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S U M M A R Y
Fractures in a porous rock can be modelled as very thin and highly porous layers in a porous
background. First, a dispersion equation for a P wave propagating in periodically layered
poroelastic medium is obtained using propagator matrix approach applied to Biot equations
of poroelasticity with periodic coefficients. Then in the limit of low stiffness and thick-
ness this dispersion equation yields an expression for the effective P-wave modulus of the
fractured porous material. When both pores and fractures are dry, this material is equivalent
to a transversely isotropic elastic porous material with linear–slip interfaces. When saturated
with a liquid this material exhibits significant attenuation and velocity dispersion due to wave-
induced fluid flow between pores and fractures. In the low-frequency limit the material proper-
ties are equal to those obtained by anisotropic Gassmann (or Brown–Korringa) theory applied
to a porous material with linear-slip interfaces. At low frequencies inverse quality factor scales
with the first power of frequency ω. At high frequencies the effective elastic properties are
equal to those for isolated fluid-filled fractures in a solid (non-porous) background, and inverse
quality factor scales with ω−1/2. The magnitude of both attenuation and dispersion strongly
depends on both the degree of fracturing and background porosity of the medium. The charac-
teristic frequency of the attenuation and dispersion depends on the background permeability,
fluid viscosity, as well as fracture density and spacing.
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1 I N T RO D U C T I O N

Naturally fractured reservoirs have attracted an increased interest from exploration and production geophysics in recent years. In many
instances, natural fractures control the permeability of the reservoir, and hence the ability to find and characterize fractured areas of the
reservoir represents a major challenge for seismic investigations.

One of the main issues in the characterization of any reservoir is the ability to predict the effect of fluid on its elastic properties. For
isotropic porous reservoirs this effect is expressed through Gassmann equations, which provide explicit analytical expressions for the effective
elastic moduli of a fluid-saturated rock as functions of the porosity, the elastic moduli of the dry skeleton, bulk modulus of the solid grain
material and the bulk modulus of the pore fluid. In fractured and porous reservoirs the effect of the saturating fluid on elastic properties
becomes more complex, as the fluid affects elastic anisotropy of the rock and may also cause significant frequency-dependent attenuation
and dispersion (Thomsen 1995; Hudson et al. 1996, 2001; Tod 2001). Recent analysis of field observations shows that these effects may be
significant (Maultzsch et al. 2003).

Theoretical models of attenuation and dispersion due to wave-induced fluid flow between pores in fractures have recently been developed
by Hudson et al. (1996) and Chapman (2003). These models have been developed for a sparse concentration of penny-shaped cracks in a
porous matrix. A more general approach to modelling fractures in porous media can be based on Biot’s theory of poroelasticity (Biot 1962).
In the context of Biot’s theory fractures can be modelled as highly compliant heterogeneities, thus allowing applications of the methods
developed to study wave propagation in heterogeneous poroelastic materials (Norris 1993; Gurevich & Lopatnikov 1995; Pride et al. 2004).

The aim of this paper is to develop a theoretical model for elastic wave attenuation and dispersion caused by wave-induced fluid flow
between pores in fractures. To this end, by analogy with the linear-slip approach for elastic fractured media (Schoenberg 1980), we model
fractures as highly porous thin layers in a porous background. By assuming that the porous medium is permeated by a periodic sequence of
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such fractures, and using the results of Norris (1993) for frequency-dependent effective moduli of a periodically layered poroelastic medium,
we will derive the elastic properties of the system of pores and fractures. In Section 2 we describe the geometry of the system and introduce
the necessary notation. In Section 3 we define the elastic properties of the dry medium in terms of the linear-slip model. In Section 4 we derive
the closed-form expression for the P-wave modulus of the porous fractured system saturated with a viscous fluid. In Section 5 this expression
is analysed in the limits of low and high frequencies. Numerical examples are shown in Section 6.

2 G E O M E T RY O F T H E M O D E L

We model a porous medium with aligned fractures as a periodic (with spatial period H) horizontally stratified system of alternating, relatively
thick, layers of a finite-porosity background material and relatively thin layers of a high-porosity material composing the fractures, see Fig. 1.
The background material is specified by porosity φb, permeability κ b, dry (drained) bulk modulus Kb, shear modulus µb and thickness fraction
hb so that the thickness of a background layer is hbH , where hb is assumed to be close to 1. The material comprising the fractures is specified
by porosity φ c, permeability κ c, dry bulk modulus Kc, shear modulus µc and thickness fraction hc = 1 − hb � 1 so that the thickness of
a fracture is hcH . Both background and fractures are assumed to be made of the same isotropic grain material with bulk modulus Kg, shear
modulus µg and density ρ g , and to be saturated with the same fluid with bulk modulus Kf , density ρ f and dynamic viscosity η. Our aim is
to compute frequency-dependent elastic wave velocities in such a system of layers in the limit hc → 0 and φ c → 1.

Elastic waves in such periodically layered and porous medium can be described by Biot’s equations of poroelasticity (Biot 1962) with
spatially periodic and piecewise constant coefficients. Biot’s equations of poroelasticity with periodically varying coefficients have been
analysed by Norris (1993). The results of Norris (1993) can be used to relate overall elastic properties of the layered system to the properties
of the background and fracture media. The properties of the fractured medium can then be established by taking the small fracture thickness
limit hc → 0. In this limit the contribution of the fractures can only be significant if at the same time Kc → 0, which is always the case when
φ c → 1. To understand the relationship between different fracture parameters and to relate those parameters to the commonly used fracture
properties, we first consider the dry fractured medium.

3 D RY F R A C T U R E D P O RO U S RO C K : C O N N E C T I O N W I T H L I N E A R – S L I P T H E O RY

Since our aim is to study the effects of wave-induced fluid flow, we assume that the solid frame is ideally elastic. Therefore, when the stratified
medium is dry (Kf = ρ f = 0), the layers behave as ideal elastic isotropic solids. Note that the Lamé parameter λ is such that λ + 2µ =
K + 4µ/3 ≡ L and it is convenient to define the parameter

γ ≡ µ

L
. (1)

Physically, γ is the square of the ratio of shear wave speed to compressional wave speed, and as such it is always between 0 and 3/4 (and for
positive Poisson ratio media, between 0 and 1/2). In the long wavelength limit, the system of horizontal layers perpendicular to x3 axis is then

Figure 1. Porous fractured medium and its model representation.
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equivalent to a transversely isotropic elastic solid with stiffness matrix

cdry =



(1−2〈γ 〉)2

〈1/L〉 + 4 〈µ〉 − 4 〈γµ〉 (1−2〈γ 〉)2

〈1/L〉 + 2 〈µ〉 − 4 〈γµ〉 1−2〈γ 〉
〈1/L〉 0 0 0

(1−2〈γ 〉)2

〈1/L〉 + 2 〈µ〉 − 4 〈γµ〉 (1−2〈γ 〉)2

〈1/L〉 + 4 〈µ〉 − 4 〈γµ〉 1−2〈γ 〉
〈1/L〉 0 0 0

1−2〈γ 〉
〈1/L〉

1−2〈γ 〉
〈1/L〉

1
〈1/L〉 0 0 0

0 0 0 1
〈1/µ〉 0 0

0 0 0 0 1
〈1/µ〉 0

0 0 0 0 0 〈µ〉


, (2)

where brackets 〈·〉 indicate the thickness weighted average of the enclosed property, that is, 〈q〉 = hbqb + hcqc = (1 − hc)qb + hcqc. Inversion
of stiffness matrix cdry yields the compliance matrix sdry = (cdry)−1

sdry =



1−〈γµ〉/〈µ〉
3〈µ〉−4〈γµ〉 − 1−2〈γµ〉/〈µ〉

2(3〈µ〉−4〈γµ〉) − 1−2〈γ 〉
2(3〈µ〉−4〈γµ〉) 0 0 0

− 1−2〈γµ〉/〈µ〉
2(3〈µ〉−4〈γµ〉)

1−〈γµ〉/〈µ〉
3〈µ〉−4〈γµ〉 − 1−2〈γ 〉

2(3〈µ〉−4〈γµ〉) 0 0 0

− 1−2〈γ 〉
2(3〈µ〉−4〈γµ〉) − 1−2〈γ 〉

2(3〈µ〉−4〈γµ〉)

〈
1
L

〉
+ (1−2〈γ 〉)2

3〈µ〉−4〈γµ〉 0 0 0

0 0 0
〈

1
µ

〉
0 0

0 0 0 0
〈

1
µ

〉
0

0 0 0 0 0 1
〈µ〉


. (3)

Then taking the limit hc → 0 while µc, Lc → 0 (with the ratio between them, γ c, remaining constant) gives the following results:

〈µ〉 → µb , 〈γ 〉 → γb , 〈γµ〉 → γbµb ,〈
1

µ

〉
→ 1

µb
+ lim

hc→0

hc

µc
,

〈
1

L

〉
→ 1

Lb
+ lim

hc→0

hc

Lc
. (4)

Substitution of these results into eq. (3) while noting that Eb (the dynamic Young’s modulus) and ν b (the dynamic Poisson’s ratio) of the
background medium are given, in terms of µb and γ b, by

Eb = 3 − 4γb

1 − γb
µb, νb =

1
2 − γb

1 − γb
, (5)

yields the compliance matrix of the dry fractured porous medium,

sdry =



1
Eb

− νb
Eb

− νb
Eb

0 0 0

− νb
Eb

1
Eb

− νb
Eb

0 0 0

− νb
Eb

− νb
Eb

1
Eb

0 0 0

0 0 0 1
µb

0 0

0 0 0 0 1
µb

0

0 0 0 0 0 1
µb


+ lim

hc→0



0 0 0 0 0 0

0 0 0 0 0 0

0 0 hc
Lc

0 0 0

0 0 0 hc
µc

0 0

0 0 0 0 hc
µc

0

0 0 0 0 0 0


(6)

or

sdry ≡ sdry
b + sdry

c . (7)

The first matrix, sdry
b , is compliance matrix for the dry background material, and the second matrix, sdry

c , is the excess compliance due to the
dry fractures.

Eq. (6) is equivalent to the equation for the compliance matrix of a fractured medium as given by linear-slip deformation theory
(Schoenberg & Douma 1988; Schoenberg & Sayers 1995), which stipulates that the compliance of an elastic medium with aligned rotationally
symmetric (on average) fractures can be written as a sum of the compliance matrix of the background plus an excess compliance given by

se =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 Z N 0 0 0

0 0 0 ZT 0 0

0 0 0 0 ZT 0

0 0 0 0 0 0


, (8)
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where ZN and ZT are called excess normal and tangential compliances, respectively. Equivalence between sdry
c and se can be established by

assuming that the shear modulus µc and the longitudinal modulus Kc + 4µc/3 are O(hc) as hc → 0, and by defining

lim
hc→0

hc

Lc
≡ Z N , lim

hc→0

hc

µc
≡ ZT . (9)

Eq. (9) mean that the fractures in the dry porous background are modelled as very thin and very soft porous layers. Using eq. (9), we can relate
the solutions of Biot’s equations of poroelasticity for the fluid-saturated medium to the excess fracture compliances ZN and ZT (Schoenberg &
Sayers 1995). These excess compliances can in turn be related to the fracture density and aspect ratio for penny-shaped cracks (Schoenberg
& Douma 1988). Note that Schoenberg & Sayers (1995) obtained the result sdry = sdry

b + se directly from a compliance formulation based on
linear slip for aligned fractures without going through equivalent medium theory for layers in the stiffness domain.

4 F L U I D - S AT U R AT E D F R A C T U R E D P O RO U S M E D I U M

Whereas the dry rock in our model is elastic, the fluid-saturated rock may exhibit frequency-dependent attenuation and velocity dispersion due
to the wave-induced fluid flow between pores and fractures. Elastic waves in such a periodically layered and porous medium can be described
by Biot’s equations of poroelasticity (Biot 1962) with periodic and piecewise constant coefficients. Let Cj denote the fluid-saturated P-wave
modulus of layer j given by Gassmann’s equation (Gassmann 1951; White 1983):

C j = L j + α2
j M j , (10)

where

α j = 1 − K j

Kg
, (11)

is Biot’s effective stress coefficient and M is pore space modulus

1

M j
= α j − φ j

Kg
+ φ j

K f
. (12)

White et al. (1975) and Norris (1993) showed that for frequencies much smaller than Biot’s characteristic frequency ωB = ηφ/κρ f , and
also much smaller than the resonant frequency of the layering ωR = Vp/H , the compressional wave modulus csat

33 of a periodically layered
fluid-saturated porous medium composed of two constituents, b and c can be written in the form

1

csat
33

=
〈

1

C

〉
+ 2√

iωηH

(
αb Mb

Cb
− αc Mc

Cc

)2

√
Mb Lb
Cbκb

cot
(√

iωηCb
κb Mb Lb

hb H
2

)
+

√
Mc Lc
Ccκc

cot
(√

iωηCc
κc Mc Lc

hc H
2

) . (13)

The derivation of eq. (13) is reproduced in Appendix 1 using propagator matrix approach. Physically, the quantity κ bMbLb/ηCb ≡ Db in the
denominator of the right hand side of eq. (13) is the diffusion coefficient appearing in the dispersion relation for Biot’s slow wave in the
background medium.

The effective P-wave modulus of the fractured porous medium can be obtained by taking the limit hc → 0 (and setting hb to 1) in
eq. (13), while at the same time assuming Lc and µc (and hence Kc) are O(hc) as was done for the dry fractures. Note that this implies that
αc → 1 and

lim
hc→0

Cc = lim
hc→0

Mc = 1
1−φc

Kg
+ φc

K f

, (14)

a finite value (close to Kf /φ c if φ c is not small and Kg � Kf ), as hc → 0. From eq. (14) we see Mc/Cc → 1 so that Mc Lc/Cc → Lc = O(hc).
Thus, as hc → 0, the argument of the trigonometric cotangent function relating to the fracture material is O(h1/2

c ). Since cot x 	 1/x for any
complex x with |x | → 0, in the limit hc → 0 eq. (13) yields

1

csat
33

= 1

Cb
+

(
αb Mb

Cb
− 1

)2

Mb
Cb

√
iω
Db

H
2 cot

(√
iω
Db

H
2

)
+ 1

Z N

. (15)

Here we have used the definition of ZN from eq. (9). Note that
√

Db/ω in the argument of the cotangent corresponds to the fluid diffusion
length in the background medium.

Eq. (15) is the central result of this paper. It gives the P-wave modulus for waves propagating normal to fractures as a function of
frequency, background properties and normal fracture compliance ZN . The corresponding P-wave velocity along the symmetry axis x3 is
given by

Vp3 =
√

csat
33

ρb
, (16)

where ρ b = ρ g (1 −φb) + ρ f φb is mass density of the fluid-saturated background material. This velocity is complex and frequency-dependent,
indicating the presence of velocity dispersion and frequency-dependent attenuation.
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The results presented in this section are valid for the same frequency range as the original eq. (13), that is, for frequencies that satisfy
the conditions ω � ωB , which implies that the frequencies are sufficiently low so that the fluid flow in the pore channels is Poiseuille flow,
and ω � ωR , which means that the effective medium approximation is still valid and implies that without the fluid flow the effective elastic
moduli of the system would be given by Backus averaging.

It is important to note that according to eq. (13) within the conditions ω � min (ωB , ωR), the wave velocity and attenuation will be
frequency-dependent due to the fluid flow between the fractures and the background (or between different layers). Consequently, under these
conditions we still can define low and high frequencies with respect to fluid flow. Low frequencies are those when pressure has enough time to
equilibrate between layers within the wave cycle. This occurs when the diffusion length

√
Db/ω (or wavelength of Biot’s slow wave) is much

larger than the spatial period H , that is,

ω � Db/H 2. (17)

High frequencies are those much higher than Db/H 2 but still smaller than both ωB and ωR . Below we analyse these results by examining
limiting cases of low and high frequencies in the range described above.

5 L I M I T I N G M O D U L I

5.1 Low frequencies

In the low-frequency limit ω → 0, the cotangent function in eq. (15) can be replaced by the inverse of its argument. The expression for csat
33

reduces to

1

csat
330

= 1

Cb
+

(
αb Mb

Cb
− 1

)2

Mb Lb
Cb

+ 1
Z N

= 1

Cb

[
1 + Z N (αb Mb − Cb)2

Cb

(
1 + Mb Lb

Cb
Z N

)]
. (18)

Eq. (18) provides an expression for the P-wave modulus for waves propagating normal to the fractures for low frequencies, that is, for
frequencies low enough to allow equilibration of the fluid pressure p between fractures and the background during the period of the wave.

Norris (1993) and Gelinsky & Shapiro (1997) investigated this specific situation by assuming pressure p is constant, directly in Biot’s
equations, without referring to the frequency-dependent solution, and derived the following expressions for low-frequency moduli of the finely
layered porous continuum:

csat
330

=
〈

1 − αB

L

〉−1

, (19)

csat
130

= csat
330

〈
λ + αA

L

〉
, (20)

csat
110

=
(
csat

130

)2

csat
330

+
〈

2µ (λ + αA)

L

〉
+ 〈2µ〉 , (21)

where:

A =
〈

1

M
+ α2

L

〉−1 〈
2µ

α

L

〉
, B =

〈
1

M
+ α2

L

〉−1 〈
α

L

〉
. (22)

Shear stiffnesses are unaffected by the fluid so that

csat
550

= cdry
550

=
〈

1

µ

〉−1

, csat
660

= cdry
660

= 〈µ〉 . (23)

Eq. (19) can be rewritten as

1

csat
330

=
〈

1

L

〉
−

〈
α

L

〉2〈
C

M L

〉 . (24)

For a system of alternating layers of types b and c, eq. (24) becomes

1

csat
330

= hb

Cb

Lb + α2
b Mb

Lb
+ hc

Cc

Lc + α2
c Mc

Lc
−

(
αbhb

Lb
+ αchc

Lc

)2

Cbhb
Lb Mb

+ Cchc
Lc Mc

. (25)

After a simple rearrangement, we obtain

1

csat
330

=
(

hb

Cb
+ hc

Cc

)
+

(
αb Mb

Cb
− αc Mc

Cc

)2

Mb Lb
Cbhb

+ Mc Lc
Cchc

which is precisely the zero-frequency limit of eq. (13).
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Introducing parameter γ in eqs (20) and (21), for the moduli csat
130

and csat
110

we find:

csat
130

= csat
330

(
1 − 2 〈γ 〉 + 2

〈
α

L

〉 〈αγ 〉〈
C

M L

〉 ) , csat
110

=
(
csat

130

)2

csat
330

+ 4

(
〈µ〉 − 〈γµ〉 + 〈αγ 〉2〈

C
M L

〉 )
, (26)

where〈
C

M L

〉
=

〈
1

M
+ α2

L

〉
= 〈α〉

Kg
+

(
1

K f
− 1

Kg

)
〈φ〉 +

〈
α2

L

〉
. (27)

Using the parameter γ defined in eq. (11) yields

α j = 1 −
(
1 − 4γ j

3

)
L j

Kg
. (28)

Therefore,

〈α〉 = 1 − 〈L〉 − 4
3
〈µ〉

Kg
, 〈αγ 〉 = 〈γ 〉 − 〈µ〉 − 4

3
〈γµ〉

Kg
,

〈
α

L

〉
=

〈
1

L

〉
− 1 − 4

3
〈γ 〉

Kg
, (29)

and〈
α2

L

〉
=

〈
1

L

〉
− 2

1 − 4
3
〈γ 〉

Kg
+

〈
1
L

〉 − 8
3
〈µ〉 + 16

9
〈γµ〉

K 2
g

. (30)

As with the frequency-dependent P-wave modulus, the low-frequency stiffnesses for the fractured medium can be obtained by taking the
small thickness ratio limit hc → 0. Remembering that Lc and µc are required to be O(hc), we can write

〈α〉 → αb , 〈αγ 〉 → αbγb ,
〈 α

L

〉
→ αb

Lb
+ Z N ,

〈
α2

L

〉
→ α2

b

Lb
+ Z N , (31)

so that〈
C

M L

〉
→ Cb

Lb Mb
+ Z N . (32)

Then eq. (24) gives,

1

csat
330

= 1

Lb
+ Z N −

(
αb
Lb

+ Z N

)2

Cb
Lb Mb

+ Z N

= 1

Cb
+ α2

b Mb

LbCb
+ Z N −

(
αb
Lb

+ Z N

)2

Cb
Lb Mb

+ Z N

=

= 1

Cb
+

Z N

(
αb Mb

Cb
− 1

)2

1 + Z N
Mb Lb

Cb

= 1

Cb

[
1 + Z N (αb Mb − Cb)2

Cb(1 + Z N
Mb Lb

Cb
)

]
,

(33)

which is identical to eq. (18), as expected.
Taking into account that (Mb/Cb)(1 + ZN MbLb/Cb) ≡ α2

b + Lb/Mb + ZN Lb the small thickness ratio limit hc → 0 in the first and second
of eq. (26) gives

csat
130

= csat
330

[
1 − 2γb + 2αbγb

Mb

Cb

αb + Z N Lb

1 + Z N
Mb Lb

Cb

]
,

csat
110

=
(
csat

130

)2

csat
330

+ 4

[
(1 − γb)µb +

α2
bγ

2
b

Mb Lb
Cb

1 + Z N
Mb Lb

Cb

]
. (34)

The shear moduli, independent of the presence of fluid, are given, from (23), by

c550 = 1

µb
+ ZT , c660 = µb. (35)

Eqs (18), (34) and (35) provide explicit analytical expressions for low-frequency elastic moduli of a fractured medium as a function
of the properties of the background, fractures, and fluid bulk modulus. Using simple algebra one can show that these equations are exactly
equivalent to the equations of the anisotropic Gassmann model for fluid substitution in a porous medium with aligned fractures (Gurevich
2003). This equivalence demonstrates that the model of wave propagation in fractured media proposed in this paper is consistent with the
fundamental equations of anisotropic poroelasticity (Gassmann 1951; Brown & Korringa 1975), which are exact in the low-frequency limit.
These equations can be used for fluid substitution in fractured porous rocks. More detailed analysis of the effects of background porosity and
fluid properties on the low-frequency anisotropy of fractured rocks can be found in Gurevich (2003) and Cardona (2002).
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5.2 High frequencies

The results for high frequencies can be obtained by taking the limit ω → ∞ in eq. (13), keeping in mind we are still restricting ω to be less
than ωB and ωR . Accordingly, we will use subscript high instead of subscript ∞, which gives, noting that limω → ∞ cot

√
iωB = −i ,

1

csat
33high

=
〈

1

C

〉
= hb

Cb
+ hc

Cc
. (36)

This result, that at high frequencies the P-wave elastic modulus is the weighted harmonic average of the saturated moduli of the two media,
computed using isotropic Gassmann equations, is to be expected. Indeed, at high frequencies the fluid has no time to move from pores in
the background into the fractures, or vice versa. No flow between the media means the interfaces can be considered impermeable, and the
whole layered continuum can be considered as a stack of elastic layers. The properties of the stack can be determined by Backus averaging
the saturated Gassmann moduli C and µ. Eq. (36) is consistent with this approach.

As hc → 0, recall that even though Lc is O(hc), from eq. (14), the Gassmann modulus Cc remains finite. Thus, the moduli obtained as
hc → 0 are:

1

csat
33high

=
〈

1

C

〉
→ 1

Cb
,

csat
13high

= csat
33high

(
1 − 2

〈µ

C

〉)
→ csat

33high

(
1 − 2

µb

Cb

)
= Cb − 2µb,

csat
11high

=
(

csat
13high

)2

csat
33high

+ 4

(
〈µ〉 −

〈
µ2

C

〉)
→

(
csat

13high

)2

csat
33high

+ 4µb

(
1 − µb

Cb

)
= Cb, (37)

which are the same as if there were no fractures. Note that the first and third of eq. (37) show that csat
33high

= C b = csat
11high

, that is, at high
frequencies, P-wave velocities for waves propagating parallel and perpendicular to layering are equal. This effect is caused by the liquid
stiffening the otherwise very compliant fractures, and is a well-known result for elastic fractured (non-porous) media when ZN → 0 (Hudson
1980; Schoenberg & Douma 1988; Thomsen 1995).

The shear moduli obtained as hc → 0 are given by

c55high = 1

µb
+ ZT = c550 , c66high = µb = c550 , (38)

and it is seen that these moduli are unchanged over the entire frequency range.

6 V E L O C I T Y D I S P E R S I O N A N D AT T E N UAT I O N

As can be seen from the previous section, the normal elastic stiffnesses of the fractured medium for low and high frequencies can be very
different. For instance, the P-wave modulus along the symmetry axis is given by eq. (18) for low frequencies and is equal to Cb for high
frequencies. This means that the stiffness matrix and the corresponding elastic wave velocities are frequency-dependent. By introducing
dimensionless fracture weakness δ N (Hsu & Schoenberg 1993; Bakulin et al. 2000) of value between 0 and 1 defined by

δN ≡ Z N Lb

1 + Z N Lb
, (39)

the frequency dependence of the P-wave modulus along the symmetry axis, given by eq. (15), can be written in the form

1

csat
33

= 1

Cb
+

δN

(
αb Mb

Cb
− 1

)2

Lb

[
1 − δN + δN

Mb
Cb

H
2

√
iω
Db

cot
(

H
2

√
iω
Db

)] . (40)

Introducing normalized frequency

ω′ ≡ ωM2
b H 2

4C2
b Db

= ωηMb H 2

4κbCb Lb
, (41)

we can rewrite eq. (40) as

1

csat
33

= 1

Cb
+

δN

(
αb Mb

Cb
− 1

)2

Lb

[
1 − δN + δN

√
iω′ cot

(
Cb
Mb

√
iω′

)] . (42)

Eq. (42) can be used to evaluate the frequency dependence of the P-wave phase slowness and attenuation for waves propagating
perpendicular to the fractures. The P-wave phase slowness is the real part of the complex phase slowness, V −1

p3 where V p3 is given by eq. (16),
and the attenuation Q is given by half the ratio of the real part of the complex phase slowness to the imaginary part of the complex phase
slowness.

Fig. 2 shows this P-wave speed normalized by the high-frequency velocity V high
p = √

c33high/ρ (a) and dimensionless attenuation Q−1

(b) as a functions of normalized frequency ω′ for porous rocks with dry fracture weakness δ N = 0.05 and different background porosity
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Figure 2. Normalized P-wave speed (a) and inverse quality factor Q−1 (b) as functions of normalized frequency for porous rocks with dry fracture weakness
δ N = 0.05 and different background porosity levels.

levels. Fig. 3 shows the results for the same rocks but with higher fracture weakness δ N = 0.2. The calculations were made for water-saturated
sandstone using quartz as the grain material (Kg = 37 GPa, µg = 44 GPa, ρ g = 2.65 × 103 kg m−3). The dependency of the background dry
bulk and shear moduli on porosity was assumed to follow the empirical model of Krief et al. (1990)

Kb

Kg
= µb

µg
= (1 − φ)3/(1−φ)

. (43)

Figs 2 and 3 show that velocity dispersion and attenuation have a shape typical for a relaxation phenomenon. For a given δ N the magnitudes of
attenuation and dispersion increase sharply with porosity up to a few per cent porosity, and peak at porosity around 10 per cent. This may look
counter-intuitive, as one may expect to find the magnitude of dispersion and attenuation to increase monotonically with porosity. Indeed, it
seems logical, as larger porosity allows for larger fluid flow from fractures into pores and vice versa. Thus low-frequency fracture compliance
should increase with porosity while the high-frequency fracture compliance should remain unchanged. Indeed, at zero porosity there is no
fluid flow between pores and fractures. However, one can also note that when porosity increases, the fluid properties play an increasingly
dominant role in the (undrained) elastic moduli of the saturated rock. This effect increases both low- and high-frequency compliances in such
a manner that in the limit of 100 per cent porosity they both become equal to the compressibility of the fluid (Gurevich 2003). Therefore, the
magnitudes of attenuation and dispersion is zero at both zero and 100 per cent porosity, and thus must have a maximum at some intermediate
value of porosity. This value of porosity is controlled by the porosity-velocity dependency for the background, which in our examples is given
by the model of Krief et al. (1990), eq. (43).

The results for various levels of δ N are shown in more detail in Figs 4(a) and (b) for typical reservoir background porosity of 20 per cent.
As expected, the dispersion and attenuation are proportional to the fracture weakness δ N . The peak normalized frequency for the attenuation
decreases with increasing fracture weakness δ N . We also note that the dispersion and attenuation are significant over a frequency range that
spans at least two orders of magnitude.
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Figure 3. Normalized P-wave speed (a) and inverse quality factor Q−1 (b) as functions of normalized frequency for porous rocks with dry fracture weakness
δ N = 0.2 and different background porosity levels.

7 C O N C L U S I O N S

Fractures in a porous rock can be modelled as very thin and highly porous layers in a porous background. When both pores and fractures
are dry, such material is equivalent to a transversely isotropic dry elastic porous material with linear-slip interfaces. When saturated with
a liquid this material exhibits significant attenuation and velocity dispersion due to wave-induced fluid flow between pores and fractures.
At low frequencies the material properties are equal to those obtained by anisotropic Gassmann theory (Gassmann 1951) applied to a
porous material with linear-slip interfaces (Gassmann 1951; Brown & Korringa 1975). At high frequencies the results are equivalent to
those for fractures with vanishingly small normal slip in a solid (non-porous) background (Schoenberg & Douma 1988). The character-
istic frequency of the attenuation and dispersion depends on the background permeability, fluid viscosity, as well as fracture density and
spacing.

The wave-induced fluid flow between pores and fractures considered in this paper has the similar physical nature to so-called squirt flow,
which is widely believed to by a major cause of seismic attenuation (Mavko & Nur 1975; O’Connell & Budiansky 1977; Jones 1986). Hence,
the present model can be viewed as a new model of squirt-flow attenuation, consistent with Biot’s theory of poroelasticity.

Perhaps more accurately, the model of attenuation and dispersion developed in this paper can be viewed as a variant of double porosity
models of so-called mesoscopic flow attenuation (Pride et al. 2004), a variant designed specifically for open fractures in a poroelastic
background. The concept of mesoscopic flow refers to wave-induced flow caused by the presence of mesoscopic heterogeneities, that is,
heterogeneities small compared to the wavelength but much larger than the size of individual pores or grains, see e.g. Gurevich & Lopatnikov
(1995). Since fractures have zero thickness in our model, the term ‘mesoscopic’ refers not to fracture opening, but to fracture spacing, which
in our model was indeed assumed mesoscopic, that is, much larger than the pore size but much smaller than the wavelength.

The present work is limited to the derivation of the P-wave modulus along the symmetry axis. Derivation of other moduli of the
periodically fractured medium would require the solution for the compressional and shear waves of arbitrary incidence in a layered poroelastic
medium. This will be done in a separate study.
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Figure 4. Normalized P-wave speed (a) and inverse quality factor Q−1 (b) as functions of normalized frequency for porous rocks with background porosity
φ = 0.2 and different dry fracture weaknesses.

The present work is also limited by the assumption of periodic distribution of fractures. In reality fractures may be distributed in a
random fashion. Sensitivity of our results to the violation of the periodicity assumption will be examined in a numerical study to be published
separately.
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A P P E N D I X A : D E R I VAT I O N O F C O M P L E X P - WAV E M O D U L U S
F O R A P E R I O D I C A L LY L AY E R E D P O RO E L A S T I C M E D I U M

Consider a 1-D periodic medium with spatial period H consisting of alternating uniform layers of saturated poroelastic media 1 and 2 of
thicknesses h1 H and h2 H , h1 + h2 = 1. Each of the poroelastic layers, assumed to be acoustically described by Biot’s equations, is statistically
isotropic and homogeneous. For either of the saturated poroelastic media, the relevant (to propagation normal to the layering so that partial
derivatives with respect to the x- and y-directions vanish and that σ xx and σ yy need not be considered) constitutive relations and equations of
motion are (Biot 1962)

σzz = (2µ + λs)
∂u

∂z
+ αM

∂w

∂z
,

−p = αM
∂u

∂z
+ M

∂w

∂z
.

∂σzz

∂z
= ∂2

∂t2
(ρu + ρ f w) ,

−∂p

∂z
= ∂2

∂t2
(ρ f u + mw) + η

κ

∂w

∂t
= ∂2

∂t2
ρ f u + ∂

∂t

(
η

κ
+ m

∂

∂t

)
w, (A1)

where σ is total normal stress in the z-direction, p is fluid pressure, u is the solid displacement in the z-direction and w is the fluid displacement
relative to the solid in the z-direction. The medium parameters are λs , the Lamé coefficient of the confined (fluid saturated) porous material, µ,
the shear modulus, M the so-called pore space modulus defined by Gassmann’s relation (12) and α, the Biot constant (11). δ i j is the Kronecker
delta. Here ρ = (1 − φ)ρ g + φρ f is average density of the saturated material and η/κ + m∂/∂t is Biot’s visco-dynamic operator. In the
frequency domain, this operator becomes

−iωm̃ ≡ η

κ
− iωm ≡ η

κ

[
1 − i

ω

ωB

φ

ρ f
m

]
,

where ωB ≡ ηφ/κρ f is the Biot frequency. For frequencies much smaller than ωB , the operator in the frequency domain becomes just the
viscous operator, η/κ . This is the frequency regime in which we are deriving the P-wave moduli for the two-layer periodic system. In any
event, this viscous flow term is responsible for the dissipation.

Letting pressure, stress and displacements be harmonic functions of time, that is, with time dependence of the form exp (− iωt), eq. (A1)
can be written, in the frequency domain, as four differential equation on u̇, ẇ, σzz and p. Then, after some matrix manipulation, these equations
can be written as a first order system of equations in standard matrix form
∂

∂z
b(z) = −iω Q b(z),

b ≡


u̇

ẇ

σzz

−p

 and Q ≡


0 0 1/L −α/L

0 0 −α/L C/M L
ρ ρ f 0 0
ρ f i η

ωκ
+ m 0 0

 . (A2)

Here, C ≡ 2µ + λs and L ≡ C − α2 M . Open pore conditions ensure the continuity of the four-vector b across z = const interfaces,
(Deresiewicz & Skalak 1963; Gurevich & Schoenberg 1999).
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The solution of eq. (A2) within a single homogeneous layer is,

b(z) = e−iω(z−z0)Q︸ ︷︷ ︸
P(z−z0)

b(z0) ≡
∞∑

n=0

[−iω (z − z0)]n

n!
Qn b(z0) ≡ Ae−iω(z−z0)ΛA−1 b(z0). (A3)

P(z − z0) is called propagator matrix. Λ is the diagonal matrix of eigenvalues of Q; A is the matrix whose columns are eigenvectors of Q, the
kth column being the eigenvector associated with the kth eigenvalue. The eigenvalues of Q are the roots of a quartic equation that is actually
a quadratic equation on the squares of the roots:

λ4 − 1

L

[[
i η

ωκ
+ m

]
C

M
+ ρ − 2αρ f

]
λ2 + ρ

[
i η

ωκ
+ m

] − ρ2
f

L M
= 0. (A4)

The eigenvalues are the slownesses of four vertically propagating compressional waves (displacements in the direction of propagation), two
up and two down. To see which pair of roots corresponds to which pair of down and up-going waves, these roots are evaluated as ω → 0. In
this limit, λ2

+ →iηC/ω κML ≡ i/ωD and λ2
− → ρ/C so the ‘+’ root is the square of the diffusive (d) wave (low-frequency Biot slow wave)

slowness, and the ‘−’ root is the square of the usual fast compressional (p) wave slowness.
For a stack of n spatial periods H of two layers each, of thicknesses h1 H and h2 H (h1 and h2 are the relative thicknesses), and letting

reference level z0 = 0, the solution, from eq. (A3), becomes

b(nH ) = [exp(−iωh2 HQ2) exp(−iωh1 HQ1)]n b(0)

≡ [
A2 exp(−iωh2 HΛ2)A−1

2 A1 exp(−iωh1 HΛ1)A−1
1︸ ︷︷ ︸

P(H )

]n
b(0). (A5)

Note that the exponent n cannot be moved inside the brackets as, in general, matrix multiplication is not commutative. This procedure can be
used to give the exact propagator matrix through a single period, P(H ). However, for low-frequency propagation relative to each of the Biot
media,

P(H ) ∼ P(H )|λ+→√
i/ωD, λ−→√

ρ/C ≡ P0(H ). (A6)

For wavelengths of the incident wave much longer than the spatial period of stratification, effective medium theory can be used. Our
aim is to find effective slownesses of the waves propagating in the equivalent medium, that is, eigenvalues of an effective system matrix Q∗,
so that we can write,

P0(H ) ≡ exp(−iωHQ∗) = A∗ exp(−iωHΛ∗) (A∗)−1
, (A7)

where Λ∗ is diagonal matrix of eigenvalues of the equivalent medium, its possible vertical slownesses, and A∗ is the matrix of corresponding
eigenvectors. The eigenvalues are the roots of the characteristic equation

det [P0 − λI] ≡ λ4 − TrP0 (ω) λ3 + IIP0 (ω) λ2 − IIIP0 (ω) λ + 1 = 0.

The constant term is unity since the determinant of any propagator matrix is 1. TrP0 denotes the trace, IIP0 the second invariant and IIIP0 the
third invariant of the 4 × 4 matrix P0. Furthermore, because eigenvalues of exp(−iωHQ∗) represent slownesses of fast and slow compressional
waves in an equivalent medium, they appear in pairs as follows: exp (± iωHλ∗

p) and exp (± iωHλ∗
d ). That TrP0 is the sum of the roots, IIP0

is the sum of two products of roots and IIIP0 is the sum of three products of roots, implies that

IIIP0 = TrP0 = 2
[
cos ωHλ∗

p + cos ωHλ∗
d

]
, IIP0 = 2

[
1 + 2 cos ωHλ∗

p cos ωHλ∗
d

]
. (A8)

The solution of these two non-linear simultaneous equations in cos ωHλ∗
p and cos ωHλ∗

d is,

cos ωHλ∗ = 1

4

[
TrP0 ±

√
Tr2

P0
− 4 IIP0 + 8

]
, (A9)

but note that since period H is assumed small compared to the wavelength of the fast wave, ωHλ∗
p � 1 and thus cos ωHλ∗

p ∼ 1. This implies,
from eq. (8), that

TrP0 ∼ 2[1 + cos ωHλ∗
d ] , IIP0 ∼ 2[1 + 2 cos ωHλ∗

d ],

and, subsequently, that√
Tr2

P0
− 4IIP0 + 8 ∼

√
4[1 + cos ωHλ∗

d ]2 − 8[1 + 2 cos ωHλ∗
d ] + 8 = 2[1 − cos ωHλ∗

d ].

Thus,

1

4

[
TrP0 +

√
Tr2

P0
− 4 IIP0 + 8

]
∼ 1,

1

4

[
TrP0 −

√
Tr2

P0
− 4 IIP0 + 8

]
∼ cos ωHλ∗

d ,

and clearly the + sign corresponds to the fast P wave, the − sign to the slow diffusive wave. As our aim is an expression for the modulus
corresponding to the low frequency fast P wave, we have

cos ωHλ∗
p = 1

4

[
TrP0 +

√
Tr2

P0
− 4 IIP0 + 8

]
. (A10)
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TrP0 and IIP0 are known functions of frequency as well as of the material properties and thicknesses of the two layers. More precisely, from
the structure of P0 in eq. (A5), TrP0 and IIP0 are, respectively, known quadratic and fourth-power homogeneous polynomials in fast P wave
terms, sin ωh j H

√
ρ j/C j , cos ωh j H

√
ρ j/C j , and slow diffusive wave terms,

sin ωh j H
√

i/ωD j = sin h j H
√

iω/D j , cos ωh j H
√

i/ωD j = cos h j H
√

iω/D j ,

j = 1, 2.
However, at low (but not zero) frequency, to get a dispersion relation for the fast P wave, we use the fact that the ωh j H

√
ρ j/C j , j = 1, 2,

are also small. To account for this, a small parameter ε is introduced through the substitution

ωh j H
√

ρ j/C j → ελ̃pj , j = 1, 2.

Since TrP0 (ω) and IIP0 (ω) depend on the P-wave slownesses only through cosines and sines, and we are interested in expansions of TrP0 and
IIP0 only to order ε2, we substitute cos ωh j H

√
ρ j/C j ∼ 1 − (ε2λ̃2

pj )/2 and sin ωh j H
√

ρ j/C j ∼ ελ̃pj , j = 1, 2, into the expressions for TrP

and IIP , giving the formal expansions,

TrP ∼ 2
[
a0 + a1ε + a2ε

2
]
, IIP ∼ 2

[
b0 + b1ε + b2ε

2
]
.

Note that a0 and b0 are independent of the λ̃pj , a1 and b1 are linear functions of the λ̃pj , and a2 and b2 are quadratic functions of the λ̃pj .
Substituting these expansions into eq. (A10), and expanding the right-hand side in powers of ε gives,

cos ωHλ∗
p = 1

2

[
a0 + a1ε + a2ε

2 +
√

a2
0 − 2b0 + 2 + 2(a1a0 − b1)ε + [

2a2a0 + a2
1 − 2b2

]
ε2

]
= 1

2

{
a0 +

√
a2

0 − 2b0 + 2 +
(

a1 + a1a0 − b1√
a2

0 − 2b0 + 2

)
ε

+
(

a2 + 2a2a0 + a2
1 − 2b2

2
√

a2
0 − 2b0 + 2

− (a1a0 − b1)2

2
√

(a2
0 − 2b0 + 2)3

)
ε2

}
. (A11)

Finding the coefficients of ε and ε2 in the expansions for TrP and II P is complicated and substituting them into the right hand side of
eq. (A11) is very cumbersome but the procedure is basically straight forward. Then, after expressing cos h j H

√
iω/D j and sin h j H

√
iω/D j , j =

1, 2, in terms of cotangents of half arguments, that is, using the identities,

sin θ = 2 cot(θ/2)

cot2(θ/2) + 1
, cos θ = cot2(θ/2) − 1

cot2(θ/2) + 1
,

and then replacing the ελ̃pj with the original fast P wave arguments, ωh j H
√

ρ j/C j , one obtains,

cos ωHλ∗
p = 1 − ω2 H 2 〈ρ〉

2

[〈
1

C

〉
+ B(ω)

H

]
, (A12)

B(ω) = 2√
iω η

(
α1 M1

C1
− α2 M2

C2

)2

√
D1

κ1
cot

(
h1 H

2

√
iω
D1

)
+

√
D2

κ2
cot

(
h2 H

2

√
iω
D2

) , (A13)

where 〈ρ〉 ≡ h1 ρ 1 + h2 ρ 2 is the thickness averaged density, 〈1/C〉 = h1/C 1 + h2/C 2 is the thickness averaged inverse of P-wave modulus,
and

D j = κ j M j L j

ηC j
, j = 1, 2.

For sufficiently low frequencies, this result can be written,

(λ∗
p)2 = 〈ρ〉

[〈
1

C

〉
+ B (ω)

H

]
≡ 〈ρ〉

C∗ , (A14)

and substituting B(ω) from eq. (A13) gives a value for C∗ in agreement with eq. (13).
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