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Interface conditions at a boundary between two porous media are derived directly from Biot’s
equations of poroelasticity by replacing the discontinuity surface with a thin transition layer, in
which the properties of the medium change rapidly yet continuously, and then taking the limit as the
thickness of the transition layer approaches zero. The interface conditions obtained in this way, the
well known ‘‘open-pore’’ conditions, are shown to be the only ones that are fully consistent with the
validity of Biot’s equations throughout the poroelastic continuum, including surfaces across which
the medium properties are discontinuous. But partially blocked or completely impermeable
interfaces exist; these may be looked upon as the case of a thin layer with its permeability taken to
be proportional to the layer thickness, again in the limit as layer thickness approaches zero. This
approach can serve as a simple recipe for modeling such an interface in any heterogeneous
numerical scheme for poroelastic media. ©1999 Acoustical Society of America.
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INTRODUCTION

The linear mechanics of porous elastic solids satura
with compressible viscous fluids is described by Biot’s eq
tions of poroelasticity.1–3 To be used for piecewise homog
neous media, these equations must be complemented b
terface conditions which relate the field variables on b
sides of a surface of discontinuity in the material propert
which are involved in the coefficients appearing in Bio
equations.

Such conditions were suggested by Deresiewicz
Skalak;4 they require the continuity across an interface of
total ~normal and tangential! stress traction, of the fluid pres
surep ~for the case when the two media are in perfect h
draulic contact!, of the solid particle velocityv, and of the
normal component of the relative fluid velocity. The relati
flow w of the fluid relative to the solid is defined as

w5f~V2v!, ~1!

whereV is the fluid particle velocity andf is the porosity.
When the hydraulic contact between two porous mat

als is imperfect, the condition for the jump in pressurep may
be written

2~p12p2!5
1

bs
wn , ~2!

wherebs is sometimes called interface hydraulic permeab
ity and subscriptn denotes the component normal to t
interface. For perfect hydraulic contact,bs5` and p1

5p2, i.e.,p is continuous. On the other hand, for no hydra
lic contact across the interface,bs50 and condition~2! re-
duces town50, implying no motion of the fluid relative to
the solid.

The interface conditions of Deresiewicz and Skalak
now widely used in modeling wave propagation in layer
2585 J. Acoust. Soc. Am. 105 (5), May 1999 0001-4966/99/105(
d
-

in-
h
s

d
e

-

i-

-

-

e

poroelastic media, porous media with inclusions, and ot
kinds of piecewise homogeneous porous materials5–8

Bourbiéet al.5 have given a proof of these conditions on t
basis of Hamilton’s principle. For some situations the boun
ary conditions of Deresiewicz and Skalak have been c
firmed experimentally.9,10 However, some issues related
the interface conditions in porous media are still under d
cussion. In particular, this relates to the value of the interf
permeabilitybs , which has to be assigned for every inte
face in the medium. Furthermore, the newly developed al
rithms for numerical simulation of elastic wave propagati
in poroelastic media11,12use so-called heterogeneous nume
cal schemes, which are applicable to porous media with s
tially variable coefficients. For piecewise homogeneous m
dia these schemes assume no explicit conditions at a su
of discontinuity. Then, the question arises, which bound
conditions are implied~or simulated! by these algorithms.13

Moreover, de la Cruz and Spanos14 have expressed doubt
about the physical validity of the boundary conditions
Deresiewicz and Skalak, and proposed altogether diffe
boundary conditions for porous media; see also Ref.
Their concern, if justified, could throw into doubt all th
theoretical and numerical results based on the interface
ditions of Deresiewicz and Skalak, and thus needs to be
dressed.

On the other hand, it has long been known in mathem
cal physics that interface conditions at an internal disco
nuity in a medium described by a linear system of par
differential equations can be derived from those equation
they are written for a general inhomogeneous medium.
Maxwell’s equations, for example, this method is discuss
in great detail in The Feynman Lectures on Physics.16 As
noted once by S. L. Lopatnikov,17 this method may be ap
plied to Biot’s equations of poroelasticity to derive the inte
face conditions consistent with these equations.
25855)/2585/5/$15.00 © 1999 Acoustical Society of America
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This note employs the idea of using the equations fo
general inhomogeneous medium to end the controversy
interface conditions in porous media. Biot’s equations
assumed to hold not only in continuous regions, but also
discontinuity. By replacing the discontinuity surface with
thin transition layer, in which the properties of the mediu
change rapidly yet continuously, we arrive at interface c
ditions that are identical to the open-pore conditions of D
esiewicz and Skalak. We then consider a closed or parti
open interface, and show that such an interface may
looked upon as the limiting case of a thin layer, as la
thickness approaches zero, with permeability proportiona
the layer thickness.

I. INTERFACE CONDITIONS AT A DISCONTINUITY
SURFACE

The linear dynamics of an inhomogeneous porous m
dium of porosityf saturated with a viscous fluid of densi
r f and viscosityh can be described by Biot’s equations
poroelasticity,3 which, in Cartesian coordinatesxi , i
51,2,3 with summation implied by repeated indices a
with the time derivative of functionf denoted byḟ , have the
form

]t i j

]xj
5~r v̇ i1r f ẇi !, ~3!

2
]p

]xi
5

h

k
F̂wi1~r f v̇ i1mẇi !, ~4!

where the field variables are thet i j which are the compo-
nents of total stress in the porous saturated medium,p which
is fluid pressure, andv i and wi which are components o
particle velocityv and relative fluid velocityw, respectively;
see Eq.~1!. As for material parameters,r is bulk density of
the saturated rock,

r5~12f!rs1fr f , ~5!

wherers is the density of the solid grain material, and

m5
r fa

f
, ~6!

with a denoting the tortuosity coefficient, a dimensionle
number. Low frequency permeability is given byk, and the
operatorF̂ is a linear integral convolution operator with re
spect to time, which in the Fourier transform domain b
comes a frequency dependent multiplierF(v), implying fre-
quency dependent permeabilityk̃(v)5k/F(v) ~so-called
dynamic permeability2,18!. This operator is defined so that i
transform approaches unity as frequency becomes very
At higher frequencies this operator accounts for the devia
of the fluid flow in pores from the Poiseuille flow. Note th
all material properties, including the operatorF̂, are in gen-
eral functions of position.

The total stresses and fluid pressure are linearly rela
to solid and fluid velocity derivatives by
2586 J. Acoust. Soc. Am., Vol. 105, No. 5, May 1999 B. Gurev
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ṫ i j 5mS ]v i

]xj
1

]v j

]xi
D1d i j Flc

]vk

]xk
1S 12

K

Ks
D M

]wk

]xk
G ,

~7!

2 ṗ5S 12
K

Ks
D M

]vk

]xk
1M

]wk

]xk
, ~8!

wherelc andm are Lame constants of the saturated rockK
andKs are bulk moduli of the dry~empty! solid matrix and
solid grain material, respectively;M is the ‘‘pore space
modulus,’’ defined by

1

M
5

f

K f
1

~12f2K/Ks!

Ks
, ~9!

with K f the fluid bulk modulus. In Eq.~7!, d i j is the Kro-
necker symbol. Equations~3!, ~4!, ~7!, and~8! form a system
of 13 partial differential equations for 13 unknown function
6 independent componentst i j of the total stress, fluid pres
surep, 3 components of the solid velocityv i , and 3 compo-
nents of the relative fluid velocitywi .

Now, assume that in the porous medium there is a d
continuity surface, across which the properties of the m
dium undergo a jump. LetP be a point on the discontinuity
surface, and assume that this surface is smooth in the vic
of P. Consider a Cartesian coordinate system with its ori
at pointP and itsx1 axis normal to the discontinuity surface
and with values on the positive side denoted by supersc
‘‘ 1’ ’ and on the negative side, with a superscript ‘ ‘2’ ’ . We
wish to obtain relationships between the limiting values
the field variables~stresses, pressure, and velocities! as x1

→0 through negative and positive values of thex1 coordi-
nate. These relationships will be seen to derive from
requirement that Biot’s equations are valid throughout
mediumincluding the discontinuity~and hence, at pointP as
well!.

Following the procedure described in Ref. 16, we
place the discontinuity by a thin transition layer of the thic
nessd, in which the Biot’s coefficients, including porosity
change rapidly but smoothly, as shown in Fig. 1. The thic
nessd is taken small enough to ensure that the derivati
with respect tox1 of the Biot’s coefficients in the layer ar
much larger than the derivatives with respect tox2 , x3 , and
also much larger than any spatial derivatives in the regi
of continuity of the coefficients. Thus terms containing d
rivatives with respect tox1 are the terms of interest. Not
that of the 13 scalar equations corresponding to Eqs.~3!, ~4!,
~7! and ~8!, 10 of them have terms containing a derivati
with respect tox1 . As d→0, all terms that do not contain

FIG. 1. Behavior of a parameter of the porous medium, say, porosityf,
across the transition region around the discontinuity.
2586ich and M. Schoenberg: Interface conditions for poroelasiticity
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derivative with respect tox1 are bounded in thed-vicinity of
P, and we can write these ten equations in the form

]t i1

]x1
5O~1!, ~10!

2
]p

]x1
5O~1!, ~11!

m
]v i

]x1
1d i1F ~lc1m!

]v1

]x1
1S 12

K

Ks
D M

]w1

]x1
G5O~1!,

~12!

lc

]v1

]x1
1S 12

K

Ks
D M

]w1

]x1
5O~1!, ~13!

S 12
K

Ks
D M

]v1

]x1
1M

]w1

]x1
5O~1!. ~14!

Note this is actually a set of 9 scalar equations since Eq.~13!
comes from Eq.~7! asd→0 for both i j set to 22 and to 33
Equations~12!, ~13!, and~14! can be satisfied if and only i

]v i

]x1
5O~1!, ~15!

]w1

]x1
5O~1!. ~16!

Now by replacing each derivative of the form] f /]x1 with
the corresponding finite difference (f 12 f 2)/d, multiplying
both sides of each of the Eqs.~10!, ~11!, ~15!, and~16! by d,
and taking the limit asd→0, we obtain,

t i1
12t i1

250, ~17!

p12p250, ~18!

v i
12v i

250, ~19!

w1
12w1

250, ~20!

a set of eight independent interface conditions. Recalling
subscript 1 refers to the normal component of the field v
ables, we conclude that the interface conditions require
continuity, across the interface, of~1! normal and tangentia
components of the total stress traction acting on the in
face,~2! fluid pressure,~3! the solid velocity vector, and~4!
the normal component of the relative fluid velocity vecto
These conditions follow directly from Biot’s equations if th
latter are satisfied at the discontinuity.

Comparing these boundary conditions with those of D
esiewicz and Skalak mentioned in the Introduction, we i
mediately see that interface conditions~17!–~20! are identi-
cal to a particular case of the standard conditions
Deresiewicz and Skalak, the open-pore conditions, nam
Eq. ~2! with interface permeabilitybs→`. In other words,
out of the choice allowed by the standard conditions of D
esiewicz and Skalak, only the open-pore conditions are c
sistent with Biot’s equations, if the latter are to be va
throughout the poroelastic continuum, including surfac
across which the medium properties are discontinuo
These are the interface conditions that must be used in
2587 J. Acoust. Soc. Am., Vol. 105, No. 5, May 1999 B. Gurev
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numerical modeling scheme, if that scheme is to prope
handle Biot’s equations when the porous medium is pie
wise continuous.

We emphasize that, in line with Biot theory the abo
derivation of the interface conditions has been carried
exclusively from the macroscopic standpoint, without co
sidering microscopic details of the interface.

II. CLOSED AND PARTIALLY OPEN INTERFACES

The result of the previous section that the only interfa
conditions consistent with Biot theory are the open-pore c
ditions may seem unphysical, since in a real medium one
always imagine an impermeable, or partially permeable c
tact between two permeable media.9 Folklore has it that, if
one looks at an interface from the microscopic standpo
such a situation may occur if the cross sections of pores
two media do not match at the interface, as shown in Fig
This, however, seems a highly unlikely scenario for a natu
interface, based on preliminary experiments carried out
Rasolofosaon and Schoenberg in 1996. Their results sho
that the presence of a fracture in a piece of sandstone did
change the decrease of the rock’s permeability normal to
fracture whether the two pieces of the rock were held
gether such that the two pieces ‘‘fit’’ one another at the fra
ture surface, or whether one piece of the rock was off
slightly relative to the other piece such that the two piec
did not fit at the fracture surface.

A more likely scenario for partial or total blockage o
flow across a fracture is one in which clays, muds, or grou
up grain materials clog the pores in the vicinity of the inte
face or fracture surface.

At this point the question arises as to how partially op
or closed interfaces can be handled in the context of B
theory. Following an approach used in Ref. 19, we can so
this problem by replacing the interface with a thin poroela
tic layer of thicknessd, and letting its permeability to viscos
ity ratio k/h be proportional to the thicknessd, i.e.,

k

h
[bd, ~21!

keeping in mind that open pore conditions ofperfect hydrau-
lic contactmust hold on both sides of the layer. Then Eq.~4!
becomes

FIG. 2. Diagram of an interface between two porous media on a mic
scopic scale:~a! open interface (bs5`); ~b! partially open interface (0
,bs,`); ~c! closed interface (bs50) ~after Deresiewicz and Skalak
Ref. 4!.
2587ich and M. Schoenberg: Interface conditions for poroelasiticity
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]p

]xi
5

1

bd
F̂wi1~r f v̇ i1mẇi !. ~22!

After replacement of]p/]x1 with its finite difference ap-
proximation (p12p2)/d and the multiplication of both
sides of the equation byd, taking the limit asd→0 yields

2~p12p2!5
1

b
F̂w1 . ~23!

Comparing this result with Eq.~2! we see that a layer o
small thicknessd with low permeabilityk5bhd and opera-
tor F̂ is equivalent to an interface with a finite frequen
dependent interface permeability. In the time domain, o
over the interface permeability is an integral operator, s
that

1

bs
5

F̂

b
. ~24!

At low frequenciesF̂'1, and hencebs'b. However, at
higher frequencies, the interface permeability operatorF̂ be-
comes, in the frequency domain, simply multiplication
F(v), the Fourier transform of the kernel function ofF̂.
This means that the interface permeability to be used in
interface condition must involve the limiting value~as d

→0) of the frequency dependent permeabilityk̃(v)
5k/F(v) of the inserted layer, rather than its quasi-sta
permeabilityk18

1

bs
5

F~v!

b
5 lim

d→0

F~v!hd

k
5 lim

d→0

hd

k̃
, ~25!

proving the intuitive surmise of Rosenbaum20 that the inter-
face permeability as defined by Deresiewicz and Ska4

might be frequency dependent.
Equation ~24! provides a simple recipe for numeric

modeling algorithms. An interface with frequency indepe
dent inverse permeability 1/bs can be simulated by a layer o
small thicknessd and inverse permeability

1/k51/bshd. ~26!

An impermeable interface, instead of being simulated by
ting wn50 on the interface, can be modeled by a thin lay
of smallb, small enough so that the length corresponding
a typical background permeability to viscosity ratio divid
by b is @ than layer thicknessd. Clearly, an interface with
frequency dependent inverse permeability can be modele
similar fashion by the inclusion ofF̂ in the time domain or
F(v) in the frequency domain.

One can also observe that the permeability of the tr
sition layer that simulates a partially impermeable interfa
depends not only on the interface permeability, but also
the fluid viscosity. This fact may look suspicious, since p
meability is a property of the solid frame, and must not
affected by fluid properties. To explain this, one needs
recall the definition of interface permeability, Eq.~2!. In-
deed, Eq.~2! is nothing more than a form of the quasi-sta
Darcy law, which, for a homogeneous medium with a rig
frame is usually written as
2588 J. Acoust. Soc. Am., Vol. 105, No. 5, May 1999 B. Gurev
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k

h
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whereV denotes fluid particle velocity. Comparing Eq.~27!
with ~2! one can conclude that the interface permeability
not a purely geometrical characteristic of the interface, bu
inversely proportional to the fluid viscosity. This shows th
in the right-hand side of Eq.~26! the fluid viscosity cancels
out and hence the permeability of the transition layer is
fact independent of fluid properties.

III. CONCLUSIONS

Interface conditions at a boundary between two poro
media have been derived directly from Biot’s equations
poroelasticity. These conditions are identical to a particu
variant of the class of interface conditions of Deresiew
and Skalak, namely to the open-pore conditions. In ot
words, we have proved that only the open-pore interface c
ditions are fully consistent with the validity of Biot’s equa
tions of poroelasticity at the interface. These are the con
tions that should be expected to hold in any heterogene
numerical modeling scheme, if that scheme is to prope
handle Biot’s equations in an inhomogeneous poroela
continuum.

Interface conditions for closed or partially open inte
faces may also be used, whether the interface is alon
surface of discontinuity or not. Such conditions violate B
ot’s equations at the interface, but we have shown tha
partially open or impermeable interface may be looked up
as a limiting case of a thin layer with small permeabili
proportional to the layer thickness, where the open-pore c
ditions do apply on both sides of this thin layer. This c
serve as a simple recipe for modeling such an interface
any heterogeneous numerical scheme for poroelastic me
Further experimental and numerical studies are neede
analyze the importance of fully or partially impermeable i
terfaces in different porous materials.
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