̃11 c̃12 c̃16

c̃12 c̃22 c̃26

c̃16 c̃26 c̃66

3

5 . (13)

Equations 8-13 completely describe the effective
properties for any number of constituents with arbitrary
anisotropy in terms of both velocity and attenuation.

2.1 Effective stiffnesses for TI media

Transversely isotropic (TI) layers (primarily shales and
shaly sands) are common for sedimentary basins (Say-
ers, 1994; Tsvankin, 2005). Here, we consider a layered
medium composed of TI constituents with a vertical
symmetry axis (VTI) for both velocity and attenua-
tion. Substituting the complex stiffness matrix c̃ij of
the VTI constituent layers (Zhu and Tsvankin, 2006)
into equations 8-13 yields an effective attenuative VTI
model with five independent complex stiffnesses:

c̃11 = 〈c̃11〉 − 〈(c̃13)
2/c̃33〉 + 〈1/c̃33〉

−1〈c̃13/c̃33〉
2 , (14)

c̃33 = 〈1/c̃33〉
−1 , (15)

c̃13 = 〈1/c̃33〉
−1〈c̃13/c̃33〉 , (16)

c̃55 = 〈1/c̃55〉
−1 , (17)

c̃66 = 〈1/c̃66〉
−1 ; (18)

c̃12 = c̃11 − 2c̃66. The effective velocity-anisotropy pa-
rameters in Thomsen (1986) notation are obtained using
the real parts cij of the effective stiffnesses from equa-
tions 14-18:

VP0 ≡

r

c33

ρ
, VS0 ≡

r

c55

ρ
, (19)

ε ≡
c11 − c33

2c33
, (20)

δ ≡
(c13 + c55)

2 − (c33 − c55)
2

2c33(c33 − c55)
, (21)

γ ≡
c66 − c55

2c55
, (22)

where ρ = 〈ρ〉 is the volume-averaged density.
To characterize attenuative anisotropy, we employ

the effective attenuation-anisotropy parameters defined
by Zhu and Tsvankin (2006):

ε
Q

≡
Q33 − Q11

Q11
, (23)

δ
Q
≡ (24)

Q33 − Q55

Q55
c55

(c13 + c33)
2

(c33 − c55)
+ 2

Q33 − Q13

Q13
c13(c13 + c55)

c33(c33 − c55)
,

γ
Q
≡

Q55 − Q66

Q66
, (25)

where Qij = cij/cI
ij is the quality-factor matrix (no in-

dex summation is applied), and cI
ij is the imaginary part

of the stiffness c̃ij . The notation of Zhu and Tsvankin
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(2006) also includes two reference parameters — the
wavenumber-normalized attenuation coefficients for P-
and S-waves in the symmetry (vertical) direction:

AP0 = Q33

“

p

1 + 1/(Q33)2 − 1
”

≈
1

2Q33
, (26)

AS0 = Q55

“

p

1 + 1/(Q55)2 − 1
”

≈
1

2Q55
. (27)

The normalized attenuation coefficient is defined as
A ≡ kI/k, where k and kI are the real and imaginary
parts of the complex wavenumber k̃. The approxima-
tions in equations 26 and 27 are obtained in the weak-
attenuation limit by keeping only the linear terms in the
inverse components Qii (i = 3, 5).

3 APPROXIMATE ATTENUATION

PARAMETERS OF EFFECTIVE VTI

MEDIA

Explicit equations for the effective stiffnesses in terms
of the interval parameters have a rather complicated
form. Here, we present approximate expressions that
help to evaluate the influence of different factors on
the anisotropy of the effective medium. The approxi-
mations are developed under the assumption of weak
intrinsic velocity and attenuation anisotropy, as well as
small contrasts in the stiffnesses between different con-
stituents.

Unless the medium is strongly attenuative and has
non-negligible dispersion, the influence of the quality-
factor elements on phase velocity is of the second or-
der and typically can be ignored (Červený and Pšenč́ık,
2005; Zhu and Tsvankin, 2006). Hence, the effective
velocity-anisotropy parameters remain practically the
same as those for the purely elastic model defined by
the real parts of the stiffness elements. Since a detailed
description of the velocity anisotropy of fine-layered VTI
media can be found in Bakulin (2003), the discussion be-
low is focused primarily on the attenuation-anisotropy
parameters.

3.1 First-order approximation

Approximate effective parameters can be derived by
expanding the exact equations in the small quantities
(velocity- and attenuation-anisotropy parameters and
the contrasts in the stiffnesses) and neglecting higher-
order terms. In the first-order (linear) approximation,
the effective value of any anisotropy parameter is equal
simply to its volume-weighted average (Bakulin and
Grechka, 2003). For example, the linearized parameter
ε can be written as

ε = 〈ε〉 =

N
X

k=1

φ(k)ε(k) , (28)

where φ(k) is the volume fraction of each constituent.
Similarly, for the attenuation-anisotropy parameter ε

Q

we have

ε
Q

= 〈ε
Q
〉 =

N
X

k=1

φ(k)ε(k)
Q

. (29)

Evidently, the effective medium properties in the long-
wavelength limit are independent of the spatial sequence
of the constituents, which can arranged in an arbitrary
order.

3.2 Second-order approximation

The second-order approximation for the effective
velocity-anisotropy parameters of two-constituent VTI
media is given by Bakulin (2003). Here, we present a
more general analysis that accounts for attenuation and
allows for an arbitrary number of VTI constituents.

The parameters assumed to be small for each con-
stituent k include ∆̂c

(k)
33 , ∆̂c

(k)
55 , ∆̂Q

(k)
33 , ∆̂Q

(k)
55 , ε(k), δ(k),

γ(k), ε(k)
Q

, δ(k)
Q

, and γ(k)
Q

, where ∆̂c
(k)
ii and ∆̂Q

(k)
ii quan-

tify the magnitude of property variations in the model:

∆̂c
(k)
ii = ∆c

(k)
ii /c̄ii , (30)

∆̂Q
(k)
ii = ∆Q

(k)
ii /Q̄ii , ii = 33 or 55 . (31)

Here, c̄ii =
1

N

N
X

k=1

c
(k)
ii and Q̄ii =

1

N

N
X

k=1

Q
(k)
ii are the

arithmetic averages of cii and Qii among all N con-
stituents, while ∆c

(k)
ii = c

(k)
ii − c̄ii and ∆Q

(k)
ii = Q

(k)
ii −

Q̄ii denote the deviations from the average values. In
the approximations discussed here, the squared vertical-

velocity ratio g =
c̄55

c̄33
and the vertical attenuation ratio

g
Q

=
Q̄33

Q̄55
are not treated as small parameters. It is

assumed, however, that the attenuation is not uncom-
monly strong so that quadratic and higher-order terms
in 1/Qii can be neglected.

The approximate effective parameters for both ve-
locity and attenuation anisotropy are given in Ap-
pendix A. For the special case of two constituents
(N=2), our velocity-anisotropy parameters become
identical to those given by Bakulin (2003). In princi-
ple, the exact effective velocity-anisotropy parameters
depend on all possible factors including the quality-
factor matrix that describes the intrinsic attenuation.
However, unless the model has extremely high attenua-
tion with some of the quality-factor components smaller
than 10, the contribution of the attenuation parameters
to the effective velocity anisotropy can be ignored.

In contrast, the effective attenuation anisotropy
is influenced not just by the imaginary part of the
stiffness matrix (i.e., by the intrinsic attenuation and
the contrasts in the attenuation parameters), but also
by the real parts of the stiffnesses (i.e., by the veloc-
ity parameters) and the coupling between various fac-
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tors. The second-order approximations for the effective
Thomsen-style attenuation parameters can be repre-
sented as (equations A37, A43, and A15):

ε
Q

= 〈ε
Q
〉+ε(is)

Q
+ε(is-Van)

Q
+ε(is-Qan)

Q
+ε(Van-Qan)

Q
,

(32)

δ
Q

= 〈δ
Q
〉+δ(is)

Q
+δ(is-Qan)

Q
+δ(Van-Qan)

Q
+δ(Van)

Q
,

(33)

γ
Q

= 〈γ
Q
〉+γ(is)

Q
+γ(is-Van)

Q
+γ(is-Qan)

Q
+γ(Van-Qan)

Q
,

(34)

where 〈·〉 is the first-order term equal to the volume-
weighted average of the intrinsic parameter values, and
the rest of the terms are quadratic (second-order) in

the small parameters listed above. The superscript (is)

refers to the contribution of the parameters ∆c
(k)
ii and

∆Q
(k)
ii (i = 3, 5), which quantify the heterogeneity (con-

trasts) of the “isotropic” quantities, while (Van) de-
pends on the intrinsic velocity anisotropy. The super-

scripts (is-Van), (is-Qan), and (Van-Qan) denote the
quadratic terms that represent (respectively) the cou-
pling between the isotropic heterogeneity and intrinsic
velocity anisotropy, between the isotropic heterogeneity
and intrinsic attenuation anisotropy, and between the
intrinsic velocity and attenuation anisotropy.

Note that there are no “Van”-terms (i.e., terms
quadratic in the interval velocity-anisotropy parame-
ters) in equation 32 for ε

Q
and equation 34 for γ

Q
.

The parameter δ
Q

in equation 33 does include the

term δ
(Van)
Q but not δ

(is-Van)
Q , which is similar to the

structure of equation A32 for the velocity-anisotropy
parameter δ. It is interesting that while the second-
order approximations for ε

Q
, δ

Q
, and γ

Q
depend on the

coupling between the intrinsic attenuation anisotropy
and other factors (the intrinsic velocity anisotropy and
the isotropic heterogeneity), none of them contains the
sole contribution of the intrinsic attenuation-anisotropy
parameters (i.e., there are no terms with the super-
script “Qan”). The leading (first-order) term, how-
ever, is entirely controlled by the corresponding average
attenuation-anisotropy parameter.

Explicit expressions for all second-order terms are
listed in Appendix A. Equations A43–A48 show that the
parameter δ

Q
is independent of the intrinsic-anisotropy

parameters ε(k) and ε(k)
Q

; this result follows directly from
the exact equation 24. In contrast, ε

Q
is influenced by all

anisotropy parameters for P-SV waves (ε(k), δ(k), ε(k)
Q

,

and δ(k)
Q

) because these parameters contribute to the
effective values of c11 and Q11 (equation A21).

According to equations A39, A45, and A17, the

isotropic-heterogeneity terms ε
(is)
Q , δ

(is)
Q and γ

(is)
Q van-

ish when both c
(k)
55 and Q

(k)
55 are constant for all con-

stituents. This is a generalization of the well-known re-
sult for the effective velocity anisotropy of elastic media

(Postma, 1955; Bakulin, 2003): the heterogeneity terms

ε(is) = δ(is) = γ(is) = 0 if c
(k)
55 = const, k = 1 · · ·N .

As also pointed out by Bakulin (2003), δ(is)

in equation A34 vanishes if the vertical velocity ra-
tio V

(k)
P0 /V

(k)
S0 is constant for all constituents (i.e.,

c
(k)
55 /c

(k)
33 = const, k = 1 · · ·N), which means

∆̂c55/c̄55 = ∆̂c33/c̄33. The parameter δ
(is)
Q in equa-

tion A45, however, does not preserve such a prop-
erty: Even if ∆̂c55/c̄55 = ∆̂c33/c̄33 and ∆̂Q55/Q̄55 =

∆̂Q33/Q̄33, δ
(is)
Q is not zero unless ḡ

Q
= 1, which means

identical quality factors for all constituents (Q
(k)
33 =

Q
(k)
55 , k = 1 · · ·N).

3.3 Velocity contrast versus attenuation

contrast

As extensively discussed in the literature, velocity
contrasts between thin layers cause effective velocity
anisotropy in the long-wavelength limit (e.g., Backus,
1962; Brittan et al., 1995; Werner and Shapiro, 1999).
The nature of the contribution of the velocity contrasts
to the effective attenuation anisotropy, however, is much
less obvious. In this section, we compare the influence of
the velocity and attenuation contrasts on the effective
attenuation-anisotropy parameters.

The second-order approximations help to separate
the contributions of the velocity parameters from those
of the attenuation contrasts and intrinsic attenuation
anisotropy. Indeed, the attenuation-anisotropy parame-
ters ε

Q
and δ

Q
(equations A37–A42 and A43–A48) con-

tain several terms controlled entirely by the contrasts in
the real-valued stiffnesses c33 and c55 and by the intrin-
sic velocity anisotropy. For example, the approximate ε

Q

depends on
∆c

(k,l)
33

c̄33

∆c
(k,l)
55

c̄55
and

 

∆c
(k,l)
55

c̄55

!2

(see equa-

tion A39; k and l denote different constituents), as well

as on
∆c

(k,l)
55

c̄55
∆δ(k,l) (equation A40). This means that

the velocity parameters can create effective attenuation
anisotropy for P- and SV-waves even without any at-
tenuation contrasts or intrinsic attenuation anisotropy.
Still, for the attenuation-anisotropy parameters to have
finite values, the constituents need to be attenuative. If
the medium is purely elastic and all intrinsic Qij compo-
nents are infinite, the parameters ε

Q
, δ

Q
, and γ

Q
become

undefined (equations 23–25).
To explore this issue further, let us consider the an-

alytical expressions for the effective quality factor com-
ponents for a medium composed of constituents with the
isotropic normalized attenuation coefficient A, in which
ε(k)

Q
= δ(k)

Q
= γ(k)

Q
= 0 for all k. The quality-factor ma-

trix for each constituent is described by two indepen-
dent components (Carcione, 2001; Zhu and Tsvankin,
2006), which we assume to be constant for the whole

model: Q
(k)
11 = Q

(k)
33 ≡ QP and Q

(k)
55 = Q

(k)
66 ≡ QS, where
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QP and QS are the quality factors for P- and S-waves,
respectively. Then, as discussed by Zhu and Tsvankin
(2006), the normalized attenuation coefficients in all lay-
ers will be identical and isotropic (independent of an-
gle). Note that if the real-valued stiffnesses vary among

the constituents, the quality-factor component Q
(k)
13 (un-

like QP and QS) will not necessarily be constant. Ac-

cording to the definition of δ
Q

(equation 24), Q
(k)
13 is

given by

Q
(k)
13 = QP

,"

1 −
(g

Q
− 1)c

(k)
55 (c

(k)
13 + c

(k)
33 )2

2c
(k)
13 (c

(k)
13 + c

(k)
55 )(c

(k)
33 − c

(k)
55 )

#

, (35)

where g
Q

≡ QP /QS .
The effective Qij components for this model can be

obtained from equations A21–A23, A2, and A5:

Q11 = QP F
“

c
(k)
11 , c

(k)
33 , ξ(k), ξ(k)

Q

”

, (36)

Q33 = QP , (37)

Q55 = Q66 = QS , (38)

and

Q13 = QP

N
X

k=1

φ(k)ξ(k)

N
X

k=1

φ(k)ξ(k)ξ(k)
Q

, (39)

where ξ(k) ≡ c
(k)
13 /c

(k)
33 and ξ(k)

Q
≡ QP /Q

(k)
13 . Since the

expression for Q11 is rather lengthy, we omit the explicit
form of the function F .

Although the attenuation of all constituents is iden-
tical and isotropic, the dependence of Q11 and Q13 on
the real-valued stiffnesses makes the effective attenua-
tion for P- and SV-waves angle-dependent (i.e., ε

Q
6= 0

and δ
Q

6= 0). The normalized attenuation coefficient of
SH-waves, however, is isotropic because the effective pa-
rameter γ

Q
goes to zero.

For the special case of equal quality factors for P-
and S-waves (QP = QS and g

Q
= 1), the element Q13 is

constant for all constituents (Q
(k)
13 = QP ), and ξ(k)

Q
≡ 1.

Then ε
Q

= 0 and δ
Q

= 0 because all effective quality-
factor components are identical (Q11 = Q33 = Q13 =
Q55 = Q66). This means that for QP = QS the effective
attenuation is isotropic no matter how significant are
the velocity contrasts and intrinsic velocity anisotropy.

The magnitude of the velocity-induced attenuation
anisotropy for a two-constituent model is illustrated
in Figure 1. Both constituents have isotropic veloc-
ity functions and the same isotropic attenuation (with
Q33 6= Q55). The substantial contrasts in the P- and
S-wave velocities, however, create non-negligible veloc-
ity and attenuation anisotropy for P- and SV-waves. In
particular, the parameter ε

Q
reaches values close to 0.1

when the volume fractions of the constituents are equal
to each other.

Next, we analyze the influence of the attenuation
contrasts on the effective attenuation anisotropy by as-
suming that the velocity field is homogeneous and all
five velocity parameters are constant: ∆̂c

(k)
33 = ∆̂c

(k)
55 = 0

and ∆ε(k) = ∆δ(k) = ∆γ(k) = 0 for all constituents k.
The effective quality-factor components then have the
same form:

Qij =
1

N
X

k=1

φ(k)/Q
(k)
ij

, (40)

where ij = 11, 33, 13, 55, or 66. When the intrinsic at-
tenuation is isotropic (i.e., ε(k)

Q
= δ(k)

Q
= γ(k)

Q
= 0), the

only quantities that vary among the constituents are
Q

(k)
33 and Q

(k)
55 . Since for isotropic intrinsic attenuation

Q
(k)
11 = Q

(k)
33 and Q

(k)
55 = Q

(k)
66 , the effective parameters

ε
Q

and γ
Q

= 0 vanish. Also, the element Q
(k)
13 becomes

Q
(k)
13 =

Q
(k)
33

1 −
c55(c13 + c33)

2

2c13(c13 + c55)(c33 − c55)
(
Q

(k)
33

Q
(k)
55

− 1)

, (41)

where c
(k)
ij = cij because the velocity field is homoge-

neous. The effective Q13 component is then given by

Q13 =
Q33

1 −
c55(c13 + c33)

2

2c13(c13 + c55)(c33 − c55)
(
Q33

Q55
− 1)

. (42)

Substituting equations 40 and 42 into equation 24 yields
δ

Q
= 0. Hence, if the velocity field is homogeneous,

the contrasts in isotropic attenuation do not produce
effective attenuation anisotropy.

This conclusion is supported by the 2D finite-
difference simulation of SH-wave propagation in Fig-
ure 2. The model is made up of two VTI constituents
with the thicknesses less than 1/20 of the predominant
wavelength, so the medium can be characterized as ef-
fectively homogeneous. Both constituents have isotropic
attenuation and the same VTI velocity parameters, but
there is a large contrast in the SH-wave quality-factor
component Q55. A snapshot of the SH-wavefront from a
point source located at the center of the model is shown
in Figure 2a. As pointed out by Tsvankin (2005), for 2D
elastic TI models the amplitude along the SH-wavefront
is constant (see the dashed circle in Figure 2b). There-
fore, if the effective attenuation is directionally depen-
dent, it should cause a deviation of the picked ampli-
tude from a circle. However, despite some distortions
produced by the automatic picking procedure, the am-
plitude variation along the wavefront in the attenuative
model is almost negligible (Figure 2b). Clearly, the at-
tenuation contrast does not result in effective attenua-
tion anisotropy if it is not accompanied by a velocity
contrast.



Effective attenuation anisotropy of layered media 139

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

φ

V
el

oc
ity

 a
ni

so
tro

py
ε
δ
γ

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

φ

A
tte

nu
at

io
n 

an
is

ot
ro

py ε
Q

δ
Q

γ
Q

a) b)

Figure 1. Exact effective anisotropy parameters computed from equations 20-25 for a layered model composed of two con-

stituents with identical isotropic attenuation (Q
(1)
33 = Q

(2)
33 = 100; Q

(1)
55 = Q

(2)
55 = 50) and different isotropic velocity functions.

The velocity contrasts are defined by ∆c33/c̄33 = 90% and ∆c55/c̄55 = 70%; for the first constituent, V
(1)
P0 = 3.2 km/s,

V
(1)
S0 = 1.55 km/s, and ρ(1) = 2.45 g/cm3. The horizontal axis represents the volume fraction of the first constituent (φ = φ1).
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Figure 2. a) Snapshot of the SH-wavefront computed by 2D finite differences for a layered attenuative medium (the time
t=0.3 s). The model includes two constituents with the same VTI velocity parameters and density: VS = 1500 m/s, γ = 0.2,
and ρ = 2400 kg/m3. The intrinsic attenuation is isotropic; for the first constituent, Q55 = Q66 = 20 and the volume percentage
φ = 33.3%; for the second constituent, Q55 = Q66 = 50. b) Polar plot of the picked amplitude along the wavefront (solid curve)
and the corresponding amplitude for the elastic model with Q55 = Q66 = ∞ (dashed curve).

4 ACCURACY OF THE

APPROXIMATIONS

To test the accuracy of the approximations introduced
above, we first use a model formed by two VTI con-
stituent layers. The velocity parameters listed in Ta-
ble 1 are taken from Bakulin (2003). The maximum
magnitude of the velocity-anisotropy parameters is 0.25,
while the contrast in c33 and c55 reaches 30%. Since the
strength of attenuation anisotropy often exceeds that of
velocity anisotropy, we take each attenuation-anisotropy
parameter to be twice as large by absolute value as
the corresponding velocity parameter (e.g., |ε

Q
| = |2ε|).

Also, in accordance with the experimental results of Zhu
et al. (2006), all attenuation-anisotropy parameters are
negative. The contrast in the quality-factor elements
Q33 and Q55 (60%) is also twice that in c33 and c55,
which means that the value of Q33 for the second con-

stituent is nearly doubled compared to that for the first
constituent, while Q55 is almost halved.

The numerical results in Figure 3 demonstrate that
the linear (first-order) approximation (dashed lines)
generally follows the trend of the exact effective param-
eters (solid lines). The maximum error for the velocity-
anisotropy parameters, which occurs when the con-
stituents occupy nearly equal volumes (φ = φ(1) ≈ 0.5),
does not exceed 0.03. The accuracy of the linear approx-
imation is much smaller for the attenuation-anisotropy
parameters, especially for δ

Q
. The error in δ

Q
reaches

0.3, and the linear solution even predicts the wrong sign
of this parameter for a wide range of the volume ratios
(0.3 < φ < 1).

Despite the substantial velocity and attenuation
contrast between the two constituents, the second-order
approximations in Figure 3 (dotted lines) are sufficiently
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∆c33

c̄33

∆c55

c̄55
ε(1) ε(2) δ(1) δ(2) γ(1) γ(2)

30% −30% 0.05 0.25 0 0.2 0.05 0.25

∆Q33

Q̄33

∆Q55

Q̄55
ε
(1)
Q ε

(2)
Q δ

(1)
Q δ

(2)
Q γ

(1)
Q γ

(2)
Q

60% −60% -0.1 -0.5 0 -0.4 -0.1 -0.5

Table 1. Parameters of a two-constituent attenuative VTI model. For the first constituent, VP0 = 3 km/s, VS0 = 1.5 km/s,

ρ = 2.4 g/cm3, Q33 = 100, and Q55 = 80.
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Figure 3. Effective velocity-anisotropy (a-c) and attenuation-anisotropy (d-f) parameters for the two-constituent VTI model
from Table 1. The horizontal axis represents the volume fraction of the first constituent (φ = φ1). The exact parameters (solid
lines) are plotted along with the first-order linear approximations (dashed) and the second-order approximations (dotted).

close to the exact values. The maximum error does not
exceed 0.005 for the velocity-anisotropy parameters and
0.04 for the attenuation-anisotropy parameters.

Next, to analyze the relative contribution of the
attenuation parameters to the effective attenuation
anisotropy, we change the model by making the veloc-
ity functions of both constituents isotropic and elim-
inating the velocity contrast between them. In agree-
ment with the theoretical analysis in the previous sec-
tion, the second-order terms for such a model become
much smaller, which substantially increases the accu-
racy of the linear approximation (Figure 4). The only
remaining second-order terms for this model are related
to the coupling between the attenuation contrasts and
intrinsic attenuation anisotropy.

The second-order solution for all parameters in Fig-
ure 4 virtually coincides with the exact result, which

indicates that the accuracy of this approximation is
mostly governed by the velocity contrasts and intrinsic
velocity anisotropy. This is further confirmed by the test
in Figure 5, which shows that the error of the second-
order approximation remains practically negligible even
for large absolute values of the attenuation-anisotropy
parameters, as long as the velocity field is homogeneous
and isotropic.

While the second-order approximation is adequate
for a wide range of typical subsurface models, it dete-
riorates for uncommonly large velocity and attenuation
contrasts (Figure 6). The error is particularly significant
for the parameter ε

Q
because the second-order solution

produces distorted values of the quality-factor element
Q11.

To test the performance of our approximations for
a more complicated, multi-constituent medium, we gen-
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Figure 4. Effective attenuation anisotropy for a model with the same attenuation parameters as those in Figure 3, but both

constituents have identical isotropic velocity functions (ε(1) = ε(2) = δ(1) = δ(2) = γ(1) = γ(2) = ∆c33/c̄33 = ∆c55/c̄55 = 0).
Compare with Figures 3d,e,f.
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Figure 5. Effective attenuation anisotropy for a model with the same velocity parameters and contrasts in Q33 and Q55

as those in Figure 3, but the intrinsic attenuation anisotropy is more pronounced: ε
(1)
Q = 0.6, ε

(2)
Q = −0.8, δ

(1)
Q = −0.5,

δ
(2)
Q = −0.8, γ

(1)
Q = 0.8, and γ

(2)
Q = −0.8. As before, the exact parameters (solid lines) are plotted along with the first-order

linear approximations (dashed) and the second-order approximations (dotted).

erate multiple realizations of a layered VTI model with
intrinsic VTI attenuation (Figure 7). The vertical veloc-
ities (VP0 and VS0) are computed using the 1/fα dis-
tribution with α = 0.3. The vertical Q components Q33

varies between 70 and 125, while Q55 varies between
40 and 90. The density and interval anisotropy param-
eters follow normal random distributions with the fol-
lowing mean values: ρ̄ = 2.49 g/cm3, ε̄ = 0.2, δ̄ = 0.08,
γ̄ = 0.15, ε̄

Q
= −0.4, δ̄

Q
= −0.16 and γ̄

Q
= −0.3. The

standard deviations are std(ρ) = 20 kg/m3, std(ε) =
std(δ) = std(γ) = 0.09, and std(ε

Q
) = std(δ

Q
) =

std(γ
Q

) = 0.2.

This model is similar to the one used by Bakulin
and Grechka (2003), who show that the first-order (lin-
ear) approximation is surprisingly accurate for the ef-
fective velocity-anisotropy parameters of typical lay-
ered media with moderate intrinsic anisotropy. In other
words, the effective velocity anisotropy is primarily de-
termined by the mean values of the interval parameters
ε, δ, and γ.

The test in Figure 8 demonstrates that this result
also applies to effective attenuation anisotropy. After
computing the exact effective parameters for 2000 re-

alizations of the model, we can compare their ranges
(bars) with the mean values (crosses) listed above. Al-
though some of the mean values are biased, they give
a generally good prediction of the effective parameters.
Therefore, despite the substantial property contrasts in
the model realizations, the magnitude of the second-
order terms in such multiconstituent models with ran-
dom parameter distributions is relatively small, and
all velocity- and attenuation-anisotropy parameters are
close to the mean of the corresponding interval values.

4.1 Magnitude of attenuation anisotropy

For purposes of seismic processing and inversion, it is
important to evaluate the upper and lower bounds of the
parameters ε

Q
δ

Q
, and γ

Q
. We start with the SH-wave

parameter γ
Q

, which has a relatively simple analytic
representation.

If a model is composed of isotropic constituents (in
terms of both velocity and attenuation), the effective
attenuation anisotropy is caused just by the heterogene-
ity. The SH-wave effective anisotropy parameters for a
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Figure 6. Effective velocity-anisotropy (a-c) and attenuation-anisotropy (d-f) parameters for a model with the same values of

ε(1,2), δ(1,2), γ(1,2), ε
(1,2)
Q , δ

(1,2)
Q , and γ

(1,2)
Q as those in Figure 3 (Table 1), but for much higher contrasts in the stiffnesses:

∆c33/c̄33 = ∆Q33/Q̄33 = 90% and ∆c55/c̄55 = ∆Q55/Q̄55 = 70%. For the first constituent, V
(1)
P0 = 3.2 km/s, V

(1)
S0 = 1.55

km/s, ρ(1) = 2.45 g/cm3, Q
(1)
33 = 100, and Q

(1)
55 = 80. The exact parameters (solid lines) are plotted along with the first-order

linear approximations (dashed) and the second-order approximations (dotted).
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Figure 7. Vertical velocities, density, and the quality-factor components Q33 and Q55 of one realization of a model composed
of VTI layers with VTI attenuation. The sampling interval is 5 m.

two-constituent isotropic model are given by

γ = 2φ (1 − φ)
x2

1 − x2
, (43)

γ
Q

= −8φ (1 − φ)xx
Q

/[φ(1 + x)(1 + x
Q

) + (1 − φ)(1 − x)(1 − x
Q

)]

/[φ(1 − x) + (1 − φ)(1 + x)] , (44)

where φ is the volume fraction of the first constituent,

while x ≡ (c
(2)
55 − c

(1)
55 )/(c

(2)
55 + c

(1)
55 ) and x

Q
≡ (Q

(2)
55 −

Q
(1)
55 )/(Q

(2)
55 + Q

(1)
55 ) denote the property contrasts be-

tween the constituents. In agreement with the discus-
sion above, equation 44 shows that a contrast in the
attenuation parameter Q55 is not sufficient to produce
attenuation anisotropy. The parameter γ

Q
also vanishes

if the velocity contrast is not accompanied by an atten-



Effective attenuation anisotropy of layered media 143

−0.6

−0.4

−0.2

0

0.2

0.4

A
ni

so
tro

py
 p

ar
am

et
er

s mean
range

ε δ γ ε
Q

δ
Q

γ
Q

Figure 8. Mean values (crosses) of the interval anisotropy parameters and ranges (bars) of the exact effective parameters
computed for 2000 realizations of the model from Figure 7. The standard deviations of all model parameters are listed in the
text.

uation contrast, which is not the case for the parameters
ε

Q
and δ

Q
.

It is clear from equation 43 that the velocity param-
eter γ is always positive and finite for layered media
composed of two different isotropic constituents. This
result remains valid for any number of constituents. The
possible range of values of γ

Q
is not immediately obvi-

ous from equation 44. For the special case φ = 50%,
γ

Q
has to be greater than -1, but this lower bound di-

rectly follows from the definition of the parameters γ
Q

and ε
Q

(Zhu and Tsvankin, 2006). It is difficult to esti-
mate the upper and lower bounds of the parameter δ

Q

analytically even for the simple two-constituent model.

Therefore, to study the distribution of the effective
parameters for a representative set of more complicated
models composed of multiple isotropic (for both veloc-
ity and attenuation) constituents, we perform numerical
simulations. First, we compute the anisotropy parame-
ters of 2000 models using uniform random distributions
for the interval velocities and density. The histograms of
the effective anisotropy parameters for a relatively small
number of constituents (two to five) are displayed in Fig-
ure 9. As expected, the velocity-anisotropy parameters
ε and γ are predominantly positive with the exception
of a few realizations, and generally do not exceed 0.5.
Another velocity-anisotropy parameter, δ, can be either
positive or negative with the mean value close to zero.
This is consistent with the results of Monte Carlo simu-
lations that positive and negative δ are equally likely for
finely layered media (Berryman et al., 1999). In contrast
to ε and γ, all three effective attenuation-anisotropy pa-
rameters have an almost even distribution around the
zero value and a much wider variation. For example, δ

Q

can take large negative values approaching -2. However,
the vast majority of the attenuation-anisotropy param-
eters fall within the range [-1,1].

In the next simulation (Figure 10), the maxi-
mum number of constituents is increased to 200 (the
minimum number is still two). The most noticeable
change in the histograms is a much more narrow dis-
tribution of both velocity-anisotropy and attenuation-
anisotropy parameters, which suggests that the contri-
butions of multiple random constituents partially can-
cel each other. As a result, the absolute values of the
attenuation-anisotropy parameters do not exceed 0.5.
Also, the distribution peaks of the parameters ε and γ
(but not δ) are shifted toward positive values.

It should be emphasized that the tests described
above were performed for models without intrinsic ve-
locity or attenuation anisotropy. Our numerical analysis
shows that making the constituents anisotropic not only
moves the distribution peaks (especially, if the average
value of the parameter is not zero), but also changes the
shape of the histograms.

5 EFFECTIVE SYMMETRY FOR

AZIMUTHALLY ANISOTROPIC MEDIA

The examples in the previous sections were generated
for purely isotropic or VTI constituents, in which both
velocity and attenuation are independent of azimuth.
The effective velocity and attenuation functions in such
models are also azimuthally isotropic, and the equiva-
lent homogeneous medium has VTI symmetry.

The general averaging equations 8-13, however,
hold for any symmetry of the interval stiffness ma-
trix and can be used to study layered azimuthally
anisotropic media. An interesting issue that arises for
such models is whether or not the effective velocity and
attenuation anisotropy have different principal symme-
try directions (i.e., different azimuths of the vertical
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Figure 9. Histograms of the effective anisotropy parameters computed for 2000 randomly chosen models composed of isotropic
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a) b)

1

2
1 2

Figure 11. a) Layered model composed of two HTI constituents with the same volume (φ1 = φ2 = 50%), one of which is
elastic while the other one has HTI attenuation. b) Plan view of the symmetry-plane directions. The azimuth of the symmetry
plane for the first (elastic) constituent is 30◦ toward northwest (NW); for the second constituent, the azimuth is 30◦ NE. The
velocity parameters for both constituents are: ρ = 2000 g/cm3, VP0 = 3 km/s, VS0 = 2 km/s, ε = 0.2, δ = 0.05, and γ = 0.2.

For the second constituent, the attenuation parameters are: Q
(2)
33 = 100, Q

(2)
55 = 80, ε

(2)
Q = −0.4, δ

(2)
Q = −0.1, and γ

(2)
Q = −0.4.

symmetry planes). Here, without attempting to give a
comprehensive analysis of this problem, we discuss a
numerical example for the simple model in Figure 11,
which includes two constituents with HTI (transversely
isotropic with a horizontal symmetry axis) symmetry.
The first constituent is purely elastic, while the second
has HTI attenuation with the same symmetry axis as
that for the velocity function. The velocity parameters
(i.e., the real part of the stiffness matrix) of both con-
stituents are identical, but the symmetry axes have dif-
ferent orientations (Figure 11b).

The effective P-wave phase velocity and normal-
ized attenuation coefficient A were computed from the
Christoffel equation using the effective stiffnesses given
by equations 8-13. The coefficient A was obtained un-
der the assumption of homogeneous wave propagation
(i.e., the planes of constant amplitude are taken to be
parallel to the planes of constant phase). Since both
HTI constituents in this model have identical velocity
parameters and the same volume, the real part of the
effective stiffness matrix should have orthorhombic sym-
metry. This conclusion is confirmed by the computation
of the effective phase-velocity function in the horizontal
plane and two vertical coordinate planes, one of which
bisects (with the azimuth 90◦) the symmetry-plane di-
rections (see Figure 11). The shape of the phase-velocity
curves in Figures 12a,c shows that the symmetry planes
of the effective orthorhombic velocity surface are aligned
with the coordinate planes.

In contrast to the velocity surface, the effective nor-
malized attenuation coefficient is not symmetric with
respect to any vertical plane (Figure 12b). Because of
the coupling between the the real and imaginary parts
of the effective stiffness matrix, the effective attenua-
tion has a lower symmetry close to monoclinic. Also
the extrema of the coefficient A in the horizontal plane
do not correspond to the symmetry planes of the ef-

fective velocity surface. The minimum value of A oc-
curs at an azimuth of 65◦, while the maximum at 175◦.
Since the layering in this model is horizontal and both
constituents have a horizontal symmetry axis, the mon-
oclinic symmetry system for the effective attenuation
has a horizontal symmetry plane (Figure 12d).

Next, we modify the model by reducing the mag-
nitude of the intrinsic attenuation anisotropy (ε(2)

Q
=

−0.1, δ(2)
Q

= 0.03, and γ(2)
Q

= −0.1; the other model pa-
rameters are the same as those in Figure 11). Since the
real-values stiffnesses are kept unchanged, the effective
velocity function practically coincides with that in Fig-
ures 12a,c. The horizontal and vertical cross-sections of
the coefficient A (Figure 13) show that the effective at-
tenuation in this model is well described by orthorhom-
bic, rather than monoclinic, symmetry. Hence, the ef-
fective velocity and attenuation for this model have the
same symmetry. Their vertical symmetry planes, how-
ever, are misaligned by about 36◦.

6 DISCUSSION AND CONCLUSIONS

Interpretation of seismic amplitude measurements re-
quires a better understanding of the physical reasons for
attenuation in the seismic frequency band and, in par-
ticular, of the main factors responsible for attenuation
anisotropy. Similar to velocity anisotropy, the effective
attenuation coefficient can become directionally depen-
dent due to interbedding of thin layers with different
velocity and attenuation. Here, we studied the relation-
ship between the effective Thomsen-style attenuation-
anisotropy parameters (ε

Q
, δ

Q
, and γ

Q
) and the prop-

erties of thin-layered media composed of attenuative
isotropic or TI constituents.

The exact equations for the effective stiffness com-
ponents in the long-wavelength limit were obtained us-
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Figure 12. Effective P-wave phase velocity (left) and normalized attenuation coefficient (right) for the model from Figure 11.
The velocity and attenuation are plotted in: (a,b) the horizontal plane as functions of the azimuthal phase angle; (c,d) the two
vertical coordinate planes as functions of the polar phase angle.

ing the Backus averaging technique. For attenuative me-
dia, the effective stiffnesses are complex, and the atten-
uation anisotropy depends on both the real and imag-
inary parts of the stiffness matrix. In contrast, the ef-
fective velocity function is almost entirely governed by
the real-valued stiffnesses and, unless the attenuation
is uncommonly strong, does not depend on the intrin-
sic attenuation parameters. Therefore, existing results
on the effective velocity anisotropy of layered media re-
main valid for typical attenuative subsurface models.

To gain insight into the behavior of the attenuation-
anisotropy parameters for thin-layered VTI media, we
developed approximate solutions by assuming that the
velocity and attenuation contrasts, as well as the in-
terval velocity- and attenuation-anisotropy parameters,
are small by absolute value. As is the case for velocity

anisotropy, the first-order (linear in the small quanti-
ties) term in these approximations is given simply by
the volume-weighted average of the corresponding in-
terval parameter. The second-order (quadratic) terms
reflect the coupling between different factors responsi-
ble for the effective attenuation anisotropy, such as that
between the intrinsic anisotropy and heterogeneity. The
second-order approximation, which includes both lin-
ear and quadratic terms, remains sufficient accurate for
models with strong property contrasts and pronounced
intrinsic anisotropy.

It is noteworthy that even for models with isotropic
constituents that have identical attenuation coeffi-
cients, the effective attenuation of P- and SV-waves is
anisotropic if the interval velocity changes across layer
boundaries. However, jumps in the interval attenuation
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Figure 13. Horizontal (a) and vertical (b) cross-sections of the effective normalized attenuation coefficient for a model with

relatively weak attenuation anisotropy. The model parameters are the same as those in Figure 11, except for ε
(2)
Q = −0.1,

δ
(2)
Q = 0.03, and γ

(2)
Q = −0.1.

alone (i.e., not accompanied by a velocity contrast be-
tween isotropic constituent layers) do not create effec-
tive attenuation anisotropy. Because of the large contri-
bution of the velocity contrasts to the quadratic atten-
uation terms, the accuracy of the linear (first-order) ap-
proximation for the attenuation-anisotropy parameters
is primarily controlled by the strength of the interval
velocity variations. For the same reason, the total con-
tribution of the second-order terms tends to be higher
for the attenuation parameters than for the velocity pa-
rameters. The relative magnitude of the overall velocity
and attenuation anisotropy, however, is strongly depen-
dent on the average values of the corresponding interval
parameters (i.e., on the first-order term).

In addition to several tests for two-constituent mod-
els, we performed extensive numerical simulations for
more complicated media composed of up to 200 con-
stituents. To evaluate the upper and lower bounds of
the attenuation anisotropy caused entirely by hetero-
geneity, all constituents were isotropic in terms of both
velocity and attenuation. While the distributions of the
parameters ε

Q
, δ

Q
, and γ

Q
are centered at zero, their

values cover a wider range (at least from -0.5 to 0.5)
than that for the velocity-anisotropy parameters.

Although most of the paper is devoted to az-
imuthally isotropic models, we also evaluated the ef-
fective anisotropy for an HTI medium that includes two
constituents with different azimuths of the symmetry
axis. Such changes in the symmetry direction are often
related to variations of the dominant fracture azimuth
with depth. If the intrinsic attenuation anisotropy is suf-
ficiently strong, the velocity and attenuation functions
of the effective medium may have different symmetries

(e.g., orthorhombic vs. monoclinic). Even when both
velocity and attenuation are described by orthorhom-
bic models, their vertical symmetry planes may be mis-
aligned. These results have to be taken into account in
field measurements of attenuation over fractured reser-
voirs.
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APPENDIX A: SECOND-ORDER APPROXIMATION FOR THE EFFECTIVE PARAMETERS

OF ATTENUATIVE VTI MEDIA

Here, we derive the second-order approximation for the effective velocity- and attenuation-anisotropy parameters for
thin-layered media composed of an arbitrary number of VTI (in terms of both velocity and attenuation) constituents.
In accordance with the main assumption of Backus averaging (see the main text), the thickness of each layer has to
be much smaller than the predominant wavelength.

A1 Anisotropy parameters for SH-waves

First, we consider the parameters γ and γ
Q

, which control the velocity and attenuation anisotropy (respectively) for
the SH-wave. The effective stiffness component c̃55 is given by (see equation 17)

c̃55 =
1

N
X

k=1

φ(k)

c
(k)
55 (1 − i/Q

(k)
55 )

, (A1)

where φ(k) denotes the volume fraction of the k-th constituent (

N
X

k=1

φ(k) = 1). In the weak-attenuation limit (
1

Q55
� 1),

c̃55 can be approximated as

c̃55 =

〈
1

c55
〉 − i〈

1

c55Q55
〉

〈
1

c55
〉2

. (A2)

From equation A2 it follows that

c55 = 〈
1

c55
〉−1 , (A3)

and

Q55 = 〈
1

c55
〉/〈

1

c55Q55
〉 . (A4)

According to equation 18,

c̃66 = 〈c66〉 − i〈
c66

Q66
〉 , (A5)

which yields

c66 = 〈c66〉 , (A6)

and

Q66 = 〈c66〉〈
c66

Q66
〉 . (A7)

By dropping the cubic and higher-order terms in ∆̂c
(k)
55 and γ(k), we obtain the second-order approximation for

the effective parameter γ:

γ = 〈γ〉 +
1

2

2

4

N
X

k=1

φ(k)
“

∆̂c
(k)
55

”2

−

 

N
X

k=1

φ(k)∆̂c
(k)
55

!2
3

5 +

"

N
X

k=1

φ(k)∆̂c
(k)
55 γ(k) −

N
X

k=1

φ(k)∆̂c
(k)
55

N
X

k=1

φ(k)γ(k)

#

. (A8)

Note that for any quantities x and y varying among different constituents, we have

N
X

k=1

φ(k)x(k)y(k) −
N
X

k=1

φ(k)x(k)
N
X

k=1

φ(k)y(k) =
N
X

k=1

N
X

l=k+1

φ(k)φ(l)∆x(k,l)∆y(k,l) , (A9)

where ∆x(k,l) = x(l) − x(k). Then γ can be represented as

γ = 〈γ〉 + γ(is) + γ(is-Van) + γ(Van) , (A10)
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where

〈γ〉 =

N
X

k=1

φ(k)γ(k) , (A11)

γ(is) =
1

2

N
X

k=1

N
X

l=k+1

φ(k)φ(l)

 

∆c
(k,l)
55

c̄55

!2

, (A12)

γ(is-Van) =
N
X

k=1

N
X

l=k+1

φ(k)φ(l) ∆c
(k,l)
55

c̄55
∆γ(k,l) , (A13)

γ(Van) = 0 , (A14)

where ∆·(k,l) denotes the difference between the medium properties of the k-th and l-th constituents. For example,
∆c

(k,l)
55 = cl

55 − ck
55 and ∆γ(k,l) = γl −γk. Equations A10-A14 generalize equations 16-19 of Bakulin (2003) for layered

media with an arbitrary number of constituents.
To obtain the second-order approximation for the effective attenuation-anisotropy parameter γ

Q
, we substitute

equations A4 and A7 into equation 25 and keep only the linear and quadratic terms in ∆̂c
(k)
55 , ∆̂Q

(k)
55 , γ(k), and γ(k)

Q
:

γ
Q

= 〈γ
Q
〉 + γ(is)

Q
+ γ(is-Van)

Q
+ γ(is-Qan)

Q
+ γ(Van-Qan)

Q
, (A15)

where

〈γ
Q
〉 =

N
X

k=1

φ(k)γ(k)
Q

, (A16)

γ(is)
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= −2
N
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, (A17)

γ(is-Van)
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γ(Van-Qan)
Q

= 2
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l=k+1

φ(k)φ(l)∆γ(k,l)∆γ(k,l)
Q

. (A20)

A2 Anisotropy parameters for P- and SV-waves

In the weak-attenuation limit, equations 14–16 yield
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and
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where ξ ≡ c13/c33 and ξ
Q
≡ Q33/Q13. Using equation 24, ξ

Q
can be rewritten as

ξ
Q

= 1 +
(1 − g)δ

Q
− g(g

Q
− 1)(1 + ξ)2/(1 − g)

2ξ(g + ξ)
, (A24)

where g ≡
c55

c33
and g

Q
≡

Q33

Q55
.

If we ignore the cubic and higher-order terms in δ, the second-order approximation for ξ becomes

ξ = 1 − 2g + δ −
δ2

2(1 − g)
, (A25)

or

ξ = −1 − δ +
δ2

2(1 − g)
, (A26)

depending on the sign of c13; here, c13 is assumed to be positive (see equation A25).

By keeping only the linear and quadratic terms in ∆̂c
(k)
33 , ∆̂c

(k)
55 , ∆̂Q

(k)
33 , ∆̂Q

(k)
55 , as well as in the interval velocity-

and attenuation-anisotropy parameters for P- and SV-waves, we obtain the second-order approximations for the
effective VTI parameters.

1. Parameter ε:

ε = 〈ε〉 + ε(is) + ε(is-Van) + ε(Van) , (A27)

where
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N
X

k=1

N
X

l=k+1

φ(k)φ(l)

"

∆c
(k,l)
33

c̄33

∆c
(k,l)
55

c̄55
− ḡ
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and ḡ =
c̄55

c̄33
.

2. Parameter δ:

δ = 〈δ〉 + δ(is) + δ(is-Van) + δ(Van) , (A32)

where

〈δ〉 =

N
X

k=1

φ(k)δ(k) , (A33)

δ(is) = 2ḡ
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δ(is-Van) = 0 , (A35)
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As was the case for SH-waves, equations A27-A36 generalize equations 29-32 and 21-24 of Bakulin (2003) for multi-
constituent layered media.

3. Parameter ε
Q

:

ε
Q

= 〈ε
Q
〉 + ε(is)

Q
+ ε(is-Van)

Q
+ ε(is-Qan)

Q
+ ε(Van-Qan)

Q
, (A37)
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4. Parameter δ
Q

:

δ
Q

= 〈δ
Q
〉 + δ(is)

Q
+ δ(is-Qan)

Q
+ δ(Van-Qan)

Q
+ δ(Van)

Q
, (A43)
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where ḡ
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=
Q̄33

Q̄55
.
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