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Poroelastic Backus averaging for anisotropic
layered fluid- and gas-saturated sediments

Stephan Gelinsky∗ and Sergei A. Shapiro‡

ABSTRACT

A homogeneous anisotropic effective-medium model
for saturated thinly layered sediments is introduced. It
is obtained by averaging over many layers with different
poroelastic moduli and different saturating fluids. For a
medium consisting of a stack of vertically fractured hori-
zontal layers, this effective medium is orthorhombic. We
derive the poroelastic constants that define such media
in the long-wavelength limit as well as the effective large-
scale permeability tensor. The permeability shows strong
anisotropy for large porosity fluctuations.

We observe pronounced effects that do not exist in
purely elastic media. At very low frequencies, seismic
waves cause interlayer flow of pore fluid across inter-
faces from more compliant into stiffer layers. For higher
frequencies, the layers behave as if they are sealed, and

no fluid flow occurs. The effective-medium velocities
of the quasi-compressional waves are higher in the no-
flow than in the quasi-static limit. Both are lower than
the high-frequency, i.e., ray-theory limit. Partial satura-
tion affects the anisotropy of wave propagation. In the
no-flow limit, gas that is accumulated primarily in the
stiffer layers reduces the seismic anisotropy; gas that is
trapped mainly in layers with a more compliant frame
tends to increase the anisotropy. In the quasi-static limit,
local flow keeps the anisotropy constant independent
of partial saturation effects. For dry rock, no-flow and
quasi-static velocities are the same, and the anisotropy
caused by layering is controlled only by fluctuations of
the layer shear moduli. If the shear stiffness of all lay-
ers is the same and only the compressive stiffness or
saturation varies, only the ray-theory velocity exhibits
anisotropy.

INTRODUCTION

Both reservoir rocks and their overburden often consist of
thinly layerd sediments. These thin layers can be detected and
investigated by ultrasonic core measurements, with sonic logs,
and by means of other borehole geophysical methods (Dewan,
1983; Sams, 1995). Properties of single layers, such as perme-
ability and fluid saturation, that are important to delineate a
pay zone thus can be determined. If more global information
about the reservoir’s extension, fluid content, and continuity
is needed, seismic waves with longer wavelengths are applied.
The wavelength ranges from (approximately) millimeters for
ultrasonics to centimeters for sonic logs and up to many meters
for vertical seismic profiles (VSP) (1–10 m) and surface seis-
mic investigations (10–100 m). With a wavelength much longer
than the layer thicknesses, a single layer cannot be resolved.
However, fluctuations of the poroelastic constants, of the den-
sity, and of the fluid saturation from layer to layer and their
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correlations affect the seismic wavefield and thus the recorded
signal.

Wave propagation in fluid-saturated media is commonly de-
scribed by the Biot theory (Biot, 1956a, 1956b, 1962; Frenkel,
1944). This theory predicts frequency-dependent velocities for
two kinds of compressional waves and for shear waves in
porous, fluid-saturated rock. The displacements of the solid
and fluid phases are coupled. Dissipation is caused by the
global flow, which is the relative motion of both continuous
phases. Biot theory is an effective-medium theory in the sense
that it replaces a medium that is microscopically inhomoge-
neous (porous) with a homogeneous effective medium. The
effective Biot parameters can be derived exactly from the mi-
crostructure. An overview is given in Bourbie et al. (1987).
To model heterogeneous, layered, saturated porous rock, we
apply Biot theory in two ways. First, we describe each homo-
geneous layer by Biot theory. Second, we parameterize the
homogeneous, anisotropic effective medium that replaces the
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stack of layers in the long-wavelength limit in terms of Biot
theory.

Heterogeneous, poroelastic media are characterized by sev-
eral critical frequencies, all separating low- and high-frequency
regimes with respect to different physical mechanisms. Upscal-
ing means transforming results that were measured or modeled
in one frequency range to a lower one. For example, seismic
velocities measured at core samples can be upscaled to predict
sonic log velocities. The first basic scale is defined by the ratio
between the wavelength λ of an incident wave and a typical
length d that describes medium heterogeneities. This d may be
the average layer thickness, half a period in periodically layered
media, or the correlation length of random heterogeneities. If

d

λ
¿ 1, (1)

the system is well described by effective-medium theories. In
the opposite limit, for λ

d ¿ 1, the wave propagates along
a straight ray in each homogeneous layer, and the complete
raypath is defined by Fermat’s principle. This limiting case
is addressed as ray theory throughout this paper. There is a
large zone of intermediate values of λ/d at which a transi-
tion from effective-medium to ray-theory behavior can be ob-
served if the layer thicknesses increase from some centimeters
to many meters or if the seismic wavelength decreases (Marion
et al., 1994; Tang and Burns, 1992). In this range, the frequency
dependence of seismic wavefield parameters becomes impor-
tant. Applying the generalized O’Doherty-Anstey formalism
for elastic waves, Shapiro and Hubral (1996) found that the
anisotropy of the phase velocity even at seismic frequencies can
be significantly below the one derived in the static limit (i.e.,
the Backus averaging for anisotropy). Using surface seismic
and borehole information, one can take thin layering into ac-
count directly and correct the amplitude-variation-with-offset
response of a target zone with a thinly layered elastic overbur-
den for effects caused by the stack of layers (Widmaier et al.,
1995, 1996).

The response of poroelastic, fluid-saturated media to seis-
mic excitations is a complicated function of frequency even
in the absence of any large-scale heterogeneities. In the quasi-
static limit, i.e., for frequencies below a characteristic frequency

Table 1. Rock properties.

Rock 2, Rock 3, Rock 4, Rock 5,
Rock 1, porous porous weak coarse

Parameter Unit Berea(1) rock(2) rock(2) sandstone(3) sand(3)

Kd 109 Pa 7.9 12.7 4.3 2.2 0.22
Kg 109 Pa 37.9 40.0 40.0 36.0 36.0
µd 109 Pa 15.8 20.3 8.8 1.0 0.10
φ 0.19 0.15 0.17 0.30 0.35
ρd kg/m3 2146 2252 2200 1855 1723
ρg kg/m3 2650 2650 2650 2650 2650
k 10−12 m2 0.2 0.1 0.2 1000 1000

ω0/2π (4) Hz 26 17 22 39 900 5400
ω0/2π (5) Hz 425 270 475 1.3 × 106 1.2 × 106

ωc/2π (6) Hz 1.5 × 105 2.4 × 105 1.4 × 105 48 56
(1)Norris, 1993.
(2)Gurevich and Lopatnikov, 1995.
(3)Turgut and Yamamoto, 1990.
(4)Characteristic frequency as defined in equation (2) for layers of 10-cm thickness and water saturation. For layer thicknesses of
1 cm, ω0 is 100 times larger.
(5)As in footnote 4, but for layers of 1-cm thickness and gas saturation.
(6)Biot’s critical frequency as defined in equation (3). For gas saturation, ωc is approximately 1.5 times larger.

ω0 [defined in equation (2)], the pore fluids are equilibrated
perfectly across the interfaces by interlayer flow (also termed
squirt and local flow; Gurevich and Lopatnikov, 1995). Above
this characteristic frequency, the Biot slow wave exists only
within a thin boundary layer near each interface, and the lay-
ers behave as if they were isolated. Thus, the effective-medium
regime can be divided further into two ranges, separated by the
characteristic frequency at which the attenuation length of the
Biot slow compressional wave equals the mean characteristic
length d,

ω0 = kN

ηd2
. (2)

Here, k is permeability; η is viscosity; N = M(Kd + 4/3µd)/H ;
Kd andµd are the bulk and shear moduli of the dry rock matrix,
respectively; and the poroelastic moduli M and H are defined
later [in equations (7) and (9)]. Below this characteristic fre-
quency in the quasi-static limit, the fluid pressure is equilibrated
across layer boundaries because of the Biot slow wave that
for these frequencies describes diffusive transport (Chandler
and Johnson, 1981; Norris, 1993). Above the characteristic fre-
quency ω0 in the no-flow limit, the layers behave like isolated
structures, since the (propagating) Biot slow wave is highly at-
tenuated for these frequencies, so the fluid pressure is no longer
equilibrated. We calculated ω0 for various porous sediments.
Its value ranges from a few hertz for thick layers of low per-
meability to many kilohertz for thin, high-permeability layers.
(see Table 1).

Independent of scale effects caused by heterogeneities, ve-
locity dispersion occurs even in macroscopically homogeneous
materials (Wang and Nur, 1992; Mukerji and Mavko, 1994).
Biot theory predicts a difference between the high- and low-
frequency velocities in saturated rocks because the displace-
ments of the solid and fluid phases are coupled. Dissipation is
caused by the global flow, which is the relative motion of both
continuous phases. Biot defined a critical frequency as

ωc = ηφ

kρ f
. (3)

Here, φ is porosity and ρ f is the fluid density. This critical fre-
quency separates two different regimes. For low frequencies,
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the fluid motion is dominated by viscosity, whereas for fre-
quencies above ωc, inertia and tortuosity are more important
(Rasolofosaon, 1991). For the materials that we have studied
in more detail, we give ωc in Table 1. For frequencies below
ωc, the velocity can be calculated according to Gassmann’s for-
mula (White, 1983). For high frequencies, as in the ray-theory
limit, the velocity is slightly higher. Geertsma and Smit (1961)
derived a simple expression for the Biot high-frequency lim-
iting P-wave velocity [equation (16)], which we discuss in the
section on no-flow limit.

In this paper, we transform Biot’s second-order differen-
tial equations to a system of first-order differential equations.
By averaging over all layers, the heterogeneous medium is re-
placed by a homogeneous effective medium. Fluctuations of
the poroelastic constants from layer to layer lead to anisotropy.
In the low-frequency limit, the layered medium behaves like
an anisotropic homogeneous effective medium with the z-axis
as a symmetry axis. This averaging is a generalization of the
Backus averaging technique, originally proposed for elastic
media (Backus, 1962; Bruggemann, 1937).

For isotropic layers, the results for the poroelastic moduli
are consistent with those given in Norris (1993). Additionally,
with the new method, the complete poroelastic tensor is de-
termined and upscaling rules for the permeability tensor are
automatically included. Thus, this technique can serve as a basis
to study the influence of porosity fluctuations and fluid proper-
ties on the propagation of obliquely incident q P, qS1, and qS2

seismic plane waves in a poroelastic, fluid-saturated, fractured,
finely layered medium, taking thin layering consistently into
account. Such a numerical modeling of wave propagation for
poroelastic media with anisotropy caused by an anisotropic dry
frame was presented recently in Carcione (1995).

After the introduction of the poroelastic generalization of
Backus averaging, basic results for isotropic layers are derived
and compared for various limiting cases (quasistatic, no flow,
and ray theory). The influence of partial saturation is discussed
for different media (see Figures 2 to 8). Next, the scheme is gen-
eralized to anisotropic layers (e.g., layers containing shale or
aligned fractures). Finally, the behavior of the effective perme-
ability is considered, and permeability anisotropy as a function

FIG. 1. Vertically fractured and horizontally layered medium.
The single layers are TIH, with the x-axis as the symmetry axis.
The effective medium is orthorhombic.

of porosity fluctuations is investigated (see Figures 9 and 10).
The paper concludes with a discussion of the results.

THEORY

Dynamic equations

Starting points are the second-order Biot (1962) differential
equations

∂

∂xj
τi j = ∂2

∂t2
(ρui + ρ fwi ) (4)

and

− ∂

∂xi
p f = ∂2

∂t2
(ρ f ui + qi jw j ). (5)

On the left-hand sides, τi j and pf are the elements of the stress
tensor and the hydrostatic pressure. For isotropic layers, the
stress-strain relations are given later [in equation (10)]. The
variables u and w are the displacement of the solid phase and
the relative solid-fluid displacement, respectively; the indices i ,
j denote the Cartesian coordinates; and ρ = φρ f + (1−φ)ρg is
the density of the saturated composite. Throughout this paper,
the index d is used for properties of the dry rock frame, i.e., the
matrix; the index g is used for properties related to the grain,
i.e., the matrix material; and the index f is used for fluid prop-
erteis. The permeability enters into the Biot equations through
the dissipation term qi j . Permeability and tortuosity are ten-
sors with elements ki j and ai j , respectively. With

˜
r =

˜
k−1, the

definition of qi j is

qi j = i
ηri j

ω
+ ρ f ai j

φ
. (6)

In the isotropic case, qi j =qδi j , since permeability ki j = kδi j and
tortuosity ai j =aδi j . A closer look at the frequency dependence
of q explains the definition of Biot’s characteristic frequency
ωc as given by equation (3). The tortuosity that is numerically
close to unity usually is omitted.

Following Biot, we parameterize each layer by its poros-
ity, permeability, density, several poroelastic constants, and the
fluid parameters viscosity, density, and bulk modulus. The tor-
tuosity becomes important only above Biot’s critical frequency.
The necessary number of parameters depends on the symme-
try properties of the layer materials. Isotropic layers are spec-
ified by four poroelastic constants and one value of perme-
ability; transversely isotropic (TI) layers are specified by eight
poroelastic constants and two values of directional permeabil-
ity. The specification of poroelastic media requires more con-
stants than does that of elastic media. These are needed because
of the existence of an additional fluid phase and its influence on
the compressibility of the saturated rock. Biot and Willis (1957)
discuss the measurements that are needed to determine all Biot
constants by means of jacketed and unjacketed compressibility
tests in the laboratory. The number of additional parameters
depends on the symmetry of the medium. For isotropic media,
the two constants are σ and M ,

σ = 1− Kd

Kg
,

M =
[
φ

K f
+ σ − φ

Kg

]−1

. (7)

Here, Kg is the grain bulk modulus (the material of the dry
frame) and K f is the fluid bulk modulus. For TI media, three
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additional parameters are required (B6, B7, B8 or P, Q, R);
for orthorhombic media, four are required (M1, M2, M3, M).
The maximum number of additional poroelastic constants in
the most general case of anisotropy is seven; i.e., the medium
is characterized by 28 constants.

We study plane-wave propagation in vertically inhomoge-
neous media. Therefore, we use the following starting point
for the displacement of the solid phase u (and, respectively, for
the relative solid-fluid displacement w and the stresses τi j ):

u = (ux(z),uy(z),uz(z))e−iωt+i pxx+i pyy. (8)

The hydrostatic pressure pf is treated in a similar way. For
isotropic P- and SV-wave problems and those with transverse
isotropy and a vertical symmetry axis (TIV), the description
can be simplified by setting py, uy, andwy equal to zero without
a loss of generality. To develop the basic concepts, we first dis-
cuss isotropic layers and use this simplification. Later, we dis-
cuss the more general case of non-TIV anisotropic layers. The
saturated P-wave modulus is defined, according to Gassmann,
as

H = Kd + 4
3
µd + σ 2 M. (9)

The (nonzero) stress-strain relations are (the prime denoting
the derivative with respect to z)

τxx = H∇u− 2µu′z+ σM∇w,

τyy = H∇u− 2µ∇u+ σM∇w,

τzz= H∇u− 2µi pxux + σM∇w, (10)

τzx = µ(i pxuz+ u′x),

−pf = σM∇u+ M∇w.

According to our starting point, ∇u = i pxux + u′z and ∇w =
i pxwx +w′z. Furthermore, we transform the second-order Biot
differential equations to a system of first-order differential
equations, as is common in the elastic case (see, e.g., Aki and
Richards, 1980). The medium is now characterized by

dζ

dz
+

˜
Pζ = 0. (11)

Here, ζ = (ux,uz, wz, τxz, τzz, pf )T and
˜
P is a (6 × 6) matrix,

consisting of combinations of the above-defined layer parame-
ters and describing the P- and SV-wave propagation. The exact
expressions for

˜
P and for the equation that describes SH-waves

are given in the Appendix.

TI effective medium

Next, we consider instead of the single layer the whole stack
of layers in the long-wavelength (i.e., effective-medium) limit.
As we did for each single layer, we can write the Biot equa-
tions for a homogeneous, anisotropic medium that will be iden-
tified as the effective medium, replacing the layered one after
averaging. For isotropic layers and for TIV layers (which are
transversely isotropic and have a vertical symmetry axis as the
stack of layers), this medium is determined by eight poroelastic
constants B∗1 , B∗2 , . . ., B∗8 and two effective directional perme-
abilities k∗z and k∗xy. B∗1 , B∗2 , . . ., B∗8 are defined according to Biot
(1962), and the TIV stress-strain relations are

τxx = i px
(
2B∗1 + B∗2

)
ux + B∗3 u′z− B∗6∇w,

τyy = i px B∗2 ux + B∗3 u′z− B∗6∇w,

τzz= i px B∗3 ux + B∗4 u′z− B∗7∇w, (12)

τzx = B∗5 (i pxuz+ u′x),

−pf = i px B∗6 ux + B∗7 u′z− B∗8∇w.

With starting point similar to that of equation (8), a matrix

˜
P∗ is determined.

˜
P∗ characterizes the anisotropic effective

medium with respect to the q P- and qSV-wave propagation
and is defined in the Appendix together with the SH-wave
equation. Since we are interested in solutions in the zero fre-
quency limit, we can use the condition ζ∗ = 〈ζ〉. We identify
the above-defined TI medium as the effective medium that
replaces the heterogeneous medium after averaging, so that

˜
P∗ = 〈

˜
P〉. (13)

ISOTROPIC LAYERS

We compare both matrices element by element by keeping
only the terms of lowest order in frequency. In this way, we
find the effective poroelastic constants and simple relations
for the densities ρ∗ = 〈ρ〉 and ρ∗f = 〈ρ f 〉. The results for the
permeability in q∗xy and q∗z are discussed below.

Effective medium: Quasi-static limit

The quasi-static effective poroelastic constants are

B∗1 = 〈µd〉,

B∗2 = 2
〈

λdµd

λd + 2µd

〉
+
〈

λd

λd + 2µd

〉2〈 1
λd + 2µd

〉−1

+ B∗26

B∗8
,

B∗3 =
〈

λd

λd + 2µd

〉〈
1

λd + 2µd

〉−1

+ B∗6 B∗7
B∗8

,

B∗4 =
〈

1
λd + 2µd

〉−1

+ B∗27

B∗8
,

B∗5 =
〈
µ−1

d

〉−1
,

B∗6 = −B∗8

(
2
〈

σµd

λd + 2µd

〉
(14)

+
〈

σ

λd + 2µd

〉〈
λd

λd + 2µd

〉〈
1

λd + 2µd

〉−1
)
,

B∗7 = −B∗8

〈
σ

λd + 2µd

〉〈
1

λd + 2µd

〉−1

,

B∗8 =
[
〈M−1〉 +

〈
σ 2

λd + 2µd

〉

−
〈

σ

λd + 2µd

〉2〈 1
λd + 2µd

〉−1
]−1

.
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B∗1 and B∗5 are the same as Backus’ MB and L B, respectively, but
with shear moduli of the dry poroelastic frame. B∗2 , B∗3 , and B∗4
are poroelastic generalization of Backus’s BB, FB, and CB, re-
spectively, but with additional terms (combinations of B∗6 , B∗7 ,
and B∗8 ) that introduce effects of fluid saturation (M) and the
difference between matrix and grain compressibilities (σ ). For
dry rock, B∗6 = B∗7 = 0. To check the result with Gassman’s for-
mula, one can apply the formalism to a model in which all layers
are identical. In this case, the averaging brackets can be omit-
ted and the expected results B∗8 =M , B∗7 = B∗6 = σM , B∗4 = H ,
B∗2 = B∗3 = H − 2µ, and B∗1 = B∗5 =µ can be derived easily. Up-
scaling from log to surface seismic frequencies should be done
using the effective moduli of equation (14) if the seismic fre-
quencies are lower than ω0.

Effective medium: No-flow limit

For frequencies above ω0, the interfaces between different
layers behave as isolating with respect to interlayer flow. This
means that in equation (10) as well as in the corresponding
TIV equations (12), ∇w ≡ 0 (as proposed by Norris, 1993).
The matrices

˜
P and

˜
P∗ are defined in the same ways as in the

quasi-static limit, but the condition∇w ≡ 0 here leads to great
simplifications. The medium is characterized by the saturated
poroelastic constants of each layer itself, and averaging must
be performed over those saturated (Gassmann) moduli. The
result corresponds to a “naive” application of the standard
Backus formalism, which ignores fluid flow. In certain cases,
it can differ significantly from the static one derived above. It
is compared with the former in Figures 2 to 8 and discussed
below. Because of the no-flow condition ∇w ≡ 0, the poroe-
lastic constant B∗8 no longer plays any part in the stress-strain
relations, and the remaining seven high-frequency moduli are
defined as

B∗1 = 〈µd〉,

B∗2 = 2
〈

(H − 2µd)µd

H

〉
+
〈

H − 2µd

H

〉2〈 1
H

〉−1

,

B∗3 =
〈

H − 2µd

H

〉〈
1
H

〉−1

,

B∗4 =
〈

1
H

〉−1

,

B∗5 =
〈
µ−1

d

〉−1
,

B∗6 = B∗7 =
〈

1
σM

〉−1

.

(15)

Elastic Backus averaging, which ignores fluid effects such as in-
terlayer flow, is useful for upscaling from sonic log velocities to
VSP or crosshole seismic applications (see, e.g., Pratt and Sams,
1996; Rio et al., 1996; Tang and Burns, 1992). It can be applied if
the frequencies are higher thanω0. It should be noted here that
the results of no-flow averaging [equations (15)] also follow
from the poroelastic generalized O’Doherty-Anstey formulas
(Gelinsky and Shapiro, 1997) for frequencies ω > ω0 without
any a priori assumptions regarding∇w.

The quasi-static as well as the no-flow moduli are derived
consistently by combination of low-frequency Biot- theory and

Backus averaging for ω0 < ωc. If the medium parameters are
such that ω0 > ωc, a high-frequency Biot correction must be
applied. The result is then a heuristic combination of both
methods, and the averaging [equations (15)] has only a formal
character.

Geertsma and Smit (1961) derived an approximate correc-
tion factor v∞/v0 that is written, in our notation, as

v(ω→∞)
v(ω→ 0)

=

√√√√√√√
a− 2

φσM

H
+ φMρ

Hρ f

a− φρ f

ρ

. (16)

For well-consolidated rocks with low porosity and high tortu-
osity, this factor is close to unity. For weak, highly porous ma-
terials, however, Biot dispersion can be greater than 10%. The
multiplication of vP by such a correction factor ignores any
influence of anisotropy on the global flow dispersion. Gelin-
sky and Shapiro (1996) showed that at least the anisotropy
of permeability (which is stronger than poroelastic anisotropy
layered systems; see below) does not affect v∞/v0.

High-frequency limit: Ray theory

To conclude this section, the ray-theory limit is considered
briefly. Since the frequency is high, no equilibration of fluid
pressure can take place. The layers are isolated as before, in
the no-flow limit. The difference from the previously consid-
ered no-flow limit is that poroelastic slownesses, not poroelas-
tic moduli, must be averaged. The P-wave phase velocity is
defined as vray = (L2 + X2)1/2/T , where L and X are the total
vertical and horizontal distances traveled by a ray and T is the
total traveltime. According to Shapiro et al. (1994), the velocity
can be written as

vray = c0

(
1+ σ 2

αα

2 cos2 θ

)
. (17)

Here, c0 = (〈s2〉)−1/2 and 〈s2〉 denotes the average over the
squared slownesses of each layer. Furthermore, σ 2

αα is the vari-
ance of the layer velocities normalized by the square of the
arithmetic average velocity. Equation (17) coincides with the
definition for vray given in the text if higher-than-second-order
terms in the fluctuations are neglected. Since vray is defined
in the high-frequency limit (ω→∞), the velocity must be
corrected for Biot’s global flow dispersion unless the layer
slownesses already have been measured in the high-frequency
limit.

Liu et al. (1995) discussed the upscaling from ultrasonic
to sonic log measurements and compared two modeling
schemes—the high-frequency time-average equation (ray the-
ory) and the low-frequency elastic Backus averaging. For
this frequency range, they found better agreement of the
modeled and the real sonic logs using the short-wavelength
scheme.

Weak poroelastic anisotropy

To compare the results of the different averaging schemes,
poroelastic velocities are calculated from the moduli derived
above. The effective medium can be described by the isotropic,
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saturated, poroelastic P- and S-wave velocities α0 and β0, mea-
sured parallel to the symmetry axis (i.e., vertically for the
TIV medium considered here), and by the Thomsen (1986)
anisotropy parameters ε, γ , and δ. The velocities α0 and β0 can
be calculated according to the Gassmann formula (e.g., White,
1983) as

α0 =
√

B∗4
ρ∗
,

β0 =
√

B∗5
ρ∗
.

(18)

In terms of the poroelastic constants B∗i , the definitions of
poroelastic Thomsen parameters ε, γ , and δ are

ε = B∗2 + 2B∗1 − B∗4
2B∗4

,

γ = B∗1 − B∗5
2B∗5

, (19)

δ =
(
B∗3 + B∗5

)2 − (B∗4 − B∗5
)2

2B∗4
(
B∗4 − B∗5

) .

B∗1 , . . . , B∗5 were calculated in the previous sections for anisot-
ropy caused by thin layering. However, the anisotropy param-
eters defined in equation (19) are valid for any kind of TIV
poroelastic media, with B∗1 , . . . , B∗5 being calculated, e.g., ac-
cording to the method in Brown and Korringa (1975). With
these constants, the poroelastic velocities for weak anisotropy
can be written simply as

vq P =
√

B∗4/ρ∗(1+ δ sin2 θ cos2 θ + ε sin4 θ),

vqSV =
√

B∗5/ρ∗
(

1+ B∗4
B∗5

(ε − δ) sin2 θ cos2 θ

)
, (20)

vSH =
√

B∗5/ρ∗(1+ γ sin2 θ).

The qSV-wave is not a pure shear wave and hence is affected
by fluid saturation by means of B∗4 , ε, δ, and ρ∗. The SH-wave as
a pure shear mode is affected by fluid effects only through ρ∗,
since γ is the same for dry and saturated media. Since in several
cases considered here the anisotropy is strong (ε, γ, δ À 10%),
we used for the figures the exact formula for the q P-wave phase
velocity given in Thomsen (1986).

ISOTROPIC LAYERS: DISCUSSION OF RESULTS

For different media, we compared the anisotropic P-wave
phase velocities derived from ray theory and from the quasi-
static and the no-flow moduli. The rock properties are shown
in Table 1, and those of the saturating fluid and gas phases are
shown in Table 2. Partial saturation was stimulated by assuming
the existence of gas-saturated layers between water-saturated
layers (White, 1983). This model seems to be justified, since the
bulk modulus of a gas-fluid mixture is rather close to that of
the pure gas phase,

K f = KliquidKgas

SKgas + (1− S)Kliquid
, (21)

with S being the relative fluid saturation. The velocities are
plotted as a function of the angle of incidence θ . The Biot-
corrected ray-theory velocity is referred to as ray-Biot, the
no-flow limit is referred to as high or high-Biot if ω0 > ωc,
and the quasi-static limit is referred as to low. In Figures 2
through 8, vray is plotted mostly only for θ = 0◦ to 60◦, since
for larger angles of incidence 1/cos2θ becomes huge.

The medium considered in Figure 2 is a homogeneous Berea
sandstone, saturated by alternating gas and fluid phases. Lay-
ering is caused only by the alternating saturation, and the
dry poroelastic properties of all layers are the same. Since
the shear strength is constant throughout the medium, both
the quasi-static (low) and the no-flow (high) Backus veloci-
ties are isotropic. Only the ray-theory limit shows some very
weak anisotropy. The no-flow velocity is very close to that pre-
dicted by ray theory, whereas the quasi-static velocity is much

Table 2. Fluid and gas properties.

Parameter Unit Water(1) Gas(1)

K f 109 Pa 2.25 0.056
ρ f kg/m3 1000 140
η 10−3 Pa × s 1.0 0.22

(1)Gurevich and Lopatnikov, 1995.

FIG. 2. P-wave velocities for layers of rock type 1 with alter-
nating fluid and gas saturation. In this figure and Figures 3
through 8, low, high, and ray-Biot refer to the respective fre-
quency ranges defined in the text. Rock and fluid properties
are listed in Tables 1 and 2.

FIG. 3. P-wave phase velocities for alternating layers of differ-
ent sandstones (rock types 2 and 3), both water saturated.
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smaller. Since in this limit interlayer flow from the water- into
the gas-saturated layers equilibrates the fluid pressure, no ad-
ditional stiffness is caused by water saturation, as for the higher
frequencies.

The model in Figure 3 is a porous rock made of two types
of alternating porous layers. Both layer types are uniformly
water saturated. Since there is a significant difference in

FIG. 4. Same as Figure 3, but with water-saturated layers of
type 2 (stiff) and gas-saturated layers of type 3 (weak).

FIG. 5. Same as Figure 3, but with gas-saturated layers of type
2 (stiff) and water-saturated layers of type 3 (weak).

FIG.6. P-wave phase velocities for alternating layers consisting
of weak sandstone and of unconsolidated coarse sand (rock
types 4 and 5), both water saturated. Both the no-flow and the
ray-theory limits are corrected for Biot dispersion.

shear strength between the layers, the Backus velocities are
anisotropic. The exact coincidence of the quasi-static and the
no-flow velocities for θ = 90◦ is caused by the choice of pa-
rameters and is not necessarily the case for other param-
eters (cf. Figure 6). In this model, the Thomsen parameters
are εlow= 0.069, γlow= 0.092, δlow=−0.002, εhigh= 0.049,
γhigh= γlow, and δhigh=−0.033.

0 In Figure 4, the same rock model as that in Figure 3 is
considered, but here the stiffer layers are assumed to be wa-
ter saturated and the weaker (more compliant) layers are as-
sumed to be gas saturated. The anisotropy of the ray-theory
and no-flow velocities is slightly increased because of the in-
creased contrast of the different layer properties. In the quasi-
static limit, interlayer flow tends to reduce the enhanced elas-
tic contrast, and the anisotropy is reduced compared with that
at higher frequencies. All velocities are smaller than in the
fully water-saturated example. The Thomsen parameters are
(with γ as in Figure 3) εlow= 0.11, δlow= 0.014, εhigh= 0.14, and
δhigh= 0.038.

In Figure 5, the saturation pattern of Figure 4 is reversed.
Here the stiffer layers are assumed to be gas saturated, and
the weaker layers are assumed to be water saturated. As a re-
sult, the contrast between isolated layers is significantly smaller
than in Figure 4 and Figure 3. Both the ray-theory and the no-
flow velocities are less anisotropic. Because of the equilibrat-
ing interlayer flow, however, the quasistatic velocity and the

FIG. 7. Same as Figure 6, but with water-saturated layers of
type 4 (stiff) and gas-saturated layers of type 5 (weak).

FIG. 8. Same as Figure 6, but with gas-saturated layers of type
4 (stiff) and water-saturated layers of type 5 (weak).
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low-frequency Thomsen parameters are the same as in Figure 4.
For the high frequencies, the parameters are εhigh = 0.023 and
δhigh = −0.056; γ is again the same.

These effects can be studied for many other models. For
example, Figure 6 describes alternating sand layers with differ-
ent degrees of consolidation and shear strength. In this model,
ω0 > ωc, so the no-flow limit is corrected for the (quite signif-
icant) global flow dispersion. As noted above, in this case the
no-flow limit has only a formal character. We provide the cor-
responding curves in order to show the contrast with the quasi-
static limit. In Figures 7 and 8, the effects of partial saturation
are investigated for this model and are found to be similar
to those shown in Figures 4 and 5. The unusual angle depen-
dence of vP here is caused by the very small shear moduli. We
have investigated more models and basically found the same
effects as in the chosen examples. Our results are in agreement
with the six rigorous constraints on elastic stiffnesses that must
be fulfilled for any stable TIV medium (Berge, 1995; Helbig,
1994).

For vertical incidence, the velocity dispersion and attenua-
tion of compressional waves in partially saturated media can
be calculated as a function of frequency (Dutta and Odé, 1979;
Gurevich and Lopatnikov, 1995; Gelinsky and Shapiro, 1997).
The results presented here are special cases of these theories
with respect to frequency dependence (only limits such as the
quasi-static velocity for ω → 0 can be obtained). However,
anisotropy and nonvertical incidence also are covered. For ex-
ample, the quasi-static and the no-flow velocities for θ = 0◦ in
Figures 2 and 3 coincide with the corresponding limits derived
by Gurevich and Lopatnikov (1995), who considered the same
model only for vertical incidence.

ANISOTROPIC LAYERS

TIV layers (TI layers with a vertical symmetry axis)

We first consider layers that are TIV themselves. For elas-
tic layers, the same problem was treated explicitly in Backus
(1962), and Helbig (1994) provided a recipe for elastic Backus
averaging for any kind of layer anisotropy. Typical media with
TIV layers may be sediments containing shale, which is itself
anisotropic (Hornby et al., 1994; Schoenberg et al., 1996). The
combined effect of intrinsic anisotropy and layering also has
been observed in VSP data (Kebaili and Schmitt, 1996) and in
crosshole data (Pratt and Sams, 1996). To parameterize each
layer, the five constants bd, cd, fd, `d, and md are necessary.
These are the corresponding Backus constants of the dry rock
matrix. In the standard elastic notation they are b =̂C11, c =̂C33,
f =̂C13, l =̂C44, and m=̂C66. Furthermore, for each layer, P,
Q, and R are introduced (they are analogous to B∗6 , B∗7 , and B∗8
for the TI effective medium described in the previous section).
Carcione (1995) described how to determine the constants P,
Q, and R(in his notation,α1 M ,α3 M , and M) as a function of the
anisotropic dry matrix moduli. The properties of the effective,
medium are calculated in the same way as for isotropic layers.
The TIV poroelastic quasi-static effective-medium constants
are

B∗1 = 〈md〉,
B∗2 =

〈
bd − f 2

d c−1
d

〉+ 〈 fdc−1
d

〉2〈
c−1

d

〉−1 + B∗26

B∗8
,

B∗3 =
〈
fdc−1

d

〉〈
c−1

d

〉−1 + B∗6 B∗7
B∗8

,

B∗4 =
〈
c−1

d

〉−1 + B∗27

B∗8
,

(22)
B∗5 =

〈
`−1

d

〉−1
,

B∗6 = B∗8

(〈
P

R

〉
−
〈

Q

R
fdc−1

d

〉
+
〈

Q

R
c−1

d

〉〈
fdc−1

d

〉〈
c−1

d

〉−1
)
,

B∗7 = B∗8

〈
Q

R
c−1

d

〉〈
c−1

d

〉−1
,

B∗8 =
[
〈R−1〉 +

〈
Q2

R2
c−1

d

〉
−
〈

Q

R
c−1

d

〉2〈
c−1

d

〉−1
]−1

.

As for isotropic layers, limiting no-flow modulus and ray-theory
velocities can be calculated. Starting points for the derivation of
no-flow moduli are the anisotropic saturated Gassmann moduli
given by Brown and Korringa (1975).

TIH (TI with a horizontal symmetry axis)
layers with fractures

Finally, we generalize our approach for layers that are poroe-
lastic and fractured with the horizontal x-axis as the symmetry
axis of the fracturing (TIH layers). The fractures are perpen-
dicular to the symmetry axis of the layering itself (cf. Figure 1).
The resulting effective medium is orthorhombic, determined
by 13 poroelastic constants (making use of the fact that the
anisotropy is caused by fracturing reduces the number of inde-
pendent constants to 12) and three values for the directional
permeability. The aligned fractures are assumed to cause only
anisotropy of the poroelastic frame and of the permeability
(flow channel). No distinction between a soft fracture porosity
and the stiffer background porosity is made here.

We parameterize the TIH layers according to Biot (1962)
by using B1, B2, . . ., B8, keeping in mind that now the x-axis
instead of the z-axis is the symmetry axis for the layers. B1,
B2, . . ., B5 can be determined by adding the tangential and nor-
mal excess compliances caused by fracturing to an isotropic
background compliance (Schoenberg and Sayers, 1995). Fol-
lowing Thomsen (1995), the anisotropic poroelastic constants
of a saturated medium with aligned fractures can be expressed
in terms of the parameters ε, γ , and δ. The remaining three con-
stants B6, B7, and B8 can be measured (Biot and Willis, 1957) or
calculated using micromechanical models (see, e.g., Yew and
Weng, 1987).

The effective medium is orthorhombic and described by nine
poroelastic constants A∗i j and the four Biot constants M∗i (no-
tation according to Biot, 1962). Since displacements in the
y-direction are not equivalent to those in the x-direction, in
equation (8) for u and w, uy, wy, and py are retained. After
transformation to first-order differential equations, the vector
ζ is defined as

ζ = (ux,uy,uz, wz, τxz, τyz, τzz, pf )T , (23)

and
˜
P and

˜
P∗ are (8 × 8) matrices consisting of combinations

of the above-defined layer parameters, as in the previous case.
Here we denote the dry-layer stiffnesses with a tilde on top
[see equation (A-2) of the Appendix for definitions of B̃2, B̃3,
and B̃4]. Furthermore, B̃b = B̃2 + 2B̃1. After comparing all
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elements of 〈̃P〉and
˜
P∗ and solving the corresponding equations

for A∗i j and M∗i , the orthorhombic quasi-static effective medium
is defined by

A∗11 = 〈B̃4〉 +
〈

B̃3

B̃b

〉2〈
B̃
−1
b

〉−1 −
〈

B̃
2
3

B̃b

〉
+ M∗21

M∗
,

A∗22 = 〈B̃b〉 +
〈

B̃2

B̃b

〉2〈
B̃
−1
b

〉−1 −
〈

B̃
2
2

B̃b

〉
+ M∗22

M∗
,

A∗33 =
〈
B̃
−1
b

〉−1 + M∗23

M∗
,

A∗12 = 〈B̃3〉 +
〈

B̃3

B̃b

〉〈
B̃2

B̃b

〉〈
B̃
−1
b

〉−1 −
〈

B̃3 B̃2

B̃b

〉
+ M∗1 M∗2

M∗
,

A∗13 =
〈

B̃3

B̃b

〉〈
B̃
−1
b

〉−1 + M∗1 M∗3
M∗

,

A∗23 =
〈

B̃2

B̃b

〉〈
B̃
−1
b

〉−1 + M∗2 M∗3
M∗

,

A∗44 =
〈

1
B̃1

〉−1

, (24)

A∗55 =
〈

1
B̃5

〉−1

,

A∗66 = 〈B̃5〉,

M∗1 = M∗
(〈

B7

B8

〉
−
〈

B6 B̃3

B8 B̃b

〉
+
〈

B6

B8 B̃b

〉〈
B̃3

B̃b

〉〈
B̃
−1
b

〉−1
)
,

M∗2 = M∗
(〈

B6

B8

〉
−
〈

B6 B̃2

B8 B̃b

〉
+
〈

B6

B8 B̃b

〉〈
B̃2

B̃b

〉〈
B̃
−1
b

〉−1
)
,

M∗3 = M∗
(〈

B6

B8 B̃b

〉〈
B̃
−1
b

〉−1
)
,

M∗ =
[〈

1
B8

〉
+
〈

B2
6

B2
8 B̃b

〉
−
〈

B6

B8 B̃b

〉2〈
B̃
−1
b

〉−1
]−1

.

The corresponding moduli for higher frequencies can be calcu-
lated as described above for TIV layers (keeping in mind the
different symmetry properties).

ANISOTROPIC PERMEABILITY

The formalism that was introduced above yields (in addi-
tion to the poroelastic constants of the long-wavelength ef-
fective medium) simple relations for an anisotropic perme-
ability. These are valid in the quasi-static limit and are useful
for the description of fluid flow resulting from a constant or
slowly varying pressure gradient. For higher frequencies, the

propagation of seismic waves is influenced by a dynamic per-
meability (Johnston et al., 1987; Smeulders et al., 1992).

We first consider isotropic layers. The relation 〈̃P〉 =
˜
P∗

yields, besides the poroelastic constants for the effective,
anisotropic Darcy coefficient (the ratio of permeability to vis-
cosity), (

kxy

η

)∗
=
〈

k

η

〉
,(

kz

η

)∗
=
〈(

k

η

)−1〉−1

.

(25)

Thus, the inverse of the permeability behaves just like electrical
resistors connected either in series or in parallel. For constant
fluid viscosity throughout the medium, η can be canceled on
both sides of equation (25) and the results of Schoenberg (1991)
for layered permeable systems, derived from Darcy’s law, are
reproduced. If the viscosity of the saturating fluid varies from
layer to layer, it will affect the effective Darcy coefficient and
should be considered. As an example, we study fluctuations
of porosity from layer to layer and keep the other fluid pa-
rameters, such as bulk modulus, viscosity, and density, constant
throughout the medium. If the permeability depends in a sim-
ple way on porosity, k∗xy and k∗z can be derived as functions of
porosity fluctuations. We assume a permeability-porosity de-
pendence of a Kozeny-Carman type (Scheidegger, 1974), in
that

k0 = 1
C2

φ3
0

(1− φ0)2
. (26)

Here, φ0 is a constant porosity (as the average or background
porosity of the layered system) and the constant C (termed
flow-zone indicator) is inversely proportional to the product
of tortuosity, the ratio of pore surface area to grain volume,
and the square root of a capillary shape factor (Georgi and
Menger, 1994). We study porosity fluctuations φ0(1 + 1φ(z))
with fluctuations for which the average over z equals zero,
〈1φ〉 = 0. Additionally, we assume 〈12

φ〉¿ 1 and neglect
higher-order statistical moments. Assuming also a constant
flow-zone indicator C throughout the medium, the directional
permeability is

k∗xy = k0

(
1+ 〈12

φ

〉 3
(1− φ0)2

)
, (27)

k∗z = k0

(
1+ 〈12

φ

〉6− 6φ0 + φ2
0

(1− φ0)2

)−1

. (28)

In Figure 9, the ratio k∗xy/k∗z is plotted as a function of porosity
fluctuations 〈12

φ〉1/2. The average porosity varies as φ0 = 0.4,
0.3, 0.2, and 0.1. The ratio k∗xy/k∗z defines the anisotropic per-
meability and is independent of k0. Both k∗xy (upper curves) and
k∗z (lower curves), normalized by k0, are plotted in Figure 10.
From above and below toward the center, the average poros-
ity decreases, as in Figure 9, from 0.4 to 0.1. Whereas k∗xy/k0

is increasing with increasing fluctuations, k∗z/k0 is decreasing.
Whereas k∗xy/k0 is strongly increasing with a growing average
porosity, k∗z/k0 is approximately independent of φ0, although
k0 → 0 with φ0. An anisotropic permeability may significantly
affect the propagation of seismic waves (Hamdi and Taylor
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Smith, 1982; Gibson and Toksöz, 1990; Gelinsky and Shapiro,
1996; Carcione, 1995).

For the fractured medium, the permeability of each layer al-
ready is anisotropic. The (larger) permeability parallel to the
fracture planes is kyz, whereas kx is the (smaller) one perpendic-
ular to the fractures. The elements of the permeability tensor
of an orthorhombic effective medium in the case of constant
viscosity are

k∗x = 〈kx〉,

k∗y = 〈kyz〉, (29)

k∗z =
〈
k−1

yz

〉−1
.

Layers that possess TIV poroelastic parameters, for instance,
because of their high shale content, can be approximated
by isotropic layers with respect to permeability. Alternating
sand and shale layers with alternating very high and very low

FIG. 9. Ratio of the permeabilities parallel and perpendicular
to the layering as a function of porosity fluctuations. Average
porosity decreases from 0.4 to 0.1 (top to bottom).

FIG. 10. Directional permeabilities (k∗xy parallel and k∗z perpen-
dicular to the layering) normalized by k0 for a stack of isotro-
pic layers as a function of porosity fluctuations [equations (27)
and (28) with φ0 as in Figure 9].

permeabilities may cause an effectively strong anisotropic per-
meability.

CONCLUSION

Simple expressions for the effective poroelastic constants of
thinly layered and poroelastic, fluid-saturated media were de-
rived. Application of Backus averaging implies the assumption
that the seismic wavelength is much greater than the character-
istic length of medium heterogeneities. This scale can be given
by the layer thickness, period, or correlation length. Because
of fluid flow, especially in partially saturated media, another
characteristic length (correspondingly, a frequency) that gov-
erns the so-called interlayer flow is involved. Depending on
whether the frequency is below or above this characteristic
frequency ω0, the medium is found to behave differently.
This effect is of first-order significance and is observable in
the seismic frequency range. Especially in partially saturated
media, it may strongly affect the absolute values of seis-
mic velocities as well as their anisotropy. Above ω0, no fluid
flow occurs and Backus averaging replaces the elastic with
the saturated poroelastic constants. Below ω0, the diffusive
Biot slow wave equilibrates the fluid pressure and quasi-static
Backus averaging should be done in the context of Biot the-
ory as outlined in this paper. Fluctuations of porosity are
found to be an indication of permeability anisotropy. This
anisotropy is much stronger than the corresponding poroelastic
anisotropy.
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APPENDIX

MATRICES
˜
P AND

˜
P∗

Here we describe in more detail how to calculate the quasi-
static properties of the TIV effective medium as a function
of isotropic layer parameters. Since for this symmetry the
SH-wave propagation is independent from that of the q P
and qSV waves, it can be treated separately. All informa-
tion about the q P- and qSV-waves problem is contained in
the matrices

˜
P and

˜
P∗. We simplified our treatment of the

problem considerably by confining the wave propagation to
the x-z plane (which means setting py,uy, wy = 0). By ex-
amination of this “reduced” P- and SV-wave problem, how-
ever, the poroelastic parameters B∗2 and B∗1 cannot be de-
termined independently. To find all poroelastic constants, we
must study, in addition to the P- and SV-wave problem,
SH-waves that propagate along the z-axis with particle dis-

placement in the x-direction. This makes it necessary to de-
fine τyy, which is not an element of ζ, as a function of el-
ements of ζ both for the layers and for the TIV effective
medium. These two equations are given at the end of the Ap-
pendix.

For problems with a lower symmetry, all wave types are cou-
pled and described by (8 × 8) matrices

˜
P and

˜
P∗. There is one

matrix
˜
P for each layer; however, only the average over all lay-

ers, 〈̃P〉, is used to determine the effective-medium properties.
Since there exists only one realization of the stack of layers, av-
eraging does not mean ensemble averaging but makes use of
the self-averaging properties of seismic wavefield parameters
as the phase increment (Gelinsky and Shapiro, 1997). Matrix

˜
P is given for isotropic layers as
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˜
P =



0 −i px
1
µd

0 0 0

−i px
λd

λd + 2µd
0 0

1
λd + 2µd

0
σ 2

λd + 2µd

−ω2

(
ρ − ρ

2
f

q

)
+ 4p2

x

µd(λd + µd)
λd + 2µd

0 0 −i px
λd

λd + 2µd
0 −i px

ρ f
q + 2i px

σµd

λd + 2µd

0 −ω2ρ −i px 0 −ω2ρ f 0

+i px
ρ f

q
− 2i px

σµd

λd + 2µd
0 0 − σ 2

λd + 2µd
0

p2
x

qω2
− 1

M
− σ 2

λd + 2µd

0 ω2ρ f 0 0 ω2q 0


(A-1)

For the effective medium, we define typical combinations of
the poroelastic constants with a tilde on top. They turn out to
be the corresponding dry-layer constants

B̃
∗
2 = B∗2 −

B∗26

B∗8
,

B̃
∗
3 = B∗3 −

B∗6 B∗7
B∗8

,

B̃
∗
4 = B∗4 −

B∗27

B∗8
.

(A-2)

The matrix
˜
P∗ then can be written as

˜
P∗ =



0 −i px
1

B̃
∗
5

0 0 0

−i px
B̃
∗
3

B̃
∗
4

0 0
1

B̃
∗
4

0 − B∗7
B∗8 B̃

∗
4

P∗31 0 0 −i px
B̃
∗
3

B̃
∗
4

0 P∗36

0 −ω2ρ∗ −i px 0 −ω2ρ∗f 0

P∗51 0
B∗7
B∗8

1

B̃
∗
4

0 0 P∗56

0 ω2ρ∗f 0 0 ω2q∗z 0


(A-3)

The missing elements of
˜
P∗ are

P∗31 = −ω2

(
ρ∗ − ρ

∗2
f

q∗x

)
+4p2

x

(
2B̃
∗
1+ B̃

∗
2−

B̃
∗2
3

B̃
∗
4

)
, (A-4)

P∗36 = −i px

ρ∗f
q∗xy

+ i px

(
B∗7
B∗8

B̃
∗
3

B̃
∗
4

− B∗6
B∗8

)
, (A-5)

P∗51 = −P∗36, (A-6)

P∗56 =
p2

x

q∗xyω
2
− 1

B∗8
−
(

B∗7
B∗8

)2

B̃
∗
4. (A-7)

To include vertically downward propagating SH-waves, τyy as
a function of components of the vector ζ is given for the layers
as

τyy =
(

2i px
λdµd

λd + 2µd

)
ux +

(
λd

λd + 2µd

)
τzz

−
(

2
σµd

λd + 2µd

)
pf (A-8)

and, accordingly, for the TIV effective medium as

τyy=
(
i px B̃

∗
2−

B̃
∗2
3

B̃
∗
4

)
ux +

(
B̃
∗
3

B̃
∗
4

)
τzz−

(
B∗7
B∗8

B̃
∗
3

B̃
∗
4

− B∗6
B∗8

)
pf .

(A-9)

In the next step, the matrix
˜
P is averaged and each element

is compared with the corresponding one for the matrix
˜
P∗.

The coefficients of equations (9) and (10) are treated in the
same way. This results (using only terms of the lowest order
in frequency) in 10 equations that must be solved for the eight
effective poroelastic constants and q∗xy, q

∗
z . As a simple example,

consider the relation 〈P24〉 = P∗24, which yields 〈1/(λd+2µd)〉 =
1/B̃

∗
4, which is one of the results given in equation (14).
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