Interface conditions for Biot’s equations of poroelasticity
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Interface conditions at a boundary between two porous media are derived directly from Biot's
equations of poroelasticity by replacing the discontinuity surface with a thin transition layer, in
which the properties of the medium change rapidly yet continuously, and then taking the limit as the
thickness of the transition layer approaches zero. The interface conditions obtained in this way, the
well known “open-pore” conditions, are shown to be the only ones that are fully consistent with the
validity of Biot’s equations throughout the poroelastic continuum, including surfaces across which
the medium properties are discontinuous. But partially blocked or completely impermeable
interfaces exist; these may be looked upon as the case of a thin layer with its permeability taken to
be proportional to the layer thickness, again in the limit as layer thickness approaches zero. This
approach can serve as a simple recipe for modeling such an interface in any heterogeneous
numerical scheme for poroelastic media. 1©99 Acoustical Society of America.
[S0001-496629)03605-X]

PACS numbers: 43.20.GDEC]

INTRODUCTION poroelastic media, porous media with inclusions, and other

kinds of piecewise homogeneous porous materidls.

_ The linear mechanics of porous elastic solids saturateg, o et a15 have given a proof of these conditions on the
with compressible viscous fluids is described by Biot's equay,agjs of Hamilton’s principle. For some situations the bound-

. .. -3 . .
tions of por_oelastlcn)}. To_be used for piecewise homoge- .ary conditions of Deresiewicz and Skalak have been con-
neous media, these equations must be complemented by igz o experimentally:'° However, some issues related to

tgrface conditions Whph reliate.th(.e field varlaples on b(.)ﬂ}he interface conditions in porous media are still under dis-
sides of a surface of discontinuity in the material properties

which are involved in the coefficients appearing in Biot's cussion. In particular, this relates to the value of the interface
equations P 9 permeability B85, which has to be assigned for every inter-

Such conditions were suggested by Deresiewicz anéace in the medium. Furthermore, the newly developed algo-

Skalak? they require the continuity across an interface of therItth for numerical simulation of elastic wave propagation

] ; 11,12 _ i
total (normal and tangentipktress traction, of the fluid pres- in poroelastic me_dl"é use SO. called heterogeneogs nL_Jmen

. . cal schemes, which are applicable to porous media with spa-
surep (for the case when the two media are in perfect hy-

draulic contagt of the solid particle velocityw, and of the ggll¥hvarlabli coefficients. For p|eC(|a'V\{;se hglr:jogen?ous n’]:e—
normal component of the relative fluid velocity. The relative a these schemes assume no expliicit conditions at a surtace

flow w of the fluid relative to the solid is defined as of discontinuity. Then, the question arises, which boundary
conditions are impliedor simulated by these algorithm&

w=¢(V—V), (1)  Moreover, de la Cruz and Spardsave expressed doubts
about the physical validity of the boundary conditions of

whereV is the fluid particle velocity and is the porosity.  peresiewicz and Skalak, and proposed altogether different
When the hydraulic contact between two porous materiy,, \ndary conditions for porous media; see also Ref. 15.

als is imperfect, the condition for the jump in presspmay Their concern, if justified, could throw into doubt all the

be written theoretical and numerical results based on the interface con-
1 ditions of Deresiewicz and Skalak, and thus needs to be ad-
—(p"=p)=—Wy, (2)  dressed.

Ps On the other hand, it has long been known in mathemati-
where B, is sometimes called interface hydraulic permeabil-cal physics that interface conditions at an internal disconti-
ity and subscriptn denotes the component normal to the nuity in a medium described by a linear system of partial
interface. For perfect hydraulic contagBs=« and p* differential equations can be derived from those equations if
=p~, i.e.,pis continuous. On the other hand, for no hydrau-they are written for a general inhomogeneous medium. For
lic contact across the interfac8,=0 and condition2) re- Maxwell's equations, for example, this method is discussed
duces tow,=0, implying no motion of the fluid relative to in great detail in The Feynman Lectures on PhysicAs
the solid. noted once by S. L. LopatnikdV, this method may be ap-

The interface conditions of Deresiewicz and Skalak areplied to Biot's equations of poroelasticity to derive the inter-
now widely used in modeling wave propagation in layeredface conditions consistent with these equations.
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This note employs the idea of using the equations for a n
general inhomogeneous medium to end the controversy over f ol
interface conditions in porous media. Biot's equations are /
assumed to hold not only in continuous regions, but also at a /
discontinuity. By replacing the discontinuity surface with a f- —
thin transition layer, in which the properties of the medium
change rapidly yet continuously, we arrive at interface con-
ditions that are identical to the open-pore conditions of Der- -
esiewicz and Skalak. We then consider a closed or partiall _ _ _
open interface, and show that such an interface may bg'C: 1 Behavior of a parameter of the porous medium, say, porgsity

. . across the transition region around the discontinuity.
looked upon as the limiting case of a thin layer, as layer
thickness approaches zero, with permeability proportional to

(X1 Y

0

11~

I

the layer thickness. - [ dv; N I PN avk+ 1 K M IW
T B axg T ox ) ] eax Ke ' oxg|’
()
I. INTERFACE CONDITIONS AT A DISCONTINUITY . K v IWy
SURFACE p kM oxe % 8

~ The linear dynamics of an inhomogeneous porous Mewhere) . and« are Lame constants of the saturated rdek,
dium of porosity¢ saturated with a viscous fluid of density andKg are bulk moduli of the dryempty solid matrix and

pr and viscosityn can be described by Biot's equations of splid grain material, respectively is the “pore space
poroelasticity> which, in Cartesian coordinates;, i modulus,” defined by

=1,2,3 with summation implied by repeated indices and
with the time derivative of functiofidenoted byf, have the i = i w
form M Ky Ks ,

P with K¢ the fluid bulk modulus. In Eq(7), &;; is the Kro-

—”Z(Pi)i+PfWi), 3 necker symbol. Equation(8), (4), (7), and(8) form a system
28 of 13 partial differential equations for 13 unknown functions:

6 independent componentg of the total stress, fluid pres-
_9p_ Tew +(psvi+mw) (4)  surep, 3 components of the solid velocity, and 3 compo-
axi kP . nents of the relative fluid velocity; .

Now, assume that in the porous medium there is a dis-
continuity surface, across which the properties of the me-
dium undergo a jump. Le® be a point on the discontinuity
surface, and assume that this surface is smooth in the vicinity
of P. Consider a Cartesian coordinate system with its origin
at pointP and itsx; axis normal to the discontinuity surface,
and with values on the positive side denoted by superscript

€)

where the field variables are thg; which are the compo-
nents of total stress in the porous saturated medpwwhich
is fluid pressure, an@; and w; which are components of
particle velocityv and relative fluid velocityv, respectively;
see Eq(1). As for material parameterg, is bulk density of
the saturated rock,

p=(1—p)ps+ dps, (5) “ _*” and on _the negative.side, with a super_sc_r@pf". We
wish to obtain relationships between the limiting values of

whereps is the density of the solid grain material, and the field variablegstresses, pressure, and velocitias x;

—0 through negative and positive values of thecoordi-
m:ﬂ (6) nate. These relationships will be seen to derive from the
¢’ requirement that Biot's equations are valid throughout the

mediumincludingthe discontinuityand hence, at poiR as
well).

- i ) ) ] Following the procedure described in Ref. 16, we re-
operatorF is a linear integral convolution operator with re- 506 the discontinuity by a thin transition layer of the thick-
spect to time, which in the Fourier transform domain be-nessd, in which the Biot's coefficients, including porosity,
comes a frequency dependent multipkeiw), implying fre-  change rapidly but smoothly, as shown in Fig. 1. The thick-
quency dependent permeability(w) = «/F(w) (so-called nessd is taken small enough to ensure that the derivatives
dynamic permeabilify*®). This operator is defined so that its with respect tax, of the Biot's coefficients in the layer are
transform approaches unity as frequency becomes very lownuch larger than the derivatives with respeckjo x5, and

At higher frequencies this operator accounts for the deviatiorlso much larger than any spatial derivatives in the regions
of the fluid flow in pores from the Poiseuille flow. Note that of continuity of the coefficients. Thus terms containing de-
all material properties, including the operafor are in gen-  rivatives with respect tx, are the terms of interest. Note

with @ denoting the tortuosity coefficient, a dimensionless
number. Low frequency permeability is given ky and the

eral functions of position. that of the 13 scalar equations corresponding to E3)s(4),
The total stresses and fluid pressure are linearly relate?) and (8), 10 of them have terms containing a derivative
to solid and fluid velocity derivatives by with respect tax;. As d—0, all terms that do not contain a
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derivative with respect t®; are bounded in thd-vicinity of
P, and we can write these ten equations in the form

Medium 1
JTi1 ¢ < Interface
oy 0(1), (10
ap o " Medium 2
Jdv Jdv K ow 7 . -
/1«(9 +5|1 (¢ +M)0.,—+ 1_K_)M37j20(1)' D722 solid phase LI Liquid phase
(12 FIG. 2. Diagram of an interface between two porous media on a micro-
scopic scale(a) open interface 8;==); (b) partially open interface (0
N (91)1+ 1— K M _ o1 13 <Bs<x); (c) closed interface 8,=0) (after Deresiewicz and Skalak,
e K. axl =0(1), (13)  Ref. 4.
1-20u vy M ——O(l) (14) numerical modeling scheme, if that scheme is to properly
Kg/  axq IXq handle Biot's equations when the porous medium is piece-

Note this is actually a set of 9 scalar equations since(Ej).
comes from Eq(7) asd—0 for bothij set to 22 and to 33.
Equations(12), (13), and(14) can be satisfied if and only if

wise continuous.

We emphasize that, in line with Biot theory the above
derivation of the interface conditions has been carried out
exclusively from the macroscopic standpoint, without con-

v sidering microscopic details of the interface.
Xy o(1), (15
W, Il. CLOSED AND PARTIALLY OPEN INTERFACES
ax =0(1). (16) The result of the previous section that the only interface

Now by replacing each derivative of the foréf/ox, with
the corresponding finite differencé{—f~)/d, multiplying
both sides of each of the Eg4.0), (11), (15), and(16) by d,
and taking the limit asl— 0, we obtain,

conditions consistent with Biot theory are the open-pore con-
ditions may seem unphysical, since in a real medium one can
always imagine an impermeable, or partially permeable con-
tact between two permeable medi&olklore has it that, if

one looks at an interface from the microscopic standpoint,

S0 17) such a situation may occur if the cross sections of pores of
oaem two media do not match at the interface, as shown in Fig. 2.
p"—p =0, (18)  This, however, seems a highly unlikely scenario for a natural
L interface, based on preliminary experiments carried out by
vi —v; =0, (19  Rasolofosaon and Schoenberg in 1996. Their results showed
Wi —w =0, (20) that the presence of a fracture in a piece of sandstone did not

change the decrease of the rock’s permeability normal to the

a set of eight independent interface conditions. Recalling thdfacture whether the two pieces of the rock were held to-
subscript 1 refers to the normal component of the field vari-gether such that the two pieces “fit” one another at the frac-
ables, we conclude that the interface conditions require théure surface, or whether one piece of the rock was offset
continuity, across the interface, ¢f) normal and tangential slightly relative to the other piece such that the two pieces
components of the total stress traction acting on the interdid not fit at the fracture surface.

face, (2) fluid pressure(3) the solid velocity vector, an¢4) A more likely scenario for partial or total blockage of
the normal component of the relative fluid velocity vector. flow across a fracture is one in which clays, muds, or ground
These conditions follow directly from Biot’s equations if the Up grain materials clog the pores in the vicinity of the inter-
latter are satisfied at the discontinuity. face or fracture surface.

Comparing these boundary conditions with those of Der- At this point the question arises as to how partially open
esiewicz and Skalak mentioned in the Introduction, we im-Or closed interfaces can be handled in the context of Biot
mediately see that interface conditiofi&)—(20) are identi-  theory. Following an approach used in Ref. 19, we can solve
cal to a particular case of the standard conditions othis problem by replacing the interface with a thin poroelas-
Deresiewicz and Skalak, the open-pore conditions, namel{ic layer of thicknessl, and letting its permeability to viscos-
Eq. (2) with interface permeability3s— . In other words, ity ratio x/» be proportional to the thicknes i.e.,
out of the choice allowed by the standard conditions of Der-
esiewicz and Skalak, only the open-pore conditions are con- —=gd,
sistent with Biot's equations, if the latter are to be valid
throughout the poroelastic continuum, including surfaceseeping in mind that open pore conditionspafrfect hydrau-
across which the medium properties are discontinuoudic contactmust hold on both sides of the layer. Then E4).
These are the interface conditions that must be used in arlyecomes

(21)
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p

. (22
X ,Bd

Fw; +(proj+mw).

After replacement ofdp/dx, with its finite difference ap-
proximation @ —p~)/d and the multiplication of both
sides of the equation bg, taking the limit asd—0 yields

1
B

Comparing this result with Eq2) we see that a layer of
small thicknessl with low permeabilityx= 87d and opera-

tor F is equivalent to an interface with a finite frequency

—(p"—p7 )= Fws. (23)

dependent interface permeability. In the time domain, one

\Y

“v 27

e
whereV denotes fluid particle velocity. Comparing EQ-7)
with (2) one can conclude that the interface permeability is
not a purely geometrical characteristic of the interface, but is
inversely proportional to the fluid viscosity. This shows that
in the right-hand side of Eq26) the fluid viscosity cancels
out and hence the permeability of the transition layer is in
fact independent of fluid properties.

IlI. CONCLUSIONS

Interface conditions at a boundary between two porous

over the interface permeability is an integral operator, suchyedia have been derived directly from Biot's equations of

that
1 F

Bs B
At low frequenciesF~1, and henceB~B. However, at
higher frequencies, the interface permeability operﬁtdne-
comes, in the frequency domain, simply multiplication by

F(w), the Fourier transform of the kernel function Bf
This means that the interface permeability to be used in th
interface condition must involve the limiting valugs d
—0) of the frequency dependent permeability(w)

= k/F(w) of the inserted layer, rather than its quasi-static
permeability x

(29)

i_F(w)
Bs B

proving the intuitive surmise of Rosenbatththat the inter-
face permeability as defined by Deresiewicz and SKalak
might be frequency dependent.

Equation (24) provides a simple recipe for numerical
modeling algorithms. An interface with frequency indepen-
dent inverse permeability 8 can be simulated by a layer of
small thicknessl and inverse permeability

k= 1/B4nd.

d—0

F(w)nd i
=i

d—0

(29

=
K

(26)

poroelasticity. These conditions are identical to a particular
variant of the class of interface conditions of Deresiewicz
and Skalak, namely to the open-pore conditions. In other
words, we have proved that only the open-pore interface con-
ditions are fully consistent with the validity of Biot’'s equa-
tions of poroelasticity at the interface. These are the condi-
tions that should be expected to hold in any heterogeneous
numerical modeling scheme, if that scheme is to properly
handle Biot's equations in an inhomogeneous poroelastic
Bontinuum.

Interface conditions for closed or partially open inter-
faces may also be used, whether the interface is along a
surface of discontinuity or not. Such conditions violate Bi-
ot's equations at the interface, but we have shown that a
partially open or impermeable interface may be looked upon
as a limiting case of a thin layer with small permeability
proportional to the layer thickness, where the open-pore con-
ditions do apply on both sides of this thin layer. This can
serve as a simple recipe for modeling such an interface in
any heterogeneous numerical scheme for poroelastic media.
Further experimental and numerical studies are needed to
analyze the importance of fully or partially impermeable in-
terfaces in different porous materials.
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