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Abstract

Elastic properties of fluid saturated porous media with aligned fractures can be studied using the model of fractures as

linear-slip interfaces in an isotropic porous background. Such a medium represents a particular case of a transversely isotropic

(TI) porous medium, and as such can be analyzed with equations of anisotropic poroelasticity. This analysis allows the

derivation of explicit analytical expressions for the low-frequency elastic constants and anisotropy parameters of the fractured

porous medium saturated with a given fluid. The five elastic constants of the resultant TI medium are derived as a function of

the properties of the dry (isotropic) background porous matrix, fracture properties (normal and shear excess compliances), and

fluid bulk modulus. For the particular case of penny-shaped cracks, the expression for anisotropy parameter e has the form

similar to that of Thomsen [Geophys. Prospect. 43 (1995) 805]. However, contrary to the existing view, the compliance matrix

of a fluid-saturated porous-fractured medium is not equivalent to the compliance matrix of any equivalent solid medium with a

single set of parallel fractures. This unexpected result is caused by the wave-induced flow of fluids between pores and

fractures.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction One of the main issues in the characterization
Naturally fractured reservoirs have attracted in-

creasing interest in exploration and production geo-

physics in recent years. In many instances, natural

fractures control the permeability of the reservoir, and

hence the ability to find and characterize naturally

fractured areas of the reservoir represents a major

challenge for seismic investigations.
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of any reservoir is the ability to predict the effect

of fluid properties on seismic characteristics. For

isotropic porous reservoirs, this effect is expressed

through Gassmann’s equations, which provide ex-

plicit analytical expressions for the elastic moduli

of a fluid-saturated rock as functions of the

porosity, the elastic moduli of the dry skeleton,

the bulk modulus of the solid grain material, and

the bulk modulus (incompressibility) of the pore

fluid.

However, such explicit yet general expressions

are not known for reservoirs with aligned fractures.
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Several treatments of the porous media with aligned

fractures have been developed in recent years

(Thomsen, 1995; Hudson et al., 1996, 2001). How-

ever, these treatments are based on a specific and

idealized fracture geometry (the so-called penny-

shaped crack), and are restricted to small crack

densities.

More general relationships between dry and fluid-

saturated properties of fractured porous media can be

based on the general linear-slip model of the medium

with parallel fractures (Schoenberg and Douma, 1988;

Schoenberg and Sayers, 1995). This model, based on

physically intuitive relations between stress and dis-

continuity in displacement across the fracture, is

formulated in terms of excess compliance due to the

presence of fractures, and requires no assumptions

about the microstructure or microgeometry of the

fractures.

Suppose that the dry porous and fractured skeleton

of the rock can be described by the general linear-slip

model. In the low-frequency limit, the medium de-

scribed by the linear-slip model is equivalent to a

transversely isotropic (TI) elastic medium. Therefore,

the same medium saturated with a fluid is also a TI

medium, whose elastic properties may be expressed

through the anisotropic Gassmann equations (Gass-

mann, 1951; Brown and Korringa, 1975; Xu, 1998;

Cardona, 2002).

In this paper, we use equations of anisotropic

poroelasticity applicable to TI media to derive explicit

expressions for the low-frequency elastic constants

and anisotropy parameters of the fractured porous

medium saturated with a given fluid. The five elastic

constants of the resultant TI medium are derived as

explicit expressions in the properties of the dry

(isotropic) background porous matrix, fracture prop-

erties (normal and shear excess compliances), and

fluid bulk modulus.
2. Linear slip model for the dry skeleton

We assume that the dry rock is a spatially homo-

geneous and isotropic porous rock (host rock) perme-

ated by a set of parallel fractures. The host rock is

assumed to be made up of a single isotropic elastic

grain material with the bulk modulus Kg. The host

rock is characterized by porosity /p and Lamé con-
stants k and l, so that its stiffness matrix can be

written in the form

cb ¼

k þ 2l k k 0 0 0

k k þ 2l k 0 0 0

k k k þ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

The host rock is permeated by a set of parallel

fractures which are described by the linear slip model

(Schoenberg and Douma, 1988; Schoenberg and

Sayers, 1995). According to this model, in the limit

of low frequencies, an elastic medium permeated by a

single set of parallel fractures can be characterized by

the compliance matrix

s0 ¼ sb þ sc; ð1Þ

where sb is the compliance matrix (inverse of stiffness

matrix cb) of the host medium and sc is the excess

compliance matrix associated with the fractures

(cracks). Here and below, we assume that the fracture

set is rotationally invariant about the x1 axis, which is

normal to the fracture plane. In this case, the excess

compliance matrix can be expressed in the form

(Schoenberg and Sayers, 1995)

sc ¼

ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ð2Þ

where ZN and ZT denote the so-called normal and

shear excess compliances caused by the presence of

fractures.
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The compliance and stiffness matrices given by Eq.

(1) describe an effective medium which is transversely

isotropic (TI) with the symmetry axis x1. Although

general TI media are defined by five independent

elastic parameters (c11
0 , c33

0 , c13
0 , c44

0 , and c55
0 = c66

0 ),

the elastic properties of an isotropic medium with

rotationally invariant parallel fractures are fully de-

scribed by four parameters: two elastic constants of

the host medium k and l, and two excess compliances

ZN and ZT. Consequently, its stiffness matrix c0

(inverse of s0) represents a special case of the general

compliance matrix for a TI medium in that the five

elastic constants are not independent but are related by

the equation (Schoenberg and Sayers, 1995):

c011c
0
33 � ðc013Þ

2 � 2c044ðc011 þ c013Þ ¼ 0: ð3Þ
3. The effect of the fluid

Our aim is to study the effect of the saturating fluid

on the elastic properties of the fractured porous rock.

This cannot be done using standard isotropic Gass-

mann equations. In his landmark paper, Gassmann

(1951) presented analogous equations also for the

media with anisotropic skeleton made up of a single

isotropic elastic grain material. For this case, the

relationship between the dry and saturated elastic

moduli of the rock can be written in the form

csatij ¼ c0ij þ aiajM ; i; j ¼ 1; . . . 6 ð4Þ

where

am ¼ 1�

X3
n¼1

c0mn

3Kg

; ð5Þ

for m= 1,2, and 3, a4 = a5 = a6 = 0, and the scalar M is

the direct analog of Gassmann’s pore space modulus:

M ¼ Kg

1� K*
Kg

� 	
� / 1� Kg

Kf

� 	 : ð6Þ

In Eq. (6), / is the overall porosity of the porous

fractured rock (sum of background porosity /p and
fracture porosity /c) and K* denotes the so-called

generalized drained bulk modulus, which is defined as

K* ¼ 1

9

X3
i¼1

X3
j¼1

c0ij: ð7Þ

A different but entirely equivalent formulation of

the anisotropic Gassmann equations has been derived

by Brown and Korringa (1975), who also extended

them to account for microheterogeneous and aniso-

tropic grain material. Equations of Brown and Kor-

ringa (1975) were used by Cardona (2002) to develop

a model for fluid substitution in fractured porous

media, which is similar to the one presented in this

paper.

As discussed in the previous section, our dry rock

is transversely isotropic, in which case Eq. (5) yields:

a1 ¼ 1� c011 þ 2c013
3Kg

; ð8Þ

a2 ¼ a3 ¼ 1� c013 þ c023 þ c033
3Kg

ð9Þ

and a4 = a5 = a6 = 0.
To apply these relationships to our porous fractured

medium, we first invert matrix s0 to obtain dry rock

stiffnesses cij
0, and then substitute these stiffnesses into

Eqs. (7)–(9) to obtain

K* ¼ K 1� K

k þ 2l
DN


 �
; ð10Þ

a1 ¼ 1� K

Kg

ð1� DNÞ ¼ a0 þ
K

Kg

DN; ð11Þ

a2 ¼ a3 ¼ a0 þ
Kk

Kgðk þ 2lÞ DN; ð12Þ
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where K = k + 2l/3 is the bulk modulus of the dry host

rock, a0 = 1�K/Kg, while

DN ¼ ðk þ 2lÞZN
1þ ðk þ 2lÞZN

ð13Þ

and

DT ¼ lZT
1þ lZT

ð14Þ

denote dimensionless fracture weaknesses.

Finally, substituting dry-rock stiffnesses into Eq.

(4), we obtain the stiffnesses of the saturated fractured

porous medium as explicit expressions in the moduli of

the host rock, fracture weaknesses, and fluid modulus:

csat11 ¼ L

D
d1h þ Kf

/KgL
L1aV�

16

9

l2a0
L

DN

� � �
;

ð15Þ

csat33 ¼ L

D
d2h þ Kf

/KgL
L1aV�

4

9

l2a0
L

DN

� � �
;

ð16Þ

csat13 ¼ k
D

d1h þ Kf

/Kgk
k1aVþ

8

9

l2a0
L

DN

� � �
;

ð17Þ

csat44 ¼ l; ð18Þ

csat55 ¼ lð1� DTÞ; ð19Þ

where

D ¼ 1þ Kf

Kg/
a0 � / þ K2DN

KgL


 �
; ð20Þ

h ¼ 1� Kf

Kg

; aV ¼ a0 þ
K2

KgL
DN; ð21Þ
L1 ¼ Kg þ
4

3
l; k1 ¼ Kg �

2

3
l; ð22Þ

d1 ¼ 1� DN; d2 ¼ 1� k2

L2
DN: ð23Þ

We see that c44
sat and c55

sat are not affected by the

fluid. For compactness, in Eqs. (15)–(19), we use four

elastic constants k, l, K = k + 2l/3, and L= k + 2l of

the dry isotropic host rock, while only two of these

constants are, of course, independent.

Eqs. (15)–(19) provide a complete description of

the elastic properties of the saturated rock with

aligned fractures. Note that no approximations have

been made with respect to the degree of fracturing

(fracture weakness or fracture density) or fluid mod-

ulus, as is often done in studies of fluid effects in

fractured rocks (Thomsen, 1995; Hudson et al., 1996,

2001).
4. Anisotropy parameters

One of the key issues related to elastic properties in

fractured media is the effect of pore fluid on anisot-

ropy. The degree of anisotropy of a TI medium is

described by Thomsen’s (1986) parameters e, d, and c,
which describe the variation of compressional and

shear velocities as a function of polar angle with

respect to symmetry axis:

e ¼ c33 � c11

2c11
; ð24Þ

c ¼ c44 � c55

2c55
; ð25Þ

d ¼ ðc13 þ c55Þ2 � ðc11 � c55Þ2

2c11ðc11 � c55Þ
: ð26Þ

For a fractured medium with an isotropic back-

ground and parallel fractures, Thomsen’s (1986)
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parameters can be expressed in terms of normal and

shear compliances. Since the properties of this medi-

um are defined by four rather than five parameters, the

three anisotropy parameters are not independent, and

two parameters, say, e and c, are sufficient to charac-

terize the anisotropy of that medium:

e0 ¼ 2lðk þ lÞDN

L2ð1� DNÞ
; ð27Þ

c0 ¼ DT

2ð1� DTÞ
; ð28Þ

with d fully determined by e and c. In case of small

anisotropy e0b1, c0b1, this relationship is

d0 ¼ 2ð1� mÞe0 � 2
1� 2m
1� m

c0; ð29Þ

where m=(3K� 2l)/2(3K + l) is Poisson’s ratio of the

dry background medium. If these parameters are

obtained, for instance, from measurements of seismic

wave velocities, fracture weaknesses can be estimated

by solving Eqs. (27) and (28) for DN and DT:

DN ¼ eðk þ 2lÞ2

eðk þ 2lÞ2 þ 2lðk þ lÞ
: ð30Þ

and

DT ¼ 2c
1þ 2c

: ð31Þ

In turn, fracture compliances can be calculated by

inverting Eqs. (13) and (14) for ZN and ZT, and

substituting DN and DT from Eqs. (30) and (31):

ZN ¼ eðk þ 2lÞ
2lðk þ lÞ ; ZT ¼ 2c

l
: ð32Þ

For a saturated rock, the anisotropy parameters e

and c can be obtained by substituting saturated rock
stiffnesses as given by Eqs. (15)–(19) into Eqs. (24)

and (25):

esat ¼ e0
1� Kf

Kg

þ 1

3

Kfla0
/Kgðl þ kÞ

1� Kf

Kg

þ Kf

ð1� DNÞ/KgL
Kg þ

4

3
l


 �
a0 þ

K2

KgL
DN


 �
� 16

9

l2a0
L

DN

�  ;

ð33Þ

csat ¼ c0 ¼ DT

2ð1� DTÞ
; ð34Þ

where e0 and c0 are dry anisotropy parameters given

by Eqs. (27) and (28), respectively.

Eq. (33) can be compared with the results of

Thomsen (1995) who derived expressions for anisot-

ropy parameters of a porous rock with aligned penny-

shaped cracks. The result of Thomsen (1995) can be

written in the form

eT ¼ 8e

3

L

Lsat
ðKsat þ l=3Þ
ðK þ l=3Þ

�
1� Kf

Kg

1� Kf

Kg

þ Kf

/
a0
K

þ 4e

3

L

l
1

K þ l=3

�  : ð35Þ

In Eq. (35), e is the crack density, which is related

to the crack porosity /c and aspect ratio a of the

spheroidal crack (ratio of the minor to the major axis

of the spheroid) by

e ¼ 3/c

4pa
; ð36Þ

K sat is the undrained (Gassmann) bulk modulus of the

porous uncracked host rock

Ksat ¼ K þ a20M0 ð37Þ

and Lsat =Ksat + 4l/3. To compare our Eq. (33) with

Thomson’s results, we need to express fracture com-

pliances or weaknesses in the linear-slip model for the
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particular case of penny-shaped cracks. Such relation-

ships have been derived by Schoenberg and Douma

(1988):

ZN ¼ 4L

3lðL� lÞ e; ð38Þ

or

DN ¼ 4eðK þ 4l=3Þ2

4eðK þ 4l=3Þ2 þ 3lðK þ l=3Þ
: ð39Þ

Substitution of DN as given by Eq. (39) into Eq.

(33) for small crack densities yields

esat ¼ 8e

3

1� Kf

Kg
1� a0

3/
l

Kþl=3

� 	

1� Kf

Kg
þ Kf

/
Kgþ4l=3

KgL
a0 þ 4eL

3l
1

Kþl=3

h i : ð40Þ

Thomsen’s (1995) result (Eq. (35)) and our result

(Eq. (40)) are very similar but are not identical. They

coincide for the case when KfbKg, while the porosity

is somewhat small so that the bulk modulus of the dry

host medium is close to that of the grain material,

KcKg. However, in other cases, the two expressions

give slightly different results. One of the ways to

analyze the effect of background porosity and fluid on

the elastic tensor is to represent the compliance matrix

ssat (inverse of csat) in the form similar to Eq. (1): as a

sum of an isotropic part and fracture-related part:

ssat ¼ sg þ ssatc : ð41Þ

The isotropic part sg corresponds to the medium

without fractures, and thus can be easily obtained

from isotropic Gassmann equations. The elements of

fracture compliance matrix sc
sat are the effective frac-

ture compliances for the saturated fractures that can be

obtained by substituting anisotropy parameters e and c
as given by Eqs. (33) and (34) into Eq. (32) and

replacing k with its undrained (Gassmann) equivalent

ksat:

sat sat 2
k uL � luk þ a0M0; ð42Þ
where M0 is given by Eq. (6) with K* =K and / =/p.

This can be written in the form

Zsat
N ¼ ZN

Lsatðk þ lÞesat
Lðksat þ lÞe0

; ð43Þ

Zsat
T ¼ ZT; ð44Þ

whereas before ZN and ZT represent dry fracture

compliances, and esat is given by Eq. (33). Together

with Eq. (33), Eq. (43) shows how effective excess

fracture compliance changes with fluid saturation and

background porosity.
5. Analysis of the derived equations

5.1. Gassmann consistency

For non-fractured rock setting fracture weaknesses

DN and DT to zero yields

csat11 ¼ csat33 ¼ LsatuLþ a20M0; ð45Þ

csat44 ¼ csat55 ¼ l; ð46Þ

where M0 is given by Eq. (6) with K* =K,

M0 ¼
Kg

1� K
Kg

� 	
� /p 1� Kg

Kf

� 	 ¼ 1
a0�/p

Kg
þ /p

Kf

¼ Kf

/p 1þ a0�/p

/p

Kf

Kg

� 	 : ð47Þ

Eqs. (45) and (46) are equivalent to classical

isotropic Gassmann equations and describe an isotro-

pic fluid-saturated porous medium without fractures.
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5.2. Properties of background and fracture porosities

The general Eqs. (15)–(19) provide expressions for

saturated stiffnesses of any fractured porous rock as

long as fractures in the dry skeleton can be described by

a linear slip model (Eq. (1)). However, division of the

total porosity into background porosity /p and fracture

porosity /c allows us to derive more specific equations

valid for typical reservoir conditions.

First, following Thomsen (1995), we assume that

the background porosity is formed by so-called

‘‘equant’’ pores, that is, pores with aspect ratio of

order 1. Such porosity is typical for clastic or granular

reservoirs. As known from mechanics of composite

materials (Christensen, 1979), of all possible pore

shapes, such equant pores have a minimum softening

effect on the overall elastic properties of the porous

material, and are therefore often referred to as hard

porosity (Mavko and Jizba, 1991). The softening

effect of porosity is expressed via the parameter

a0 = 1�K/Kg, which in the case of equant porosity

is of the same order of magnitude as the porosity

itself, a0//p =O(1). Moreover, for typical rocks, a0 is
usually two to four times greater than /p, so that

ða0 � /pÞ=/p ¼ Oð1Þ: ð48Þ

In contrast to background porosity, the fracture

porosity /c will be assumed to consist of crack-like

thin pores, which behave much like oblate spheroids

(penny-shaped cracks) with very small aspect ratio

( < 0.01). This shape makes such pores very compliant

(soft porosity, Mavko and Jizba, 1991), and they have

a significant effect on the effective elastic properties

of the material even if present in relatively small

quantities. In our notation, the softening effect of

fracture porosity on dry elastic properties is described

by dimensionless weaknesses DN and DT. The fact that

fracture porosity is a ‘‘soft porosity’’ can be written as

DNH/c, DTH/c. Following the analysis of Schoen-

berg and Sayers (1995), we will assume that fracture

compliances ZN and ZT are of the same order of

magnitude (though not necessarily equal), ZN/ZT =

O (1). This means that DN/gDT =O(1), where

g=(k + 2l)/l, and thus

/cbDT < DN < 1: ð49Þ

B. Gurevich / Journal of Appl
In addition, we will assume for simplicity that the

bulk modulus of the fluid is small compared with that

of the grains, KfbKg. This does not mean that all the

terms containing Kf/Kg can be neglected, as these

terms may contain combinations like DN//, which

may be very large. Moreover, to be negligible, these

terms must be small compared with terms containing

DN, which may themselves be small. Taking this into

account, we can observe that the terms containing

l2a0DN/L in the right-hand side of Eqs. (15)–(17) can

always be neglected. Indeed, when the background

medium is non-porous, /p = 0 and a0 = 0. Conversely,
when background porosity is large, this term is small

because it is proportional to DNKf/Kg. By neglecting

the terms containing a0DNKf/Kg, we can rewrite Eqs.

(15)–(17) as

csat11 ¼ L

D
ð1� DNÞh þ Kf

/KgL
Kg þ

4

3
l


 ��

� a0 þ
K2

KgL
DN


 ��
; ð50Þ

csat33 ¼ L

D
1� k2

L2
DN


 �
h þ Kf

/KgL
Kg þ

4

3
l


 ��

� a0 þ
K2

KgL
DN


 ��
; ð51Þ

csat13 ¼ k
D

ð1� DNÞh þ Kf

/Kgk
Kg �

2

3
l


 ��

� a0 þ
K2

KgL
DN


 ��
ð52Þ

with h= 1�Kf/Kg and D given by Eq. (20). We can

observe that equations for c11
sat and c33

sat are now

identical, but for the factor k2/L2, multiplying DN in

c33
sat in the term which is not affected by the fluid.

Therefore, the expression for esat reduces to

esat ¼ e0

1þ
Kf Kg þ

4

3
l


 �
a0 þ

K2

KgL
DN


 �

ð1� DNÞ/ðKg � Kf ÞL

; ð53Þ

The simplifications made in this section allow us to

derive even simpler expressions for two important
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special cases of a non-porous background and back-

ground with relatively large porosity.

5.3. Isolated fluid-filled fractures

If fractures are embedded in a non-porous back-

ground, the background porosity /p is zero (and

hence / =/c), while the elastic moduli of the dry

isotropic host rock K and l are equal to the moduli Kg

and lg of the grain material, so that a0u 1�K/Kg = 0.

Therefore, the elastic properties of the non-porous

medium with parallel isolated fractures can be

obtained by substituting / =/c and a0 = 0 into Eqs.

(15)–19) and (33):

csat11 ¼ L

D
ð1� DNÞ 1� Kf

Kg


 �
þ Kf

/cL
DN

� �
; ð54Þ

csat33 ¼ L

D
ð1� k2

L2
DNÞ 1� Kf

Kg


 �
þ Kf

/cL
DN

� �
; ð55Þ

csat13 ¼ k
D

ð1� DNÞ 1� Kf

Kg


 �
þ Kf

/cL
DN

� �
; ð56Þ

with

D ¼ 1� Kf

Kg

þ KfDN

Lg/c

ð57Þ

and

Lg ¼ Kg þ 4lg=3; kg ¼ Kg � 2lg=3:

For the anisotropy parameter eis, we have

eis ¼ e0
1� Kf

Kg

1� Kf

Kg
þ Kf

Lg

DN

/cð1�DNÞ

¼ e0

1þ KfKg

ðKg�Kf ÞLg
DN

/cð1�DNÞ
: ð58Þ
Further evaluation of this result requires a relation-

ship between normal fracture weakness for the dry

rock DN and fracture porosity /c. Such a relationship

depends on the microgeometry of the fractures. In

particular, for the popular model of aligned penny-

shaped cracks (Hudson, 1980, 1981; Nishizawa,

1982), we can use fracture parameters given by Eqs.

(38) and (39). This yields, for small crack densities,

eis ¼ 8e

3

1

1þ 1
pa

Kgþ4lg=3

lg

Kf

Kgþlg=3
1� Kf

Kg

� 	�1
: ð59Þ

Eq. (59) is identical to the result of Thomsen

(1995) for low concentrations of penny-shaped

cracks; see also Hudson et al. (2001).

For isolated fractures, the effective normal fracture

compliance as given by Eq. (43) can be written as

Zsat
N ¼ ZN

1þ KfDN

Lg/cð1�DNÞ 1� Kf

Kg

� 	�1
: ð60Þ

If the fluid is very compressible, so that Kf/Lg! 0

then also ZN
sat = ZN, as one would expect. If, however,

the fluid is liquid, then

Z is
N ¼ ZN

Lg/c

KfDN

1� Kf

Kg


 �
bZN; ð61Þ

and therefore ZN
satbZT

sat = ZT. This is a well-known

property of fractured non-porous media (Schoenberg

and Douma, 1988).

5.4. Effect of background porosity

The central issue in this paper is the effect of

background porosity on the elastic properties of the

fluid-saturated fractured rock. As we assume that the

background porosity is formed by equant pores, it is

clear that small amounts of background porosity (on

the scale of /c) have virtually no effect on the overall

elastic properties of the rock. We will therefore

assume in this section that /pH/c.

With these assumptions and conditions (Eqs. (48)

and (49)), the term DN// is of order 1, and when
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multiplied by Kf/Kg can be neglected. Thus Eqs.

(50)–(52) can be further simplified and re-arranged

to give

csat11 ¼ Lþ a2
Kf

/pD0

� L

D0

DN ¼ Lsat � L

D0

DN; ð62Þ

csat33 ¼ Lþ a2
Kf

/pD0

� k2

LD0

DN ¼ Lsat � k2

LD0

DN; ð63Þ

csat13 ¼ k þ a2
Kf

/pD0

� k
D0

DN ¼ ksat � L

D0

DN; ð64Þ

where

D0 ¼ 1þ
a0 � /p

/p

Kf

Kg

¼
M0/p

Kf

: ð65Þ

The corresponding equation for anisotropy param-

eter esat is

esat ¼ 2lðk þ lÞDN

D0LðLsat � LDN=D0Þ

¼ e0
L

Lsat
1� DN

D0

1� LDN

LsatD0


 ��1

: ð66Þ

For weakly fractured media, DNb1, we have

esat ¼ e0
L

LsatD0

: ð67Þ

Finally, effective saturated fracture compliance can

be obtained by substituting esat as given by Eq. (67)

into Eq. (43):

Zsat
N ¼ ZN

ðk þ lÞ
ksat þ l

1� DN

D0

1� LDN

LsatD0


 ��1

; ð68Þ

or, for weak fracture anisotropy

Zsat
N ¼ ZN

ðk þ lÞ
D0ðksat þ lÞ

: ð69Þ

Eq. (69) shows that in the presence of background

porosity, the saturated normal fracture compliance
ZN
sat is of the same order of magnitude as, but

somewhat smaller than, the dry fracture compliance

ZN. Intuitive arguments as well as the analysis of

Schoenberg and Douma (1988) based on the theoret-

ical result of Thomsen published later in Thomsen

(1995), Eq. (35), suggested that the presence of a

non-zero background porosity /pH/c tends to pro-

duce a non-zero normal fracture compliance, i.e.,

0 < ZN
sat < ZT. Eq. (69) provides a quantitative confir-

mation of this phenomenon.

5.5. Numerical illustration

The effect of background porosity on the anisotro-

py of the fractured medium is illustrated in Figs. 1–3.

Numerical computations require elastic constants of

the dry porous background rock as a function of

porosity. For this purpose, we used empirical model

of (Krief et al. (1990)):

K ¼ ð1� a0ÞKg; ð70Þ

l ¼ ð1� a0Þlg; ð71Þ

with a0 given by

a0 ¼ 1� ð1� /pÞ
3

1�/p : ð72Þ

Fig. 1 shows the anisotropy parameter e as a

function of fluid bulk modulus Kf for different poros-

ities. For each porosity, a different value of normal

fracture compliance was chosen so as to produce the

same value for e0 = 0.1 for the dry medium and

fracture porosity of 0.01%. (this corresponds to crack

density of penny-shaped cracks equal to 0.0375). As

described in this section, we see that at very low

background porosities, esat tends to zero as Kf

increases. However, even for modest values of back-

ground porosity, esat shows a much more gradual

decrease with fluid modulus. Similar behaviour is

observed for the effective excess normal fracture

compliance ZN
sat (Fig. 2). Interestingly, the decrease



Fig. 1. P-wave anisotropy parameter e versus fluid bulk modulus for different values of background porosity. For each porosity, the fracture

compliances have been adjusted to provide the same value of e= 0.1 for the dry rock.

B. Gurevich / Journal of Applied Geophysics 54 (2003) 203–218212
of both esat and ZN
sat with Kf is minimal at porosity

around 10%, and then increases again.

Fig. 3 further examines this effect. It presents esat as

a function of background porosity /p for water-satu-

rated rock (Kf = 2.25� 109 Pa). The solid line shows
Fig. 2. The ratio of saturated-to-dry fracture compliances versus fluid
the full solution, Eq. (33), dashed line the asymptotic

solution for large background porosity, Eq. (66), and

dotted line Thomsen’s (1995) solution, Eq. (35). We

see that esat is zero for zero background porosity, and

sharply increases within a range of a few percent
bulk modulus for different values of the background porosity.



Fig. 3. P-wave anisotropy parameter e versus background porosity as predicted by the anisotropic Gassmann theory, Eq. (33) (solid line), large-

porosity approximation, Eq. (66) (dashed line), and Thomsen (1995) theory, Eq. (35) (dotted line). Dash–dotted line shows e for the dry rock.

For each porosity, the fracture compliances have been adjusted to provide the same value e= 0.1 for the dry rock.
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porosity almost to e0, the value of e for the dry medium.

After that, the dependency of esat on /p flattens out and

is followed by a gradual decrease down to about half of

e0, at background porosity of about 0.4.

As discussed by Thomsen (1995) and Hudson et al.

(2001), the sharp increase of esat results from the fact

that when surrounded by (equant) pores, the fluid in

the fracture has plenty of space around it to escape to

when compressed, and therefore the fracture is almost

as compliant as in the dry medium. In other words,

stiffening of compliant pores by the fluid does not

occur, as fluid can escape into the pores. Mathemat-

ically, this behaviour is best described by Eq. (53).

The parameter that controls this transition is the ratio

of the second to the first term in the denominator of

the right-hand side of Eq. (53), which can be approx-

imately written as

F ¼ KfKðKg þ 4l=3ÞDN

K2
gL

2/
c

Kf e
0

Kg/
¼ /t

/
; ð73Þ

where /t =Kf e
0/2Kg is the characteristic porosity

around which the sharpest rise of esat with /p occurs.

For /pb/t, the factor F =/t/(/c +/p) is very large,

and thus esat is close to zero. For /pH/t, the factor F
becomes small, and the denominator in Eq. (53) is of

order 1, which gives esat =O(e0). For our numerical

example, e0 = 0.1, Kg = 40 GPa, and the characteristic

porosity /t is about 5%. This means that no more than

10% porosity provides enough space for the fluid to

escape from the fracture. Note that for given grain and

fluid bulk moduli, the characteristic porosity /t is

chiefly controlled by the dry fracture weakness or

degree of fracture anisotropy, and is unrelated to

fracture porosity, which is much smaller (0.01%) in

our case.

At background porosities several times greater than

/t, the factor F becomes small, and a simple high-

porosity approximation given by Eq. (66) or Eq. (67)

can be used. The gradual decrease of esat at higher

background porosities is simply the result of fluid

saturation; the more porous the rock, the greater the

role of the saturating fluid in overall properties of the

rock. Since the pore fluid is isotropic, it tends to

reduce the overall degree of anisotropy of the rock.

5.6. Properties of stiffness and compliance matrices

Eqs. (43) and (44) show how non-zero elements of

the excess compliance matrix sc change in the pres-
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ence of fluid. This implies that all other elements of

that matrix remain zero. As was mentioned before, the

fact that the compliance matrix can be expressed as a

sum of an isotropic compliance matrix for the non-

fractured rock plus an excess compliance matrix with

only three diagonal elements other than zero requires

that elements of the stiffness matrix satisfy Eq. (3). In

order to prove that this representation is also valid for

the saturated case, we need to calculate the left-hand

side of Eq. (3) with the dry stiffnesses cij
0 replaced by

the saturated stiffnesses given by Eqs. (15)–(19).

After a straightforward, but cumbersome calculation,

we arrive at the result that Eq. (3) does not hold for the

saturated rock:

csat11c
sat
33 � ðcsat13Þ

2 � 2csat44 ðcsat11 þ csat13 Þp0: ð74Þ

This largely unexpected result means that the

compliance matrix for the saturated fractured medium

with background porosity cannot be represented by

the sum of an isotropic matrix and an excess compli-

ance matrix of the form given by Eq. (2). One can still

obtain the excess compliance matrix sc
sat as a differ-

ence between the compliance matrix ssat and the

isotropic compliance matrix sg obtained from dry

compliances using isotropic Gassmann equations.

However, such an excess compliance matrix will no

longer have a form given by Eq. (2), but will have

other non-zero elements:

ssatc ¼

Zsat
N þ dS11 dS13 dS13 0 0 0

dS13 dS33 dS23 0 0 0

dS13 dS23 dS33 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

where all quantities dSij are given by expressions that

for small background porosity are proportional to the

combination a0ZNKf. Therefore, these quantities van-

ish for dry rocks, for rocks with zero background
porosity (in which case a0 = 0) and, obviously, for

non-fractured media. However, in the presence of

fractures, background porosity, and fluid all dSij are
non-zero.

This result contradicts the existing view that back-

ground porosity only influences one element of the

upper-left quarter of excess compliance matrix ZN.

The non-zero effect of background porosity on other

compliances can be explained by the flow of fluids

between pores and fractures. Indeed, if we compress

the rock with no background porosity along x3 or x2
axis, its compliance is not affected by the fractures

normal to x1. However, if the rock also contains pores

that are in hydraulic equilibrium with the fractures, the

fluid will squeeze from pores into fractures, thus

affecting the corresponding compliance. The hydrau-

lic equilibrium is assured by the use of a low-frequen-

cy approximation, and an assumption of a non-zero

permeability.

Thus, the saturated porous and fractured porous

medium can no longer be described by four parame-

ters (two elastic constants of the background and two

excess compliances), but requires all five parameters

that describe a general TI medium. It is therefore not

sufficient to describe its anisotropy by e and c only;

that is, the d parameter is now an independent

parameter. Expression for d in the case of weak

anisotropy can be obtained by substituting saturated

stiffnesses given by Eqs. (18), (19), (62)–(64) into

Eq. (26) and retaining only terms linear in DN and DT.

This yields:

dsat ¼ 2l
Lsat

ðD�1
0 DN � DTÞ; ð75Þ

or, in terms of esat and csat,

dsat ¼ 2ð1� mÞesat � 2
1� 2msat

1� msat
csat; ð76Þ

where msat is Poisson’s ratio of the saturated back-

ground medium, and csat is given as before by Eq.

(34). Expression for d given by Eq. (76) differs from

the value of d that satisfies the requirement (expressed

by Eqs. (3) and (29)).

For the saturated medium an equivalent equation

would be

dsat ¼ 2ð1� msatÞesat � 2
1� 2msat

1� msat
csat: ð77Þ



Fig. 4. Anisotropy parameter d versus background porosity as predicted by the anisotropic Gassmann theory, Eqs. 62–64 (solid line), large-

porosity approximation, Eq. (75) (dashed line), Thomsen’s (1995) work (dotted line), and Eq. (77), with e and c obtained from exact Eqs. 62–64

(dash–dotted line).
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Eq. (76) differs from Eq. (77) by the use of dry,

rather than saturated, Poisson ratio in the term that

multiplies esat. Obviously, for large porosity, the

difference may be significant. This is demonstrated

by Fig. 4, which shows d versus porosity cor-

responding to anisotropic Gassmann Eqs. (62)–(64)

(solid line), large porosity/weak anisotropy approxi-

mation, Eq. (75) (dashed line), Thomsen’s (1995)

work (dotted line), and Eq. (77), with e and c
obtained from exact Eqs. (62)–(64) (dash–dotted

line).

An important implication of the analysis given in

this section is that d as given by Eq. (76) is not fully

defined by the elastic constants of the saturated

background medium plus esat and csat, but also

depends on background porosity (through the differ-

ence between dry and saturated Poisson ratios of the

background medium).
6. Higher frequencies

All the results derived above assume infinitely

hydraulic equilibrium between pores and fractures,

and are therefore valid for infinitely low frequencies.
This regime is called ‘‘relaxed’’ by Mavko and Jizba

(1991), and corresponds to the situation when the

fluid diffusion length (Hudson et al., 2001)

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/pKfj=2gx

q
: ð78Þ

(or the wavelength of Biot’s slow wave, Biot,

1956a,b) is larger than the fracture size and fracture

spacing,

cbabJ ð79Þ

(in Eq. (78), x denotes frequency, j the background

permeability, and g the dynamic fluid viscosity).

At higher frequencies, the fluid will have no time

to move between pores and fractures. This occurs

when fracture opening becomes larger than the fluid

diffusion length (Norris, 1993; Gurevich and Lopat-

nikov, 1995; Hudson et al., 2001), although fractures

are still assumed to be smaller than the wavelength

2pvp/x:

Jbcb2pvp=x ð80Þ

where x is frequency. The regime defined by the

condition (Eq. (80)) is called ‘‘unrelaxed’’ by Mavko
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and Jizba (1991), and the corresponding frequencies

are called moderately high by Thomsen (1995) and

intermediate frequencies by Gurevich et al. (1998). In

this regime, the flow between pores and fractures must

be ignored, and the fractures should be treated as

isolated fractures in the isotropic background whose

elastic constants are given by the isotropic Gassmann

equation. In particular, the expression for anisotropy

parameter e is identical to the one given by Eq. (58)

with grain moduli Kg and lg replaced by the un-

drained modulus Ksat given by the Gassmann Eq. (37)

and skeleton shear modulus l, respectively:

e ¼ 2lðKsat þ l=3ÞDN

ðLsatÞ2ð1� DNÞ
1� Kf

Kg

1� Kf

Ksat þ Kf

Lsat
DN

/cð1�DNÞ
; ð81Þ

This result is equivalent to the corresponding result

of Thomsen (1995) for moderately high frequencies.
7. Discussion

The above analysis shows how the low-frequency

elastic properties of a fractured rock with a back-

ground porosity can be obtained using the Gassmann

theory of poroelasticity. The main result is that a

relatively small increase of background porosity (from

zero to a few percent) leads to a sharp increase of P-

wave anisotropy from a near-zero value for non-

porous background to a value which is close to, but

somewhat smaller than, P-wave anisotropy of the dry

fractured rock. This result is qualitatively consistent

with the prediction of the model of Thomsen (1995),

which is based on the analysis of pressure equilibra-

tion in a system of penny-shaped cracks embedded in

a porous background. Quantitative predictions of the

anisotropic Gassmann and Thomsen (1995) model are

identical for low concentrations of penny-shaped

cracks, but differ slightly in the case of a porous

background. The main qualitative difference is in the

fact that the stiffness matrix predicted by the aniso-

tropic Gassmann model does not obey the usual

relationship (Eq. (3)) valid for dry or saturated rocks

in a non-porous background. This means, in particu-

lar, that contrary to the prediction of Thomsen’s
(1995) model, the anisotropy parameter d for the

saturated rock is not fully defined by the elastic

constants of the saturated background medium plus

esat and csat, but also depends on the background

porosity. A more detailed theoretical comparison of

the anisotropic poroelasticity model and Thomsen’s

(1995) model is given by Cardona (2002), who

introduced a model for elastic properties of a porous

medium with aligned fractures based on the compli-

ance-matrix formulation of Brown and Korringa

(1975), which is entirely equivalent to the model

presented here.

These results are valid in the low-frequency limit,

when the fluid diffusion length is larger than the

fracture size and fracture spacing. In the opposite

limit of higher frequencies, when the fluid diffusion

length is smaller than the fracture thickness, the fluid

communication between pores and fractures can be

neglected, and the results are equivalent to those

derived for isolated fractures by Hudson (1981) and

Thomsen (1995).

Another theoretical model of elastic properties of

fractured media with background (‘‘equant’’) porosity

was developed by Hudson et al. (1996); see also

corrections by Hudson et al. (2001). Unlike the

Thomsen (1995) model and anisotropic Gassmann

model proposed in the present paper, each of which

have expressions only for limiting cases of low and

high frequencies, Hudson et al. (1996) derived expres-

sions for elastic moduli as continuous functions of

frequency. In the high-frequency limit, these expres-

sions are equivalent to the predictions of Thomsen

(1995) and anisotropic Gassmann models. However,

the Hudson et al. (1996) model differs substantially

from these two models in the low-frequency limit,

where it predicts that anisotropy is the same as for the

dry rock, and does not depend on background poros-

ity. This result apparently contradicts the known fact

that for isolated liquid-filled cracks in a non-porous

background, the anisotropy parameter e is close to

zero. However, this contradiction is resolved by the

fact that the low-frequency limit can never be

achieved for zero-porosity background. Indeed, as

can be seen from Eq. (78), the diffusion length is

proportional to background permeability, and is

therefore zero for a non-porous background at any

frequency. Therefore, similar to the anisotropic Gass-

mann and Thomsen (1995) models, the Hudson et al.
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(1996) model predicts an increase of P-wave anisot-

ropy with the increase of background porosity (from

zero to a few percent). However, in contrast to those

two models, this increase occurs at a given non-zero

frequency, but not in the low-frequency limit, and is

controlled by the permeability to viscosity ratio.

Thus, the Hudson et al. (1996) model is not consis-

tent with anisotropic Gassmann theory. As suggested

by Hudson et al. (2001), this discrepancy might be

the result of the fact that Hudson et al. (1996) is

based on the analysis of a singe fracture in an

infinite background medium, and therefore does not

account for the interaction between inclusions which

may be significant in the low-frequency limit when

the diffusion length is larger than fracture spacing.

The analysis of elastic properties of the fractured

rock with background porosity is most important

when such porosity is significant (say, >8–10%),

and thus can hold significant volumes of fluid. In this

case, the general equations for elastic normal stiff-

nesses (Eq. (15)–(17)) reduce to Eqs. (62)–(64). For

weakly anisotropic media, these results can also be

recast in terms of anisotropy parameters which are

given by Eqs. (34), (67), and (75). The main thing to

note about these equations is that they are remarkably

simple. As in many other situations in geophysics, the

computations should always be performed using exact

Eqs. (15)–(17), but simplified equations can be useful

in providing physical insight and quick estimates.

They can also be used as a basis for petrophysical

inversion.

Finally, it should be noted all the results derived in

this paper for both low and high frequencies (and

corresponding results of Thomsen, 1995; Hudson et

al., 1996, 2001) are only valid if the porous, non-

fractured medium obeys the Gassmann equation. This

is only true in the low-frequency regime of the Biot

theory of poroelasticity (Biot, 1956a,b, 1962). For

most reservoir rocks, this regime extends up to fre-

quencies of 0.1–1 MHz.
8. Conclusions

The anisotropic Gassmann theory when combined

with the linear-slip description of fractures provides a

straightforward solution to the problem of elastic

properties of a porous rock with parallel fractures.
This solution provides explicit and exact analytical

expressions of all elements of the effective stiffness

matrix of such a rock in terms of elastic properties of

the dry isotropic background, porosity, dry normal

and shear excess fracture compliances, and bulk

moduli of the grain material and the saturating fluid.

When recast in terms of Thomsen’s (1986) an-

isotropy parameters, these expressions show that P-

wave anisotropy parameter e of the saturated frac-

tured rock sharply increases from zero to a value

close to its value for the dry rock as porosity

increases from zero to a few percent. After reaching

its maximum value at about 10% porosity, e gradu-

ally decreases with porosity.

The shear wave anisotropy parameter c is unaffect-

ed by the fluid and is equal to its value for the dry

rock. The parameter d is independent of e and c due to
the fact that the compliance matrix of a fluid-saturated

porous fractured medium is not equivalent to the

compliance matrix of any equivalent solid medium

with a single set of parallel fractures. This unexpected

result is caused by the wave-induced flow of fluid

between pores and fractures.
Acknowledgements

I thank Milovan Urosevic, Michael Schoenberg,

Colin Sayers, and Andrey Bakulin for in-depth

discussions that inspired this work, and Luke J.

Brown for numerical calculations. I also thank Simon

Tod and Reynaldo Cardona for the detailed review of

the paper. The support of the Commonwealth

Scientific Industrial Research Organisation (CSIRO),

Center of Excellence for Exploration and Production

Geophysics (CEEPG), Australian Petroleum Cooper-

ative Research Centre (APCRC), and Curtin Reser-

voir Geophysics Consortium (CRGC) is gratefully

acknowledged.
References

Biot, M.A., 1956a. Theory of propagation of elastic waves in a

fluid-saturated porous solid: I. Low-frequency range. J. Acoust.

Soc. Am. 28, 168–178.

Biot, M.A., 1956b. Theory of propagation of elastic waves in a

fluid-saturated porous solid: II. Higher-frequency range. J.

Acoust. Soc. Am. 28, 179–191.



B. Gurevich / Journal of Applied Geophysics 54 (2003) 203–218218
Biot, M.A., 1962. Mechanics of deformation and acoustic propaga-

tion in porous media. J. Appl. Phys. 33, 1482–1498.

Brown, R.J.S., Korringa, J., 1975. On the dependence of the elastic

properties of a porous rock on the compressibility of the pore

fluid. Geophysics 40, 608–616.

Cardona, R., 2002. Two theories for fluid substitution in porous

rocks with aligned cracks. 72nd Ann. Internat. Mtg., Soc. Expl.

Geophys., Expanded Abstracts. Paper ANI, vol. 3.5.

Christensen, R.M., 1979. Mechanics of Composite Materials.

Wiley-Interscience.
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