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Long-Wave Elastic Anisotropy Produced by Horizontal Layering 
ß 
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Abstract. A horizontally layered inhomogeneous medium, isotropic or transversely isotropic, is 
considered, whose properties are constant or nearly so when averaged over some vertical height l'. 
For waves longer than l' the medium is shown to behave like a homogeneous, or nearly homogene- 
ous, transversely isotropic medium whose density is the average density and whose elastic coeffi- 
cients are algebraic combinations of averages of algebraic combinations of the elastic coeffcients 
of the original medium. The nearly homogeneous medium is said to be 'long-wave equivalent' 
to the original medium. Conditions on the five elastic coeffcients of a homogeneous transversely 
isotropic medium are derived which are necessary and sufficient for the medium to be 'long-wave 
equivalent' to a horizontally layered isotropic medium. Further conditions are also derived which 
are necessary and suffcient for the homogeneous medium to be 'long-wave equivalent' to a hori- 
zontally layered isotropic medium consisting of only two different homogeneous isotropic ma- 
terials. Except in singular cases, if the latter two-layered medium exists at all, its proportions 
and elastic coefficients are uniquely determined by the elastic coefficients of the homogeneous 
transversely isotropic medium. The observed variations in crustal P-wave velocity with depth, 
obtained from well logs, are shown to be large enough to explain some of the observed crustal 
anisotropies as due to layering of isotropic material. 

1. INTRODUCTION 

It is our purpose in the present paper to 
ß discuss the propagation of long seismic waves in 
a finely layered, horizontally stratified, trans- 
versely isotropic, elastic medium whose axis of 
symmetry is vertical. By 'long wa-•es' and 'fine 
layering' we mean the following:we pick a length 
l • long enough so that the elastic properties of 
the medium vary appreciably over a length l •. 
We then consider only seismic waves in which 
the distance k% over which the displacements 
change by an appreciable fraction of their values, 
is much larger than 1 t. We show that the varia- 
tions in the medium which have vertical scales 

less than l • can be averaged out, so that the 
medium can be replaced by an equivalent but 
less wildly varying medium, at least in discussing 
waves for which kl • • 1. 

In particular, we show that a horizontally 
stratified, continuously or discretely varying, 
isotropic medium whose Lam• parameters and 
density have position-independent averages over 
any vertical distance 1 • behaves like a homo- 
geneous transversely isotropic (HTI) medium 
with a vertical symmetry axis whose elastic 
coefficients can be calculated explicitly as 
algebraic combinations of averages of algebraic 
combinations of the Lam•. parameters of the 
original medium and whose density is the average 
density of the original medium. 

The following question is also examined: Given 
the five elastic coefficients of a stable HTI 

medium, is there a layered isotropic medium 
which has these five elastic constants when it 

reacts, as a transversely isotropic medium, to 
long waves? The geophysical question at issue 
here is whether the apparent anisotropies in the 
earth's crust, observed by seismic prospecting 
with long waves [Uhrig and Van Melle, 1955], 
may be due to a fine horizontal layering of 
different isotropic rocks. The result of the 
theoretical investigation is that there are stable 
HTI materials which cannot be modeled by any 
stack of stable isotropic layers. Any stable HTI 
material which can be modeled for long waves 
by a stable, isotropic, layered medium can be 
modeled by a stack of isotropic stable, homo- 
geneous (ISH) layers of just three different 
types. There are stacks of ISH layers of three 
types which cannot be modeled by any stack of 
two different types of ISH material. Finally, if 
a stable HTI material can be modeled for long 
waves by a stack of two ISH materials, then, 
except in singular cases, the proportions and 
properties of the two materials are uniquely 
determined by the transversely isotropic material 
they model. 

This last result will be of some interest if it 

should develop that the second layer under the 
oceans consists of a relatively uniform isotrvpic 
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sediment penetrated by occasional isotropic 
volcanic sills. The measurement of any five 
independent propagation velocities in the second 
layer would then determine the proportions and 
properties of the sills and the sediment to within 
an unknown scale factor for density. 

The other application of the above results is 
to the propagation of long surface and body 
waves in crustal rock. It is concluded that some 
of the anisotropies observed in the crust can be 
explained by vertical variations in isotropic 
properties as large as those observed in well logs. 

2. SUMMARY Or PREVIOUS WORK 

The problem of elastic wave propagation in 
finely layered media has been treated by a num- 
ber of authors, all of whom except Thomson 
[1950], Helbig [1958], and Anderson [1961] have 
restricted themselves to what we shall call 
periodic, isotropic, two-layered (PITL) medium: 
a medium periodic in the vertical direction and 
consisting of alternating isotropic layers of thick- 
nesses h•, h,., having constant Lam• parameters 
X,, tz,, and X,., •z,., and constant densities 

Riznichenko [1949] calculated, for long com- 
pression waves, the velocities of propagation in 
the vertical and horizontal directions, treating 
the medium as if it were locally static in order 
to get average stress-strain relations. 

Thomson [1950] gave the formal solution for 
waves of arbitrary wavelength in a medium 
consisting of any number of different homo- 
geneous isotropic layers; he found the displace- 
ments and vertical stresses at any interface by 
multiplying the surface displacements and 
stresses by a product of propagator matrices, 
one matrix for each layer between the interface 
and the surface. This technique has lent itself 
well to numerical calculation of dispersion 
relations [Haskell, 1953], but is rather cumber- 
some for our purposes. At any rate, no one has 
taken the limit of the matrix products for small 
wave number, a procedure which ought to yield 
the results of the present paper, but which we 
shall not use. 

Postma [1955] gave explicit formulas for the 
five elastic coefficients of the HTI medium which 
is long-wave equivalent to any PITL medium. 
The results are very complicated and are not 
expressed as averages; therefore they do not 
suggest a generalization to nonperiodic media or 
media in which the Lam6 parameters and density 

can take more than two values. Postma gave 
some inequalities which must be satisfied by the 
five elastic coefficients of a transversely isotropic 
medium if it is long-wave equivalent to a PITL 
medium. These inequalities are not exhaustive, 
however; their satisfaction by a transversely 
isotropic medium does not ensure that it can be 
modeled by a PITL medium, or, for that matter, 
by a stratified isotropic medium. 

White and Angona [1955] calculated the hori- 
zontal and vertical propagation velocities of long 
compression and shear waves in a PITL medium, 
thus generalizing Riznichenko's result. Their 
paper is not equivalent to Postma's, as their 
conclusion (that the five velocities they calculated 
determine the five elastic constants of the 
long-wave equivalent HTI medium) is incorrect. 
The error was corrected by Rytov [1956]. 

Rytov completely and definitely solved the 
problem of the propagation of plane waves in a 
PITL medium. He used Floquet's [1883] theorem, 
and hence his method is applicable to any 
medium whose properties vary periodically in 
the vertical direction. By examining the limiting 
case of small wave number k, he showed that 
the fractional error introduced by the other 
authors' long-wavelength approximation is of the 
order of (kh)*-, h being the vertical distance over 
which the properties of the medium are periodic. 
(The present author has seen only Brekhovskikh's 
[1960] description of Rytov's work.) 

Helbig [1958] expressed Postma's formulas as 
averages and generalized them to the multi- 
layered case, but did not consider the possibility 
that the layers were intrinsically anisotropic. 
He gave some inequalities on Postma's elastic 
coefficients based on the hypothesis that the 
Lam6 parameter k be positive. This is not a 
stability condition, and Helbig did not try to 
justify it. His inequalities, like Postma's, were 
not exhaustive. (The author learned of IIelbig's 
work from D. Anderson.) 

Anderson [1961] has generalized Haskell's 
method to anisotropic layered media, but has 
not examined the long-wave limit. 

Despite the completeness with which the 
problem of the PITL medium has been solved, 
the present author feels that at least two gaps 
remain in our knowledge of long waves in finely 
layered media, and he proposes to try to fill 
them in the following discussion. The first is the 
question of how to treat media containing layers 
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of three or more kinds of rock when there is no 

vertical periodicity of properties (and, inciden- 
tally, when the separate layers may be intrin- 
sically anisotropic). The other is the question of 
which HTI media can be modeled by stacking 
layers of isotropic media. 

3. THE AVERAGING TECHNIQUE 

Let x•, x•, x3 be the position. coordinates in 
a cartesian coordinate system. Let s•, s•, s3 be 
the cartesian components of displacement of an 
elastic medium whose properties are independent 
of x• and x• but may vary with x•. Let w(x•) be 
any continuous weighting function that averages 
over a length l'. That is, let w(x•) have these 
properties: 

w(•) > 0 w(+ 

f = l a 
Then, if •(xa) is any function, 

(1) 

is the average of ! over a distance roughly 
around the position xa. This is a moving average; 
that is, it depends on x3. Effectively, (•)(x3) is 
f(xa) with those wavelengths removed which are 
less than l'. The functional dependence of 
on xa will not usually be shown explicitly; the 
average will be written simply 

If ! is • function of x•, x• and x•, then 

-- •(]) i -- 1,2, 3 (2) 
The first two of these formulas are obvious, and 
the third follows on integrating (1) by parts for 
(ai/ax). 

The only approximation that we make in the 
present paper is the following: if )•(x3) is nearly 
constant when x3 changes by no more than l', 
while g(x•) may vary by a large fraction over 
this distance, then, approximately, 

(!g) -- ](g) (3) 

Now suppose that for each xa the medium is 
transversely isotropic with a vertical axis of 
symmetry. Then [Stoneley, 1949] the stress-strain 
relations in the medium can be written 

(4) 

Of the six elastic parameters a, b, c, )•, l, and m, 
only five are independent, since 

a = b 4- 2m (5) 

The elastic coefficient l should not be confused 

with the length l'. 
Consider an infinite horizontal slab of vertical 

thickness U>> l', consisting of discrete horizontal 
layers so thin that when averaged over a vertical 
distance l' all properties of the slab are nearly 
independent of x•. All properties of the slab are 
assumed independent of x• and x•. If the slab is 
subjected on its top and bottom to the same 
static stresses T•, T•, and T•, independent of 
x• and x•, then throughout the deformed slab 
T•3, T•, and T• will be constant. Furthermore, 
s•, s•, and s• will be continuous and will vary 
linearly in each layer with x3 derivatives which 
vary widely from layer to layer: however, there 
will be constants N•, N•, and N•, such that 
[s,(=.) - N, x,I << L' IN, I. Thus T,s, 
Os•/Ox•, and Os•/Ox• all vary very slowly or not 
at all in the slab. On the other hand, Tn, T•2, 
T•, Os•/Ox3, Os•/Oxa, and Os3/Oxa all vary by 
large fractions from layer to layer in' the slab 
because of the different elastic properties of the 
layers. 

Since any continuously variable medium can 
be approximated arbitrarily closely by discretely 
layered media, in a continuously variable slab 
subjected to constant static surface stresses, T•, 
T•a, and Ta3 will be constant, and the values of 
Os•/Ox, and Os•/Ox• will be smoothly varying 
functions of x: on which are superposed very 
small wiggles, while T•,, T•:, T::, Os,/Ox:, Osff Ox•, 
and Os:/Ox• will vary widely and rapidly with x•. 
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Finally, if the stresses T,,, T,, and T, vary 
only slightly in a horizontal or vertical distance 
l', as in an elastic wave with wave number 
k << l'% the above remarks remain approxi- 
mately true. This observation amounts to stating 
that in an elastic wave of wave number k the 
stresses inside a piece of the medium whose 
diameter is much less than k -• can be calculated 
from the stresses on the surface of the piece as 
if it wer e in static equilibrium. This point has 
already been made by Riznichenko [1949] and 
Postma [1955]. 

The manner in which the small-scale large- 
amplitude variations in Tn, T•,, T,,, Os•/Ox,, 
Os,/Ox,, and Oss/Ox,, are produced by the small- 
scale large-amplitude variations in the properties 
of the medium can be exhibited explicitly by 
solving (4) for these six rapidly varying stress 
and displabement field variables. The result is 

Os, 1 
-- Wls 

Oxs ! 

Os2 1 
-- 

Oxa 1 

Oxs - c - • XOx• • Oxd 

T• • a -- Ox• 

c 

Ox• 

c 

All the field variables on the right in (6) vary 
slowly with x,. The rapid variations with x, of 
the field variables on the left are produced by 
the rapid variations of the elastic coefficients. 

The advantage of writing the stress-strain 
relations in the form of (6) is that these equations 
contain no products of a rapidly varying field 
variable and a rapidly varying elastic parameter. 
Thus when equations 6 are averaged over a 
vertical distance l' by means of the weighting 
function w, formula 3 can be applied to the 
averages on the right. Computing averages of 

derivatives by formula 2, we obtain from (6) 

Oxs 

If equations 7 are solved for the averaged 
stres•s, we obtain relations between averaged 
stresses and the strains calculated from averaged 
displacements' 

(8) 
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The effective elastic coefficients in equations 8 
are 

A = (a -- fc-') -+- 
B = (b- l'c-') -+- 

F = 

L = (r'>-' 

M = 
A number of remarks are in order about these 

relations (9) between average stresses and aver- 
age strains. First, note that a -- b •- 2m and 
therefore A -- B q- 2M. Consequently, the 
averaged stress-strain relations (8) are those of 
an elastic transversely isotropic solid with 
vertical axis of symmetry. This new solid will be 
said to be 'long-wave equivalent' to the original, 
more strongly layered solid. The elastic constants 
of the new, more nearly homogeneous solid which 
is long-wave equivalent to the old, more strongly 
inhomogeneous solid are not simply averages of 
the corresponding elastic constants in the more 
inhomogeneous solid, except that M -- (m). 
Also note that if a, b, c, 1', l, and m are all con- 
stant, then, as expected, A = a, B -- b, C -- c, 
F -- ], L -- l, and M -- re;the new more nearly 
homogeneous solid is identical with the original 
one. 

In case a = a0 q- $a, b-- b0q- $b, etc., 
where [$a/ao] << 1, [lib/bo[ << 1, etc., <•ia) = 
($b) ..... 0, and a0, bo, ... are constant, 
expressions 9 can be simplified by neglecting all 
but the lowest-order terms in $a, $b, .... The 

Co 

½o 

L= 

result is 

M • m 0 
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In using equations 8 it should be recalled that 
the values (but not necessarily the derivatives) 
of T. 8, T,8, T., s., s,, s•, as,lax,, and as,lax, are 
approximately the same as their averages' 

T,, = = 

a•, a as, a ax, - ax, (s,) ax• - 
We still must exa•ne the equations of motion 

of the layered medium. Neglecting gra•ty, we 
obtain 

O's, OT, i (10) POt • -- 
If we average both sides of these equatio• over 
the ve•ical distance l', using the weighting 
function w, we obtain 

a' a <T,,) (11) 
Here formulas 2 and 3 have been appSed. 
thus develops that for waves much longer than 
l' the equations of motion (11) and the stress- 
strain relations (8) for the average stresses and 
displacements are precisely those of a trans- 
versely isotropic medium with vertical axis of 
s•metry, whose elastic parameters (9) are 
smoother than those of the original medium, all 
vaHatio• on ve•ical scales of l' or less ha•ng 
been removed from the elastic parameters. 

To find how the real medium moves in the 
presence of waves •th wavelengths much longer 
than l', we solve (9) and (11) for the eq•valent 
smoothed me•um, thus obtai•ng the averaged 
stres•s <T,i> and displacements <s,>. The actual 
stresses T,•, T,•, and T• and the actual displace- 
ments are the same as their averages, to witch 
our accuracy, w•le the values of T,,, T,,, 
8s,/8x•, 8s,/8x•, and 8s•/8x• can be found from 
(6), the field variables on the fight being raplaced 
by their averages. 

As Stocky [1•9] has shown, in a HTI medium 
the square of the velocity of ve•ical propagation 
is c/p for compression waves and I/p for shear 
waves. The velocity of horizontal propagation 
is a/p for compression waves, l/p for SV waves, 
and m/p for SH waves. From the above remarks, 
we conclude that, in a layered tra•versely 
isotropic medium in w•ch A, B, C, F, L, M, 
and <p) am co,rant, the corresponding velocities 
for waves much longer than l' should be 
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for vertical P velocity, L/(p) for vertical S 
velocity, A/(p) for horizontal P velocity, 
for horizontal SV, and M/(p) for horizontal SH. 
The elastic constant F does not appear among 
these velocities, a point overlooked by White 
and Angona, which prevents the use of these 
velocities in determining all the elastic constants 
of the medium. 

The long-wavelength part of the impulse 
response of a layered medium having constant 
average properties ought to be the long-wave- 
length part of Kraut's [1962] calculated impulse 
response of a IITI medium, the appropriate 
elastic coefficients being given by (9). The limita- 
tion to long waves has the following effect. At a 
surface detector, the first arrival travels with 
speed (a/p) •' in most real HTI media. In a 
layered isotropic medium, (A/(p)) •'- is slower 
than the speeds of compression waves in some 
of the layers, so that the first arrival is earlier 
than the above theory would indicate. However, 
if the receiver is a low-pass filter which 'sees' 
only waves longer than l t, the head waves carried 
by the fast layers will presumably die out rapidly 
with distance from the source (we have not 
examined this question), and the first large 
arrival will come in with velocity (A/(o))•'- if 
the separation of source and receiver is several 
times I t. 

Comparison of (9) and (11) indicates that in 
the averaging process which converts a finely 
layered, highly variable medium to a smoothed, 
transversely isotropic, long-wave equivalent 
(STILWE) medium, the averaging which occurs 
in the equations of motion is quite simple, while 
the averaging in the stress-strain relations is not. 
The remainder of the present paper is devoted 
to an algebraic discussion of the stress-strain 
averages when the highly variable real medium 
is locally isotropic. The goal of this discussion is 
to find how far apparent anisotropy in the 
earth's crust can be due to a layering of isotropic 
media. 

4. LOCALLY ISOTROPIC LAYERED MEDIA 

In an isotropic medium, equations 4 become 
the Lam• relations. If k and • are the Lam• 
parameters, 

a=c=k+2•a b--]--k l= m=•z (12) 

These expressions can be substituted into (9) to 
obtain the elastic coefficients of the STILWE 
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medium. The result, which can be shown to agree 
with Postma's [1955] result when the real medium 
is periodic and two-layered, is 

B = + 

= 

These expressio• are algebraic combinations 
of averages of algebraic combinations of k and •. 
Most of the algebra can be e•minated from the 
relation between the elastic parameters of the 
real isotropic medium and the STIL• medium 
by de•ng new elastic parameters in the two 
media. In the real isotropic me•um we shall use 
the elastic parameters • and •, where 

•: • + • •(1 -- •) (14) 
a being Poisson's ratio. The dimensionless 
parameter • is the square of the ratio of shear 
velocity to compressional velocity. •en a = •, 
a common value among real materials, • = •. 
The range of • and • for w•ch the medium is 
stable is 

(15) 

In the STILWE medium we shall use the 

elastic parameters L, M, R, S, and T, where 

R= 

s = + sc) 

= 

The elastic coe•cients A, B, C, F, L, and M 
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are given in terms of L, M, R, S, and T by the 
formu'.as inverse to (16) 

A = B-{- 2M 

B = 2M- 4S q- R-'(1 -- 2T) • (17) 
C= R-' 

F- R-'(1- 2T) 

In terms of the new elastic parameters the 
relations (9) between the real isotropic medium 
and the long-wave equivalent, transversely iso- 
tropic medium are simply 

L-- <l/tz> 

R = (0/la) ' (18) 

= 

The question we propose to consider is this: 
Given elastic coefficients L, M, R, $, and T for 
a stable tITI medi m, is there a stable, isotropic, 
horizontally layered medium which is long-wave 
equivalent to the homogeneous medium? That 
is, are there œunctions tz(z,) and 0(•,), satisfying 
the stability ½ondition• (115) or more stringent 
restrictions, which are related by (18) to the 
elastic coefficients oœ the given IITI medium? 

5. CONDITIONS FOR STABILITY AND ISOTROPY 

To discuss the question iust raised, we must 
know the conditions on the elastic coefficients 

which ensure stability (that is, that no deforma- 
tion have negative internal energy). The stability 
conditions (15) for an isotropic medium are well 
known. A necessary and sufiqcient condition for 
the stability of the transversely isotropic medium 
whose stress-strain relation is (4) is that the 
following matrix be positive semidefinite: 

ablOO0 

b a ! 0 0 0 

! ! c 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 m 0 0 0 0 0 

(•9) 
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The matrix (19) with a - b • 2m is positive 
semidefinite if and only if all its principal minors 
are non-negative. It is sufficient for positive 
definiteness that all the upper left principal 
minors be positive. That this result. cannot be 
extended to positive semidefiniteness is shown 
by the matrix 

The resulting conditions are 

l•_ 0 m•_ 0 bøc m•_ 0 

c >_ 0 (b--}- m)c >_ I' (20) 

There are some further inequalities which, being 
consequences of (20), can be omitted. 

Parenthetically we remark that if b(x,), ½(•,), 
/'(•,), /(•,), and m(x,) satisfy all of conditions 
20 and i/ a(x,) = b(x,) q- 2m(x,), then the 
coefficients A, B, C, F, L, and M defined by 
(9) also satisfy all of conditions 20. The proof is 
straightforward and will be omitted. It follows 
that if the real medium is stable, so is the 
fictitious STILWE m•dium. Postma [1955] con- 
structed a PITL medium, both of whose layers 
are stable and whose STILWE medium violates 

one of the inequalities which Postma quoted 
Rudski [1911] as saying must be satisfied by the 
elastic coefficients of a transversely isotropic 
medium. In fact, Rudski said only that his 
inequalities are usually satisfied by real aniso- 
tropic materials. His inequalities include, besides 
the stability conditions (20), the further in- 
equaltries a >_ l, ½ >_ l, and c >_ m; it is the 
third of these latter inequalities which Postma's 
example violates. 

For the STILWE medium it will be convenient 

to have the stability conditions (20) on B, C, 
F, L, and M rewritten in terms of L, M, R, •, 
and T. The result is 

M>0 ]M> S 

Having noted the stability conditions for a 
transversely isotropic medium, we now seek 
conditions on the elastic coefficients that are 

necessary and sufficient for isotropy of the 
medium. From (12) these conditions are clearly 

b= I l= m a=c= b+2m (22) 

A smoothed equivalent medium will appear to 
be isotropic for long waves, even though it is 
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layered, if its effective elastic coefficients A, B, 
C, F, L, and M satisfy (22). In terms of the 
elastic coefficients L, M, R, S, and T, these 
conditions for isotroPy are 

L = M S = MT T= MR (23) 

For reasons which Will appear later, we prefer to 
write these equations in the following equivalent 
but more complicated form' 

T • = RS 

(•-- •)•= (•-•-- •)(•-- S) 

(24) 

Our task now is to see which stable HTI 

media are long-wave equivalent to some stable, 
layered, isotropic medium, or to a particular 
kind of such medium. 

7. THE CASE OF CONSTANT POISSON RATIO 

Somewhat more interesting physically is the 
following question' When is a stable HTI medium 
long-wave equivalent to a finely layered isotropic 
medium with constant 0 and variable zz? 

If L, M, R, S, and T are the elastic coefficients 
of a homogeneous medium which is long-Wave 
equivalent to a stable, layered, isotropic medium 
with constant 0, then, by equations 18, 

RL = T $ = TM 

0_• T_• L_• M (25) 
The first three of equations 25 are trivial conse- 
quences of (15) and (18). The fourth, L _• M, 
is proved as follows' 

I = <1> •= <•-•/•z•/•> • 
< = 

6. THE CASE OF CONSTANT RIGIDITY 

We ask first what conditions beside the 

stability conditions (21) are necessary and suffi- 
cient to insure that L, M, R, S, and T are the 
elastic coefficients of a HTI medium whic• is 
long-wave equivalent to a stable, isotropic, 
layered medium with constant rigidity? 

On the one hand, if L, M, R, S, and T are the 
averaged coefficients of an isotropic layered 
medium with constant •c, we have, from (18), 
L = M = (•)= I•, T = (0), R = M-xT, and 
S = M T. But these are exactly the conditions 
(23) ensuring that the long-wave equivalent, 
homogeneous medium be isotropic. 

Conversbly, if the homogeneous medium is 
stable and isotropic, it is equivalent to a stable 
isotropic medium with constant •z and 0, namely 
•=M,O=T. 

Parenthetically we remark that inequalities 
28, 29, and 30 show that if any one of the three 
isotropy conditions (24) is satisfied by the 
smoothed medium, and if the original layered 
isotropic medium has 0 • 0 • -•, then that 
isotropic medium must have constant #. 

To summarize, if a layered isotropic medium 
has constant/z, the STILWE medium is isotropic. 
This much was proved by Postma [1955] for 
periodic two-layered media. Conversely, if a 
transversely isotropic medium is isotropic, it can 
be the smoothed medium equivalent to an 
isotropic layered medium with constant •, but it 
cannot be the smoothed medium equivalent to 
any layered isotropic medium with variable /z. 

The inequality in the above chain is Schwarz's 
inequality. 

Conversely, we assert that if L, M, R, $, and 
T satisfy (21) and (25) they are the elastic coeffi- 
cients of a HTI medium which is long-wave 
equivalent to a stable, layered, isotropic medium 
with constant 0. Obviously we must take 0 -- T. 
Suppose we can find a •(xs) such that (•z-x> = L -• 
and (•) -- M. Then, by (25) and the constancy 
of 0, R - (0/•z) and S - (0•). The existence of 
the required •z(x0 is shown by 

Lemma 1. There is a function •z •_ 0 such that 

if and only if0_< L_• •o, 0_< M_• •,and 
L<M. 

Proo]. That L = (•-x>-x and M = <g> imply 
L _• M was proved from Schwarz's inequality 
in proving (25). It remains to prove the converse. 
If L or M is 0 or •o, or if L = M, the problem 
is trivial, and so we assume 0 < L < oo 
0 < M < oo, and L < M. We consider a layered 
isotropic medium of which a fraction px, dis- 
tributed no matter how, has constant rigidity 
ua > 0 while the remaining fraction p,. has 
constant rigidity zz,. > g•. We hope to find p•, p,., 
g•, and g,. such that px q- p,. = 1, p•#• q- p,.zz,. = M, 
and p•z•-• •- p2•,. -• - L-x. Assume for the 
moment that •z• and •z,. are known, and solve the 
first two equations for p• and p•. The result is 

•2-- M M 
Px = p2 = 
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To satisfy the conditions of the problem we 
must have p• •_ 0 and .p, •_ O; therefore 0 < 
• _< M _< •,. Also, p•m-• q - p•/Zz -1 -- L-•; 
therefore u• q- /z• -- M = L -• /z•/z•. We try 
/z• = M- X and/z• = M q- X. We must then 
have 0 < X < M and M = L-•(M • -- X•), or 
X•= M(M-- L)= M •-- ML. Thus L < Mis 
precisely the condition needed to ensure that X 
is real and 0 • X • M. This concludes the 
proof of lemma 1. 

To summarize, the above arguments show that 
if a HTI medium is long-wave equivalent to a 
layered isotropic medium with constant 0, the 
elastic coefficients of the former medium satisfy 
conditions 21 and 25, and conversely. As can be 
seen from section 6, it is not true in general that 
the homogeneous medium which is equivalent to 
a layered isotropic medium with variable 0 must 
fail to satisfy (25). 

8. THE GENERXL CXSE 

Now we ask what are conditions on the elastic 

coefficients L, M, R, S, and T necessary and 
sufficient in order that there exist functions 
/z(xs) (not constant) and •(x 8) satisfying the 
Strict isotropic stability conditions 

0 • • • • 0 • • •-I 

almost everywhere and giving L, M, R, S, and 
T via (18). For simplicity, we do not consider 
the weak stability conditions (15). Our conclusion 
will be 

Theorem 1. Such functions /•(x•) and •(x•) 
exist if and only if 

O • R •-•L-' O • S < -•M 

({_ •)•. < (IL-, _ n)(_•- S) 

(27) 

The Proof is somewhat invOlVed. First we need 
Lemma •. Suppose •(x0 >_ 0 and q•(x•) >_ 0. 

Then (•(•- 1)') <_ (•(•- •-')•>. 
Prooj•.• Let f = 1 q- g. Then 

= (•g•(1 • ])•/]•> • (•g•> = (•(] 1)•>. We 
also need 

Lemma 3. •ere is a nonconstant function 
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0 • M • •o, and L • M then a function of the 
required kind exists has already been given in 
proving lemma 1. To prove the converse, note 
that if M ---- 0 then/z - 0 almost everywhere, 
since/z is non-negative. But then 0 • M < •o. 
If L -- •o then (/z-•) - 0, so that/z-• -- 0 almost 
everywhere, and (#) -- •o. Thus, 0 < L < •o. 
Finally, as may be verified by direct calculation, 

that by lemma 2 withq• -- 1, ((/z' t, M-' t' -- 1)') <_ 
(M/L) -- 1. Thus L <_ M. But, by hypothesis, 
t• is not constant. Hence L < M. 

Having established lemmas 2 and 3, we prove 
the first half of theorem 1. That is, if/z and 0 
exist, inequalities (27) follow. The inequalities 
0 < R < 3L-,/4, 0 < S 
are obvious from (18) and (26). To prove 
T' < RS, we note that 

((•,/•.T,/•. S-,/•. -,/•. - • •.- o> 

- (•s- •)/• (28) 
Hence, by lemma 2, 

<O(•'•'•S -'•-- •)•> • (•S- •'•)/• (2O) 
Thus RS • T', and, if RS - 

•(• •T • •S -• • -- 1) •: 0 

almost ever•here, contrary to the hypotheses 
that 0 • • and that • not be constant. There- 
fore, T • • RS. The inequality 
(• L -• -- R)(] M -- S) is proved in si•lar 
fas•on by obser•ng that 

'/V• -- T) -'/• 

- • • - 

- (] - •?]/(•- 

whence, by lemma 2, 

- - j • T)- - •] 

5 [(I• -• - 

-(I- •)"]/(I- •) (ao) 

•ally, we mus• prove •he second half of 
•heorem 1, •ha• •he inequafifies (27) ensure •he 

such that 0 < # < •o, ½> < m, ½-,> < m, existence of functions tz (not constant) and 0 
= L% and </•> = M if and only if satisfying conditions (26), and related to L, M, 

L < •o, 0 < M < m, and L < M. R, S, and T by (18). We consider an isotropic 
Proof. The proof that if 0 < L < •o, layered medium consisting of a fraction p• in 
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which 0 takes the constant value 0•, and a 
fraction p2 in which 0 is the larger constant 
0• > 0•. We denote the average of •z in the first 
fraction by (#)• and its average in the second 
fraction by (•)•. We •hen hope to find p•, p•, 
•, •, and •(x•) such that 

p• • p• = 1 p• • p•0• = T 

Solving the first two of these equations for 
p• and p•, we have 

•- T T- • 

The last four equations can then be solved for 

L, M, R, S, and T: 

•#_•)• = 82L -•-- R 
82-- T 

(•_•)• = R -- L -•O• 
T-- 8• 

02- T T- O• 

By lemma 3 we can find a positive function • 
which satisfies the four equations given above if 
and only if 

(O:•L-'--R)(O•M- S) > (0•- T? (31) 
and 

> o,) 

The problem is solved if we can find a 0• and a 
0• satisfying the above inequalities (31) and such 
that 0 < 0• < T < 0• < -•. Inequalities 27 
and 0 < T < -• ensure that we can do so by 
taking 0t very dose to but greater than zero 
and 0• very close to but less than -•. Theorem 1 
is thus proved. 

A number of consequences of theorem 1 are 
worth noting. First, and most important, in- 
equalities 27 are much more restrictive than the 
stability conditions (21). That is, there are many 
stable IITI media which are not long-wave 
equivalent to any layered, stable, isotropic 
medium. If the elastic coefficients of an ap- 
parently transversely isotropic medium observed 

by long waves in the field fail to satisfy inequali- 
ties 27, then it is certain that some intrinsic 
anisotropy is present; no layered isotropic 
medium can reproduce the observations. On the 
other hand, if the field observations do satisfy 
all of inequalities 27, in principle it is possible 
that the observed material may be a finely 
layered isotropic material. The only way to 
confirm or eliminate this possibility is to look 
for a wavelength dependence of L, M, R, $, and 
T at shorter wavelengths, or to obtain an actual 
sample of the material. 

A purely algebraic consequence of theorem 1 
is this' From lemma 3, in a homogeneous material 
which is long-wave equivalent to an isotropic 
layered material of variable rigidity, L < M. 
But inequalities 27 imply that L, M, R, S, and T 
are the elastic constants of such a homogeneous 
material. lienee inequalities 27 must imply that 
L < M. This can be shown directly, but it 
involves some intricate algebra, which will be 
omitted. 

Finally, on examining the proofs of lemma 1 
and theorem 1 we see that we have proved more 
than is stated in theorem 1' A stable HTI medium 

whose elastic constants satisfy inequalities 27 is 
long-wave equivalent to a stable, layered, iso- 
tropic medium consisting of only four different 
kinds of material. Such a medium will be called 

four-layered, meaning not that four layers are 
present but that layers of four materials are 
present. It can be shown, by an intricate argu- 
ment which will not be reproduced here, that in 
fact inequalities 27 imply that L, M, R, S, and T 
can be reproduced by a three-layered, stable, 
isotropic medium. Therefore, any stable IITI 
medium which is long-wave equivalent to a 
stable, layered, isotropic medium is long-wave 
equivalent to a stable, three-layered, isotropic 
medium. This, however, is the best we can do. 
As we shall see in the next section, two-layered 
isotropic materials are essentially less general. 

9. THE Two-LAYERED CASE 

In this case, the only one considered so far in 
the literature, we seek necessary and sufficient 
conditions that a stable HTI medium with 

elastic constants L, M, R, S, and T be long-wave 
equivalent to a stable, isotropic, horizontally 
layered medium containing only two different 
kinds of homogeneous isotropic material. A 
fraction p• of the medium has 0 = 0• and # - •, 
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and a fraction p, has 0 = 0, and • = •,. The 
constants •,, •,, •,, and •, satisfy the stability 
inequalities (26). Vie must then solve the equa- 
tions 

p, -{- p•. = 1 p,•, •- p•.02 = T 

-1 -1 = L-1 p,• + p• (32) 

p,0•, -• • p•0• -' = R 

These •re six equations in six unknowns; hence 
we expect in general to be •ble to calculate p,, 
p,, 0,, 0,, •,, •nd •, from field me•urements of 
L, M, R, S, •nd T. 

If •ny one of the equations L = M, RS = T', 
or (•L-'- R)(•M- • = (• -- T)' is s•tisfied, 
we know from theorem 1 th•t equations 32 
can h•ve no solution •th •, • •,. If equations 
32 h•ve • solution •t •11 •, = •,; hence from 
•ction 6, the l•yered m•fi•l is isotropic for long 
w•ves, •nd L • M, RS = T', •nd (•L-' -- R) 
(•M -- • = (• -- T)'. TMs c• has •e•dy 
been discused in section 6. In the rem•i•ng 
ca• we m•y •sume •, < •,, •nd L < M, 
T, < RS, (•- T)' < (]L-,- R)(]M- S). 
Momentarily tang g, and g, as known, we 
solve the first two of equations 32 for p, and p,' 

•-- M M- p, = P2 = (33) 

Then, from the third of equations 32, 

•, -]- •2 = M -{- L-'•,•2 (34) 

We now solve the fourth and fifth of equations 
32 for •, and 

0,- Tg•.- S 02- S- T#i (35) - g•.-- M M--g, 

Substituting (33) and (35) into the last of 
equations 32 we have 

• -]- •2 = ST -• -]- RT-'l•l•2 (36) 

Equations 34 and 36 can now be used to 
determine the rigidities g, and g,. There are two 
possible cases. If RL = T, then (34) and (36) 
are soluble if and only if S = M T; by lemma 3, 
equations 32 also imply L < M, so that in this 
case we have the problem of constant 0, dis- 
cussed in section 7. 

In case RL • T, (34) and (36) can be solved 
for •,•, and • 

RLM- $ L(MT- $) 
•, -]-•2 = RL-- T •,l•2 = RL-- T 
It follows that •, and #, are the two roots of the 
quadratic equation 

(RL- T)• • -- (RLM - 

-{- L(MT- S) = 0 (37) 

The only problems remaining in this second case 
are whether the roots •, and •, of (37) are real, 
positive, and different and when substituted into 
(33) and (35) whether the roots give p• > 0, 
p• > 0, 0 < 0• • -•, and 0 • 0• • -•. To discuss 
these questions we introduce a third set of 
elastic parameters, M,/•, •, •/, and •', defined thus: 

t] = LM-' • = RM •l = SM-' •' = T 
We let r• = •/M and r• = #,/M. Then (37) 
becomes 

g(r) = 0 (38) 

where g(r) = (l• -- •') r' -- (l• -- 7) r-]- 
/•(•' -- ,/), equations 33 are 

r2 -- 1 1 --r, 
p, = P2 = (39) 

and equations 35 are 

•, = •r2- ,• 0•. - '• - .Cr, (40) 
r2 -- 1 1 --r, 

The value of p,, p,, 8,, 8,, g,, and g, are accept- 
able if and only if 0 < r, < 1 < r,, r, < •-' < r,, 
and r, < (]- •)(•- •')-' < r•. Therefore, we 
must have either g(0) > 0, g(1) < 0, g(•l/•') < O, 
g(3-- 47/3-- 4•') < 0, andg(+ •o) < 0, or 
g(0) < 0, g(1) > 0, g(•l/•') > 0, g(3- 47/3- 4•') 
> 0, and g(q- •o) < 0. The first set of conditions 
is 

ft(•'- v/) > 0 (1 -- ft)(•'- v/) > 0 

r > o .(}. > o 

- - - n - (-: - > o 
The second set is the same as that given with 
> replaced by < throughout. A set of conditions 
equivalent to the first set is 

(]/5 -• --•)(] -- v/) > (• -- •')2 (41) 
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A set of conditions equivalent to the second set is 

0 < /g < 1 /g• • •' • r/ •jr/ > •.2 (42) 
- - .) > - 

Either the first set (41) or the second set (42), 
together with M • 0, is necessary and su•cient 
for the existence of a physically acceptable solu- 
tion of equations 32 with • • •, and 
and if such a solution exists, it is unique. 

To summarize the case iust discussed, we have 
Theorem 2. A HTI medium with elastic param- 
eters L, M, R, S, and T is long-wave equivalent 
to a strictly stable, two-layered, isotropic medium 
if and only if the parameters satisfy one of the 
following sets of conditions' 

Set 1: 
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(43) 

(44) 

Set 2: The same as set 1 except that (44) is 
replaced by 

RL • T • SM -• (45) 
Set 3: 

(46) 

o < 

RL = T = SM -• 

Set •: 

0 < R < ]L -1 0 < S < ]M 

RL = T = SM -• 

In either set 1 or set 2, tz•, t•2, p•, p2, 0•, and 02 
are uniquely determined by (33), (35), (37), and 
the demand tz• < #2. In set 3, tz• and t•2 are not 
uniquely determined, but are any solutions of 
(34) (whence tz• • #2), while pl and p2 are unique- 
ly determined by t• and t•2, and 0• - 02 - T. 
In set 4,/• = /z2 = M and p•, 0•, p2, and 02 can 
have any values consistent with p• q- p2 = 1 
and p• 0• q- p2 02 = T. 

Conditions 43 in theorem 2 are the same as 
conditions 27 in theorem 1, while conditions 44, 

45, or 46 impose further restrictions. We conclude 
that there are stable, three-layered, isotropic 
media which are not long-wave equivalent to any 
stable, isotropic, two-layered medium. 

In consequence of theorems I and 2, it is clear 
that there is a hierarchy of stable, transversely 
isotropic media as follows: there are stable ttTI 
media not long-wave equivalent to any stable, 
finely layered, isotropic medium. Every stable, 
finely layered, isotropic medium is long-wave 
equivalent to a stable, three-layered, isotropic 
medium. There are stable, three-layered, iso- 
tropic media not long-wave equivalent to any 
stable, two-layered, isotropic medium. 

10. COMPARISON WITH OBSERVATION 

Uhrig and Van Melle [1955] find that the 
horizontal velocity, cll, of compression waves is 
larger than the vertical velocity, el, by a factor 
of 1.17 to 1.40 in certain layers whose surface 
outcrops are homogeneous. They think this 
discrepancy probably represents an intrinsic 
anisotropy. In 1700 to 8000 feet of clastic and 
carbonate sediments, on the other hand, they 
find c,/c. = 1.10 to 1.19. Now 
and c• 2 = C/{o) in a transversely isotropic 
medium with vertical axis of symmetry; there- 
fore (c,/cz) 2 = A/C. The question is whether 
observed variations of 0 and t• with depth are 
able to account for values of A/C as large as 
1.21 and 1.42. 

The data on variation of 0 and/• with depth 
come from well logs which measure the variation 
with depth of vertical compressional velocity, 
averaged over distances of 5 feet or more. For 
example, Summers and Broding [1052] find verti- 
cal compressional velocities in a single drill hole 
which vary more or less randomly from 0 to 15 
kilofeet/see. If density is assumed constant (they 
give no data on densities), and if it is assumed 
that the rock is homogeneous and isotropic over 
vertical distances of 5 feet or less, these variations 
in compressional velocity can be interpreted as 
variations in X q- 2tz = t• O -•. 

Can we explain values of (c,/cD 
Uhrig and Van Melle's on the basis of variations 
in t•0 -• as large as those obtained by Summers 
and Broding? (It would be much more satis- 
factory if both kinds of data were available for 
the same rock layer, but the present author knows 
of no such combined measurements and would 
greatly appreciate having any such called to his 
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attention.) For simplicity, we restrict attention 
to a two-layered isotropic medium, in which both 
materials have the same density. We define 
a - •20•/•, 02 • 1, the ratio of the compres- 
sional velocities in the two media. On the basis 

of Summers and Broding's data we permit a to 
be as large as (15/9)" = 2.78. The expression for 
A/C in terms of the proportions p• and p,. of 
the two materials and their elastic constants •,, 
•2, •, and •,. is, from (32), 

C 1- a 2 

(47) 

Clearly, if a, 0•, and 02 are fixed, A/C will be 
largest when p• = p,. = «. If O, and 0,. are 
varied, the maximum value of A/C is 

A/C = 1 + (a -- 1)=/4a (48) 

whereas if O: = 0•. = « (Poisson's ratio = •), 

A/C = I -{- 8(a- 1)•,/36a (49) 

From (48) and (49) it is clear that variations 
in 0 will not markedly increase the anisotropy, 
(A/C) -- 1. Furthermore, if A/C is to be ap- 
preciably larger than 1, the ratio a between the 
elastic constants of the two media must be very 
much larger than 1. 

We assume that 0• -- 02 - -•. Then, with 
a = 2.78, A/C = 1.25. 

As far as the very rough calculations given 
above are concerned, we conclude that Uhrig 
and Van Melle's data on anisotropy in carbonate 
sediments can, with a bit of stretching, be 
explained by fine layering of an isotropic two- 
layered medium. More careful calculations, in 
which actual measured values of • and 0 are 
inserted into equations 18, are probably not 
justified until both well log measurements and 
gross anisotropy measurements are available for 
the same suite of rocks. 

In making such comparisons of large-scale 
anisotropy with small-scale layering, it should 
be remembered that the layers do not become 
less effective in generating large-scale anisotropy 
as they become thinner. A wave 5 meters long 
in a medium made by laminating brass and steel 
'sees' the same five effective anisotropic elastic 
constants, whether the lamina are 5 cm or 0.1 
mm thick. Therefore, it is conceivable that 

layers too thin to be observed by contemporary 
well logging techniques are present and con- 
tribute appreciably to the large-scale anisotropy 
of the crust. 

11. SUMMARY OF CONCLUSIONS 

A transversely isotropic, stratified medium has 
been considered, whose axis of symmetry is the 
x8 axis and whose properties vary only with xs, 
not with x• or x,. The medium may be locally 
isotropic. A length l' is chosen arbitrarily. (The 
results which follow are true for any l', but are 
useful only if l' is large enough so that the 
properties of the medium are significantly 
smoothed by averaging over a vertical distance 
l'.) The response of the medium to elastic waves 
whose wave numbers k are much less than 

2•'/1' can be calculated as follows: the medium 
is replaced by a 'long-wave equivalent' trans- 
versely isotropic medium, whose density is the 
average density (averaged locally over a vertical 
length l •, and whose five elastic parameters are 
calculated from the parameters of the original 
medium by means of equations 9, the averages 
being computed locally over a vertical distance 
l •. The response of the resulting smoothed 
medium to waves of the given wave number k is 
calculated. The stresses and strains in this 

smoothed medium are the local average stresses 
and strains in the original medium, averaged 
over a vertical length l •. In the original medium 
the stresses T•3, T2s, Ts3 and the displacements 
s•, s,., s•, and their derivatives with respect to 
x• and x,. (but 'not x•), are equal to their averages, 
while the stresses T,,, T,.,, T,. and the displace- 
ment derivatives Os•/Ox•, Os•/Ox3, Os•/Ox8 can be 
calculated from formulas 6. The above state- 

ments are only approximately correct. Where 
the error is known from exact treatments, it is 
of order (kl•) ', and in general it is probably of 
order kl'. 

Detailed attention is given to the case of a 
finely layered medium Which is locally isotropic. 
In this case, the five elastic parameters of the 
long-wave equivalent medium are given in terms 
of the Lam• parameters •of the original medium 
by equations 13. (The author is indebted to D. 
Anderson for pointing out that equations 13 are 
not new, but were obtained by K. IIelbig in 1958. 
The derivation given in the present paper is 
different from Helbig's and perhaps simpler.) 
The following question is then examined' Which 
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stable, homogeneous, transversely isotropic media 
are long-wave equivalent to horizontally layered 
isotropic media? In other words, given the'five 
elastic coefficients of a homogeneous, trans- 
versely isotropic medium, obtained from the 
response of the medium to long waves, when is 
it a possibility that shorter waves will reveal 
that the anisotropy is really the result of a fine 
layering of isotropic material? 

To answer this question, new elastic param- 
eters for transversely isotropic and for isotropic 
media are defined by equations 14 and 16. In 
terms of these new parameters, the relation 
between a layered isotropic medium and the 
long-wave equivalent, transversely isotropic 
medium is expressed by the very sim'ple equations 
18. The conditions for stability (a positive- 
definite internal energy) of a transversely iso- 
tropic medium are shown to be inequalities (21). 
Inequalities are then derived for the elastic 
coefficients of a transversely isotropic medium 
which are necessary and sufficient for the medium 
to be long-wave equivalent to a layered, iso- 
tropic, stable medium. These inequalities are 
(27). Since inequalities (27) are more restrictive 
than inequalities (21), it is concluded that there 
are stable, transversely isotropic media whose 
anisotropy cannot be the result of a layering of 
isotropic materials. 

In the light of the above remarks, a natural 
question is this: Given a stable, homogeneous, 
transversely isotropic medium, how many differ- 
ent homogeneous isotropic materials are required 
to make a long-wave equivalent, layered, 
isotropic medium? In the present paper, we show 
that if the homogeneous, transversely isotropic 
medium is long-wave equivalent to any layered, 
isotropic medium, it is equivalent to a layered, 
isotropic medium made of just four homogeneous, 
isotropic materials. It can be shown that three 
suffice. Two do not suffice, and we derive condi- 
tions on the homogeneous, transversely isotropic 
material which are necessary and sufficient for 
it to be long-wave equivalent to a layered, 
isotropic medium made of just two homogeneous, 
isotropic materials. These conditions are (43), 
(44), (45) and (46). 

In the course of the above arguments, it is 
shown that a layered, isotropic medium is long- 

wave equivalent to a homogeneous, isotropic 
medium if and only if it has constant rigidity 
(the 'if' half of this statement has been proved 
by Postma [1955] for two-layered media). 

Finally, it is shown that some of the observed 
anisotropies in P velocity can be explained as 
due to layering of isotropic media, if contrasts 
are allowed to be as large as those observed in 
well logs. 
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