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ABSTRACT 

Rock containing a compliant, fluid-filled fracture can be viewed as one case of heterogeneous poroelastic media. When this 
fracture is subjected to seismic waves, a strong contrast in the elastic stiffness between the fracture itself and the background can 
result in enhanced grain-scale local fluid flow. Because this flow—relaxing the pressure building up within the fracture—can 
increase the dynamic compliance of the fracture and change energy dissipation (attenuation), the scattering of seismic waves can be 
enhanced. Previously, for a flat, infinite fracture, we derived poroelastic seismic boundary conditions that describe the relationship 
between a finite jump in the stress and displacement across a fracture, expressed as a function of the stress and displacement at the 
boundaries. In this paper, we extend these boundary conditions to examine frequency-dependent seismic wave scattering by 
heterogeneous fractures. Fluid-filled fractures with a range of mechanical and hydraulic properties are examined. From parametric 
studies, we found that the hydraulic permeability of a fracture fully saturated with water has little impact on seismic wave scattering. 
In contrast, the seismic response of a partially water-saturated fracture and a heterogeneous fracture filled with compliant liquid 
(e.g., supercritical CO2) depended on the fracture permeability. 
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1. INTRODUCTION 

A fracture serves as an efficient conduit for fluid transport 
in low-permeability rock. This makes characterizing the 
hydraulic properties of fractures essential for predicting 
subsurface fluid transport. It is often desirable to estimate the 
permeability of fractures at depth from geophysical 
measurements (seismic methods, in particular), although 
currently, no well-established effective and practical 
techniques exist. Because seismic properties of fluid-bearing, 
poroelastic materials are generally affected by their 
permeability (e.g., Biot, 1956ab; Johnson et al., 1978), in 
principle, the permeability of a fracture should also be 
reflected in its interaction with seismic waves.  

Previously, Nakagawa and Schoenberg (2007) derived a 
simple model (in the form of boundary conditions) for 
predicting how a fracture with a range of mechanical and 
hydraulic properties affects scattering of seismic waves. This 
model assumed a fracture to be a thin layer of homogeneous 
poroelastic material embedded within a homogeneous 
background (both are homogeneously saturated with gas 
and/or liquid). Surprisingly, the model predicted that the 
permeability of a fracture (along the fracture plane) did not 
affect the scattering of seismic waves. This is a somewhat 
disappointing result, if we want to use seismic waves to 
determine the permeability of a fracture.  

Note, however, that the simplified conceptual model for a 

fracture used in the Nakagawa and Schoenberg (2007)’s 
model—a fracture envisioned as a flat, homogeneous, 
poroelastic layer embedded within a background poroelastic 
medium—may not be adequate for predicting the behavior of 
a real fracture. For fracture-parallel fluid flow to occur 
between high and low-pressure regions within a fracture, the 
length scale of wave-induced pressure variation (pressure 
diffusion length, or Biot’s slow-wave wavelength within the 
fracture) has to be comparable to or longer than the distance 
between neighboring peaks and troughs of pressure, along the 
fracture plane. This is usually not the case for a thin, 
homogeneous fracture in which the speed of the 
wave-induced pressure propagation is significantly slower 
than the incident waves: the fluid is practically “frozen” in 
the fracture-parallel direction. 

In contrast, if the mechanical and hydraulic properties of 
a fracture are heterogeneously distributed along the fracture 
plane, the intrinsic pressure diffusion length within the 
fracture may become comparable to or surpass the length 
scale of the heterogeneity, resulting in relaxation of 
wave-induced pressure (Figure 1). In recent years, the effects 
of “mesoscale” (larger than grain/pore size but smaller than 
the wavelength of propagating waves) heterogeneity in rock 
on enhanced seismic velocity dispersion and attenuation have 
been widely recognized (e.g., Dutta and Odé, 1979ab; Norris, 
1993; Johnson, 2001; Pride and Berryman, 2003ab). 
Therefore, we should be able to expect the same 
heterogeneity-induced poroelastic behavior for a fluid-filled, 
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heterogeneous fracture.  
In this paper, we will examine how the heterogeneity 

within a single fracture can affect the scattering of seismic 
waves, particularly as a function of fracture permeability. We 
will first briefly review the poroelastic seismic boundary 
conditions derived by Nakagawa and Schoenberg (2007). 
Subsequently, these conditions will be extended to include the 
effect of fracture-parallel fluid flow. Further, an analytical 
framework will be built to compute plane wave scattering by 
a fracture with heterogeneously distributed mechanical and 
hydraulic properties, applying the method used by Nakagawa 
et al. (2004). Finally, the derived equation will be solved 
numerically for particular fracture models to demonstrate 
how different types of heterogeneity affect the fractures’ 
seismic responses.  

 
 
 
 
 

Table 1. Symbols used in this paper. 
 

Symbols Variables 
i,j=1,2,3 
ω 
ki 
τij  
pf 
ui 
wi 
kij(ω) 
kT 
ς T 
φ 
Ks 
Kf 
M 
ρf 
ηf 
h 
hM 
hH 
φ 
ηT 
ηNd 
ηM 
α 
B%  

 
Circular wave frequency (2π×Hz) 
wavenumber 
Total stress tensor (Pa) 
Fluid pressure (Pa) (positive compression ) 
Solid frame displacement (m) 
Relative fluid displacement (m) 
2D fracture permeability tensor (m2) 
Isotropic fracture permeability (m2) 
Isotropic fracture permissivity (m3/Pa s) 
porosity 
Solid (mineral) bulk modulus 
Fluid bulk modulus 
(Biot’s) Storage modulus (Pa) 
Fluid density (kg/m3) 
Fluid viscosity (Pa·s) 
Fracture thickness (for a layer) (m) 
Mechanical fracture thickness (m) 
Hydraulic fracture thickness (m) 
Fracture porosity 
Shear fracture compliance (m/Pa) 
Dry, normal fracture compliance (m/Pa) 
Material fracture compliance (m/Pa) 
Biot-Willis coefficient 
Fracture Skempton coefficient 

 
NOTE: The fracture Skempton coefficient is defined via 

/Nu MB αη η=%  where ηNu is the normal compliance of an 
undrained fracture (Nakagawa and Schoenberg, 2007) 
 

 
 

 
 

Figure 1. Heterogeneity-induced pressure can result in a 
steeper pressure gradient within a fracture, which occurs at a 
scale comparable to or shorter than the pressure diffusion 
length. 

2. POROELASTIC SEISMIC BOUNDARY 
CONDITIONS FOR A FRACTURE 

In this section, we will first review the poroelastic seismic 
boundary conditions for a homogeneous fracture (fracture and 
fluid properties do not change along the fracture). 
Subsequently, these boundary conditions will be extended to 
heterogeneous fractures. In both cases, we will limit our 
discussions to fractures without in-filling gouge materials, or 
fractures with highly permeable gouge materials. This 
restriction allows us to assume the continuity of fluid pressure 
across a fracture, which greatly simplifies the mathematical 
treatment. 

2.1 Boundary conditions for a homogeneous fracture 

Nakagawa and Schoenberg’s seismic boundary conditions 
(2007) for a fracture filled with a highly permeable material 
(or without such materials) are given by:  
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where the square brackets [*] indicate the difference (or 
jump) in the related quantity across the fracture. (A similar 
model was proposed by Bakulin and Molotkov [1997].) The 
equations assume a Cartesian coordinate system with the 1, 
2-directions aligned with the fracture plane (i.e., the 3 
direction is the fracture-normal direction) (Figure 2). The 
symbols used in these equations are summarized in Table 1. 
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Figure 2. Coordinate system used in the seismic boundary 
conditions. Incident plane waves are assumed to propagate 
within the 1,3 plane. We also assume that the fracture is 
located at x3=0. 
 
 

Equation (1) was derived originally by modeling a 
fracture as a thin, homogeneous poroelastic layer with a 
well-defined thickness h. However, by considering the 
equations’ physical implications and by slightly changing the 
interpretation of the “fracture thickness,” these boundary 
conditions can also be applied to a fracture consisting of 
partial contacts between two solid halfspaces. 

The physical meaning of the expressions of Equation (1) 
(defined for a “homogeneous fracture” with uniform 
distributions of the characteristic parameters) is as follows: 
the first four boundary conditions state continuity of total 
stress and fluid pressure across a fracture. The fifth and sixth 
conditions state proportionality between seismically induced 
small perturbation of shear stress and displacement jump 
across a fracture. The remaining expressions show the 
poroelastic constitutive relationships. The seventh expression 
represents the effective stress law (thus including the 
Biot-Willis effective stress coefficient α), and the eighth and 
last expression states the conservation of mass by equating 
the volume of fluid expelled by a fracture (left-hand side of 
the equation) to the fluid displaced by a closing fracture (the 
first term in the right-hand side, including α) and the volume 
changes of fluid and solid within the fracture through ηM. For 
a fracture modeled by a poroelastic layer, this last coefficient 
ηM is defined by: 

 

M

s f

h
h

M K K

α φ φ
η

−
≡ = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  (2) 

 
where M is the Biot’s storage coefficient, and Ks and Kf are 
the bulk moduli for solid and fluid within the fracture, 
respectively (e.g., Pride, 2003). From this definition, ηM  can 
be used to measure the fluid effect on the compressibility of a 
fracture. Note that, instead of ηM, the fracture Skempton 
coefficient B%  (Nakagawa and Schoenberg, 2007—also see 
Table 1 footnote) can also be used, which quantifies how 
much of the total stress “uniaxially” (normally to the fracture) 
applied to a fracture is counteracted by fluid pressure, under 
undrained conditions.  

For a fracture consisting of partial contacts between two 
solid halfspaces, we need to define two concepts related to 
“fracture thickness”—“mechanical thickness” hM and 
“hydraulic thickness” hH. The hM concept is defined for the 
zone including the fracture asperities and a part of the 
background medium—the part experiencing the local 
perturbation of stress and deformation caused by surface 

heterogeneities (e.g., Myer, 2001). Therefore, defining the 
mechanical fracture thickness is somewhat arbitrary. The 
static parameters appearing within the boundary conditions 
(ηT, ηNd, ηM, α, and B% ) are defined as effective medium 
parameters for the materials within this thickness. This 
representation of fracture properties has been shown to be 
sufficient for describing the scattering behavior of seismic 
waves, as long as the thickness of the zone is much smaller 
than the seismic wavelengths (Schoenberg, 1980; 
Pyrak-Nolte et al., 1990; Rockhlin et al., 1991). In contrast, a 
separate fracture thickness hH—which is closely related to the 
hydraulic permeability of the fracture—needs to be defined 
for studying the dynamic, flow properties. (The thickness hH  
is usually smaller than hM.)  

However, note that because the above boundary 
conditions expressed in Equation (1) do not depend on the 
permeability of a fracture, the scattering of seismic waves 
computed using the above equations is not affected by the 
fracture permeability. 

2.2 Boundary conditions for a heterogeneous fracture 

One major difference between a homogeneous fracture 
(represented by a poroelastic layer) and a more realistic, 
heterogeneous fracture is that there should be an enhanced 
fluid motion within a heterogeneous fracture, induced by a 
local fluid-pressure gradient. This is analogous to the locally 
induced fluid flow within a heterogeneous porous medium, 
which can result in a much larger seismic-wave-velocity 
dispersion and attenuation compared to a classical, 
homogeneous porous medium studied by Biot (Biot, 1956ab).  

The locally induced flow can have an impact on the 
seismic boundary conditions in two ways, if the 
fluid-inertia-related effects can be neglected for the small 
thickness of the fracture. These are (1) the effect of viscous 
shear stress resulting from fluid motion within the fracture 
(which disrupts the continuity of shear stresses in the first and 
second expressions in Equation [1]), and (2) changes in the 
fracture-normal fluid flux caused by the flow parallel to the 
fracture (which modifies the fluid-flux discontinuity 
condition in the last expression of Equation [1]).  

The first effect, however, can be ignored for fracture 
thicknesses that are much smaller than the length scale of 
local fluid-pressure variation and heterogeneity along the 
fracture surface. For simplicity, we assume a one-dimensional 
fracture with a hydraulic fracture thickness hH. Also, the 
background is assumed to be impermeable. If the local 
variation of fluid pressure ( )fp∆ −  occurs over a small 
distance ∆L(>>hH), the average shear stress τ in this section is 
given (see Figure 3) by  

 

( )
2

H
f

h
p

L
τ = ∆ −

∆
<< fp− .  (3) 

 
Note that the effect of the fluid inertia is ignored because we 
are already assuming a long wavelength. Although a constant 
fracture thickness is assumed here, the inequality also holds 
for spatially varying fracture thickness. This result indicates 
that the fluid flow-induced shear stress can be ignored 
compared to the effect of induced fluid pressure within a 
fracture.  
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Figure 3. Force equilibrium along a section of a fluid-filled 
fracture. The effect of inertia is neglected.  
 
 

The second effect can be included in the last expression 
in Equation (1) as follows: 
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The newly added third and fourth terms account for the influx 
of fluid at the point of consideration, from the surrounding 
locations within the fracture plane. The superscript (2) 
indicates that the related quantities are two dimensional, 
expanding in the 1, 2 directions. Also, the bars (“-“) above the 
relative flow displacement w1 and w2 indicate averaging 
across the fracture thickness. The fluid flux in the 
fracture-parallel direction can be evaluated via Biot’s solution 
for oscillatory flow between flat parallel walls (Biot, 1956b): 

 
( )( )

( ) fT
i i f

f i

pk
w i w u

x

ω
ω ρ

η

∂ −
= − = −

∂

⎧ ⎫
⎨ ⎬
⎩ ⎭

& &&  (i=1,2) (5) 

 
where 
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Note that the first term on the right hand side of the Equation 
(5) represents the flow induced by a pressure gradient, and 
the second term represents the apparent flow caused by the 
moving frame of reference (background rock or fracture 
surfaces). For simplicity, we assume an isotropic second-rank 
diagonal permeability tensor for the flow parallel to the 
fracture: 
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For the flow within a fracture, the components of the 

above matrix are defined for flow spatially averaged across 
the fracture thickness. Therefore, 1, 2-direction components 
of relative fluid flux w& and acceleration u&&  are also 
averaged quantities across the fracture thickness. By 
introducing Equation (5) into Equation (4), 
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where we defined a new, spatially varying characteristic 
parameter (fracture permissivity) 
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Note that this parameter can become a second-rank tensor 
through a related permeability tensor, (2) ( )ωk , if necessary. 

Summarizing the results, the boundary conditions for a 
heterogeneous, fluid-filled fracture are 
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The superscripts “+” and “-” indicate the individual sides 

of the fracture. (Note that the precise location where the 
boundaries are defined is somewhat ambiguous, because the 
fracture thickness hM and hH should be defined through 
mechanical and hydrological properties of a fracture, rather 
than its actual geometry.) Also, in Equation (11), the solid 
frame displacement (or acceleration) along the fracture is 
approximated as an average of the displacements across the 
fracture as ( ) / 2+ −= +u u u . 



 S. NAKAGAWA/ International Journal of the JCRM vol.x (200x) pp.x-x 5 

 

3. COMPUTATION OF WAVE SCATTERING BY A 
HETEROGENEOUS FRACTURE 

To examine the scattering of plane waves by a 
heterogeneous fracture, the above seismic boundary 
conditions are assumed to be valid at each location on the 
fracture. In this model, the heterogeneity is represented by 
spatially varying characteristic fracture parameters such as 
fracture compliances ηNd, ηT, ηM, Biot-Willis coefficient α, 
fracture Skempton coefficient B% , and fracture-parallel 
hydraulic permissivity ( ).ς ω  When spatial Fourier 
transforms are applied to Equations (10) and (11), the 
multiplications between the variables and the characteristic 
fracture parameters become convolutions in the wavenumber 
domain, which represent multiple scattering of waves 
involving both specular and nonspecular scattering (resulting 
in conversions in wavenumber) (Nakagawa et al., 2004). 
Representing the transformed variables by a tilde (“~”), the 
transformed equations are 
 

I+ −= +τ τ τ% % % , (17) 
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Note that, in the above equations, the superscripts + and – 
indicate the direction of wave propagation 
(“+”=“down-going”, “–”=“up-going”), rather than the sides 
of a fracture. The superscript “I” indicates a plane wave 
propagating in the positive x3 direction. The transformed 
stress and displacement vectors are a function of 
wavenumbers 1 2( , )k k . Also, the transformed matrices ′η%  
and ′′η%  in Equation (18) can involve spatial derivative 
operators that must be treated carefully when convolved with 
stress and displacement vectors.  

In matrix form, the displacement and stress (pressure) 
components of plane waves can be given by 
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U± and S± are the displacement and stress coefficient matrices, 
respectively, which relate the amplitudes of two shear waves 
and fast and slow compressional waves, given by the 
coefficient vector a±, to the displacement and stress (and 
pressure) on the fracture surfaces. E± are the diagonal 
phase-advance matrices. [Explicit forms of these matrices can 
be found in Nakagawa and Schoenberg (2007).] In the 
following derivations, we will take advantage of the fact that 
if the stress vectors were used as primary variables, the 

continuity of total stress vector across a fracture [Equations 
(10) and (17)] results in simpler equations. On the fracture, 
E±=I(identity matrix). Therefore, from Equations (19) and 
(20),  
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Introducing Equation (22) into the matrix Equation (18),  
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 (23) 
Combining Equations (23) and (17), 
 
 

( ){ } ( )* * * * Ii iω ω+′′ ′ ′′− + + = +H η η G η τ I η Hτ% % % %% %  ,  (24) 
 
where  
 

1 1( ) ( )+ + − − − −≡ −H U S U S , (25) 
1 1( ) ( )+ + − − − −≡ +G U S U S .  (26) 

 
The matrix-vector multiplications +Gτ%  and IHτ%  in 
Equation (24) must be performed before the wavenumber 
convolutions indicated by “*.”  For a spatially periodic 
fracture, the above equation can be expressed in a discrete 
form. In this case, the convolution operators are replaced by 
matrices as ˆ* →η η% % , ˆ*′ ′→η η% % , and ˆ*′′ ′′→η η% % . Therefore, 
Equation (24) becomes 
 

( ){ } ( )ˆ ˆ ˆ ˆˆ ˆˆˆ ˆ ˆ Ii iω ω+′′ ′ ′′− + + = +H η η G η τ I η Hτ% % % %% % . (27) 
 
The solution of the scattering problem can be obtained 
numerically by solving this matrix equation for a given 
spatial distribution of fracture properties and an incident 
wave.  

4. EXAMPLES 

The solution of the scattering problem formulated in the 
previous section can be obtained for a flat, two-dimensional 
fracture within a homogeneous background. However, for 
computational reasons, we will examine only 
one-dimensional fractures in the following examples. Also, 
these examples are computed only for an incident (Biot’s) 
fast P wave, and only the amplitude of reflected fast P wave 
is examined (Note: This amplitude is obtained for the 
coherent component [specular component] of the reflected 
waves). 

4.1 Model fracture 

In the following examples, we assume a simple, 
one-dimensional fracture with smoothly varying local 
fracture properties. The material properties of the background 
poroelastic medium are summarized in Table 2. The examples 
in the following sections were computed for an underground 
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reservoir used for geological CO2 sequestration, and the 
material properties are given for elevated temperature and 
pressure (T=55oC, P=15 MPa). 

To specify the fracture model, we first assume a 
“hydraulic fracture width hH” profile given by 

 
( )14 cos 2

1( ) 10
x

L
Hh x

π− +

=  (m) (28) 
 

where L is the one periodic length of the fracture. At each 
point along the fracture, this width is used to calculate the 
local fracture permeability Tk  (and permissivity ς ) via 
Equation (6) and the storage compliance ηM via Equation (2), 
for different types of fluids and local fluid saturation. To 
obtain a fracture compliance distribution correlated to hH, we 
simply assume that both dry-normal and shear compliances 
are given by ηT, ηNd [m/Pa]=10-6×hH [m]. Although this 
model is admittedly arbitrary, it should suffice for examining 
the salient nature of seismic wave scattering by a fluid-filled 
fracture. 

In each example, we will use background materials with 
two different permeability values (as shown in Table 2) and a 
range of fracture permeability. The permeability of the 
fracture is specified by multiplying a reduction factor F 
(=0.001, 0.01, 0.1, and 1.0) to the reference fracture 
permissivity refς (obtained using Equation [9]). Physically, 
this can be viewed as the permeability-reducing effect of 
rough fracture surfaces and/or gouge material. The 
Biot-Willis coefficient for the fracture α is assumed to be 1.  

 
Table 2. Background properties 

Variables Value 
Porosity 
Permeability 
 
Solid bulk modulus 
Fluid bulk modulus 
Frame bulk modulus 
Frame shear modulus 
Solid density 
Fluid density 
Fluid viscosity 
Tortuosity 
Saturation ratio 

0.15 
10-17 m2× or 10-11 m2 
(10µD or 10 D) 
36.0 GPa 
2.46 GPa 
9.00 GPa 
7.00 GPa 
2,700 kg/m3 
992 kg/ m3 
5.03×10-4 Pa·s 
3 
1.00 

 

4.2 Homogeneous fracture:Saturated by water 

In the first example, we examine a homogeneous, 
water-saturated fracture. For this fracture, the hydraulic width 
is assumed to be 1 mm.  

Reflection coefficients of fast P waves for a normally 
incident wave are shown in Figure 4a, as a function of wave 
frequency. Because of possible internal scattering of waves 
within a fracture at high frequencies, we will limit the 
upper-limit of the frequency range to 100 kHz for this and 
following examples. Each curve corresponds to different 
background permeability (low=10 µD or high=10 D). The 
low-permeability background can be considered 
“impermeable.” From the plot, the amplitude of the waves is 
higher for the high-permeability background. This is because 
the wave-induced fluid pressure within a fracture is dissipated 
into the background medium, which effectively increases the 

(normal) compliance of the fracture. In contrast, the 
permeability of the fracture itself has little impact on the 
amplitudes of reflected waves, because the fluid cannot move 
along the fracture for the normally incident P wave (there are 
no fracture-parallel particle motions). 

When a P wave is obliquely incident upon a fluid-filled 
fracture, the pressure gradient induced along the fracture may 
result in fluid flow, which changes the P-wave reflection 
depending on the fracture permeability. Figure 4b shows the 
reflection coefficients for obliquely (45o) incident fast 
P-waves. Although a range of fracture permissivity values are 
used, the results are all indistinguishable from one another, 
for the both high and low background permeability cases. 
This result indicates that, similarly to the normal-incidence 
case, in contrast to the large differences caused by the 
background permeability, the fracture permeability 
(permissivity) has little impact on the reflection amplitude for 
obliquely incident P waves. Physically, this effect is attributed 
to an insufficient wave-induced pressure gradient within a 
homogeneous fracture, as illustrated by Figure 1. A 
mathematical explanation was given by Nakagawa and 
Schoenberg (2007).  
 

 
(a) Normal incidence 

 
(b) Oblique incidence (45o) 

 
Figure 4. Reflection coefficients of fast P waves for a 
water-saturated, homogeneous fracture.  
 
4.3 Heterogeneous fracture:Saturated by water 
 

As discussed in the Introduction, the lack of sensitivity to 
the (fracture parallel) fracture permeability can be attributed 
to the inability of fluid to move between a peak and a trough 
of pressure within a homogeneous fracture. Therefore, if a 
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heterogeneous distribution of fracture compliance and 
fracture width result in a fluid pressure distribution with a 
much shorter length scale, the fluid may be able to move 
within a fracture, making scattering of the wave 
fracture-permeability dependent. 

To examine this possibility, reflections of normally 
incident, fast P waves were computed for a water-saturated, 
heterogeneous fracture, using the model derived via Equation 
(28). Figure 5 shows a schematic view of the periodic, 
one-dimensional, heterogeneous fracture. The dry normal 
fracture compliance and fracture storage compliance 
distributions are shown for one period (L=0.1 m) along the 
fracture (Figure 6). Note that we assume that the shear 
fracture compliance is identical to the dry normal compliance 
at each point.  

Contrary to our expectations, the amplitudes of reflected 
waves were not significantly affected by fracture permeability. 
Figure 7 shows qualitatively the same results as the 
homogeneous fracture case, showing large increases in 
P-wave reflection for larger background permeability, but 
little change for a range of fracture permeability.  
 
 

 
 

Figure 5. One-dimensional, periodic, heterogeneous fracture 
model 
 

 
Figure 6. Fracture compliance distribution for a 
water-saturated, heterogeneous fracture. (Note: shear 
compliance is identical to the dry, normal compliance.) 
 

 
 
Figure 7. Normal-incidence reflection coefficients of fast P 
waves for a water-saturated, heterogeneous fracture 

4.4 Heterogeneous fracture:Partially saturated by water 

In this example, using the same fracture model, the fluid 
saturation of the fracture was locally reduced down to 50% 
over a small range within the fracture (Figure 8). This 
resulted in locally increased fracture storage compliance via 
Equation (2) (Kf was reduced by volume averaging between 
fluid and gas—Figure 9).  

For the low-permeability background case, an 
introduction of a small amount of compliant gas (air under 
T=55 oC and P=15 MPa) dramatically increased the 
compliance of the fracture, resulting in a higher reflection 
amplitude than the fully saturated fracture (Figure 10). 
Particularly, for the low-permeability background, the 
reflection amplitude shows a transition between 
high-reflection to low-reflection regimes. Interestingly, the 
transition frequency is dependent on the fracture permeability 
(permissivity), which indicates that the flow within a fracture 
plays a role in altering the reflection amplitude.  

 

   
Figure 8. Saturation profile of a partially saturated, 
water-filled fracture 

 
Figure 9. Fracture compliance distribution for a partially 
saturated, water-filled fracture  

 
 
Figure 10. Reflection coefficients of fast P waves for partially 
water-saturated, heterogeneous fracture 
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4.5 Heterogeneous fracture:Saturated by supercritical CO2 

The overall compliance of a fracture can also be reduced 
by replacing the water within the fracture by a more 
compliant fluid. At the given T, P state, CO2 is supercritical, 
with much higher compliance and lower viscosity than water 
(bulk modulus=0.0726 GPa, viscosity=5.12×10-5 Pa·s). The 
compliance distributions are shown in Figure 11.  

Figure 12 shows the resulting reflection amplitudes. 
Although the effect of fracture-permeability difference for the 
low-permeability background case is not as dramatic as the 
partially saturated water, the overall reflection amplitudes are 
much larger than the water-saturated fracture.   

 
 

 
Figure 11. Fracture compliance distribution for a supercritical 
CO2-saturated heterogeneous fracture  
 

 
 
Figure 12. Reflection coefficients of fast P waves for a 
supercritical CO2-saturated, heterogeneous fracture 
 

5. DISCUSSIONS AND CONCLUSIONS 

This paper presents a set of displacement-stress boundary 
conditions for computing the scattering of seismic waves by a 
fluid-filled, heterogeneous fracture. The heterogeneity of the 
fracture is represented by a distribution of characteristic 
fracture parameters (fracture compliances, storage 
compliance, hydraulic width, [along-fracture] permissivity, 
Biot-Willis coefficient).  

The examples for seismic wave scattering (fast P-wave 
reflections) computed using this model showed some 
interesting characteristics of interaction between seismic 
waves and a fluid-filled fracture.  

When a fracture is embedded in a high-permeability 
background, the reflection of the wave can be significantly 
large compared to a fracture within a low-permeability (or 
impermeable) background. This is because the fluid pressure 
within a fracture can dissipate into the background, increasing 
the overall normal compliance of the fracture.  

For a low-permeability background, the permeability of 
the fracture itself can play a significant role, because the 
degree of pressure dissipation within a fracture determines 
the overall compliance of the fracture. In Figure 13, 
normalized amplitude and pressure distributions (to the 
maximum value in each profile) at 316 Hz are shown for the 
background and fracture permeabilities (permissivity) used in 
the previous section. For the normal-incidence cases, 
increasing the fracture   permeability generally makes the 
amplitude profile flatter and the phase profile more even. 

This demonstrates that the fracture permeability is indeed 
controlling the pressure dissipation in the fracture. For the 
case of a homogeneous, water-saturated fracture with an 
obliquely incident wave (Figure 13a), the changes in the 
profiles are minimal. This seems to indicate that the fluid 
does not flow within the fracture. The heterogeneous, 
water-filled fracture does show some changes (Figure 13b), 
although the relative magnitude of the changes is small, 
possibly because the small compliance of the fluid does not 
allow a large displacement.  

In contrast, the fractures partially saturated with water 
and with supercritical CO2 exhibit very large changes in the 
pressure amplitude and phase profile (Figure 13c and d). In 
both cases, large pressures are found around the low ηNd and 
small hH area (or fracture “asperities”) for low-permeability 
fractures. These high pressures are dissipated into 
low-pressure areas between the asperities. Essentially, this is 
the “squirt flow” effect (e.g., Dvorkin et al., 1994) for a 
fracture. 

In summary, the amplitude behavior of a fast P-wave 
reflected by a fluid-filled fracture can be understood as 
follows (Figure 14): In a low-permeability background, the 
frequency and permeability of a fracture determine whether 
the fracture is in a “relaxed” or “unrelaxed” regime. Larger 
reflection amplitudes result from the “relaxed” regime, since 
the overall fracture compliance is larger. If the background 
permeability is large, the reflection amplitude can be even 
larger (owing to the pressure dissipation into the background), 
and the fracture permeability can lose its effect on the wave 
reflection. 

 Finally, for the case when a compliant fluid 
(supercritical CO2) is saturating a fracture, the enhanced 
compliance of a fracture allows more fluid flow, which 
increases the compliance of the fracture—and hence the 
reflection of seismic waves and permeability sensitivity. This 
last result is particularly important for discriminating the 
infiltration of the CO2 phase within fractures during 
geological sequestration of CO2.  
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 [Normalized Amplitude] [Phase delay] 

 
 (a) Homogeneous, water-saturated fracture; 45 o incidence 

 
 (b) Heterogeneous, water-saturated fracture; Normal incidence 

   
 (c) Heterogeneous, partially water-saturated fracture; Normal incidence 

  
  (d) Heterogeneous, CO2-saturated fracture; Normal incidence 
 
Figure 13. Fluid pressure distribution within a fracture at 316 Hz. The amplitudes are normalized to the maximum amplitude for 
each profile.  
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Figure 14. Effect of background and fracture permeability on 
the reflection of fast P waves 
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